WorldWideScience

Sample records for beam optics

  1. Holographic optical bottle beams

    CERN Document Server

    Alpmann, Christina; Rose, Patrick; Denz, Cornelia

    2011-01-01

    We present a convolution approach for the generation of optical bottle beams that combines established techniques of holographic optical trapping with hollow intensity distributions in order to manipulate absorbing particles. The versatility of our method is demonstrated by the simultaneous stable trapping of multiple particles at defined positions. Furthermore, the presented phase shaping technique allows for the dynamic manipulation of absorbing particles along arbitrary paths.

  2. Beam optics test stand

    International Nuclear Information System (INIS)

    The authors have constructed a beam optics test stand in order to study adaptive charged particle optics. A low energy, continuous electron beam is used to model a high energy negative ion beam. In addition, the beam can be used as a diagnostic probe to study the correction of spherical aberrations in a solenoid lens. The authors test stand design stresses versatility. The conical glass vacuum system has reentrant electron and diagnostic chambers that allow immediate experimental modifications. As an integral part of the vacuum system, the solenoid lens also serves as structural support for grid focusing systems. Vacuum pumping is provided by an 8'' cryopump and the entire system can be moved about freely. Computer control and data acquisition are interfaced to the beam control and diagnostics. A post acceleration grid and deflection plates have been added to a commercial electron gun to produce a 10 keV beam at 100 μA. The diagnostics consist of phosphor screens, a charge-coupled photodiode array, and an image dissector

  3. Optics and beam guidance

    International Nuclear Information System (INIS)

    This is an introductory manual for the field of particle transport (guiding). The utilized method described is that of classical geometrical optics which is based on the action principle or minimal action principle. This manual is addressed to readers neither specialized or familiar with intricate computations. The treatment is focussed upon the transport line of an experimental beam conceived for the late-project PIAFE. This case was chosen as it poses and solves certain significant difficult issues. In addition it will also allow in course of exposition to illustrate formulas and properties and also to give orders of magnitude. Background notions are given on: forces, curvature radius, potential, energy and units. The frame of conception is defined by means of the concepts of particle, referential trajectory, emittance, quadrupoles, electrostatic lenses, etc. Simulation for a large number of systems can be done with fairly high accuracy with the aid of thin lenses. Consequently the properties of several assemblies as for instance the periodic system 'FODO' are studied on the case of a single particle and emittance by means of adaptation and stability notions. The manual is structured on the following sections: 1. Introduction; 2. Basic notions; 3. Particle trajectories; 4. The real beam. Emittance and Evolution; 5.Optics notions and applications; 6. Elements of focusing; 7. Particle beam bending; 8. Some items presented in annexes and conclusions. In annexes the following important technical issues are addressed: 1. Effects of alignment failures on PIAFE structure trajectories; 2. Alignment. Phase 1: Magnetic centers and quadrupoles; 3. Alignment. Phase 2: Structures; 4. Residual gas/ Required pressure

  4. Beam Diagnostics with Optical Fiber Optics

    CERN Document Server

    Yin, Yan

    2005-01-01

    Optical fiber has been widely used for communications. It is a waveguide with very high-frequency bandwidth. Therefore, it has broad applications for high-frequency related signals such as high-energy Accelerator beam signls. Research and developments has been done to measure charged particle beam and synchrotron radiation with optical fiber based instruments developed by the author. The paper will describe and discuss the experiments and testing of charged particle beams and synchrotron radiation that haverecently been performed.

  5. Toward automated beam optics control

    International Nuclear Information System (INIS)

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs

  6. Divergence of optical vortex beams

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  7. Divergence of optical vortex beams.

    Science.gov (United States)

    Reddy, Salla Gangi; Permangatt, Chithrabhanu; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-08-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analyzed by using the width [w(z)] of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane (z=0) as defined in [Opt. Lett.39, 4364 (2014)10.1364/OL.39.004364OPLEDP0146-9592]. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance (z), and found that it varies with the order in the same way as that of the inner and outer radii at z=0. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication. PMID:26368081

  8. Airy beam optical parametric oscillator

    Science.gov (United States)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  9. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  10. Airy beam optical parametric oscillator

    Science.gov (United States)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  11. BeamOptics. A program for analytical beam optics

    International Nuclear Information System (INIS)

    Analytical beam optics deals with the basic properties of the magnetic modules which compose particle accelerators in the same way as light optics was developed for telescopes, microscopes, or other instruments. The difference between photon and charged-particle optics lies in the nature of the field which acts upon the particle. The magnets of accelerators do not have the rotational symmetry of glass lenses and the computational problems are much more difficult. For this reason, the symbolic program BeamOptics has been written to assist the user in finding the parameters of systems whose complexity is better treated by computer than by hand. Symbolic results may be hard to interpret. Thin-lens models have been adopted because their description is algebraic and emphasis has been put on the existence of solutions, the number of solutions, and simple yet unknown special schemes. The program can also be applied to real machines with long elements. In that case, it works with numerical data but the results are accessible through continuous functions which provide the machine parameters at arbitrary positions along the reference orbit. The code is organized to be implemented in accelerator controls and has functions to correct all the first-order perturbations using a universal procedure. (orig.)

  12. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.; Juul Rasmussen, Jens

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  13. Quantum mechanical formalism of particle beam optics

    OpenAIRE

    Khan, Sameen Ahmed

    2001-01-01

    A general procedure for construction of the formalism of quantum beam optics for any particle is reviewed. The quantum formalism of spin-1/2 particle beam optics is presented starting {\\em ab initio} with the Dirac equation. As an example of application the case of normal magnetic quadrupole lens is discussed. In the classical limit the quantum formalism leads to the well-known Lie algebraic formalism of classical particle beam optics.

  14. Multi-Beam Optical Tweezers

    DEFF Research Database (Denmark)

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angul...

  15. Application of optical fiber beam loss monitor

    International Nuclear Information System (INIS)

    KEK is an accelerator complex consisting of an electron-positron injector linac and various types of circular accelerators. In order to protect instruments from radiation damage, discrete beam loss monitors have been installed inside the linac and rings. Although beam losses can be detected using the beam loss monitors (BLMs) or beam position monitors (BPMs), it is difficult to identify the exact position of the loss. The electrons, which strike the duct, lose a fraction of their beam energy, which produces a shower at the location and emits many electrons out of the duct. If an optical fiber is placed inside the beam duct, many of these electrons will pass through the optical fiber where the beam loss is generated. BLMs employing an optical fiber based on Cherenkov radiation are currently being developed and applied to our system. An optical fiber placed into the duct also can be used as a detector for a wire scanner system. Existing wire scanner detectors are set at a fixed position, and detect signals of different beam energies that correspond to the different injection modes. However, the fixed position is not always optimal. Conversely, owing to the optical fiber's distributing nature, optical fiber detector systems containing PMTs enables the effective detection of all signals from various beam modes. We can successfully obtain the clear wire scanner signal by employing this optical fiber system. The measurement of the beam loss at the incidence part of the circular accelerator is also described. The beam loss location as well as the turn-by-turn beam loss can be measured. (author)

  16. Space Optical Communications Using Laser Beam Amplification

    Science.gov (United States)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  17. Tractor beams for optical micromanipulation

    Science.gov (United States)

    Yevick, Aaron; Grier, David G.

    2016-03-01

    Tractor beams are traveling waves that transport illuminated objects in the retrograde direction relative to the direction of propagation. The theory of photokinetic effects identifies design criteria for long-range general- purpose tractor beams. These criteria distinguish first-order tractor beams that couple to induced dipole moments from higher-order tractor beams that rely on coupling to higher-order multipole moments to achieve pulling. First-order tractor beams are inherently longer-ranged and operate on a wider variety of materials. We explore the physics of first-order tractor beams in the context of a family of generalized solenoidal waves.

  18. Optics of electron beam in the Recycler

    International Nuclear Information System (INIS)

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  19. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  20. The Electro-Optic Beam Position Monitor

    CERN Document Server

    Doherty, James

    2013-01-01

    This reports outlines the development of a new ultra-wideband electro-optic beam position monitor (EO-BPM) for use in the Large Hadron Collider (LHC) which utilises birefringent crystals and the Pockels effect to monitor beam position. The physical principles behind the operation of the device and tested topology, which incorporates two Lithium Tantalate crystals, is discussed.

  1. Optical forces in higher order Bessel beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Jákl, Petr; Chvátal, Lukáš; Zemánek, Pavel

    Bellingham : SPIE, 2012, 86970R:1-6. ISBN 978-0-8194-9481-8. [CPS 2012. Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics /18./. Ostravice (CZ), 03.09.2012-07.09.2012] R&D Projects: GA MŠk LH12018; GA MŠk ED0017/01/01; GA ČR GPP205/12/P868 Institutional support: RVO:68081731 Keywords : Bessel beam * optical vortex * optical forces * generalized Lorenz-Mie theory * size-effect Subject RIV: BH - Optics, Masers, Lasers

  2. Ion beam irradiated optical channel waveguides

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Pelli, S.; Veres, M.; Himics, L.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    Vol. 8988. Washington: SPIE International, 2014, s. 898814. ISBN 978-0-8194-9901-1. ISSN 0277-786X. [Conference on Integrated Optics - Devices, materials, and Technologies XVIII. San Francisco (US), 03.02.2014-05.02.2014] R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * Er-doped tungsten-tellurite glass * bismuth germanate * SRIM simulation * phase contrast microscopy * micro Raman spectroscopy * focused ion beam Subject RIV: BH - Optics, Masers, Lasers

  3. Complete shaping of optical vector beams.

    Science.gov (United States)

    Chen, Zhaozhong; Zeng, Tingting; Qian, Binjie; Ding, Jianping

    2015-07-13

    We propose and experimentally demonstrate the complete and simultaneous modulation of the amplitude, phase and arbitrary state of polarization of optical beams. Based on a 4-f system including a spatial light modulator (SLM), two orthogonally polarized beams serving as the base vector components are produced by a computer generated hologram. The complex amplitude of orthogonal components is realized by a macro-pixel encoding technique purposely designed for phase-only SLMs. Vector beams can be created from the coaxial superposition of the two base beams. This enables us to design optical fields with arbitrarily structured amplitude, phase and polarization by using only one SLM, and thus provides an easy-to-implement route for exploring the novel effects and expanding the functionality of vector beams with space-variant parameters. PMID:26191832

  4. BeamOptics : a Symbolic Platform for Modeling and the Solution of Beam Optics System

    International Nuclear Information System (INIS)

    BeamOptics [1] is a Mathematica-based computing platform devoted to the following objectives: (1) Structured representation and manipulation of particle beam optics systems with symbolic capabilities, (2) Analytical and numerical modeling of beam optics system behaviors, (3) Solution to specific beam optical or general accelerator system problems, in algebraic form in certain cases, through customized algorithms. Taking advantage of and conforming to the highly formal and self-contained structure of Mathematica, BeamOptics provides a unique platform for developing accelerator design and analysis programs. The feature of symbolic computation and the ability to manipulate the beam optics system at the programming language level enable the user to solve or optimize his system with considerably more efficiency, rigour and insight than can be easily achieved with passive modeling or numerical simulation methods. BeamOptics is developed with continuous evolution in mind. New features and algorithms from diverse sources can be incorporated without major modification, due to its formal and generic structure. In this report, a survey is given of the basic structure and methodology of BeamOptics, as well as a demonstration of some of its more specialized applications, and possible direction of evolution

  5. Optical beam diagnostics on PEP

    International Nuclear Information System (INIS)

    In designing the PEP optical diagnostics we have been able to build on the experience gained with SPEAR. Most of the problems at SPEAR could be traced to the optical diagnostic system being inside the tunnel. A machine shutdown is required for any maintenance or modification. This implies that in order to make such an instrument successful, a large engineering effort must be mounted to ensure 100% operation at startup. The functions that do not work at startup may never be made to work; this has happened at several machines. Experimental setups are likewise risky and time consuming. A point which has been borne out in both SPEAR and PEP is that the mechanical part of the instrument, the special vacuum chamber, the optical mounts, the alignment and adjustments, require approximately 60% of the effort and cost of the optical diagnostics. It is far better to economize on detectors and electronics than on mechanical and optical essentials

  6. Nonparaxial optical vortices and Kummer laser beams

    Science.gov (United States)

    Kovalev, Alexey A.; Kotlyar, Victor V.; Nalimov, Anton G.

    2013-09-01

    Two approaches to describe nonparaxial optical vortices were considered. One approach is to use a revised Kirchhoff integral, which does not neglect the relief of an optical element. Using this integral and the finite-difference time-domain method it is shown that an optical vortex generated by a refractive spiral plate with a relief step has an asymmetric profile. The annular diffraction pattern in the vortex beam cross-section is found to be disturbed not only for the near-field diffraction but also for the middle-field diffraction, at a distance of several Fresnel lengths. Another approach is to solve the Helmholtz equation without any approximations. An analytical solution to describe propagation of a light beam in the positive direction of the optical axis was found. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The autofocusing of the HB beams is studied.

  7. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  8. Single laser beam based passive optical sorter

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Karásek, Vítězslav; Šiler, Martin; Chvátal, Lukáš; Čižmár, T.; Zemánek, Pavel

    Bellingham: SPIE, 2013, 863715:1-8. ISSN 0277-786X. [Conference on Complex Light and Optical Forces /7./ part of Photonics West. San Francisco (US), 05.02.2013-07.02.2013] R&D Projects: GA TA ČR TE01020233; GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk LH12018; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical trapping * optical sorting * tractor beam * particle delivery Subject RIV: BH - Optics, Masers, Lasers

  9. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  10. Optical vortex beam generator at nanoscale level.

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  11. THz beam steering by optical coherent control

    OpenAIRE

    Füser, Heiko; Bieler, Mark

    2013-01-01

    We demonstrate optical coherent control of the emission direction of THz radiation. Femtosecond laser pulses are used to excite different types of ultrafast photocurrents along different directions in a bulk GaAs sample. The overall emission pattern can be modified by changing the phase of the optical excitation. With this method, THz beam steering of about 8 degrees is realized. A simple dipole-based model allows us to relate the size of the steering effect to the amplitude ratio between the...

  12. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  13. Quantum optics of lossy asymmetric beam splitters.

    Science.gov (United States)

    Uppu, Ravitej; Wolterink, Tom A W; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-07-25

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers. PMID:27464096

  14. Beam optics on the Melbourne proton microprobe

    International Nuclear Information System (INIS)

    This review paper summarises results of ion optics development work conducted on the Melbourne Proton Microprobe and the associated Pelletron accelerator. The properties of a field ionization ion source have been investigated with the aim of replacing the existing R.F. ion source in the accelerator in order to obtain a brighter beam for the microprobe. The electrostatic emitter lens in the terminal of the accelerator has also been investigated with the aim of improving the focus of the accelerated beam. Finally, the aberrations of the probe forming lens system have been studied and it is shown how some of these may be corrected with an octupole lens

  15. Quantum optics of lossy asymmetric beam splitters

    CERN Document Server

    Uppu, Ravitej; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-01-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  16. Beam Delivery WG Summary: Optics, Collimation & Background

    Energy Technology Data Exchange (ETDEWEB)

    Angal-Kalinin, D.; Jackson, F.; /Daresbury; Mokhov, N.V.; /Fermilab; Kuroda, S.; /KEK, Tsukuba; Seryi, A.A.; /SLAC

    2006-01-20

    The presented paper partially summarizes the work of the Beam Delivery working group (WG4) at Snowmass, concentrating on status of optics, layout, collimation, and background. The strawman layout with 2 interaction regions was recommended at the first ILC workshop at KEK in November 2004. Two crossing-angle designs were included in this layout. The design of the ILC BDS has evolved since the first ILC workshop. The progress on the BDS design and extraction line design has been reviewed and the design issues were discussed during the optics and layout session at the Snowmass.

  17. THz beam steering by optical coherent control

    CERN Document Server

    Füser, Heiko

    2013-01-01

    We demonstrate optical coherent control of the emission direction of THz radiation. Femtosecond laser pulses are used to excite different types of ultrafast photocurrents along different directions in a bulk GaAs sample. The overall emission pattern can be modified by changing the phase of the optical excitation. With this method, THz beam steering of about 8 degrees is realized. A simple dipole-based model allows us to relate the size of the steering effect to the amplitude ratio between the different photocurrent contributions and to diffraction effects resulting from the excitation spot size.

  18. Ultrafast Airy beam optical parametric oscillator.

    Science.gov (United States)

    Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  19. Scatter corrections for cone beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver [Department of Physics, Queen' s University (United Kingdom); Schreiner, L John [Medical Physics Department, Cancer Centre of Southeastern Ontario (Canada)], E-mail: Tim.Olding@krcc.on.ca

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  20. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  1. Beam shaping for laser initiated optical primers

    Science.gov (United States)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  2. Optical tractor beam with chiral light

    Science.gov (United States)

    Fernandes, David E.; Silveirinha, Mário G.

    2015-06-01

    We suggest a novel mechanism to induce the motion of a chiral material body towards an optical source with no optical traps. Our solution is based on the interference between a chiral light beam and its reflection on an opaque mirror. Surprisingly, it is theoretically shown that the electromagnetic response of the material may be tailored in such a way that independent of the specific body location with respect to the mirror, it is always pulled upstream against the photon flow associated with the incoming wave. Moreover, it is proven that by controlling the handedness of the incoming light it may be possible to harness the sign of the optical force, switching from a pulling force to a pushing force.

  3. High order vortex beam in the optical vortex microscope

    Science.gov (United States)

    Płócienniczak, Łukasz; Popiołek-Masajada, Agnieszka; Szatkowski, Mateusz; Masajada, Jan

    2015-08-01

    The optical system working with focused Gaussian beam carrying a higher order optical vortex is considered. Additionally the optical vortex movement inside the beam is proposed allowing the precise scanning of the sample inserted into the beam. The analytical formula for the Fresnel diffraction integral with the shifted optical vortex has been calculated and compared with the numerical results. The experimental validation of this problem has been also presented.

  4. Optical tailoring of xFEL beams

    Energy Technology Data Exchange (ETDEWEB)

    West, Gavin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffee, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  5. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel

    2015-01-01

    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  6. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  7. High-order beam optics - an overview

    International Nuclear Information System (INIS)

    Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab

  8. Indexing system for optical beam steering

    Science.gov (United States)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  9. Asymmetric Beam Combination for Optical Interferometry

    CERN Document Server

    Monnier, J D

    2001-01-01

    Optical interferometers increasingly use single-mode fibers as spatial filters to convert varying wavefront distortion into intensity fluctuations which can be monitored for accurate calibration of fringe amplitudes. Here I propose using an asymmetric coupler to allow the photometric intensities of each telescope beam to be measured at the same time as the fringe visibility, but without the need for dedicated photometric outputs, which reduce the light throughput in the interferometric channels. In the read-noise limited case often encountered in the infrared, I show that a 53% improvement in signal-to-noise ratio for the visibility amplitude measurement is achievable, when compared to a balanced coupler setup with 50% photometric taps (e.g., the FLUOR experiment). In the Poisson-noise limit appropriate for visible light, the improvement is reduced to only ~8%. This scheme also reduces the cost and complexity of the beam combination since fewer components and detectors are required, and can be extended to mor...

  10. Laser beam propagation in nonlinear optical media

    CERN Document Server

    Guha, Shekhar

    2013-01-01

    ""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then

  11. Optical Tractor Beam with Chiral Light

    CERN Document Server

    Fernandes, David E

    2015-01-01

    We suggest a novel mechanism to induce the motion of a chiral material body towards an optical source. Our solution is based on the interference between a chiral light beam and its reflection on an opaque mirror. Surprisingly, it is theoretically shown that the electromagnetic response of the material may be tailored in such a way that independent of the specific body location with the respect to the mirror, it is always pushed upstream against the photon flow associated with the incoming wave. Moreover, it is proven that by controlling the handedness of the incoming light it may be possible to harness the sign of the optical force, switching from a pulling force to a pushing force.

  12. Electro-optic and acousto-optic laser beam scanners

    Science.gov (United States)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  13. Helico-conical optical beams self-heal

    CERN Document Server

    Hermosa, N; Torres, J P

    2013-01-01

    An optical beam is said to be self-healing when, distorted by an obstacle, the beam corrects itself upon propagation. In this letter, we show through experiments supported by numerical simulations, that Helico-conical optical beams (HCOBs) self-heal. We observe the strong resilience of these beams with different types of obstructions, and relate this to the characteristics of their transverse energy flow.

  14. Beam shaping for laser-based adaptive optics in astronomy

    OpenAIRE

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics syst...

  15. Spatial-domain interactions between ultra-weak optical beams

    CERN Document Server

    Khadka, Utsab; Xiao, Min

    2013-01-01

    We have observed the spatial interactions between two ultra-weak optical beams that are initially collinear and non-overlapping. The weak beams are steered towards each other by a spatially varying cross-Kerr refractive index waveguide written by a strong laser beam in a three-level atomic medium utilizing quantum coherence. After being brought together, the weak beams show controllable phase-dependent outcomes. This is the first observation of soliton-like interactions between weak beams and can be useful for all-optically tunable beam-combining, switching and gates for weak photonic signals.

  16. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    We describe a diffracting beam with orbital angular momentum (DAM) but with a helical profile in both phase and amplitude of the beam. This is different from Laguerre-Gaussian (LG) beams where only the phase component has a helical profile. The beam we describe here is initially characterized with...... an apodized helical phase front at the outskirts and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam fonms an intensity distribution that can be accurately described as an "optical twister" as it propagates along the optical axis....... Unlike LG beams, an optical twister can have minimal changes in radius but with a scalable DAM. Furthenmore, we characterize the DAM in tenms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons...

  17. The beam optics of the Argonne Positive-Ion Injector

    International Nuclear Information System (INIS)

    The beam optics for Phase I of the Argonne Positive-Ion Injector linac system have been studied for a representative set of beams. The results of this study indicate that high charge state beams from an ECR source can be accelerated without significantly increasing the transverse or longitudinal emittance of the initial beam. It is expected that the beam quality from the PII-ATLAS system will be at least as good as presently achieved with the tandem-ATLAS system

  18. Optical vortex trajectories in an astigmatic and elliptical Gaussian beam

    CERN Document Server

    Roux, F S

    2006-01-01

    An optical vortex, produced at one point in an optical beam, would propagate through an optical system to another point where the vortex can be used for some purpose. However, asymmetrical optical elements in such a system can cause astigmatism or at least distroy the rotational symmetry of the beam, which may affect the propagation of the vortex in an undesirable way. While an optical vortex in a rotationally symmetric, stigmatic Gaussian beam retains its initial morphology for as far as it propagates, the morphology of an optical vortex in an asymmetric or astigmatic Gaussian beam changes. The vortex can even be replaced by another with the opposite topological charge. We consider the behavior of single noncanonical vortices propagating in Gaussian beams that are asymmetric and/or astigmatic. General expressions for the vortex trajectories are provided. The locations of the flip planes and the evolution of the anisotropy of the vortex are considered for different non-ideal situations.

  19. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  20. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  1. Beam optics of the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    S Santra; P Singh

    2002-07-01

    The beam optics of the 6 MV folded tandem ion accelerator, that has recently been commissioned at Bhabha Atomic Research Centre, Mumbai, is presented. Typical beam trajectories for proton and 12C beams under different conditions, are shown. The constraints on the design due to the use of the infrastructure of the Van de Graaff accelerator, which existed earlier, are discussed.

  2. Multiple-beam Propagation in an Anderson Localized Optical Fiber

    CERN Document Server

    Karbasi, Salman; Mafi, Arash

    2012-01-01

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.

  3. First measurements with the test stand for optical beam tomography

    OpenAIRE

    Wagner, Christopher; Meusel, Oliver; Ulrich, Ratzinger; Reichau, Hermine

    2011-01-01

    A test stand for optical beam tomography was developed. As a new non-destructive beam-diagnostic system for high current ion beams, the test stand will be installed in the low energy beam transport section (LEBT) of the Frankfurt Neutron Source (FRANZ) behind the chopper system. The test stand consists of a rotatable vacuum chamber with a mounted CCD camera. The maximum rotation angle amounts to 270°. In a first phase the optical beam profile measurement and 3D density reconstruction is teste...

  4. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  5. Development of beam flattening system using non-linear beam optics at J-PARC/JSNS

    International Nuclear Information System (INIS)

    As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak intensity is important for the beam injection system. At the JSNS, beam profile can be described by the clear Gaussian functions. To reduce peak intensity, we have developed a beam transport system by non-linear beam optics using octupole magnets. (author)

  6. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  7. Low emittance electron beam optics commissioning in Indus-2

    International Nuclear Information System (INIS)

    Currently Indus-2 is normally operated with beam emittance of 85 nmrad at 2.0 GeV. In order to reduce the beam emittance to half of this value its dispersion function has been modified by properly choosing the quadrupoles strengths of the lattice. At this low beam emittance optics dynamic aperture reduces and may not be sufficient for beam injection thus a procedure has been evolved and implemented to shift the beam emittance of stored beam at 2.0 GeV. (author)

  8. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl; Bilenberg, Brian; Vannahme, Christoph; Kristensen, Anders; Berg-Sørensen, Kirstine

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the...... microfluidic chip or with optical fibers mounted in the chip....

  9. Single-laser, one beam, tetrahedral magneto-optical trap

    CERN Document Server

    Vangeleyn, Matthieu; Riis, Erling; Arnold, Aidan S

    2009-01-01

    We have realised a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  10. Optical trapping in secondary maxima of focused laser beam

    International Nuclear Information System (INIS)

    Single beam optical tweezers hold particles behind the focal plane due to the high gradients of optical intensity present in a focused laser beam. However, description of this optical field based on a vectorial theory of diffraction reveals that the high intensity focal area is accompanied by several secondary maxima on the optical axis as well as by a structure of rings away of the optical axis. Such a structure can be found in beams exhibiting spherical aberrations as well as in beams where aberration is corrected. Here, we discuss possibility to use these secondary maxima of aberration-corrected beams as the optical traps. We present the properties of such traps created by objective lenses of various numerical apertures that are focusing plane waves. - Highlights: • Secondary trapping sites in optical tweezers are revealed while using vectorial diffraction theory. • Secondary trapping sites exist both on the optical axis and the off-axis. • Trap stiffnesses in such locations are calculated and compared to trapping site behind beam focus

  11. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  12. Adaptive optics for laser power beaming

    Science.gov (United States)

    Leland, Robert P.

    1992-01-01

    It has been proposed to use a high energy pulsed laser to beam power into space for satellites or a lunar base. The effects of atmospheric transmission are critical to such a system. Thermal blooming in the atmosphere can cause the beam to spread rapidly. Atmospheric turbulence can cause beam bending or beam spreading, resulting in the loss of transmitted energy that fails to hit the target receiver.

  13. Beam-size-free optics determination

    International Nuclear Information System (INIS)

    A new method to measure the Twiss parameters in a beam transport line is presented. Usually these parameters are obtained based on the measured beam sizes. In the new method, in contrast, we determine them by finding quadrupole strengths that result in minimum beam sizes at a downstream measurement location. Therefore, systematic errors related to beam-size monitors do not propagate to the measured Twiss parameters. We describe the method together with a detailed estimation of statistical and systematic errors. It was examined with beam at the SwissFEL injector test facility at PSI, and these results are also presented

  14. Optical trapping in secondary maxima of focused laser beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Zemánek, Pavel

    2015-01-01

    Roč. 162, SI (2015), s. 114-121. ISSN 0022-4073 R&D Projects: GA ČR GPP205/12/P868; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : optical tweezers * optical traps * optical trapstiffness * focused beam Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.645, year: 2014

  15. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    Science.gov (United States)

    Kotlyar, V. V.; Kovalev, A. A.; Porfirev, A. P.

    2016-07-01

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  16. Constructing Dual Beam Optical Tweezers for Undergraduate Biophysics Research

    Science.gov (United States)

    Daudelin, Brian; West-Coates, Devon; Del'Etoile, Jon; Grotzke, Eric; Paramanathan, Thayaparan

    Optical tweezing, or trapping, is a modern physics technique which allows us to use the radiation pressure from laser beams to trap micron sized particles. Optical tweezers are commonly used in graduate level biophysics research but seldom used at the undergraduate level. Our goal is to construct a dual beam optical tweezers for future undergraduate biophysical research. Dual beam optical tweezers use two counter propagating laser beams to provide a stronger trap. In this study we discuss how the assembly of the dual beam optical tweezers is done through three main phases. The first phase was to construct a custom compressed air system to isolate the optical table from the vibrations from its surroundings so that we can measure pico-newton scale forces that are observed in biological systems. In addition, the biomaterial flow system was designed with a flow cell to trap biomolecules by combining several undergraduate semester projects. During the second phase we set up the optics to image and display the inside of the flow cell. Currently we are in the process of aligning the laser to create an effective trap and developing the software to control the data collection. This optical tweezers set up will enable us to study potential cancer drug interactions with DNA at the single molecule level and will be a powerful tool in promoting interdisciplinary research at the undergraduate level.

  17. Optical emitter and amplifier by utilizing traveling electron beam

    OpenAIRE

    Yamada, Minoru; Kuwamura, Yuji

    2008-01-01

    Optical emission and amplification by a travelling electron beam adjacent to a high refractive index waveguide in vacuum was theoretically predicted and experimentally confirmed. Experimentally observed characteristics were compared with theoretical examinations. ©2008 IEEE.

  18. Formation of optical vortices using coherent laser beam arrays

    Science.gov (United States)

    Wang, Li-Gang; Wang, Li-Qin; Zhu, Shi-Yao

    2009-03-01

    We present a proposal to generate an optical vortex beam by using the coherent-superposition of multi-beams in a radially symmetric configuration. In terms of the generalized Huygens-Fresnel diffraction integral, we have derived the general propagation expression for the coherent radial arrays of laser beams. Using the derived formulae, we have analyzed the effects of the beamlet number N, the separation distance ρ of the beamlets and the topological charge m on the intensity and phase distributions of the resultant beams. Our simulation results show that optical vortices could be efficiently generated due to the coherent-superposition effect of all beamlets, during the propagation process of the coherent radial array of laser beams with the initial well-organized phase distributions through the free space. In the focusing system, the resultant beam near the focusing plane has the strong rotational effect with the phase helicity.

  19. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  20. Generalized ray optics and orbital angular momentum carrying beams

    OpenAIRE

    Potocek, Vaclav; Barnett, Stephen M.

    2015-01-01

    In classical optics the Wolf function is the natural analogue of the quantum Wigner function and like the latter it may be negative in some regions. We discuss the implications this negativity has on the generalized ray interpretation of free-space paraxial wave evolution. Important examples include two classes of beams carrying optical orbital angular momentum—Laguerre–Gaussian (LG) and Bessel beams. We formulate their defining eigenfunction properties as phase–space symmetries of their Wolf...

  1. Optical beam steering based on electromagnetically induced transparency

    International Nuclear Information System (INIS)

    We propose a scheme that provides all-optically-controlled steering of light beam. The system is based on steep dispersion of a coherently driven medium. Using the eikonal equation, we study the steering angle, the spread of the optical beam, and the limits set by residual absorption of the medium under conditions of electromagnetically induced transparency. Implementation of another scheme for ultrashort pulses is also discussed

  2. Applications of cylindrical vector beams for optical micromanipulation

    OpenAIRE

    Skelton, S. E.

    2013-01-01

    Cylindrical vector beams (CVBs) are the class of laser beams which exhibit azimuthal symmetry in their polarisation structure. These beams exhibit a `donut' intensity profile due to an on-axis polarisation vortex. CVBs have received significant recent interest due to their similarities to the modes of an optical fibre and their interesting focusing properties in the limit of high numerical aperture. This thesis contains an investigation into the properties of CVBs and their applications for o...

  3. Feedback control of optical beam spatial profiles using thermal lensing

    CERN Document Server

    Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H

    2013-01-01

    A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

  4. Optically bound matter in a tractor beam

    Czech Academy of Sciences Publication Activity Database

    Chvátal, Lukáš; Brzobohatý, Oto; Jákl, Petr; Zemánek, Pavel

    Erlangen : DGaO, 2015. s. 130. [Annual Meeting of the DGaO /116./. 26.05.2015-29.05.2015, Brno] Institutional support: RVO:68081731 Keywords : theoretical foundations * diffraction theory * micro optics Subject RIV: BH - Optics, Masers, Lasers

  5. Laser Beam Steering/shaping for Free Space Optical Communication

    Science.gov (United States)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.

  6. Flexible dual-beam geometry for advanced optical micromanipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Čižmár, T.; Dholakia, K.; Zemánek, Pavel

    Žilina: Žilinská univerzita, 2010. s. 117. ISBN 978-80-554-0238-3. [Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics /17./. 06.09.2010, Liptovsky Jan] R&D Projects: GA ČR GA202/09/0348; GA MŠk(CZ) LC06007; GA MŠk OC08034; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers * dual-beam trap * standing wave trap * spatial light modulator * optical microscopy Subject RIV: BH - Optics, Masers, Lasers

  7. Flexible dual-beam geometry for advanced optical micromanipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Čižmár, T.; Dholakia, K.; Zemánek, Pavel

    Bellingham: SPIE, 2010, 77461C: 1-9. ISBN 978-0-8194-8236-5. [Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics /17./. Liptovsky Jan (SK), 06.09.2010] R&D Projects: GA ČR GA202/09/0348; GA MŠk(CZ) LC06007; GA MŠk OC08034; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers * dual-beam trap * standing wave trap * spatial light modulator * optical microscopy Subject RIV: BH - Optics, Masers, Lasers

  8. Transformation of phase dislocations under acousto-optic interaction of optical and acoustical Bessel beams

    Science.gov (United States)

    Belyi, V. N.; Khilo, P. A.; Kazak, N. S.; Khilo, N. A.

    2016-07-01

    The generation of wavefront phase dislocations of vortex Bessel light beams under acousto-optic (AO) diffraction in uniaxial crystals has been investigated. For the first time the process of AO interaction is studied with participation of Bessel acoustic beams instead of plane waves. A mathematical description of AO interaction is provided, which supposes the satisfaction of two types of phase-matching condition. The acousto-optic processes of transferring optical singularities onto the wavefront of BLBs are investigated and the generation of high-order optical vortices is considered at the interaction of optical and acoustical Bessel beams. The change of Bessel function order or phase dislocation order is explained as a result of the spin–orbital interaction under acousto-optic diffraction of vortex Bessel beams.

  9. Beam Physics of Integrable Optics Test Accelerator at Fermilab

    OpenAIRE

    Nagaitsev, S.; Valishev, A.; Danilov, V. V.; Shatilov, D. N.

    2013-01-01

    Fermilab's Integrable Optics Test Accelerator is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on ...

  10. Optical Beam Steering Using a 2D MEMS Scanner

    OpenAIRE

    Pétremand, Yves; Clerc, Pierre-André; Epitaux, Marc; Hauffe, Ralf; Noell, Wilfried; De Rooij, N.F.

    2010-01-01

    A bi-directional MEMS-based optical beam steerer was fabricated and assembled. The assembly of the different parts of the system was carried out. A displacement of several tens of micrometers has been demonstrated and optical beamsteering was shown with a system containing all the electronic and optical components. Resonance frequency and displacements measurements agree with the simulated ones. This displacement range is suitable for opto-electronic alignment applications.

  11. Application of optical beams to electrons in graphene

    Science.gov (United States)

    Matulis, A.; Masir, M. Ramezani; Peeters, F. M.

    2011-03-01

    The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.

  12. A long-range polarization-controlled optical tractor beam

    Science.gov (United States)

    Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril; Engheta, Nader; Krolikowski, Wieslaw

    2014-11-01

    The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

  13. Beam optical design of in-flight fragment separator for high-power heavy ion beam

    International Nuclear Information System (INIS)

    Highlights: • An in-flight fragment separator is designed in beam optics using GICOSY, COSY Infinity, LISE++ and MOCADI. • High power primary beam is removed in the pre-separator employing four dipole magnets. • Different charge states of the primary and unwanted isotope beams help in reducing peak power density at the beam dump. -- Abstract: An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is 238U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design

  14. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  15. Ion beam figuring (IBF) for high precision optics

    Science.gov (United States)

    Demmler, Marcel; Zeuner, Michael; Allenstein, Frank; Dunger, Thoralf; Nestler, Matthias; Kiontke, Sven

    2010-02-01

    Recently and upcoming optical applications depend more and more on the precision of the optical elements used. The last is especially driven by shorter wavelength, higher flux densities and imaging close to the diffraction limit. Therefore a dramatically increasing demand on high precision and high quality optical components in leading edge equipment as well as common devices and instruments is observed. So far a few methods have been introduced to provide an adequate manufacturing performance using mechanical grinding and polishing techniques. Up to now the very sophisticated ion beam figuring (IBF) has not been used for common optics. The reasons for this might be the perception of higher costs and less knowledge about the technique in the industry. Now an affordable ion beam figuring technique has been developed to address precision aspherical optics applications. This paper introduces ion beam figuring technology based on equipment which is widely used in semiconductor mass production for ultra precise film thickness trimming. Ion beam figuring works by raster-scanning a focused broad ion beam across an optical surface with variable velocity and dwell time in order to precisely and locally trim away surface contour errors. As a new and cost effective approach the ion beam figuring system used in this presentation applies a 3 axis movement system only (compared to expensive 5-axis movements in other applications). X-and y-axes are used for the areal scan, and the z-axis is used for focus adjustment due to the surface contour of the optical element. The system was intentionally designed without the 2 additional tilt axes for incident angle adjustment and cleverly reduces the complexity and size of the system. It is shown that curved spherical or aspherical surfaces can be corrected down to λ/50 or better by using the state of the art 3-axes trimming system. Even with high spatial frequency parts final processing qualities better than λ/10 are achieved.

  16. Self-trapped optical beams: Spatial solitons

    Indian Academy of Sciences (India)

    Andrey A Sukhorukov; Yuri S Kivshar

    2001-11-01

    We present a brief overview of the basic concepts of the theory ofspatial optical solitons, including the soliton stability in non-Kerr media, the instability-induced soliton dynamics, and collision of solitary waves in nonintegrable nonlinear models.

  17. Beam size measurement of the stored electron beam at the APS storage ring using pinhole optics

    International Nuclear Information System (INIS)

    Beam sizes of the stored electron beam at the APS storage ring were measured using pinhole optics and bending magnet x-rays in single-bunch and low-current mode. A pinhole of 25 μm and a fast x-ray imaging system were located 23.8 m and 35.4 m from the source, respectively. The x-ray imaging system consists of a CdWO4 scintillation crystal 60 μm thick, an optical imaging system, and a CCD detector. A measurement time of a few tenths of a second was obtained on a photon beam of E>30 keV produced in a bending magnet from a 7-GeV electron beam of 2mA current. The measured vertical and horizontal sizes of the electron beam were in reasonable agreement with the expected values

  18. Formation of optical vortices using coherent laser beam arrays

    CERN Document Server

    Wang, Li-Gang; Zhu, Shi-Yao

    2008-01-01

    We present a novel proposal to generate an optical vortex beam by using the coherent-superposition of multi-beams in a radial symmetrical configuration. In terms of the generalized Huygens-Fresnel diffraction integral, we have derived the general propagation expression for the coherent radial laser arrays. Based on the derived formulae, we have analyzed the effects of the beamlet number, the separation distance of the beamlets and the topological charge on the intensity and phase distributions of the resulted beams. Our simulation results show that optical vortices could be efficiently formed and generated due to the interference and superposition effect of all the beamlets, during the propagation process of the coherent radial laser arrays with the initial well-organized phase distributions through the free space. In the focusing system, the resulted beam near the focusing plane has the strong rotation effect with the phase helicity.

  19. Beaconless adaptive-optics technique for HEL beam control

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  20. Formation of optical vortices using coherent laser beam arrays

    OpenAIRE

    Wang, Li-Gang; Wang, Li-Qin; Zhu, Shi-Yao

    2008-01-01

    We present a novel proposal to generate an optical vortex beam by using the coherent-superposition of multi-beams in a radial symmetrical configuration. In terms of the generalized Huygens-Fresnel diffraction integral, we have derived the general propagation expression for the coherent radial laser arrays. Based on the derived formulae, we have analyzed the effects of the beamlet number, the separation distance of the beamlets and the topological charge on the intensity and phase distribution...

  1. Light beams with orbital angular momentum for free space optics

    Institute of Scientific and Technical Information of China (English)

    Wu Jing-Zhi; Li Yang-Jun

    2007-01-01

    The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.

  2. Optimized optical "tractor beam" for core-shell nanoparticles.

    Science.gov (United States)

    Wang, Neng; Lu, Wanli; Ng, Jack; Lin, Zhifang

    2014-04-15

    It is known that core-shell subwavelength nanoparticles consisting of a dielectric shell and a metallic core can simultaneously support electric and magnetic dipolar resonances, which enhance forward scattering and suppress backward scattering. This creates favorable conditions for optical tractor beam applications. Using the generalized Lorenz-Mie theory and Maxwell stress tensor formulation, we demonstrate how optical pulling forces can be induced and optimized by first-order Bessel beams with appropriate polarization. The transverse stability of the core-shell nanoparticle under ambient damping is also verified by linear stability analysis and dynamical simulation. PMID:24979003

  3. Fiber optical beam shaping using polymeric structures

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Queirós, R. B.; Guerreiro, A.; Ecoffet, C.; Soppera, O.; Jorge, P. A. S.

    2014-05-01

    A method to control the output intensity profile of optical fibers is presented. Using guided wave photopolymerization in multimode structures the fabrication with modal assisted shaping of polymeric micro lenses is demonstrated. Results showing that a given linear polarized mode can be selectively excited controlling the intensity distribution at the fiber tip are presented. This pattern is then reproduced in the polymeric micro structure fabricated at the fiber tip thus modulating its output intensity distribution. Such structures can therefore be used to obtain at the fiber tip predetermined intensity patterns for attaining optical trapping or patterned illumination.

  4. Fundamentals of relativistic particle beam optics

    International Nuclear Information System (INIS)

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly

  5. Analysis of orbital angular momentum of a misaligned optical beam

    Energy Technology Data Exchange (ETDEWEB)

    Vasnetsov, M V [Optics Group, Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Pas' ko, V A [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Soskin, M S [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine)

    2005-02-01

    We report an analysis of the orbital angular momentum of an optical beam misaligned with respect to a reference axis. Both laterally displaced and angularly deflected Laguerre-Gaussian beams are represented in terms of the superposition of azimuthal harmonics with well-defined orbital angular momentum. Simultaneous parallel displacement and angular tilt cause the coupling between azimuthal harmonics and therefore change the projection of the orbital angular momentum on the reference axis. Rotation of beams around the reference axis was simulated by attributing corresponding rotational frequency shifts to the components.

  6. How orbital angular momentum affects beam shifts in optical reflection

    International Nuclear Information System (INIS)

    It is well known that reflection of a Gaussian light beam (TEM00) by a planar dielectric interface leads to four beam shifts when compared to the geometrical-optics prediction. These are the spatial Goos-Haenchen (GH) shift, the angular GH shift, the spatial Imbert-Fedorov (IF) shift, and the angular IF shift. We report here, theoretically and experimentally, that endowing the beam with orbital angular momentum leads to coupling of these four shifts; this is described by a 4x4 mixing matrix.

  7. Single beam optical vortex tweezers with tunable orbital angular momentum

    International Nuclear Information System (INIS)

    We propose a single beam method for generating optical vortices with tunable optical angular momentum without altering the intensity distribution. With the initial polarization state varying from linear to circular, we gradually control the torque transferred to the trapped non-absorbing and non-birefringent silica beads. The continuous transition from the maximum rotation speed to zero without changing the trapping potential gives a way to study the complex tribological interactions.

  8. Single beam optical vortex tweezers with tunable orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Gecevičius, Mindaugas; Drevinskas, Rokas, E-mail: rd1c12@orc.soton.ac.uk; Beresna, Martynas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2014-06-09

    We propose a single beam method for generating optical vortices with tunable optical angular momentum without altering the intensity distribution. With the initial polarization state varying from linear to circular, we gradually control the torque transferred to the trapped non-absorbing and non-birefringent silica beads. The continuous transition from the maximum rotation speed to zero without changing the trapping potential gives a way to study the complex tribological interactions.

  9. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  10. Advanced optical manipulation with tailored counter-propagating laser beams

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Čižmár, T.; Karásek, Vítězslav; Zemánek, Pavel

    Bellingham: SPIE, 2011, 83061D:1-8. ISBN 978-0-8194-8953-1. [Photonics, Devices, and System s V. Praha (CZ), 24.08.2011-26.08.2011] R&D Projects: GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk(CZ) LC06007; GA MŠk ED0017/01/01 Grant ostatní: EC(XE) COST-STSM-MP0604-05446 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers * dual-beam trap * standing wave trap * spatial light modulator * optical microscopy Subject RIV: BH - Optics, Masers, Lasers

  11. Ion beam sputter deposition of optical interference coatings

    International Nuclear Information System (INIS)

    Full text: Optical coatings produced by ion beam sputter deposition (IBSD) of oxide layers exhibit low scatter, low absorption, and environmental durability comparable to bulk materials. IBSD utilizes a broad beam ion source to sputter target materials in the presence of oxygen, producing oxide films. The process allows for the independent control of ion beam current, energy, and background gas pressure. The resulting films exhibit low defect densities, high purity, correct stoichiometry, amorphous structure, and high packing density. These properties allow the production of optical coatings with attributes highly desirable in a variety of scientific and industrial applications. Optical cavities utilizing low loss mirrors are used in gravitational wave research, quantum optics, spectroscopy, and numerous other areas of research. Industrial applications of IBSD coatings include the production of mirrors for lasers, including ring laser gyroscopes, corrosion resistant components for semiconductor process tools, and components for optical telecommunications. The IBSD process is easy to automate in contrast to other common processes of deposition which almost always require the presence of skilled operators. The ease of automation is a key factor in the economic viability of IBSD and its recent proliferation. The properties of IBSD coatings and the manufacturability and reproducibility made possible by full automation allow this process to play key enabling roles in research and industry. A review of the IBSD process, its history, and applications will be presented

  12. Design method for automotive high-beam LED optics

    Science.gov (United States)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  13. Integrated optic beam combiners in lithium niobate for stellar interferometer

    Science.gov (United States)

    Li, Guangyu; Eckhause, Tobias; Winick, Kim A.; Monnier, John D.; Berger, Jean-Philippe

    2006-06-01

    Integrated optics can provide compact and robust solutions for ground and space-based interferometry by integrating optical devices with different functionalities, such as spatial filters, combiners/nullers, and phase modulators, on a single chip. Lithium niobate (LiNbO 3) has two distinct advantages over silica-based technologies, including good transparency further into the near-infrared (covering J, H, K, and L bands) and the ability to support electrically-controlled phase modulation through the linear electro-optic (EO) effect. The design, fabrication and preliminary tests of integrated optic components on LiNbO 3 substrates for astronomical beam combiners operating in the H and L bands is reported. The components include single-mode waveguides of sufficient length for spatial filtering, symmetric junctions for wavelength insensitive power splitters/combiners, and electro-optic waveguide modulators for path-length control.

  14. A simple multipurpose double-beam optical image analyzer

    CERN Document Server

    Popowicz, Adam

    2016-01-01

    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing ca be carried out. The optical system is straightforward and easy implementable as it consists of only three lens and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam-splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located in different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  15. Simultaneous irradiation of laser and ion beams on optical materials

    International Nuclear Information System (INIS)

    A simultaneous irradiation system of laser and ion beams has been developed to investigate ion beam induced luminescence and optical absorption of crystalline α-Al2O3 samples. The luminescence induced by 30 keV Ar+ in visible wavelength region had peaks that were attributed to oxygen vacancies. The optical absorption at 633 nm in wavelength was also measured during the ion irradiation. The amount of optical absorption for the irradiated sample with Q-switched Nd:YAG laser pulses was less than that without the laser pulses. The ion irradiation reduced the threshold level of laser damage on the surface region of the sample, and the laser ablation selectively happened on the ion irradiation region

  16. Electro-Optical Detection of Charged Particle Beams

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R C; Lazarus, D M; Magurno, B; Srinivasan-Rao, T; Tsang, Thomas; Usack, V

    1999-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO3 crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10ps bunches of 1mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45GHz bandwidth. The fastest rise time measured, 120ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.

  17. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA

    International Nuclear Information System (INIS)

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  18. Optical beam shaping and diffraction free waves: a variational approach

    CERN Document Server

    Gemmer, John A; Durfee, Charles G; Moloney, Jerome V

    2013-01-01

    We investigate the problem of shaping radially symmetric annular beams into desired intensity patterns along the optical axis. Within the Fresnel approximation, we show that this problem can be expressed in a variational form equivalent to the one arising in phase retrieval. Using the uncertainty principle we prove rigorous lower bounds on the functional that capture how the various physical parameters in the problem determine the accuracy of the beam shaping. We also use the method of stationary phase to construct a natural ansatz for a minimizer in the short wavelength limit. We illustrate the implications of our results by applying the method of stationary phase coupled with the Gerchberg-Saxton algorithm to beam shaping problems arising in remote delivery of beams and pulses.

  19. Optical beam shaping and diffraction free waves: A variational approach

    Science.gov (United States)

    Gemmer, John A.; Venkataramani, Shankar C.; Durfee, Charles G.; Moloney, Jerome V.

    2014-08-01

    We investigate the problem of shaping radially symmetric annular beams into desired intensity patterns along the optical axis. Within the Fresnel approximation, we show that this problem can be expressed in a variational form equivalent to the one arising in phase retrieval. Using the uncertainty principle we prove various rigorous lower bounds on the functional; these lower bounds estimate the L2 error for the beam shaping problem in terms of the design parameters. We also use the method of stationary phase to construct a natural ansatz for a minimizer in the short wavelength limit. We illustrate the implications of our results by applying the method of stationary phase coupled with the Gerchberg-Saxton algorithm to beam shaping problems arising in the remote delivery of beams and pulses.

  20. A beam expander facility for studying x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.; Nilsson, C.; Grundsøe, Peter; Ørup, P.; Jacobsen, E.; Schnopper, H. W.; Lewis, R.; Hall, C.

    1992-01-01

    The detailed study of the performance of full scale x-ray optics often requires the illumination of large areas. This paper describes a beam expander facility at the Daresbury Synchrotron Radiation Facility. It combines monochromatization and beam expansion in one dimension. The beam expansion is...... obtained from an extremely asymmetric reflection in a large single crystal of Si. An expansion of a factor of 50 was obtained in one dimension. The expanded beam of ~85 mm is limited only by the crystal size. The facility is installed in a 12-m-long hutch. A specific application, in which a high throughput...... x-ray telescope will be studied, is described in detail. Review of Scientific Instruments is copyrighted by The American Institute of Physics....

  1. Optical Pulling Force and Tractor Beams

    Science.gov (United States)

    Paul, Nayan Kumar

    Light-matter interaction has been an interesting subject of intense analytical and experimental research since the formulation of Maxwell's electromagnetic wave theory. Optical forces exerted on particles excited by incident light waves have been studied for the last few decades. The interaction of light with materials gives rise to light scattering from the particle in the form of energy. The divergence of the Maxwell stress tensor provides a good approximation of the total optical forces on a particle. The divergence of the stress tensor is mathematically equal to the time average Lorentz force since [special characters omitted]. Others have claimed that the stress tensor is "fraught with danger," but it is a matter of application. The stress tensor approach is computationally simpler since application of the divergence theorem allows for a reduction of dimension in the integration. For example, you can either integrate the force density over the volume of an object (3-D), or integrate the divergence of the stress tensor on a surface (2-D) enclosing the volume. It gives a straightforward prediction of the total optical forces on a particle, but may be challenging in the case of multiple particles or for larger particles. The Rayleigh approximation estimates the radiation pressure on small particles in the propagation direction of light, but may be inappropriate for larger particles in comparison to the wavelength of the incident light waves. Light waves exert radiation pressure on a particle and pushes it away from the light source toward the direction of propagation. It is shown that plane waves propagating in a rectangular waveguide not only push a passive particle toward the propagation direction, but also pull it toward the light source. The particle remains trapped in the transverse direction of the rectangular waveguide. The Lorentz force and the Rayleigh approximation are applied to calculate the total force on the particle. The push-pull phenomenon

  2. Optics of beam transport in the NSLS uv-FEL

    International Nuclear Information System (INIS)

    The NSLS-FEL is designed as a single pass FEL to generate radiation 1 mJ per pulse (10 psec) in 10-4 bandwidth, with continuously tunable wavelength in the range 100--300 nm. A superconducting, recirculating linac provides electron beams of energy 20 MeV to 260 MeV at 4π mm mrad normalized rms emittance with less than 0.1% momentum spread and 2 mm rms bunch length. The optics in this machine is seriously restricted by the requirement to not degrade the electron beam quality. We present a lattice design for the transport lines to be used in beam injection, linac focussing and recirculations. These beam lines are tuned to be linearly achromatic and isochronous, to avoid beam breakup in the cavities, and to minimize second order distortions of the emittance. Special transport lines are designed that allow rapid switching of the electron beam to drive two different FEL wigglers. This provides the capability for up to four simultaneous, high power, independently energy tuned laser beam

  3. Optical force exerted on a Rayleigh particle by a vector arbitrary-order Bessel beam

    Science.gov (United States)

    Yang, Ruiping; Li, Renxian

    2016-07-01

    An analytical description of optical force on a Rayleigh particle by a vector Bessel beam is investigated. Linearly, radially, azimuthally, and circularly polarized Bessel beams are considered. The radial, azimuthal, and axial forces by a vector Bessel beam are numerically simulated. The effect of polarization, order of beams, and half-cone angle to the optical force are mainly discussed. For Bessel beams of larger half-cone angle, the non-paraxiality of beams plays an important role in optical forces. Numerical calculations show that optical forces, especially azimuthal forces, are very sensitive to the polarization of beams.

  4. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  5. Beam shaping for laser-based adaptive optics in astronomy

    CERN Document Server

    Béchet, Clémentine; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques...

  6. Generalized ray optics and orbital angular momentum carrying beams

    Science.gov (United States)

    Potoček, Václav; Barnett, Stephen M.

    2015-10-01

    In classical optics the Wolf function is the natural analogue of the quantum Wigner function and like the latter it may be negative in some regions. We discuss the implications this negativity has on the generalized ray interpretation of free-space paraxial wave evolution. Important examples include two classes of beams carrying optical orbital angular momentum—Laguerre-Gaussian (LG) and Bessel beams. We formulate their defining eigenfunction properties as phase-space symmetries of their Wolf functions, whose analytical form is shown, and discuss their interpretation in the ray picture. By moving to a more general picture of partly coherent fields, we find that new solutions displaying the same symmetries appear. In particular, we find that mixtures of Gaussian beams (thus fully describable using classical ray optics) can mimic the basic properties of LG beams without the need for negativity, and are not restricted to quantized values of angular momentum. The quantization of both the l and p parameters and negativity of the Wolf function are both inevitable and, indeed, arise naturally when a requirement on the purity of the solution is added. This work is supplemented by a set of computer animations, graphically illustrating the interpretative aspects of the described model.

  7. Optic diagnosis of neutral beam injection on HL-1M

    Institute of Scientific and Technical Information of China (English)

    郑银甲; 冯震; 雷光玖; 姜韶风; 卢大伦; 罗俊林

    2002-01-01

    During the operation of a high-power neutral beam injection (NBI) system on the H L-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize the NBI performance. The vacuum valve opening process and NBI period in the HL-1M experiment were displayed by a lot of photos taken with this means. Thus, the Hα emission profiles of the neutral beam (NB) and its interaction with plasma were given. Finally, the reason possible for plasma breakdown during NBI mode Ⅱ discharge was investigated. Therefore, this in-situ diagnosis can provide more information of the NBI.

  8. Demonstration of all-optical beam steering in modulated photonic lattices

    OpenAIRE

    Rosberg, Christian R.; Garanovich, Ivan L.; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Krolikowski, Wieslaw; Kivshar, Yuri S.

    2005-01-01

    We demonstrate experimentally all-optical beam steering in modulated photonic lattices induced optically by three beam interference in a biased photorefractive crystal. We identify and characterize the key physical parameters governing the beam steering, and show that the spatial resolution can be enhanced by the additional effect of nonlinear beam self-localization.

  9. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  10. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  11. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.

    Science.gov (United States)

    Khonina, Svetlana N; Karpeev, Sergey V; Alferov, Sergey V

    2012-06-15

    We propose a new approach to generating a pair of initial beams for a polarization converter that operates by summing up two opposite-sign circularly polarized beams. The conjugated pairs of vortex beams matched with laser modes are generated using binary diffractive optical elements (DOEs). The same binary element simultaneously serves two functions: a beam shaper and a beam splitter. Two proposed optical arrangements are compared in terms of alignment complexity and energy efficiency. The DOEs in question have been designed and fabricated. Natural experiments that demonstrate the generation of vector higher-order cylindrical beams have been conducted. PMID:22739916

  12. Beam steering by computer generated hologram for optical switches

    Science.gov (United States)

    Yamaguchi, Keita; Suzuki, Kenya; Yamaguchi, Joji

    2016-02-01

    We describe a computer generated hologram (CGH) method for application to a multiple input and multiple output (MxN) optical switch based on a liquid crystal on silicon (LCOS). The conventional MxN optical switch needs multiple spatial light modulations. However, the CGH method realizes an MxN optical switch simply with a one-time spatial light modulation, resulting in fewer optical elements and better cost efficiency. Moreover, the intrinsic loss of the proposed MxN switch resulting from beam splitting can be reduced by routing multiple signals with a single knob control, which is called a multi-pole multi-throw switch. In this paper, we demonstrate a 5x5 wavelength selective switch (WSS) and a 2-degree ROADM that we realized using the above CGH method. The experimental results indicate that these switches work well with a crosstalk of < -14.9 dB.

  13. Beam divergence effects on high power optical parametric oscillation

    Institute of Scientific and Technical Information of China (English)

    Li Hui-Qing; Geng Ai-Cong; Bo Yong; Wu Ling-An; Cui Da-Fu; Xu Zu-Yan

    2005-01-01

    The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a Particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB3O5 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency.The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.

  14. Gaussian laser beam transformation into an optical vortex beam by helical lens

    Science.gov (United States)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2016-01-01

    In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and radii, at any z distance behind the HL plane, as well as in the near and far field.

  15. Gaussian laser beam transformation into an optical vortex beam by helical lens

    CERN Document Server

    Janicijevic, Ljiljana

    2015-01-01

    In this article we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of p-th order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles and radii, at any z distance behind the HL plane, as well as in the near and far field.

  16. Hamiltonian chaos in a nonlinear polarized optical beam

    International Nuclear Information System (INIS)

    This lecture concerns the applications of ideas about temporal complexity in Hamiltonian systems to the dynamics of an optical laser beam with arbitrary polarization propagating as a traveling wave in a medium with cubically nonlinear polarizability. We use methods from the theory of Hamiltonian systems with symmetry to study the geometry of phase space for this optical problem, transforming from C2 to S3 x S1, first, and then to S2 x (J, θ), where (J, θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S2 are classified and displayed graphically. These bifurcations take place when either J (the beam intensity), or the optical parameters of the medium are varied. After this bifurcation analysis has shown the existence of various saddle connections on S2, the Melnikov method is used to demonstrate analytically that the traveling-wave dynamics of a polarized optical laser pulse develops chaotic behavior in the form of Smale horseshoes when propagating through spatially periodic perturbations in the optical parameters of the medium. 20 refs., 7 figs

  17. Hamiltonian chaos in a nonlinear polarized optical beam

    International Nuclear Information System (INIS)

    This lecture concerns the applications of ideas about temporal complexity in Hamiltonian systems to the dynamics of an optical laser beam with arbitrary polarization propagating as a travelling wave in a medium with cubically nonlinear polarizability. The authors use methods from the theory of Hamiltonian systems with symmetry to study the geometry of phase space for this optical problem, transforming from C2 to S3 x S1, first, and then to S2 x (J,θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S2 are classified and displayed graphically. These bifurcations take place when either J (the beam intensity) or the optical parameters of the medium are varied. After this bifurcation analysis has shown the existence of various saddle connections on S2, the Melnikov method is used to demonstrate analytically that the travelling-wave dynamics of polarized optical laser pulse develops chaotic behavior in the form of Smale horseshoes when propagating through spatially periodic perturbations in the optical parameters of the medium. 23 refs., 7 figs

  18. Classically entangled optical beams for high-speed kinematic sensing

    CERN Document Server

    Berg-Johansen, Stefan; Stiller, Birgit; Banzer, Peter; Ornigotti, Marco; Giacobino, Elisabeth; Leuchs, Gerd; Aiello, Andrea; Marquardt, Christoph

    2015-01-01

    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.

  19. Design of proton beam optics to realize beam distribution transformation in C-ADS HTBT

    International Nuclear Information System (INIS)

    The linac to the transmuter beam transport line (LTBT) connecting the end of the linac to the spallation target is a critical sub-system in the accelerator driven system (ADS). It has the function of transporting the accelerated high power proton beam to the target with a beam footprint satisfying the special requirements of the minor actinide (MA) transmuter. In this paper, a preliminary conceptual design of the hurling magnet to transmuter beam transport section (HTBT), as a part of the LTBT, for the China ADS (C-ADS) system is proposed and developed. In this design, a novel hurling magnet with a two dimensional amplitude modulation (AM) of 1 kHz and scanning of more than 10 kHz at 360° in transverse directions is used to realize a 300 mm diameter uniform distribution of beam on target. The preliminary beam optics design of C-ADS HTBT optimized to minimize the beam loss on the vacuum chamber and the radiation damage caused by back-scattering neutrons will be reported. (authors)

  20. Programming balanced optical beam splitters in white paint

    CERN Document Server

    Huisman, S R; Goorden, S A; Mosk, A P; Pinkse, P W H

    2014-01-01

    Wavefront shaping allows for ultimate control of light propagation in multiple-scattering media by adaptive manipulation of incident waves. We shine two separate wavefront-shaped beams on a layer of dry white paint to create two enhanced output speckle spots of equal intensity. We experimentally confirm by interference measurements that the output speckle spots are almost correlated like the two outputs of an ideal balanced beam splitter. The observed deviations from the phase behavior of an ideal beam splitter are analyzed with a transmission matrix model. Our experiments demonstrate that wavefront shaping in multiple-scattering media can be used to approximate the functionality of linear optical devices with multiple inputs and outputs.

  1. Manipulating nonlinear optical processes with accelerating light beams

    International Nuclear Information System (INIS)

    We show theoretically that accelerating light beams can be used to manipulate nonlinear optical processes through spatiotemporal quasi-phase-matching, allowing for unprecedented temporal and spectral shaping of the generated light. As a proof of principle, we demonstrate exquisite control over the high-order harmonic frequency conversion process, showing efficient enhancement of an extremely broad range of harmonics emitted during a selected quarter-cycle of the driving laser pulse.

  2. HIE-ISOLDE HEBT beam optics studies with MADX

    CERN Document Server

    Parfenova, A; Fraser, M A; Goddard, B; Martino, M; Voulot, D

    2014-01-01

    Beam design and beam optics studies for the HIE-ISOLDE transfer lines [1, 2] have been carried out in MADX [3], and benchmarked against TRACE 3-D results [4, 5, 6]. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine lattice to different individual error sources was studied. Errors of different types have been considered and their effects on the machine have been corrected [7]. As a result, the tolerances for the various error contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical apertures were validated. The baseline layout contains three identical branch lines as presented in Fig. 1. The detailed beam optics study with MADX was carried out for the beam line XT01. The large energy range from 0.3 to 10 MeV/u requested for the experiments sets a number of chal...

  3. Beam Loss Position Monitor Using Cerenkov Radiation in Optical Fibers

    CERN Document Server

    Körfer, M

    2005-01-01

    Single pass Free Electron Lasers SASE-FELs are developed for high brightness and short wavelength applications. The VUV-FEL at DESY will reach an average beam power of about 72 kW. To avoid particle losses in the radiation sensitive undulators a collimator system is installed. However, the proper operation of the collimator system needs to be measured with a beam loss monitor. Conventional radiation sensor systems are not suited for the VUV-FEL undulators, because the free space in the undulator gap is less than 1 mm. A Beam Loss Position Monitor (BLPM) based on Cerenkov light in optical fibers allows the monitoring of losses inside the undulator. Electrons with energies above 175 keV generate Cerenkov light during their penetration of the optical fiber. The fast response of the Cerenkov signal is detected with photomultipliers at the end of the irradiated fibers. The beam loss position along the section of interest can be determinate by exploiting the system trigger (bunch clock) of the accelerator system. T...

  4. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    International Nuclear Information System (INIS)

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures

  5. Gaussian laser beam transformation into an optical vortex beam by helical lens

    OpenAIRE

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2015-01-01

    In this article we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of p-th order to the incident beam, while the lens t...

  6. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    OpenAIRE

    Stefan Rung; Johannes Barth; Ralf Hellmann

    2014-01-01

    Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necess...

  7. Optical Manipulation of Relativistic Electron Beams using THz Pulses

    CERN Document Server

    Hebling, J; Mechler, M I; Pálfalvi, L; Tőke, C; Almási, G

    2011-01-01

    There are implementations and proposals for using microwave or optical radiation for electron acceleration, undulation, deflection, and spatial as well as temporal focusing. Using terahertz (THz) radiation in such applications can be superior to microwave or optical radiation since THz pulses can be generated with significantly smaller temporal jitter to the electron bunch to be manipulated as compared to microwave pulses, and contrary to the optical pulses, the much larger wavelength of THz pulses compares well with typical sizes of electron bunches. Recently generation of ultrashort THz pulses with 1 MV/cm focused electric field was demonstrated, and it is predicted that THz pulses with even 100 MV/cm focused field will be possible. According to the first results of our analytical and numerical studies this field strength is high enough for manipulation of relativistic electron beams by polarised THz pulses in various geometries. It is possible, e.g., to construct a 30 cm long THz undulator for saturated FE...

  8. EQUAL OPTICAL PATH BEAM SPLITTERS BY USE OF AMPLITUDE-SPLITTING AND WAVEFRONT-SPLITTING METHODS FOR PENCIL BEAM INTERFEROMETER.

    Energy Technology Data Exchange (ETDEWEB)

    QIAN,S.TAKACS,P.

    2003-08-03

    A beam splitter to create two separated parallel beams is a critical unit of a pencil beam interferometer, for example the long trace profiler (LTP). The operating principle of the beam splitter can be based upon either amplitude-splitting (AS) or wavefront-splitting (WS). For precision measurements with the LTP, an equal optical path system with two parallel beams is desired. Frequency drift of the light source in a non-equal optical path system will cause the interference fringes to drift. An equal optical path prism beam splitter with an amplitude-splitting (AS-EBS) beam splitter and a phase shift beam splitter with a wavefront-splitting (WS-PSBS) are introduced. These beam splitters are well suited to the stability requirement for a pencil beam interferometer due to the characteristics of monolithic structure and equal optical path. Several techniques to produce WS-PSBS by hand are presented. In addition, the WS-PSBS using double thin plates, made from microscope cover plates, has great advantages of economy, convenience, availability and ease of adjustment over other beam splitting methods. Comparison of stability measurements made with the AS-EBS, WS-PSBS, and other beam splitters is presented.

  9. Topological Aberration of Optical Vortex Beams: Determining Dielectric Interfaces by Optical Singularity Shifts

    Science.gov (United States)

    Dennis, Mark R.; Götte, Jörg B.

    2012-11-01

    We predict the splitting of a high-order optical vortex into a constellation of unit vortices, upon total internal reflection of the carrier beam, and analyze the splitting. The reflected vortex constellation generalizes, in a local sense, the familiar longitudinal Goos-Hänchen and transverse Imbert-Fedorov shifts of the centroid of a reflected optical beam. The centroid shift is related to the center of the constellation, whose geometry otherwise depends on higher-order terms in an expansion of the reflection matrix. We derive an approximation of the amplitude around the constellation as a complex analytic polynomial, whose roots are the vortices. Increasing the order of the initial vortex gives an Appell sequence of complex polynomials, which we explain by an analogy with the theory of optical aberration.

  10. ILC Beam delivery WG summary: Optics, collimation and background

    Energy Technology Data Exchange (ETDEWEB)

    Angal-Kalinin, D.; Jackson, F.; /Daresbury; Mokhov, N.V.; /Fermilab; Kuroda, S.; /KEK, Tsukuba; Seryi, A.A.; /SLAC

    2006-07-01

    The paper summarizes the work of the Beam Delivery working group (WG4) at Snowmass 2005 workshop, focusing on status of optics, layout, collimation and detector background. The strawman layout with two interaction regions was recommended at the first ILC workshop at KEK in November 2004. Two crossing-angle designs were included in this layout. The design of the ILC BDS has evolved since the first ILC workshop. The progress on the BDS design including the collimation system, and extraction line design have been reviewed and the design issues were discussed during the WG4 sessions at the Snowmass, and are described in this paper.

  11. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    OpenAIRE

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5...

  12. Optical fiber tip templating using direct focused ion beam milling

    OpenAIRE

    A. De Micco; Ricciardi, A.; Pisco, M.; La Ferrara, V.; A. Cusano

    2015-01-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a ‘double-layer’ photonic crystal slab...

  13. Continuous variable quantum communication with bright entangled optical beams

    Institute of Scientific and Technical Information of China (English)

    XIE Chang-de; ZHANG Jing; PAN Qing; JIA Xiao-jun; PENG Kun-chi

    2006-01-01

    In this paper,we briefly introduce the basic concepts and protocols of continuous variable quantum communication,and then summarize the experimental researches accomplished by our group in this field.The main features of quantum communication systems used in our experiments are:(1) The bright entangled optical beams with the anticorrelated amplitude quadratures and the correlated phase quadratures that serve as the entanglement resources and (2) The Bell-state direct detection systems are utilized in the measurements of quantum entanglement and transmitted signals instead of the usually balanced homodyne detectors.

  14. The holographic optical micro-manipulation system based on counter-propagating beams

    International Nuclear Information System (INIS)

    We present a system employing a dynamic diffractive optical element to control properties of two counter-propagating beams overlapping within a sample chamber. This system allows us to eliminate optical aberrations along both beam pathways and arbitrarily switch between various numbers of laser beams and their spatial profiles (i.e. Gaussian, Laguerre-Gaussian, Bessel beams, etc.). We successfully tested various counter-propagating dual-beam configurations including optical manipulation of both high and low index particles in water or air, particle delivery in an optical conveyor belt and the formation of colloidal solitons by optical binding. Furthermore, we realized a novel optical mixer created by particles spiraling in counter-propagating interfering optical vortices and a new tool for optical tomography or localized spectroscopy enabling sterile contactless rotation and reorientation of a trapped living cell

  15. Radially Polarized Bessel-Gauss Beams in ABCD Optical Systems and Fiber-Based Generation

    OpenAIRE

    Schimpf, Damian; Putnam, William P.; Grogan, Michael D.; Ramachandran, Siddharth; Kaertner, Franz

    2013-01-01

    We derive solutions for radially polarized Bessel-Gauss beams in ABCD optical systems by superimposing decentered Gaussian beams with linear polarization states. We experimentally confirm the expression by employing a fiber-based mode-converter.

  16. Electronic Two-Dimensional Beam Steering for Integrated Optical Phased Arrays

    OpenAIRE

    Abiri, Behrooz; Aflatouni, Firooz; Rekhi, Angad; Hajimiri, Ali

    2014-01-01

    This paper presents electrical beam steering in an integrated 4x4 2D optical phased array (OPA) on a silicon on insulator (SOI) process enabling fast and repeatable beam steering for next generation projection, tracking, and imaging.

  17. Non-linear optical measurements using a scanned, Bessel beam

    Science.gov (United States)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-03-01

    Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.

  18. Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical systems

    Institute of Scientific and Technical Information of China (English)

    戈迪; 蔡阳健; 林强

    2005-01-01

    By use of a tensor method, the transform formulae for the beam coherence-polarization matrix of the partially polarized Gaussian Schell-model (GSM) beams through aligned and misaligned optical systems are derived. As an example, the propagation properties of the partially polarized GSM beam passing through a misaligned thin lens are illustrated numerically and discussed in detail. The derived formulae provide a convenient way to study the propagation properties of the partially polarized GSM beams through aligned and misaligned optical systems.

  19. Giga-bit optical data transmission module for Beam Instrumentation

    CERN Document Server

    Roedne, L T; Cenkeramaddi, L R; Jiao, L

    Particle accelerators require electronic instrumentation for diagnostic, assessment and monitoring during operation of the transferring and circulating beams. A sensor located near the beam provides an electrical signal related to the observable quantity of interest. The front-end electronics provides analog-to-digital conversion of the quantity being observed and the generated data are to be transferred to the external digital back-end for data processing, and to display to the operators and logging. This research project investigates the feasibility of radiation-tolerant giga-bit data transmission over optic fibre for beam instrumentation applications, starting from the assessment of the state of the art technology, identification of challenges and proposal of a system level solution, which should be validated with a PCB design in an experimental setup. Radiation tolerance of 10 kGy (Si) Total Ionizing Dose (TID) over 10 years of operation, Bit Error Rate (BER) 10-6 or better. The findings and results of th...

  20. On the connection between image formation formulas in geometrical optics and beam transformation formulas in wave optics

    Science.gov (United States)

    Bisson, Jean-François

    2013-11-01

    The close connection between image formation in geometrical optics and beam transformation by a paraxial optical system is examined analytically using mathematical tools accessible to undergraduate students, such as the Fresnel diffraction integral and Fourier transforms, instead of the more complicated Wigner distribution or coherence functions frequently employed in the literature. It is shown that geometrical optics correctly predicts the plane where a beam is refocused and its magnification only for afocal optical systems or in the limit of point sources. We illustrate this theory by simulating the transformation of a flat-top beam by a pair of lenses.

  1. Study of the TI 8 optics and beam stability based on beam trajectories

    CERN Document Server

    Wenninger, J

    2006-01-01

    The optics and the stability of the SPS-LHC transfer line TI 8 was studied with beam trajectories during its commissioning in October 2004. Steering magnet response measurements were used to analyze the quality of the steering magnets and of the beam position monitors. A simultaneous fit of the quadrupole strengths was used to search for setting or calibration errors. A large setting error of a quadrupole was identified with this technique, as well as a 1% phase advance error in the vertical plane. Residual coupling between the planes was evaluated using high statistics samples of trajectories. The same high statistics sample were analysed using the Model Independent Analysis technique to understand possible sources of trajectory movements. The transfer line was found to be very stable and the dominant source of position jitter seems to be due to the ripple of the extraction septum.

  2. Steering, Splitting and Cloning of Optical Beam in a Coherently Driven Raman Gain System

    OpenAIRE

    Verma, Onkar N.; Dey, Tarak N.

    2014-01-01

    We propose an all-optical anti-waveguide mechanism for steering, splitting, and cloning of an optical beam beyond the diffraction-limit. We use a spatially inhomogeneous pump beam to create an anti-waveguide structure in a Doppler broadened N -type four-level Raman gain medium for a co-propagating weak probe beam. We show that a transverse modulated index of refraction and gain due to the spatially dependent pump beam hold the keys to steering, splitting and cloning of an optical beam. We hav...

  3. Fast Correction Optics to Reduce Chromatic Aberrations in Longitudinally Compressed Ion Beams

    International Nuclear Information System (INIS)

    Longitudinally compressed ion beam pulses are currently employed in ion-beam based warm dense matter studies. Compression arises from an imposed time-dependent longitudinal velocity ramp followed by drift in a neutralized channel. Chromatic aberrations in the final focusing system arising from this chirp increase the attainable beam spot and reduce the effective fluence on target. We report recent work on fast correction optics that remove the time-dependent beam envelope divergence and minimizes the beam spot on target. We present models of the optical element design and predicted ion beam fluence.

  4. Electron beam optics of Indus-2 for proposed insertion devices

    International Nuclear Information System (INIS)

    The Indus-2 storage ring is a 2.5 GeV synchrotron radiation source. In Indus-2, it is planned to install five insertion devices (IDs). Presently ring is being regularly operated with the moderate optics having beam emittance of 135 nm-rad at 2.5 GeV. It is required to reduce its emittance, so that source brightness from IDs can be increased. The beta function at the location of IDs will also decide the source properties as well as its effect on the machine performance. It necessities that a procedure has to be adopted so that present operating optics can be changed into the low emittance optics as well as the β function at the location of IDs also be adjusted as per requirements. The procedure to change its emittance is already tested. In this procedure, beta function optimization at the location of IDs is also included. In this paper its result and its suitability to operate this procedure is discussed. (author)

  5. Optical fiber tip templating using direct focused ion beam milling

    Science.gov (United States)

    Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A.

    2015-11-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a ‘double-layer’ photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  6. Generation of optical vector beams using a two-mode fiber.

    Science.gov (United States)

    Viswanathan, Nirmal K; Inavalli, V V G

    2009-04-15

    We present the generation of optical vector beams using a two-mode fiber (TMF)-based beam converter. The TMF converts the input Gaussian (TEM(00)) beam into linearly polarized Hermite-Gaussian (HG(10), HG(01)) beams, a radially polarized Laguerre-Gaussian (LG(1)(0)) beam with single helical charge or coherent linear combinations of the different vector modes guided in the fiber, depending on the input beam polarization, the fiber length, and the launch condition. Polarization and two-beam interference analyses of the output beam characterize the electric field orientations of the output beam and the presence of transverse and longitudinal optical vortex in the generated HG and LG beams. PMID:19370113

  7. Multi-slit triode ion optical system with ballistic beam focusing

    Science.gov (United States)

    Davydenko, V.; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N.; Karpushov, A. N.; Smirnov, A.; Uhlemann, R.

    2016-02-01

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  8. Multi-slit triode ion optical system with ballistic beam focusing

    International Nuclear Information System (INIS)

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits

  9. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  10. Integration and testing of the GRAVITY infrared camera for multiple telescope optical beam analysis

    Science.gov (United States)

    Gordo, Paulo; Amorim, Antonio; Abreu, Jorge; Eisenhauer, Frank; Anugu, Narsireddy; Garcia, Paulo; Pfuhl, Oliver; Haug, Marcus; Sturm, Eckhard; Wieprecht, Ekkehard; Perrin, Guy; Brandner, Wolfgang; Straubmeier, Christian; Perraut, Karine; Naia, M. Duarte; Guimarães, M.

    2014-07-01

    The GRAVITY Acquisition Camera was designed to monitor and evaluate the optical beam properties of the four ESO/VLT telescopes simultaneously. The data is used as part of the GRAVITY beam stabilization strategy. Internally the Acquisition Camera has four channels each with: several relay mirrors, imaging lens, H-band filter, a single custom made silica bulk optics (i.e. Beam Analyzer) and an IR detector (HAWAII2-RG). The camera operates in vacuum with operational temperature of: 240k for the folding optics and enclosure, 100K for the Beam Analyzer optics and 80K for the detector. The beam analysis is carried out by the Beam Analyzer, which is a compact assembly of fused silica prisms and lenses that are glued together into a single optical block. The beam analyzer handles the four telescope beams and splits the light from the field mode into the pupil imager, the aberration sensor and the pupil tracker modes. The complex optical alignment and focusing was carried out first at room temperature with visible light, using an optical theodolite/alignment telescope, cross hairs, beam splitter mirrors and optical path compensator. The alignment was validated at cryogenic temperatures. High Strehl ratios were achieved at the first cooldown. In the paper we present the Acquisition Camera as manufactured, focusing key sub-systems and key technical challenges, the room temperature (with visible light) alignment and first IR images acquired in cryogenic operation.

  11. Ion beam induced defects in solids studied by optical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Comins, J.D. [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Raman and Luminescence Laboratory, University of the Witwatersrand, Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg (South Africa)], E-mail: darrell.comins@wits.ac.za; Amolo, G.O. [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Derry, T.E.; Connell, S.H. [DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg (South Africa); Erasmus, R.M. [Raman and Luminescence Laboratory, University of the Witwatersrand, Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg (South Africa); Witcomb, M.J. [DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Johannesburg (South Africa); Electron Microscope Unit, University of the Witwatersrand, Johannesburg (South Africa)

    2009-08-15

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO{sub 3} crystals implanted with 8 MeV Au{sup 3+} ions with a fluence of 1 x 10{sup 17} ions/cm{sup 2} result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I{sub 3}{sup -} structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I{sub 3}{sup -} and I{sub 5}{sup -} aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 x 10{sup 17} ions/cm{sup 2} during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 x 10{sup 15} to 250 x 10{sup 15} ions/cm{sup -2} induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and

  12. Response of optical hydrogen lines to beam heating: I. Electron beams

    CERN Document Server

    Kasparova, J; Heinzel, P; Karlicky, M; Moravec, Z

    2009-01-01

    We investigate the role of non-thermal electrons in the formation regions of Halpha, Hbeta, and Hgamma lines in order to unfold their influence on the formation of these lines. We concentrate on pulse-beam heating varying on a subsecond timescale. Furthermore, we theoretically explore possibility that a new diagnostic tool exists indicating the presence of non-thermal electrons in the flaring chromosphere based on observations of optical hydrogen lines. To model the evolution of the flaring atmosphere and the time-dependent hydrogen excitation and ionisation, we used a 1-D radiative hydrodynamic code combined with a test-particle code that simulates the propagation, scattering, and thermalisation of a power-law electron beam in order to obtain the flare heating and the non-thermal collisional rates due to the interaction of the beam with the hydrogen atoms. All calculated models have shown a time-correlated response of the modelled Balmer line intensities on a subsecond timescale, with a subsecond timelag beh...

  13. Mutually incoherent beam combining through optical parametric amplification

    International Nuclear Information System (INIS)

    This work deals with a technique of combination of coherent beams: Optical Parametric Amplification (OPA) with Multiple Pumps. This technique is used to instantly transfer the energy of several pumps on one beam, without energy storage and thus avoiding thermal effects in the amplifying media. It can be useful to combine energy of numerous fiber lasers and to amplify with a high repetition rate very high energy lasers or broadband pulses. With a numerical and experimental study using BBO and LBO as nonlinear crystal, we determine how to dispose the pumps around the signal and the corresponding angular tolerances of such set up. Then we focus our attention on recombining mechanisms between a pump and a non-corresponding idler. We demonstrate experimentally that these cascading effects may decrease the spatial and spectral quality of the amplified signal, and that these phenomena can be avoided with a minimum angle between the different pumps. A novel modelling of multi-pumps OPA links these cascading effects to the gratings generated by the interaction between the pumps. The last part presents a 5 pump OPA experiment. We achieve a pump-to-signal efficiency of 27% and so that a signal more powerful than each pump is obtained. (author)

  14. Rows of optical vortices from elliptically perturbing a high-order beam

    CERN Document Server

    Dennis, M R

    2006-01-01

    An optical vortex (phase singularity) with a high topological strength resides on the axis of a high-order light beam. The breakup of this vortex under elliptic perturbation into a straight row of unit strength vortices is described. This behavior is studied in helical Ince-Gauss beams and astigmatic, generalized Hermite-Laguerre-Gauss beams, which are perturbations of Laguerre-Gauss beams. Approximations of these beams are derived for small perturbation, in which a neighborhood of the axis can be approximated by a polynomial in the complex plane: a Chebyshev polynomial for Ince-Gauss beams, and a Hermite polynomial for astigmatic beams.

  15. Demonstration of multi-dimensional optical binding in counter-propagating laser beams with variable beam properties

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Karásek, Vítězslav; Čižmár, T.; Zemánek, Pavel

    Bellingham: SPIE, 2011, 80970U:1-8. ISBN 978-0-8194-8707-0. [Conference on Optical Trapping and Optical Micromanipulation VIII. San Diego (US), 21.08.2011-25.08.2011] R&D Projects: GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk(CZ) LC06007; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical binding * optical tweezers * dual-beam trap * self-arrangement * colloids Subject RIV: BH - Optics, Masers, Laser s

  16. Optical studies on electron beam evaporated Lithium Triborate films

    Science.gov (United States)

    Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.

    2012-10-01

    Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.

  17. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements

    Science.gov (United States)

    Khonina, S. N.; Karpeev, S. V.; Morozov, A. A.; Paranin, V. D.

    2016-07-01

    We apply diffractive optical elements in problems of transformation of Bessel beams in a birefringent crystal. Using plane waves expansion we show a significant interference between the ordinary and extraordinary beams due to the energy transfer in the orthogonal transverse components in the nonparaxial mode. A comparative analysis of the merits and lack of diffractive and refractive axicons in problems of formation non-paraxial Bessel beams has shown the preferability of diffractive optics application in crystal optics. The transformation of uniformly polarised Bessel beams in the crystal of Iceland spar in the nonparaxial mode by application of a diffractive axicon is investigated numerically and experimentally.

  18. Steering, Splitting and Cloning of Optical Beam in a Coherently Driven Raman Gain System

    CERN Document Server

    Verma, Onkar N

    2014-01-01

    We propose an all-optical anti-waveguide mechanism for steering, splitting, and cloning of an optical beam beyond the diffraction-limit. We use a spatially inhomogeneous pump beam to create an anti-waveguide structure in a Doppler broadened N -type four-level Raman gain medium for a co-propagating weak probe beam. We show that a transverse modulated index of refraction and gain due to the spatially dependent pump beam hold the keys to steering, splitting and cloning of an optical beam. We have also shown that an additional control field permits the propagation of an optical beam through an otherwise gain medium without diffraction and instability. We further discuss how finesse of the cloned images can be increased by changing the detuning and intensity of the control field.

  19. Propagation of a partially coherent laser beam through the inhomogeneous medium of an optical amplifier

    International Nuclear Information System (INIS)

    The propagation of a partially coherent laser beam through a single-pass optical amplifier is considered in the complex geometric optics approximation. A system of equation is obtained which describes changes in the complex amplitude and complex phase of the coherence function of the laser beam in the inhomogeneous medium of the amplifier. The power and intensity of the amplified radiation are analysed as functions of the coherence radius of the laser beam and the optical strength of a gas lens produced in the amplifier medium due to the spatial inhomogeneity of the energy deposition. It is found that the effect of the gas lens and partial coherence of radiation on the gain depends on the relation between the input beam radius and the amplifier aperture. It is shown that the energy gain increases with increasing the lens strength and improving the beam coherence, whereas the opposite behaviour is inherent in 'narrow' beams. (optical amplifiers)

  20. Generation of non-classical optical fields by a beam splitter with second-order nonlinearity

    CERN Document Server

    Prakash, Hari

    2016-01-01

    We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.

  1. Flexible generation of optical beams with quasicrystalline structures via astigmatism induced by a tilted lens

    Science.gov (United States)

    Tung, J. C.; Liang, H. C.; Tsou, C. H.; Su, K. W.; Chen, Y. F.

    2012-12-01

    We theoretically show that a family of optical beams with vortex-lattice structures can be reliably generated by tilting the focal lens to introduce the relative phases between the interfering beams. We also experimentally generate the quasicrystal beams to confirm the theoretical analysis. With the analytical wave functions and experimental patterns, a variety of vortex-lattice structures are manifested.

  2. A simple optical cone beam CT set-up for gel 'readout'

    Energy Technology Data Exchange (ETDEWEB)

    Ravindran, B P; Visalatchi, S; Brindha, S [Department of Radiation Oncology, Christian Medical College, Vellore India 632 004 (India)

    2004-01-01

    In this study we have attempted to setup a simple optical cone beam CT using the geometry used by Wolodzko et al and Jordan et al using an Intel webcam. This approach of recording transmission images of the gel is the inverse of x-ray cone beam CT if you consider only the rays, which contribute to image formation. This simple optical cone beam CT could be setup with minimum cost and could be used to demonstrate the principle of optical CT for teaching and if further investigated could be a potential optical readout device for gel dosimetry.

  3. MEMS-Based Optical Beam Steering System for Quantum Information Processing in 2D Atomic Systems

    OpenAIRE

    Knoernschild, Caleb; Kim, Changsoon; Liu, Bin; Lu, Felix P.; Kim, Jungsang

    2007-01-01

    In order to provide scalability to quantum information processors utilizing trapped atoms or ions as quantum bits (qubits), the capability to address multiple individual qubits in a large array is needed. Micro-electromechanical systems (MEMS) technology can be used to create a flexible and scalable optical system to direct the necessary laser beams to multiple qubit locations. We developed beam steering optics using controllable MEMS mirrors that enable one laser beam to address multiple qub...

  4. Electron-optical monitoring of beam profile of a pulse accelerator

    International Nuclear Information System (INIS)

    Electron-optical methods of studying spatial-time characteristics of high-current electron beams on the basis of their bremsstrahlung are described. Data on dynamics of compression of electron beams of ORION-1 electrostatic accelerator, obtained under photochronographic monitoring at electron-optical converter, are presented. It is shown that in radial compression phase the rate of the beam inner boundary attains the value of ∼1.5x108 cm/s

  5. Electron beam, ion beam, X-ray optical techniques for fabricating surface-acoustic-wave and thin-film optical devices

    International Nuclear Information System (INIS)

    Most surface-acoustic-wave and thin-film optical devices are made by the planar fabrication process. The exposure of the pattern in the polymer film is the first and most crucial step in ensuring desired device geometry, dimensional control, and freedom from pattern distortion. The methods of exposing the polymer film include: optical projection, conventional contact printing, conformable photomask contact printing, holographic recording, scanning electron beam lithography, projection electron lithography, and x-ray lithography. In this paper scanning electron beam lithography, conformable photomask contact printing, holographic recording, and x-ray lithography are discussed. In the last section, ion beam etching of relief structures is discussed

  6. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    OpenAIRE

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for b...

  7. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher

    OpenAIRE

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-01-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible...

  8. Propagation Characteristics of Airy-Gaussian Beams Passing through a Misaligned Optical System with Finite Aperture

    OpenAIRE

    Lahcen Ez-Zariy; Salima Hennani; Hamid Nebdi; Abdelmajid Belafhal

    2014-01-01

    Propagation characteristics of finite Airy-Gaussian beams through an apertured misaligned first-order ABCD optical system are studied. In this work, the generalized Huygens-Fresnel diffraction integral and the expansion of the hard aperture function into a finite sum of complex Gaussian functions are used. The propagation of Airy-Gaussian beam passing through: an unapertured misaligned optical system, an apertured aligned ABCD optical system and an unapertured aligned ABCD opti...

  9. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    Science.gov (United States)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  10. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    Science.gov (United States)

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions. PMID:21743540

  11. Beam optics of a superconducting booster for the JAERI tandem accelerator

    International Nuclear Information System (INIS)

    In order to investigate beam optics of a superconducting booster for the JAERI tandem accelerator, a computer program has been written which calculates beam trajectories in the booster. By using this program various configurations have been examined and a configuration has been chosen as a 'good' candidate. Calculation has been made for 12C, 35Cl and 127I beams and it has been shown that 50-60% of continuous beam can be accelerated even without a prebuncher, if intended control of the beam can be accomplished. Some discussion is given on problems in contro-ling the beam. (author)

  12. Taming the emerging beams after the split of optical vortex solitons in a saturable medium

    Science.gov (United States)

    Reyna, Albert S.; de Araújo, Cid B.

    2016-01-01

    Control of the emerging beams obtained from the spontaneous splitting of an optical vortex soliton (OVS) due to the azimuthal modulation instability is demonstrated. The procedure adopted consisted of adding a control Gaussian beam, propagating collinearly with the OVS, and adjusting the beams' relative positions, radius, and intensities. Rotation of the emerging beams in the transverse plane and energy transfer between them were obtained using a control beam with smaller intensity than the vortex beam. The numerical simulations based on a modified nonlinear Schrödinger equation, including saturable nonlinearity and three-photon absorption, are in excellent agreement with the experimental results.

  13. Beam-guidance optics for high-power fiber laser systems

    Science.gov (United States)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  14. Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects

    Czech Academy of Sciences Publication Activity Database

    Čižmár, Tomáš; Kollárová, V.; Jákl, Petr; Šiler, Martin; Bouchal, Z.; Garcéz-Chávez, V.; Dholakia, K.; Zemánek, Pavel

    Bellingham: SPIE, 2006, 619507:1-7. ISBN 0-8194-6251-9. ISSN 0277-786X. [Nanophotonics. Strasbourg (FR), 03.04.2006-05.04.2006] R&D Projects: GA MPO FT-TA2/059; GA MŠk(CZ) LC06007 Grant ostatní: EC 6FP(XE) ATOM3D No. 508952 Institutional research plan: CEZ:AV0Z20650511 Keywords : nondiffracting beam * Bessel beam * interference * optical trapping * optical tweezers * optical manipulation * colloids * optical conveyor belt Subject RIV: BH - Optics, Masers, Lasers

  15. Excitation Of A Funnel-Shape Optical Near Field By The Laguarre-Gaussian Doughnut Beam

    CERN Document Server

    Iftiquar, S M; Takamizawa, A; Ohtsu, M; Ohtsu, Motoichi

    2003-01-01

    Optical near field has been generated by Laguarre-Gaussian doughnut beam on inner surface of "atom funnel". The resulting optical near field has been measured with the help of fiber probe and a consequent effect on cold atoms- released from MOT, has been estimated. Atoms with temperature less than 10 micro_kelvin can be reflected by the optical near field.

  16. Observation of optical emission from high refractive index waveguide excited by traveling electron beam

    OpenAIRE

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    A new scheme for optical emission using a high refractive index waveguide and the traveling electron beam in vacuum was demonstrated. Optical emission around wavelength of 1.5 pm was observed for electron acceleration voltage of 40KV. © 2008 Optical Society of America.

  17. Operational Performance of the LHC Proton Beams with the SPS Low Transition Energy Optics

    CERN Document Server

    Papaphilippou, Y; Argyropoulos, T; Bartmann, W; Bartosik, H; Bohl, T; Bracco, C; Cettour-Cave, S; Cornelis, K; Drosdal, L; Esteban Muller, J; Goddard, B; Guerrero, A; H¨ofle, W; Kain, V; Rumolo, G; Salvant, B; Shaposhnikova, E; Timko, H; Valuch, D; Vanbavinckhove, G; Wenninger, J; Gianfelice-Wendt, E

    2013-01-01

    An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed.

  18. Beam studies at the SPEAR3 synchrotron using a digital optical mask

    Science.gov (United States)

    Zhang, H. D.; Fiorito, R. B.; Corbett, J.; Shkvarunets, A. G.; Tian, K.; Fisher, A.

    2016-05-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  19. Nonparaxial propagation of Hermite-Laguerre-Gaussian beams in uniaxial crystal orthogonal to the optical axis

    Institute of Scientific and Technical Information of China (English)

    Xu Yi-Qing; Zhou Guo-Quan; Wang Xiao-Gang

    2013-01-01

    Analytical expressions for the three components of the nonparaxial propagation of a Hermite-Laguerre-Gaussian (HLG) beam in uniaxial crystal orthogonal to the optical axis are derived.The intensity distribution of an HLG beam and its three components propagating in a uniaxial crystal orthogonal to the optical axis are demonstrated by numerical examples.Although the y and z components of an HLG beam in the incident plane are both equal to zero,they emerge upon propagation inside the uniaxial crystal.Moreover,the beam profile of the x component is relatively stable and the beam profiles of the y and z components have the same evolution law.If the ratio of the extraordinary refractive index to the ordinary refractive index is larger than unity,the beam profile of the HLG beam is elongated in the x direction and generally rotates clockwise.Otherwise,the beam profile of the HLG beam is elongated in the y direction and generally rotates anticlockwise.This research is beneficial to the optical trapping and nonlinear optics involved in the rotation of a beam profile.

  20. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  1. Computing the laser beam path in optical cavities: a geometric Newton's method based approach

    CERN Document Server

    Cuccato, Davide; Ortolan, Antonello; Beghi, Alessandro

    2015-01-01

    In the last decade, increasing attention has been drawn to high precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g. mirrors, lenses, etc.) and to steer light beams with sub-nanometer precision. Existing methods for beam direction computing in resonators, e.g. iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparametrized models of optical elements. By exploiting Fermat's principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second order convergence rate that relies on a second order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfac...

  2. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    CERN Document Server

    Urakawa, J; Kubo, K; Kuroda, S; Terunuma, N; Kuriki, M; Okugi, T; Naito, T; Araki, S; Potylitsin, A P; Naumenko, G A; Karataev, P; Potylitsyna, N A; Vnukov, I; Hirose, T; Hamatsu, R; Muto, T; Ikezawa, M; Shibata, Y

    2001-01-01

    A 'proof-of-principle' experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultr...

  3. Ion-optically driven depth compensation for ion beam tracking

    International Nuclear Information System (INIS)

    The beam delivery system for scanned carbon ion beam radiotherapy at GSI has been extended in research mode to irradiate moving targets. For beam tracking, the ion beam is adapted laterally as well as in range corresponding to the target's three dimensional (3D) motion. A beam tracking system with a motorized double wedge system for fast and accurate range adaptation has been developed. In addition to the current range adaptation system a much faster method for online energy modulation is being investigated where a fine focused ion beam is dynamically positioned, controlled by fast dipole magnets, on a small static wedge shaped absorber within the beam line. Experiments were performed at the therapy beam line to study the beam shift from central axis by the first dipole magnet up to the maximum limit where the beam can be deflected back to central axis by the second dipole magnet. Beam profiles were measured at different locations of the beam delivery system. The particle transmission was measured as well at the target position. Experiments were supported by Monte Carlo simulations for energy variation studies and for assessing the influence on beam profiles using MOCADI code

  4. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices

    Science.gov (United States)

    Wang, Yu; Feng, Xue; Zhang, Dengke; Zhao, Peng; Li, Xiangdong; Cui, Kaiyu; Liu, Fang; Huang, Yidong

    2015-01-01

    An integrated device, which consists of a variable amplitude splitter and an orbital angular momentum (OAM) emitter, is proposed for the superposition of optical vortex beams. With fixed wavelength and power of incident beam, the OAM of the radiated optical superimposed vortex beam can be dynamically tuned. To verify the operating principle, the proposed device has been fabricated on the SOI substrate and experimentally measured. The experimental results confirm the tunability of superimposed vortex beams. Moreover, the ability of independently varying the OAM flux and the geometric distribution of intensity is illustrated and discussed with numerical simulation. We believe that this work would be promising in various applications. PMID:26190669

  5. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices.

    Science.gov (United States)

    Wang, Yu; Feng, Xue; Zhang, Dengke; Zhao, Peng; Li, Xiangdong; Cui, Kaiyu; Liu, Fang; Huang, Yidong

    2015-01-01

    An integrated device, which consists of a variable amplitude splitter and an orbital angular momentum (OAM) emitter, is proposed for the superposition of optical vortex beams. With fixed wavelength and power of incident beam, the OAM of the radiated optical superimposed vortex beam can be dynamically tuned. To verify the operating principle, the proposed device has been fabricated on the SOI substrate and experimentally measured. The experimental results confirm the tunability of superimposed vortex beams. Moreover, the ability of independently varying the OAM flux and the geometric distribution of intensity is illustrated and discussed with numerical simulation. We believe that this work would be promising in various applications. PMID:26190669

  6. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    Science.gov (United States)

    Piquero, Gemma; Vargas-Balbuena, Javier

    2004-11-01

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given.

  7. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    Energy Technology Data Exchange (ETDEWEB)

    Piquero, Gemma; Vargas-Balbuena, Javier [Departamento de Optica, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2004-11-12

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given.

  8. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence.

    Science.gov (United States)

    Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing

    2016-08-01

    Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics. PMID:27505641

  9. Collinear Acousto-Optical Transformation of Bessel Light Beams in Biaxial Gyrotropic Crystals

    Science.gov (United States)

    Belyi, V. N.; Kulak, G. V.; Krokh, G. V.; Shakin, O. V.

    2016-05-01

    The collinear acousto-optical transformation of Bessel light beams in biaxial gyrotropic crystals into two annular, internal conical refraction beams with orthogonal elliptical polarization is studied. It is found that the diffraction efficiency is maximal (~50-60%) for low ultrasound intensities and varies slightly with further increases in acoustic power. At high ultrasound intensities, the intensities of the transmitted and diffracted annular beams differ insignificantly. The possible use of this acousto-optical interaction for creating collinear tuneable narrow-band acousto-optical filters at low ultrasonic frequencies is demonstrated.

  10. Fractionalization of optical beams: II. Elegant Laguerre Gaussian modes

    Science.gov (United States)

    Gutiérrez-Vega, Julio C.

    2007-05-01

    We apply the tools of fractional calculus to introduce new fractional-order solutions of the paraxial wave equation that smoothly connect the elegant Laguerre-Gaussian beams of integral-order. The solutions are characterized in general by two fractional indices and are obtained by fractionalizing the creation operators used to create elegant Laguerre-Gauss beams from the fundamental Gaussian beam. The physical and mathematical properties of the circular fractional beams are discussed in detail. The orbital angular momentum carried by the fractional beam is a continuous function of the angular mode index and it is not restricted to take only discrete values.

  11. Behavior of oblate spheroidal microparticles in a tightly focused optical vortex beam

    Czech Academy of Sciences Publication Activity Database

    Arzola, Alejandro V.; Jákl, Petr; Chvátal, Lukáš; Šerý, Mojmír; Zemánek, Pavel

    Bellingham: SPIE, 2014, 91640L:1-6. ISBN 9781628411911. ISSN 0277-786X. [Optical Trapping and Optical Micromanipulation /11./. San Diego (US), 17.08.2014-21.08.2014] R&D Projects: GA MŠk LH12018; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Optical vortices * Particles * Polarization * Spatial light modulators * Laser beam propagation Subject RIV: BH - Optics, Masers, Laser s

  12. Self-focusing and self-trapping of optical beams upon photopolymerization

    OpenAIRE

    Kewitsch, Anthony S.; Yariv, Amnon

    1996-01-01

    We demonstrate theoretically and experimentally that optical beams are self-focused and self-trapped upon initiating photopolymerization. This unique nonlinear optical phenomenon is dependent on the optical exposure and produces permanent index-of-refraction changes larger than 0.04. The resulting nonlinear wave equation is shown to be nonlocal in time and displays self-trapped solutions only for sufficiently low average optical intensities.

  13. Optical trapping in counter-propagating Bessel beams

    Czech Academy of Sciences Publication Activity Database

    Čižmár, Tomáš; Garcéz-Chávez, V.; Dholakia, K.; Zemánek, Pavel

    Denver: SPIE, 2004, s. 643-651. ISBN 0-8194-5452-4. ISSN 0277-786X. [SPIE: Optical Trapping and Optical Micromanipulation. Denver (US), 02.08.2004-06.08.2004] R&D Projects: GA AV ČR IAA1065203 Keywords : optical force * Rayleigh particle * colloidal particle Subject RIV: BH - Optics, Masers, Lasers

  14. Two- and three-beam interferometric optical tweezers

    Czech Academy of Sciences Publication Activity Database

    Casaburi, A.; Pesce, G.; Zemánek, Pavel; Sasso, A.

    2005-01-01

    Roč. 251, 4-6 (2005), s. 393-404. ISSN 0030-4018 R&D Projects: GA AV ČR(CZ) IAA1065203 Keywords : Optical force * Mie particle * Interferometric optical tweezers * Optical trapping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.456, year: 2005

  15. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    Directory of Open Access Journals (Sweden)

    Stefan Rung

    2014-10-01

    Full Text Available Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necessary to observe the intensity distribution near the focal position of the applied focusing optics. Systems with a low numerical aperture (NA can commonly be qualified by means of laser beam profilers, such as a charge-coupled device (CCD camera. However, laser systems for micromachining typically employ focus lenses with a high NA, which generate focal spot sizes of only several microns in diameter. This turns out to be a challenge for common beam profiling measurement systems and complicates the adjustment of the beam shaper strongly. In this contribution, we evaluate the quality of a Top-Hat beam profiling element and its alignment in the working area based on the ablated geometry of single pulse ablation of thin transparent conductive oxides. To determine the best achievable adjustment, we develop a quality index for rectangular laser ablation spots and investigate the influences of different alignment parameters, which can affect the intensity distribution of a Top-Hat laser beam profile.

  16. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.

    Science.gov (United States)

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-11-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  17. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Indian Academy of Sciences (India)

    K D Rathod; P K Singh; Vasant Natarajan

    2014-09-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  18. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Science.gov (United States)

    Rathod, K. D.; Singh, P. K.; Natarajan, Vasant

    2014-09-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  19. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  20. A new SPM at Fudan university. System construction and calculation of beam optics

    CERN Document Server

    Liu Bo; Sun Min De; Shi Xian Feng; Sun Chuan Chen; Shen Hao; Mi Yong

    2002-01-01

    High Energy ion beams accelerated by the tandem (9SDH-2) can be focused to a beam diameter about 1 mu m by quadrupole triplet magnetic lens. The detection system consists of several detectors. Several ion beam analytical techniques, such as PIXE, RBS, STIM, etc. are available with the new SPM system. The facility can promote interdisciplinary researches of different fields including material science, environment science, geology and biology. In order to minimize the diameter of the ion beam, a simulation calculation of beam optics is carried out for the new SPM system. The calculation results are helpful to the installation of the whole microbeam system

  1. Beam optics of a dipole magnet for energy measurement in an RF linac

    International Nuclear Information System (INIS)

    This paper presents the analytical calculation and simulation for the beam optics study of a 30° sector magnet. This sector magnet will be used to measure the energy of a 1.5 MeV electron beam being injected from an RF linac. From initial beam parameters, arc length of the magnet and number of ampere-turns have been optimised. To find out beam size, Transfer matrix method is used for different initial beam conditions. A program is written in MATHEMATICA to solve the envelope equation in both dispersive and non-dispersive plane . To validate this program, simulation is carried out in the software CST PARTICLE STUDIO. (author)

  2. LogAmp electronics and Optical Transmission for the new SPS Beam Position Measurement System

    CERN Document Server

    Deplano, C; Gonzalez, J L; Savioz, J J

    2013-01-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  3. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Thuc Bui

    2007-12-06

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  4. Focusing of Gaussian beam passed under small angle to optical axis of uniaxial crystal

    Science.gov (United States)

    Ivanov, M. O.; Shostka, N. V.

    2016-07-01

    We showed both experimentally and analytically, the effect of focusing of a Gaussian beam propagated under small angle ϕ with respect to the optical axis of a uniaxial crystal, on the generation of a bottle beam. At ϕ = 0° two foci that correspond to ordinary and extraordinary parts of a beam form a closed 3D structure of a bottle beam. At this point, the beam, in the foci points, has radially and azimuthally aligned polarizations. Increasing the value of ϕ leads to dramatic changes in the intensity and polarization structure of a bottle beam. Starting from the value of ϕ = ±2° the closed 3D symmetric structure of a bottle beam breaks down. At ϕ = ±5° both beams are focused at the same transverse plane, while its polarization evolves to x- and y-linear. With a further increase in angle ϕ two foci ‘switch’ their spatial positions and move further away.

  5. Electron Optic Design of Arrayed E-Beam Microcolumns Based Systems for Wafer Defects Inspection

    OpenAIRE

    Kazmiruk, V. V.; Savitskaja, T. N.

    2008-01-01

    In this paper is considered a matter of the system for wafer defect inspection (WDIS) practical realization. Such systems are on the agenda as the next generation and substitution for light optics and single $e$-beam based WDISs.

  6. Tuning the optical orbital angular momentum of a focused Gaussian beam in an optical superlattice under the electro-optic effect

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie; Shi, Jianhong; Tian, Linghao; Chen, Xianfeng [Shanghai Jiao Tong University, Shanghai (China)

    2012-04-15

    In this paper, we theoretically propose a new method to generate and tune the optical orbital angular momentum. A focused Gaussian beam passing through an optical superlattice under the electro-optic effect carries orbital angular momentum (OAM). This kind of OAM arises from the curl of the polarization. By adjusting the external electric field, the beam waist radius and the crystal length, we can obtain a dramatic variation of the OAM across the output light transverse section. This invention will find applications in the area of optical manipulation.

  7. Tuning the optical orbital angular momentum of a focused Gaussian beam in an optical superlattice under the electro-optic effect

    International Nuclear Information System (INIS)

    In this paper, we theoretically propose a new method to generate and tune the optical orbital angular momentum. A focused Gaussian beam passing through an optical superlattice under the electro-optic effect carries orbital angular momentum (OAM). This kind of OAM arises from the curl of the polarization. By adjusting the external electric field, the beam waist radius and the crystal length, we can obtain a dramatic variation of the OAM across the output light transverse section. This invention will find applications in the area of optical manipulation.

  8. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications

    Science.gov (United States)

    Benetou, M. I.; Bouillard, J.-S.; Segovia, P.; Dickson, W.; Thomsen, B. C.; Bayvel, P.; Zayats, A. V.

    2015-11-01

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  9. Realization of a magneto-optical trap by using linearly-polarized cooling beams

    International Nuclear Information System (INIS)

    We realized two species of magneto-optical traps (MOTs) by using linearly-polarized cooling beams. A mirror MOT was realized by using pairs of σ-π polarized cooling beams. Since the linearly polarized field could act as opposite circular polarizations, atoms could be loaded on the mirror MOT with the elimination of one quarter-wave plate (QWP) among the four QWPs. However, for a typical MOT, counter-propagating cooling beams had to have opposite circular polarizations. The number of trapped atoms depended strongly on the polarization and optical alignment of the cooling beams when linear polarization with the elimination of one QWP was used. By using this anomalous alignment, we could increase the fluorescence of the mirror MOT. Furthermore, we were also able to realize a six-beam MOT with a configuration of pairs of orthogonal linearly-polarized cooling beams. The direction of the polarization depended strongly on the magnetic field for trapping.

  10. The lensing effect of trapped particles in a dual-beam optical trap.

    Science.gov (United States)

    Grosser, Steffen; Fritsch, Anatol W; Kiessling, Tobias R; Stange, Roland; Käs, Josef A

    2015-02-23

    In dual-beam optical traps, two counterpropagating, divergent laser beams emitted from opposing laser fibers trap and manipulate dielectric particles. We investigate the lensing effect that trapped particles have on the beams. Our approach makes use of the intrinsic coupling of a beam to the opposing fiber after having passed the trapped particle. We present measurements of this coupling signal for PDMS particles, as well as a model for its dependence on size and refractive index of the trapped particle. As a more complex sample, the coupling of inhomogeneous biological cells is measured and discussed. We show that the lensing effect is well captured by the simple ray optics approximation. The measurements reveal intricate details, such as the thermal lens effect of the beam propagation in a dual-beam trap. For a particle of known size, the model further allows to infer its refractive index simply from the coupling signal. PMID:25836555

  11. Control of beam propagation in optically written waveguides beyond the paraxial approximation

    CERN Document Server

    Zhang, L; Evers, J

    2013-01-01

    Beam propagation beyond the paraxial approximation is studied in an optically written waveguide structure. The waveguide structure that leads to diffractionless light propagation, is imprinted on a medium consisting of a five-level atomic vapor driven by an incoherent pump and two coherent spatially dependent control and plane-wave fields. We first study propagation in a single optically written waveguide, and find that the paraxial approximation does not provide an accurate description of the probe propagation. We then employ coherent control fields such that two parallel and one tilted Gaussian beams produce a branched waveguide structure. The tilted beam allows selective steering of the probe beam into different branches of the waveguide structure. The transmission of the probe beam for a particular branch can be improved by changing the width of the titled Gaussian control beam as well as the intensity of the spatially dependent incoherent pump field.

  12. Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams.

    Science.gov (United States)

    Alieva, T; Bastiaans, M J

    2000-12-01

    A useful relationship between the fractional Fourier transform power spectra of a two-dimensional symmetric optical beam, on the one hand, and its Wigner distribution, on the other, is established. This relationship allows a significant simplification of the standard procedure for the reconstruction of the Wigner distribution from the field intensity distributions in the fractional Fourier domains. The Wigner distribution of a symmetric optical beam is analyzed, both in the coherent and in the partially coherent case. PMID:11140492

  13. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  14. UV Written Integrated Optical Beam Combiner for Near Infrared Astronomical Interferometry

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Olivero, Massimo; Jocou, Laurent;

    2006-01-01

    A near infrared integrated optical beam combiner for astronomical interferometry is demonstrated for the first time by direct UV writing. High fringe contrast >95%, low total loss (0.7 dB), low crosstalk and broadband performance is demonstrated.......A near infrared integrated optical beam combiner for astronomical interferometry is demonstrated for the first time by direct UV writing. High fringe contrast >95%, low total loss (0.7 dB), low crosstalk and broadband performance is demonstrated....

  15. 3D micro-optical elements for generation of tightly focused vortex beams

    OpenAIRE

    Balčytis Armandas; Hakobyan Davit; Gabalis Martynas; Žukauskas Albertas; Urbonas Darius; Malinauskas Mangirdas; Petruškevičius Raimondas; Brasselet Etienne; Juodkazis Saulius

    2015-01-01

    Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable ...

  16. A computer code for beam optics calculation--third order approximation

    Institute of Scientific and Technical Information of China (English)

    L(U) Jianqin; LI Jinhai

    2006-01-01

    To calculate the beam transport in the ion optical systems accurately, a beam dynamics computer program of third order approximation is developed. Many conventional optical elements are incorporated in the program. Particle distributions of uniform type or Gaussian type in the ( x, y, z ) 3D ellipses can be selected by the users. The optimization procedures are provided to make the calculations reasonable and fast. The calculated results can be graphically displayed on the computer monitor.

  17. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  18. Atom trapping in a bottle beam created by a diffractive optical element

    CERN Document Server

    Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

    2013-01-01

    A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

  19. Beam optical measurements at the piotron of the SIN

    International Nuclear Information System (INIS)

    In this publication investigations of magnetoptical properties of the superconducting pion irradiation facility of the Swiss Institute of Nuclear Research are reported. This facility called 'Piotron' has been used for cancer therapy with negative pions since 1980. The Piotron has 60 identical beams bended to the tumour by two sets of 60 superconducting coils. Using szintillation counters and multiwire proportional chambers mounted on a high precision device the following physical parameters were measured: muon and electroncontamination, beam size and phase space distributions for all 60 beams. For a single beam these parameters have also been measured as a function of pion momentum, momentum width or pion production targets. (orig./HSI)

  20. Possibilities of optical transition radiation using for the U-70 and the UNR proton beam diagnostics

    International Nuclear Information System (INIS)

    Experimental results for optical transition radiation (OTR) of 70 GeV protons have been obtained. A possibility of the proton beam diagnostics using this raiation and the digital television method is illustrated. It is shown that thin aluminium fail doesn't perturb the proton beam and the conditions for using OTR for beam monitoring improve with proton energy. 15 refs.; 14 figs.; 1 tab

  1. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  2. Focused ion beam writing of optical patterns in amorphous silicon carbide

    International Nuclear Information System (INIS)

    In the present work we investigate the use of ion beam techniques for properties modification and optimisation of wide-bandgap materials with view of their uses in sub-micron lithography and high-density data storage for archival purposes. We propose scanning near-field optical microscopy as a novel technique for characterizing the ion-implanted patterns fabricated in amorphous silicon carbide (a-SiC:H). Different patterns have been fabricated in a-SiC:H films with a focused Ga+-ion beam system and examined with scanning near-field optical microscopy and atomic force microscopy. Although a considerable thickness change (thinning tendency) has been observed in the ion-irradiated areas, the near-field measurements confirm increases of optical absorption in these areas. The observed values of the optical contrast modulation are sufficient to justify the efficiency of the method for optical data recording using focused ion beams. (author)

  3. Beam profile of laser pointer (VFL-350) after launching in telecommunication fiber optic

    Science.gov (United States)

    Sarollahi, Mir Saeed

    2009-11-01

    VFL-350 (Visual Fault Locator) Light Source is used to check single-mode and multimode optical fiber cables and components for faults or to locate individual fibers in a bundle. Loss as intrinsic loss (absorbsion and scattering), mechanical loss (splices and connections) are important to estimate the amount of errors in data transmission process (both in single as well as multimode fibers). That is one of the most important parameter of change intensity profile of laser beam. Standard light source that used in this project is an optical pen that have semi guassian beam with out put power 1 mw(class 1) & λ=635 nm that make follow result: Beam propagated from this light source have semi guassian shape and result of some transverse mode. Beam intensity profile of this light source after launching in multimode fiber optics (length=2m & connector: have 20% loss compared by beam intensity profile of optical pen.(connector loss). Situating a filter in path of multi mode fiber optic, don't any change in beam intensity profile of multi mode fiber optics.

  4. Evaluation of the optical layout of EXAFS beam-line at Indus-2 SRS by divergent laser beam

    International Nuclear Information System (INIS)

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being developed for the INDUS-2 synchrotron source. The beamline would use an elliptically bent Si(111) crystal for dispersion and horizontal focusing of the synchrotron beam. A vertically focusing mirror would be used prior to the bent crystal for vertical focusing of the synchrotron beam as well as for higher harmonic rejection from the spectra. The optical layout of the beamline has been evaluated by numerical simulation using the ray tracing programme 'SHADOW' and the layout has also been tested experimentally using a divergent laser beam. (author)

  5. Experimental analysis of multiple-beam interference optical traps

    Czech Academy of Sciences Publication Activity Database

    Jákl, Petr; Šiler, Martin; Zemánek, Pavel

    Bellingham : SPIE, 2014, 944105:1-6. ISBN 9781628415568. ISSN 0277-786X. [Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics /19./. Jelenia Góra (PL), 08.09.2014-12.09.2014] R&D Projects: GA MŠk LH12018; GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical trapping * laser s * particles * refractive index * cells * microscopes * optical lattice clocks * apertures Subject RIV: BH - Optics , Masers, Laser s

  6. Development of beam expander system using non-linear beam optics at J-PARC spallation neutron source

    International Nuclear Information System (INIS)

    In the Japanese Spallation Neutron Source (JSNS) of Japan Proton Accelerator Research Complex (J-PARC), proton beam with a high power such as 1 MW is induced to the target consisted of mercury. As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak current density at the target is a key for a constant beam operation. For reduction of the peak current density, a non-linear beam optics using octupole magnets has been developed. In order to achieve completely flat distribution, higher order magnets than the octupole are required. It was found that a considerable flat distribution can be obtained by only using octupole magnets with reduction of the magnetic field. By using the present beam expander system, the peak current density can be reduced as much as 40%, which mitigates 90% of the pitting damage at the target. (author)

  7. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    Science.gov (United States)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen; Wang, Mu

    2016-06-01

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000-1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  8. Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array

    Science.gov (United States)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  9. Nondestructive testing of electron beam sterilization by means of an optically active marker material

    Science.gov (United States)

    Härtling, Thomas; Reitzig, Manuela; Mayer, Anton; Wetzel, Christiane; Röder, Olaf; Schreiber, Jürgen; Opitz, Jörg

    2012-02-01

    Secure proof of sterilization processes on packaging materials is an important issue in many economic sectors. In this context, electron beam sterilization is a highly effective low temperature technique. However, verifying the application of a sufficient electron dose is still difficult - especially on products with complex geometry. Here we report on an optical, hence fast and contactless approach which gives reliable evidence of a successful e-beam treatment. The technique is based on placing a suitable marker material (rare-earth based particles) inside or as a coating on the packaging material. By electron irradiation these particles change their optical properties and thus indicate the successful application of the electron beam.

  10. Bessel beams in tunable acoustic gradient index lenses and optical trap assisted nanolithography

    Science.gov (United States)

    McLeod, Euan

    2009-12-01

    Bessel beams are laser beams whose shape gives them nondiffracting and self-healing properties. They find use in applications requiring a narrow laser beam with a high depth of field. The first part of this thesis presents the study of a new adaptive optical element capable of generating rapidly tunable Bessel beams: the tunable acoustic gradient index (TAG) lens. This device uses piezoelectrically-generated acoustic waves to modulate a fluid's density and refractive index, leading to electrically controllable lensing behavior. Both modeling and experiment are used to explain the observed multiscale Bessel beams. Because the TAG lens operates at frequencies of hundreds of kilohertz, the effective Bessel beam cone angle continuously varies at timescales on the order of microseconds or smaller-orders of magnitude faster than other existing technologies. In addition, the TAG lens may be driven with a Fourier superposition of multiple frequencies, which could enable the generation of arbitrary patterns. The second part of this thesis presents the application of Bessel beams in a new probe-based direct-write optical nanolithography method called optical trap assisted nanolithography (OTAN). When compared to alternative techniques, OTAN makes probe placement and parallelization easier. The method uses Bessel beam optical tweezers to trap dielectric microspheres in close proximity to a surface. These microspheres are then illuminated with pulses from a second laser beam, whose fluence is enhanced directly below the microsphere by focusing and near-field effects to a level great enough to modify the substrate. This technique is used to produce 100 nm features, which are less than lambda/3, and whose sizes agree well with finite-difference time-domain models of the experiment. A demonstration is given of how the technique can be parallelized by trapping multiple microspheres with multiple beams and exposing all spheres in unison with a single pulsed beam. Finally, modeling

  11. Quantifying the influence of Bessel beams on image quality in optical coherence tomography.

    Science.gov (United States)

    Curatolo, Andrea; Munro, Peter R T; Lorenser, Dirk; Sreekumar, Parvathy; Singe, C Christian; Kennedy, Brendan F; Sampson, David D

    2016-01-01

    Light scattered by turbid tissue is known to degrade optical coherence tomography (OCT) image contrast progressively with depth. Bessel beams have been proposed as an alternative to Gaussian beams to image deeper into turbid tissue. However, studies of turbid tissue comparing the image quality for different beam types are lacking. We present such a study, using numerically simulated beams and experimental OCT images formed by Bessel or Gaussian beams illuminating phantoms with optical properties spanning a range typical of soft tissue. We demonstrate that, for a given scattering parameter, the higher the scattering anisotropy the lower the OCT contrast, regardless of the beam type. When focusing both beams at the same depth in the sample, we show that, at focus and for equal input power and resolution, imaging with the Gaussian beam suffers less reduction of contrast. This suggests that, whilst Bessel beams offer extended depth of field in a single depth scan, for low numerical aperture (NA 0.95), superior contrast (by up to ~40%) may be obtained over an extended depth range by a Gaussian beam combined with dynamic focusing. PMID:27009371

  12. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  13. Development of CCD-based optical computed tomography and comparison with single-beam optical CT scanner

    International Nuclear Information System (INIS)

    This study reports on the development of CCD-based optical computed tomography (CT) CT-s2. A commercially available 10× fast optical computed tomography scanner (OCTOPUSTM-10X, MGS Research, Inc., Madison, CT, USA) was used for comparison. NIPAM polymer gel dosimeter was used to validate the performance of CT-s2. The gamma pass rate can reach 96.00% when using a 3% dose difference and 3 mm dose-to-agreement criteria. The results of CT-s2 are as good as those of the single-beam optical-CT scanner, but the scanning time of CT-s2 is only one-tenth of that of the single-beam optical-CT scanner

  14. Diffractive optics fabricated by direct write methods with an electron beam

    Science.gov (United States)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  15. Ring beam shaping optics fabricated with ultra-precision cutting for YAG laser processing

    Science.gov (United States)

    Kuwano, Ryoichi; Koga, Toshihiko; Tokunaga, Tsuyoshi; Wakayama, Toshitaka; Otani, Yukitoshi; Fujii, Nobuyuki

    2012-03-01

    In this study, a method for generating ring intensity distribution at a refraction-type lens with an aspheric element was proposed, and the beam shaping optical element was finished using only ultra-precision cutting. The shape of the optical element and its irradiance pattern were determined from numerical calculation based on its geometrical and physical optics. An ultra-precision lathe was employed to fabricate beam shaping optical elements, and acrylic resin was used as the material. The transmittance of an optical element (a rotationally symmetrical body) with an aspheric surface fabricated using a single-crystal diamond tool was over 98%, and its surface roughness was 9.6 nm Ra. The method enabled the formation of a circular melting zone on a piece of stainless steel with a thickness of 300 μm through pulse YAG laser ( λ 1:06 μm) processing such that the average radius was 610 μm and the width was 100-200 μm. Circular processing using a ring beam shaping optical element can be realized by single-pulse beam irradiation without beam scanning.

  16. Negative optical spin torque wrench of a nondiffracting non-paraxial fractional Bessel vortex beam

    CERN Document Server

    Mitri, F G

    2016-01-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge and the beam's half-cone angle. When the beam order is zero, the axial spin torque component vanishes. However, when the beam order becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable to induce a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, the design of optically-engineered metamateri...

  17. The Dirac equation approach to spin-1/2 particle beam optics

    OpenAIRE

    Jagannathan, R.

    1998-01-01

    The traditional approach to accelerator optics, based mainly on classical mechanics, is working excellently from the practical point of view. However, from the point of view of curiosity, as well as with a view to explore quantitatively the consequences of possible small quantum corrections to the classical theory, a quantum mechanical formalism of accelerator optics for the Dirac particle is being developed recently. Here, the essential features of such a quantum beam optical formalism for a...

  18. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source

    OpenAIRE

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape wi...

  19. Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale

    OpenAIRE

    Žukauskas, Albertas; Malinauskas, Mangirdas; Brasselet, Etienne

    2013-01-01

    International audience We report on the fabrication and characterization of micro-optical elements with typical size of 100 μm, which enable the production of pseudo-nondiffracting optical vortex beams of arbitrary order. This is made possible from the monolithic integration of spiral phase plates and axicons into helical axicons by direct laser writing using femtosecond laser nanopolymerization. The optical performances of the fabricated three-dimensional singular microstructures are expe...

  20. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  1. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    OpenAIRE

    Rathod, KD; Singh, PK; Natarajan, Vasant

    2014-01-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using...

  2. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  3. Beam divergence changing mechanism for short-range inter-unmanned aerial vehicle optical communications.

    Science.gov (United States)

    Heng, Kiang Huat; Zhong, Wen-De; Cheng, Tee Hiang; Liu, Ning; He, Yingjie

    2009-03-10

    The problems associated with using a single fixed beam divergence for short-range inter-unmanned aerial vehicle free-space optical communications are discussed. To overcome the problems, a beam divergence changing mechanism is proposed. Four different methods are then proposed to implement the beam divergence changing mechanism. The performance of these methods is evaluated in terms of transmission distance under adverse weather conditions. The results show that the performance is greatly improved when the beam divergence changing mechanism is used. PMID:19277090

  4. Charge Stripper Effects on Beam Optics in 180-degree Bending Section of RISP Linac

    CERN Document Server

    Jang, Ji-Ho; Song, Jeong Seog

    2016-01-01

    The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam qualities by scattering when the heavy ions go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for uranium beam case in order to satisfy the beam power requirement at an IF (Inflight Fragmentation) target. This work focuses on the beam optics affected by the charge stripper in the 180-dgree bending section.

  5. Dynamically reconfigurable multiple beam illumination based on optical correlation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Dam, Jeppe Seidelin; Perch-Nielsen, Ivan R.

    2009-01-01

    We adapt concepts from optical correlation and optical pattern recognition to propose a method for generating reconfigurable multiple spots with high efficiency. The generated spots correspond to the correlation spikes in optical pattern recognition. In pattern recognition, optimizing the...... correlation filter is constrained by the target pattern to be detected. The reverse process of light projection grants the freedom to optimize both the target pattern and the correlation filters. Combined with contemporary spatial light modulation technologies, the proposed method can yield dynamically...

  6. Beam-based monitoring of the SLC linac optics with a diagnostic pulse

    International Nuclear Information System (INIS)

    The beam optics in a linear accelerator may be changed significantly by variations in the energy and energy spread profile along the linac. In particular, diurnal temperature swings in the SLC klystron gallery perturb the phase and amplitude of the accelerating RF fields. If such changes are not correctly characterized, the resulting errors will cause phase advance differences in the beam optics. In addition RF phase errors also affect the amplitude growth of betatron oscillations. The authors present an automated, simple procedure to monitor the beam optics in the SLC linac routinely and non-invasively. The measured phase advance and oscillation amplitude is shown as a function of time and is compared to the nominal optics

  7. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    Science.gov (United States)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  8. Calculation of Angular Deflection Limits of a Mobile Free-Space Optical Link Beam

    Directory of Open Access Journals (Sweden)

    J. Nemecek

    2014-04-01

    Full Text Available The paper describes the effect of optical beam angular deflection on the power received by the receiver of a mobile free-space optical (FSO link. Permissible fluctuations in the power received were studied on a steady model of the FSO link. It was assumed that these fluctuations were caused by oscillations of the optical beam across the receiver aperture. The formula for beam angular deflection limit was derived for two different types of optical intensity profile. The task was solved for two different types of atmosphere. The first type of atmosphere was considered a homogeneous and lossless environment. In the second type, atmospheric radiation attenuation was included in the calculations. Also, this article includes graphs of dependencies of the angular deflection limits upon the distance between the link stations.

  9. Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

    International Nuclear Information System (INIS)

    A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

  10. Beam optics and dynamics of the Saclay heavy ion booster

    International Nuclear Information System (INIS)

    The purpose of this paper is to give to users: experimental physicists, engineers and technicians involved in the machine operation a good understanding of the beam properties of the helical cavities used in the Saclay superconducting heavy ion linac

  11. Beam-based optical tuning of the final focus test beam

    International Nuclear Information System (INIS)

    In order to reduce the SLAC 46.6 GeV beam to submicron sizes, the Final Focus Test Beam (FFTB) must meet tight tolerances on many aberrations. These aberrations include: mismatch and coupling of the incoming beam; dispersion; chromaticity; lattice errors in the chromatic correction sections; lattice coupling; and residual sextupole content in the quadrupoles. In order to address these aberrations, the authors have developed a procedure which combines trajectory analysis, use of intermediate wire scanners, and a pair of novel beam size monitors at the IP. This procedure allows the FFTB IP spot to be reduced to sizes under 100 nanometers

  12. Optical Beam Timing Monitor Experiments at the Advanced Light Source

    OpenAIRE

    Byrd, John; De Santis, Stefano; Wilcox, Rusell; Yan, Yin

    2008-01-01

    We present the initial results of an experimental study of a beam timing monitor based on an optoelectronic technique. This technique uses the electrical signal from a beam position monitor to modulate the amplitude of a train of laser pulses, converting timing jitter into an amplitude jitter. This modulation is then measured with a photodetector and sampled by a fast ADC. This approach has already demonstrated sub-100 fs resolution and promises even better results. Additionally, we are ...

  13. The design of equipment for optical power measurement in FSO link beam cross-section

    Science.gov (United States)

    Latal, Jan; David, Tomas; Wilfert, Otakar; Kolka, Zdenek; Koudelka, Petr; Hanacek, Frantisek; Vitasek, Jan; Siska, Petr; Skapa, Jan; Vasinek, Vladimir

    2012-06-01

    The free space optical links have found their major application in today's technological society. The demand for quality broadband is a must for all types of end users in these times. Because of the large jamming from wireless radio networks in non-licensed ISM bands, the free space optical links provide bridging of some densely populated urban areas. Their advantage is the high transmission rate for relatively long distances. However, the disadvantage is the dependence of free space optical links on atmospheric influences. Aired collimated optical beam passes through the atmospheric transmission environment and by its influence cause the deformation of the optical beam. Author's team decided to construct a special measuring device for measurement of optical power in FSO link beam cross-section. The equipment is mobile and can be rearranged and adjust according to the given location and placement of the FSO link at any time. The article describes the individual structural elements of the measuring equipment, its controlling and application for evaluation and adjustment of measuring steps. The graphs from optical power measurements in the beam cross-section of professional FSO links are presented at the end.

  14. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Dino; Oddershede, Lene B., E-mail: oddershede@nbi.dk [Niels Bohr Institute (NBI), University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Reihani, S. Nader S. [Department of Physics, Sharif University of Technology, 11369-9161 Tehran (Iran, Islamic Republic of)

    2014-05-15

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  15. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    Science.gov (United States)

    Ott, Dino; Reihani, S. Nader S.; Oddershede, Lene B.

    2014-05-01

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  16. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca [Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec G1V 0A6 (Canada); Goussard, Yves, E-mail: yves.goussard@polymtl.ca [Département de génie électrique/Institut de génie biomédical, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Département de physique, de génie physique et d’optique and Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie and Centre de recherche du CHU de Québec, Québec, Québec G1R 2J6 (Canada)

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  17. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    Science.gov (United States)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  18. Optics design of beam for proton therapy gantry based on Geant4

    International Nuclear Information System (INIS)

    Background: Rotating Gantry is widely used in proton therapy due to its small radiation damage toward the normal tissue around the tumor. Proton therapy gantry optics which plays an important role in rotating gantry is under design in Shanghai Advanced Proton Therapy Facility (APTRON). Purpose: To generate a circular beam profile at iso-center while the gantry rotates with different angles. Methods: Different gantry optics matching techniques are used to calculate the beam optics. These methods include the round-beam method (RBM) or not in the front of vacuum window, and use RBM at iso-center. The simulations of beam profile at iso-center after the beam passing through nozzle and body tissue are carried out with Geant4 software. Results: The beam profile at iso-center can be taken as similar among three cases, and there is slight improvement using RBM. Conclusions: The designed proton therapy gantry optics is intensive to the rotation angle and is applicable for the real application. (authors)

  19. Effect of secondary ions on the electron beam optics in the Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Prost, L.; Saewert, G.; /Fermilab

    2010-05-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1-0.5 A DC electron beam (as well as by a stochastic cooling system). The unique combination of the relativistic energy ({gamma} = 9.49), an Ampere-range DC beam, and a relatively weak focusing makes the cooling efficiency particularly sensitive to ion neutralization. A capability to clear ions was recently implemented by way of interrupting the electron beam for 1-30 {micro}s with a repetition rate of up to 40 Hz. The cooling properties of the electron beam were analyzed with drag rate measurements and showed that accumulated ions significantly affect the beam optics. For a beam current of 0.3 A, the longitudinal cooling rate was increased by factor of {approx}2 when ions were removed.

  20. Optical beam interactions with a periodic array of Fresnel zone plates

    International Nuclear Information System (INIS)

    The interactions of first-order elegant Laguerre–Gaussian beams (ELG) with a two-dimensional periodic array are analysed theoretically and numerically. The structure consists of a periodic composition of two-zone Fresnel plates engraved in a silver film. The beam field is composed of periodic sequences of beams of circular or polar polarization incidence upon the structure. The beam axes coincide with the symmetry axes of every fourth Fresnel zone plate placed periodically along two orthogonal coordinates of a horizontal plane of the structure. It is shown that the beam-structure interaction results in substantial cross-polarization coupling, higher-order mode excitation, strong focussing and the extraordinary transmission of the optical field. An interpretation of the results is given per an analogy to the beam-structure interactions observed at planar, homogeneous and isotropic dielectric interfaces and layers. (paper)

  1. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.;

    2011-01-01

    Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter...... deviating from using perfectly counter-propagating beams to use oblique beams can improve the axial stability of the traps and improve the axial trapping stiffness. These alternative geometries can be particularly useful for handling larger particles. These results hint at a rich potential for light shaping......-propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show that...

  2. Novel beam delivery system for microvia drilling using holographic and refractive optics

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest P.

    2003-07-01

    The research and development of the optical system described was due in part to the virtual stalemate of current microvia dirlling technology within the High Density Interconnect market. The desire by industry to acquire faster processes for drilling microvias led to our research in the utilization of hybrid optical systems, where standard refractive and computer generated diffractive optics could be meshed to create a system that would out perform the current technology in the marketplace. The outcome of this work is covered in the following paper and will, at the outset, briefly cover the targeted market segment for which the beam delivery system was developed, as well as its general capabilities. The paper will cover the basic architecture and technology behind the laser optical beam delivery system, as well as the unique components that make up the assembly. Each of the optical elements within the system will be briefly described, and the CGH elements will be briefly explained, including a description of the software used. The laser beam characteristics at several points along the beam delivery will be discussed, as well as the final image formed at the target plane where the microvia is drilled. Specific performance details will be shared with regards to component efficiency, i.e. diffraction efficiency losses, as well as total system performance throughout the beam line. The final section will cover materials processing, including the remarkable process rate increases and microvia hole quality achieved.

  3. An optical system design that converts a Gaussian to a flattop annular beam

    Science.gov (United States)

    Li, Chaochen; Wu, Tengfei; Wang, Yu

    2015-10-01

    Flattop annular beam has been predicted with good character over an increasing application, but the generating of flattop annular beam is rarely mentioned by academic article. In our paper, an optical refractive system, which is designed to achieve flattop annular beam, are proposed. The cone prism is commonly used to get an annular beam, however, the beam intensity distribution is non-uniform. In our design, an additional aspheric lens is placed in front of the cone prism along the optical axis. The lens parameters are theoretically analyzed and well optimized to homogenize the optical field. Furthermore, to lower the requirement of machining accuracy, a pair of aspheric lenses is also designed, which can be used independently to generate flattop annular beam. It combines the function of cone prism and aspheric lens, so as to replace them both. The performance of the implementations has been demonstrated in detail. Simulation result shows that the proposed design is effective and feasible. It is hope that our work would be helpful in related fields. Flattop annular beam, Aspheric lens, Cone prism

  4. Optical Pattern Fabrication in Amorphous Silicon Carbide with High-Energy Focused Ion Beams

    International Nuclear Information System (INIS)

    Topographic and optical patterns have been fabricated in a-SiC films with a focused high-energy (1 MeV) H+ and He+ ion beam and examined with near-field techniques. The patterns have been characterized with atomic force microscopy and scanning near-field optical microscopy to reveal local topography and optical absorption changes as a result of the focused high-energy ion beam induced modification. Apart of a considerable thickness change (thinning tendency), which has been observed in the ion-irradiated areas, the near-field measurements confirm increases of optical absorption in these areas. Although the size of the fabricated optical patterns is in the micron-scale, the present development of the technique allows in principle writing optical patterns up to the nanoscale (several tens of nanometers). The observed values of the optical contrast modulation are sufficient to justify the efficiency of the method for optical data recording using high-energy focused ion beams. (author)

  5. Isotopically selective optical deflection of a krypton atomic beam

    International Nuclear Information System (INIS)

    We deflected a well-collimated beam of krypton atoms in the metastable 1s5 state by radiation pressure from a single-frequency dye laser. To produce the radiation pressure, we resonantly excited the krypton atoms, using the 1s5--2p9 transition. The natural width of this transition is much smaller than its isotope shift, which allowed us to deflect one isotope at a time. This created a new isotopically enriched atomic beam of Kr(1s5). We achieved a maximum enrichment factor of 1.2 x 104 at a deflection angle of 19 mrad. This enrichment is limited mainly by scattering of the parent atomic beam by residual gas. This degree of enrichment may make it possible to perform sensitive measurements of the concentrations of rare krypton isotopes in environmental samples

  6. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  7. Single beam optical conveyor belt for chiral particles

    CERN Document Server

    Fernandes, David E

    2016-01-01

    We propose a novel paradigm to selectively manipulate and transport small engineered chiral particles and discriminate different enantiomers using unstructured chiral light. It is theoretically shown that the response of a chiral metamaterial particle may be tailored to enable an optical conveyor belt operation with no optical traps, such that for a fixed incident light helicity and independent of the nanoparticle location, it is either steadily pushed towards the direction of the photon flow or steadily pulled against the photon flow. Our findings create new opportunities for unconventional optical manipulations of tailored nanoparticles and may have applications in sorting racemic mixtures of artificial chiral molecules and in particle delivery.

  8. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    F Osswald; R Rebmeister

    2002-11-01

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and the anode/cathode voltage. The paper reports the results carried out by experimentation on a test facility and on the injector itself as well as the investigations performed with computer simulations.

  9. All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient ( d n / d T ) measurements

    Science.gov (United States)

    Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.

    2016-05-01

    This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.

  10. New directions for ion beam processing of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Budai, J.D.; Zhu, J.G.; Withrow, S.P. [Oak Ridge National Lab., TN (United States)

    1997-03-01

    Recent developments in the use of ion implantation to modify the properties of optical materials are summarized. The use of ion implantation to form nanocrystal and quantum dots is emphasized. (author)

  11. Optical manipulation of airborne particles using flexible dual-beam trap

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Šiler, Martin; Zemánek, Pavel

    Bellingham: SPIE, 2012 - (Dholakia, K.; Spalding, G.), 84582C:1-7 ISBN 978-0-8194-9175-6. [Optical Trapping and Optical Micromanipulation IX. San Diego (US), 12.08.2012-16.08.2012] R&D Projects: GA ČR GPP205/11/P294; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Optical tweezers * Dual-beam trap * Standing wave trap * Spatial light modulator * Airborne particles * Droplets Subject RIV: BH - Optics, Masers, Lasers

  12. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  13. Micromachining structured optical fibers using focused ion beam milling.

    Science.gov (United States)

    Martelli, Cicero; Olivero, Paolo; Canning, John; Groothoff, Nathaniel; Gibson, Brant; Huntington, Shane

    2007-06-01

    A focused ion beam is used to mill side holes in air-silica structured fibers. By way of example, side holes are introduced in two types of air-structured fiber, (1) a photonic crystal four-ring fiber and (2) a six-hole single-ring step-index structured fiber. PMID:17546193

  14. Chaotic dynamics of dilute thermal atom clouds on stationary optical Bessel beams

    International Nuclear Information System (INIS)

    We characterize the semiclassical dynamics of dilute thermal atom clouds located in three-dimensional optical lattices generated by stationary optical Bessel beams. The dynamics of the cold atoms is explored in the quasi-Hamiltonian regime that arises using laser beams with far-off resonance detuning. Although the transverse structure of Bessel beams exhibits a complex topological structure, it is found that the longitudinal motion along the main propagation axis of the beam is the detonator of a high sensitivity of the atoms' motion to the initial conditions. This effect would not be properly described by bidimensional models. We show that an experimental implementation can be highly simplified by an analysis of the behaviour of the dynamical system under scale transformations. Experimentally feasible signatures of the chaotic dynamics of the atom clouds are also identified. (paper)

  15. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  16. Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder

    Science.gov (United States)

    Baer, James

    2012-01-01

    A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.

  17. Optical trapping by Laguerre-Gaussian beams: Symmetries, stability and equilibria

    CERN Document Server

    Kiselev, Alexei D

    2016-01-01

    We use the T-matrix formalism in combination with the method of far-field matching to evaluate the optical force exerted by Laguerre-Gaussian (LG) light beams on a spherical (Mie) particle. For both non-vortex and optical vortex LG beams, the theoretical results are used to analyze the optical-force-induced dynamics of the scatterer near the trapping points represented by the equilibrium (zero-force) positions. The regimes of linearized dynamics are described in terms of the stiffness matrix spectrum and the damping constant of the ambient medium. For the purely azimuthal LG beams, the dynamics is found to be locally non-conservative and is characterized by the presence of conditionally stable equilibria (unstable zero-force points that can be stabilized by the ambient damping). The effects related to the Mie resonances that under certain conditions manifest themselves as the points changing the trapping properties of the particles are discussed.

  18. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-01

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems. PMID:27137046

  19. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  20. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Science.gov (United States)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  1. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  2. Using optical processing to find the beam profile of a laser pulse theory

    International Nuclear Information System (INIS)

    This paper reviews a particular form of optical processing, namely a form of cross-correlation, and demonstrates how the method measures certain beam profile features of a laser pulse. Beam profile is defined to mean a description of the electromagnetic field of a laser pulse in space and time. The author represents the laser pulse as a complete set of orthogonal modes and show that an appropriate spatial filter and a measurement system can provide information about the beam profile of the laser in terms of the individual eigenfunctions of this representation. He reviews at the TEMOO laser beam pulse with beam tilt, beam curvature, beam width, and beam shift to show that these effects produce higher order Hermite modes in the measurement system. The spatial filter modifies the electric field distribution in the focal plane such that at known spatial locations, the magnitude of the intensity is proportional to the pulse power or energy in particular Hermite modes. Since the size of these locations is infinitesimal (without getting errors from the electromagnetic fields from other modes), he demonstrates the effect and errors associated with using finite size detectors for measuring the magnitude of the intensity at these locations. The purpose of this paper is to demonstrate the concept of using optical processing to measure laser beam profile. Hermite modes are used because they are similar to many actual laser beam profiles and because they can be simply expressed in analytical form which is convenient for a theoretical presentation. In practice it is probably desirable to choose a set of modes for a basis which more closely represents the actual characteristics of the laser beam. This choice of course determines the properties of the spatial filter

  3. OPTICAL SOLITONS: Excitation of two-dimensional soliton matrices by fundamental Gaussian beams

    Science.gov (United States)

    Borovkova, O. V.; Chuprakov, D. A.; Sukhorukov, Anatolii P.

    2005-01-01

    The excitation of two-dimensional periodic structures of fields of the first and second radiation harmonics due to the modulation instability of fundamental Gaussian beams is studied in a medium with a quadratic nonlinearity. The distances are found at which soliton matrix structures with a specified period are formed and destroyed. Optical gratings formed due to nonlinear aberration of broad Gaussian beams are considered.

  4. Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments

    Science.gov (United States)

    Bivolaru, Daniel; Herring, G. C.

    2007-01-01

    An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.

  5. Conditioning optics for astigmatic Gaussian beams at 140 GHz, 0.5 MW

    International Nuclear Information System (INIS)

    A quasi-optical system has been designed to couple the power coming from a gyrotron with astigmatic gaussian beam output, into an oversized corrugated waveguide (HE11 mode). The fraction of the power injected in the transmission line can be controlled by means of a wire grid beam splitter. Polarization control is provided by two rotating corrugated mirrors of electrical depth λ/4 and λ/8 respectively

  6. Optical Transition Radiation Measurement of Electron Beam for Beijing Free Electron Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiang; XIE Jia-Lin; LI Yong-Gui; ZHUANG Jie-Jia

    2001-01-01

    We used transition radiation techniques instead of the original phosphor targets to improve the electronic beam diagnostic system at Beijing Free Electron Laser. The beam profile, size (3.3 × 2.4 mm), position and divergence angle (σrms = 2.5 mrad) in transverse have been obtained from optical transition radiation. We also present the experimental set-up and some preliminary results.

  7. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Veres, M.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    2014-01-01

    Roč. 331, JUL (2014), s. 157-162. ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * focussed ion beam * Er-doped tungsten-tellurite glass * Bismuth germanate * Micro Raman spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  8. Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum

    OpenAIRE

    Brasselet, Etienne; Malinauskas, Mangirdas; Žukauskas, Albertas; Juodkazis, Saulius

    2010-01-01

    International audience Direct femtosecond laser photopolymerization is used to fabricate high resolution microscopic spiral phase plates. The total phase change all around their center is prepared to be a integer multiple of 2(pi) for the operating wavelength in the visible domain. The optical performances of the spiral plates are measured and we propose a simple single beam interferometric technique to characterize the phase singularity of the generated vortex beams. The experimental resu...

  9. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  10. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    Science.gov (United States)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  11. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    International Nuclear Information System (INIS)

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 μm in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 1010 beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10-3 photons per incident electron 5 x 10+7 optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor

  12. Kurtosis parameters of super Lorentz-Gauss beams through a paraxial and real ABCD optical system

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2011-01-01

    Based on the propagation equation of higher-order intensity moments,analytical propagation expressions for the kurtosis parameters of a super Lorentz-Ganss (SLG) SLG01 beam through a paraxial and real ABCD optical system are derived.By replacing the parameters in the expressions of the kurtosis parameters of the SLG01 beam,the kurtosis parameters of the SLG10 and SLG11 beams through a paraxial and real ABCD optical system can be easily obtained.The kurtosis parameters of an SLGo1 beam through a paraxial and real ABCD optical system depend on two ratios.One is the ratio of the transfer matrix element B to the product of the transfer matrix element A and the difffraction-free range of the super-Lorentzian part.The other is the ratio of the width parameter of the super-Lorentzian part to the waist of the Gaussian part. As a numerical example,the properties of the kurtosis parameters of an SLG01 beam propagating in free space are illustrated.The influences of different parameters on the kurtosis parameters of an SLG01 beam are analysed in detail.

  13. Multifunctional diffractive optical elements for the generation of higher order Bessel-like-beams

    Science.gov (United States)

    Vijayakumar, A.; Bhattacharya, Shanti

    2015-01-01

    Higher Order Bessel Beams (HOBBs) have many useful applications in optical trapping experiments. The generation of HOBBs is achieved by illuminating an axicon by a Laguerre-Gaussian beam generated by a spiral phase plate. It can also be generated by a Holographic Optical Element (HOE) containing the functions of the Spiral Phase Plate (SPP) and an axicon. However the HOBB's large focal depth reduces the intensity at each plane. In this paper, we propose a multifunctional Diffractive Optical Element (DOE) containing the functions of a SPP, axicon and a Fresnel Zone Lens (FZL) to generate higher efficiency higher order Bessel-like-beams with a reduced focal depth. The functions of a SPP and a FZL were combined by shifting the location of zones of FZL in a spiral fashion. The resulting element is combined with an axicon by modulo-2π phase addition technique. The final composite element contains the functions of SPP, FZL and axicon. The elements were designed with different topological charges and fabricated using electron beam direct writing. The elements were tested and the generation of a higher order Bessel-like-beams is confirmed. Besides, the elements also generated high quality donut beams at two planes equidistant from the focal plane of the FZL.

  14. A New Pumping-Probing Scheme for the Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    陈景标; 朱程锦; 王凤芝; 杨东海

    2001-01-01

    A new pumping-probing scheme for the optically pumped cesium beam frequency standard has been experimentally tested in our laboratory. The stability of the optically pumped cesium beam frequency standard was measured by comparing its 10 MHz output with an HP5071A commercial cesium atomic clock. The result shows that the frequency stability for the 1 s and 30000s sample times are 1.2 × 10-11 and 3.7 × 10-13, respectively. It was proved that the new pumping scheme works well.

  15. Regular oscillations and random motion of glass microspheres levitated by a single optical beam in air.

    Science.gov (United States)

    Moore, Jeremy; Martin, Leopoldo L; Maayani, Shai; Kim, Kyu Hyun; Chandrahalim, Hengky; Eichenfield, Matt; Martin, Inocencio R; Carmon, Tal

    2016-02-01

    We experimentally reporton optical binding of many glass particles in air that levitate in a single optical beam. A diversity of particle sizes and shapes interact at long range in a single Gaussian beam. Our system dynamics span from oscillatory to random and dimensionality ranges from 1 to 3D. The low loss for the center of mass motion of the beads could allow this system to serve as a standard many body testbed, similar to what is done today with atoms, but at the mesoscopic scale. PMID:26906853

  16. Singular optical lattice generation using light beams with orbital angular momentum.

    Science.gov (United States)

    Soares, Willamys C; Moura, André L; Canabarro, Askery A; de Lima, Emerson; Hickmann, Jandir M

    2015-11-15

    In this Letter we numerically and experimentally demonstrated that a lattice with an optical vortex distributed over the entire lattice can be generated in the Fourier space using three higher-order Laguerre-Gauss beams placed at the vertices of an equilateral triangle in real space. In this scheme the optical vortice's lattice presents a topological defect in its central region. Probing the net topological charge of the whole lattice, we found that it corresponds to the topological charge associated with the orbital angular momentum of each beam in real space. PMID:26565816

  17. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    CERN Document Server

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A

    2015-01-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  18. One-dimensional modulational instability of broad optical beams in biased centrosymmetric photorefractive crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Kaiyun, E-mail: zhankaiyun@yahoo.com.c [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)] [College of Physics Science and Technology, China University of Petroleum, Dongying 257061 (China); Hou Chunfeng [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)

    2009-12-28

    We study the one-dimensional modulational instability of broad optical beams in biased centrosymmetric photorefractive crystals under steady-state conditions. The one-dimensional modulational instability growth rates are obtained by globally and locally treating the space-charge field, which depend on the external bias field and the ratio of the intensity of optical beam to that of the dark irradiance. Our analysis indicates that the modulational instability growth rate in local effects can be determined from that in nonlocal effects.

  19. One-dimensional modulational instability of broad optical beams in biased centrosymmetric photorefractive crystals

    International Nuclear Information System (INIS)

    We study the one-dimensional modulational instability of broad optical beams in biased centrosymmetric photorefractive crystals under steady-state conditions. The one-dimensional modulational instability growth rates are obtained by globally and locally treating the space-charge field, which depend on the external bias field and the ratio of the intensity of optical beam to that of the dark irradiance. Our analysis indicates that the modulational instability growth rate in local effects can be determined from that in nonlocal effects.

  20. Optical Beam Timing Monitor Experiments at the Advanced Light Source

    International Nuclear Information System (INIS)

    We present the initial results of an experimental study of a beam timing monitor based on an optoelectronic technique. This technique uses the electrical signal from a beam position monitor to modulate the amplitude of a train of laser pulses, converting timing jitter into an amplitude jitter. This modulation is then measured with a photodetector and sampled by a fast ADC. This approach has already demonstrated sub-100fs resolution and promises even better results. Additionally, we are planning to use the technique as a way to extract the maximum possible bandwidth from a BPM, avoiding the dispersion typical of long RF cables. We show our initial results using signals from the Advanced Light Source storage ring

  1. Proposal for a magneto-optical beam splitter for atoms

    OpenAIRE

    Pfau, Tilman; Adams, Charles S.; Mlynek, Jürgen

    1993-01-01

    In this letter we present a theoretical study of the coherent diffraction of three-level atoms from a light field with a polarization gradient (counterpropagating crossed linearly polarized beams) and a static magnetic field applied parallel to the laser propagation direction. We show that for a particular ratio of the laser field intensity and the magnetic-field strength, there occurs a resonance between the Larmor precession of the magnetic alignment and the Rabi oscillations. On resonance ...

  2. Optical Spatial Filter to Suppress Beam Wander and Spatial Noise Induced by Atmospheric Turbulence in Free-Space Optical Communications

    Directory of Open Access Journals (Sweden)

    Ucuk Darusalam

    2015-01-01

    Full Text Available We propose an optical spatial filter (OSF method to suppress beam wander and spatial noise effects. Signal from random displacements of the focus spot around the optical axis within the constricted area is collected. This method advantageously suppresses fluctuations in signal intensity. The OSF consists of a pinhole and cone reflector. The pinhole produces Fresnel diffraction on the focus spot. The cone reflector provides directed reflectance onto the pinhole for random focus spot displacements due to beam wander. The calculations of signal power are based on fluctuations of signal intensity that are minimized by the circular aperture function of the pinhole and the cosine of the reflectance angle from the cone reflector. The method is applied to free-space optical communications at a wavelength of 1.55 μm with an atmospheric chamber to provide optical propagation media. Based on calculations, the beam wander angles that can be received by the OSF are from 14.0° to 28.0°. Moreover, based on experiment, the OSF with a pinhole diameter of 20.0 μm and cone reflector diameter of 1.5 mm produces signal power of −15.3 dBm. Both calculations and experiment show that the OSF enhances the received signal power in the presence of turbulence.

  3. Optical trapping with superfocused high-M2 laser diode beam

    OpenAIRE

    Sokolovskii, G. S.; Dudelev, V. V.; Melissinaki, V.; Losev, S. N.; Sobolev, K. K.; Deryagin, A. G.; Kuchinskii, V. I.; Farsari, M.; Sibbett, W.; Rafailov, E. U.

    2015-01-01

    Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M2 values in double-digits. We propose a method of 'interference' superfocusing of high-M2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writin...

  4. An optical system to transform the output beam of a quantum cascade laser to be uniform

    Science.gov (United States)

    Jacobson, Jordan M.

    Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).

  5. Electron Beam Spectrum Diagnostics with Optical Transition Radiation on the Beijing Free-Electron Laser

    Institute of Scientific and Technical Information of China (English)

    李泉凤; 吴频; 高建江; 吴刚

    2004-01-01

    A measurement system was developed to measure the electron beam spectrum of the Beijing free-electron laser based on the optical transition radiation (OTR). This paper describes the system, which consists of a 32-channel high resolution of 0.02% OTR detector, especially the spectrometer. The OTR angular-distribution pattern at the focal plane has two apexes, but the two apexes are smoothed out due to the electron beam energy distribution. The energy spectrum can be measured if the magnet energy resolution is higher than 0.7% to distinguish the electron beam energy distribution.

  6. Wave-optics description of self-healing mechanism in Bessel beams

    CERN Document Server

    Aiello, Andrea

    2014-01-01

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  7. Development of an optical beam system for deep sea data acquisition

    International Nuclear Information System (INIS)

    Remotely Operated Vehicles (ROV) are an ideal method for acquiring data from instruments located on the seabed. Electrical, acoustic or optical signals can be used to communicate with the data acquisition system. While optical signals have high capacity, the power of the optical beam decreases rapidly with distance in sea water; however, the ROV's ability to approach the instruments eliminates this problem. To investigate a feasibility of an optical beam system for underwater data acquisition, the author has developed and manufactured a prototype data acquisition instrument which the ROV can control. Based on the communication test results, he concludes that such a system is a practical means of short-range underwater data acquisition

  8. Experimental study of ion beam optics in a two-stage accelerator

    International Nuclear Information System (INIS)

    Hydrogen ion beam optics in a two-stage linear acceleration system is studied by examining the beam divergence as a function of the voltage and gap distribution, the beam perveance, the background gas pressure, the aspect ratio, and the total accelerating energy (60-110 keV). The system consists of four electrodes with single, cylindrical, straight-bore apertures acting as an extraction-accel--decel column. An optimum relation between the field ratio and the extraction perveance is obtained from measurements for the minimum beam divergence condition. The HWHM divergence angle is 0 under optimum conditions. Qualitative agreement between the measurements and a previous theoretical study is noticed. A potential application of the results to high energy neutral beam injectors for fusion research is also discussed

  9. Optics calculations and beam line design for the JANNuS facility in Orsay

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, N. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France)]. E-mail: chauvin@csnsm.in2p3.fr; Henry, S. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France); Flocard, H. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France); Fortuna, F. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France); Kaitasov, O. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France); Pariset, P. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France); Pellegrino, S. [INSTN, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Ruault, M.O. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3, Univ Paris-Sud, UMR8609, ORSAY-Campus F-91405 (France); Serruys, Y. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Trocelier, P. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France)

    2007-08-15

    JANNuS (Joint Accelerators for Nano-Science and Nuclear Simulation) will be a unique user facility in Europe dedicated to material modification by ion beam implantation and irradiation. The main originality of the project is that it will be possible to perform implantation and irradiation with simultaneous multiple ions beams and in situ characterization by transmission electron microscopy (TEM) observation or ion beam analysis. This facility will be composed of two experimental platforms located in two sites: the CEA-SRMP in Saclay and the CNRS-CSNSM in Orsay. This paper will focus on the design of two new transport beam lines for the Orsay site. One of the most challenging parts of the JANNuS project (Orsay site) is to design two new beam lines in order to inject, into a 200 kV TEM, two different ion beams (low and medium energy) coming from two existing pieces of equipment: a 2 MV Tandem accelerator and a 190 kV ion implanter. For these new beam lines, first order beam calculations have been done using transfer matrix formalism. A genetic algorithm has been written and adapted to perform the optimization of the beam line parameters. Then, using the SIMION code, field maps of the electrostatic elements (quadrupoles, spherical sectors) have been calculated and ion trajectories have been simulated. We studied specifically the optical aberrations induced by the electrostatic spherical deflectors. Finally, the results of the first order calculations and the field map simulations show a good agreement.

  10. An atomic beam fluorescence locked magneto-optical trap for krypton atoms

    International Nuclear Information System (INIS)

    We report here an atomic beam loaded magneto-optical trap (MOT) for metastable krypton atoms in which the fluorescence signal from the atomic beam is used to lock the cooling laser frequency. The fluorescence signal is generated by exciting the metastable krypton atomic beam using a probe laser beam (i.e. part of the cooling laser beam) intersecting the atomic beam at an angle. A spectral shift in the fluorescence signal can be achieved by varying the angle between the probe laser beam and the atomic beam to obtain the desired frequency detuning to lock the cooling laser frequency. This has been used to optimize the number of cold atoms in the MOT. The dependence of the peak height and slope of the atomic beam fluorescence (ABF) locking signal on the RF power in the discharge tube and pressure in the observation chamber of the setup has been studied to correlate its effect on the number of atoms in the MOT. (paper)

  11. Efficient generation of optical twisters using helico-conical beams

    DEFF Research Database (Denmark)

    Daria, Vincent Ricardo Mancao; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    Recent developments in the angular momentum of light present fresh challenges to long established concepts and pave the way for new and wide-ranging applications. The scope for structured light such as optical vortices, in particular, now extends from microfluidics to quantum information. This is...

  12. A novel method for sub-micrometer transverse electron beam size measurements using optical transition radiation

    OpenAIRE

    Aryshev, A.; Boogert, S. T.; Howell, D.; Karataev, P.; Terunuma, N.; Urakawa, J.

    2010-01-01

    Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the monitor is defined by so-called Point Spread Function (PSF), source distribution generated by a single electron and projected by an optical system onto a screen. In this paper we represent the development o...

  13. Cone beam optical computed tomography for gel dosimetry I: scanner characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver; Schreiner, L John, E-mail: tim.olding@krcc.on.c [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2010-05-21

    The ongoing development of easily accessible, fast optical readout tools promises to remove one of the barriers to acceptance of gel dosimetry as a viable tool in cancer clinics. This paper describes the characterization of a number of basic properties of the Vista(TM) cone beam CCD-based optical scanner, which can obtain high resolution reconstructed data in less than 20 min total imaging and reconstruction time. The suitability of a filtered back projection cone beam reconstruction algorithm is established for optically absorbing dosimeters using this scanner configuration. The system was then shown to be capable of imaging an optically absorbing media-filled 1 L polyethylene terephthalate (PETE) jar dosimeter to a reconstructed voxel resolution of 0.5 x 0.5 x 0.5 mm{sup 3}. At this resolution, more than 60% of the imaged volume in the dosimeter exhibits minimal spatial distortion, a measurement accuracy of 3-4% and the mean to standard deviation signal-to-noise ratio greater than 100 over an optical absorption range of 0.06-0.18 cm{sup -1}. An inter-day scan precision of 1% was demonstrated near the upper end of this range. Absorption measurements show evidence of stray light perturbation causing artifacts in the data, which if better managed would improve the accuracy of optical readout. Cone beam optical attenuation measurements of scattering dosimeters, on the other hand, are nonlinearly affected by angled scatter stray light. Scatter perturbation leads to significant cupping artifacts and other inaccuracies that greatly limit the readout of scattering polymer gel dosimeters with cone beam optical CT.

  14. Topological aberration of optical vortex beams and singularimetry of dielectric interfaces

    OpenAIRE

    Dennis, Mark R.; Götte, Jörg B.

    2012-01-01

    The splitting of a high-order optical vortex into a constellation of unit vortices, upon total reflection, is described and analyzed. The vortex constellation generalizes, in a local sense, the familiar longitudinal Goos-H\\"anchen and transverse Imbert-Federov shifts of the centroid of a reflected optical beam. The centroid shift is related to the centre of the constellation, whose geometry otherwise depends on higher-order terms in an expansion of the reflection matrix. We present an approxi...

  15. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    Science.gov (United States)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations. PMID:27386838

  16. Distributed strain and temperature measurement of a beam using fiber optic BOTDA sensor

    Science.gov (United States)

    Kwon, Il-Bum; Kim, Chi-Yeop; Choi, Man-Yong

    2003-08-01

    In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures are to be measured. So, we present the strain and temperature measurement distributed on a beam using fiber optic BOTDA(Brillouin Optical Time Domain Analysis) sensor. Fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located at the same position of the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber with compensating the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from fiber optic BOTDA sensor had good agreements with those values of the conventional strain gages.

  17. Gaussian beam diffraction in inhomogeneous media: solution in frame of complex geometrical optics

    Science.gov (United States)

    Kravtsov, Yu. A.; Berczynski, P.

    2005-09-01

    The method of paraxial complex geometrical optics is presented to describe Gaussian beam diffraction in arbitrary smoothly inhomogeneous media, including lens-like media. The method modifies and specifies the results by Babic' (1968), Kirpichnikova (1971), Cerveny, Popov, Psencik (1982), Cerveny (1983, 2001), Timofeev (1995) and Pereverzev (1996) as applied to the optical problems. The method of paraxial complex geometrical optics reduces the problem of Gaussian beam diffraction in inhomogeneous media to the solution of the system of the ordinary differential equations of first order, which can be readily calculated numerically by the Runge-Kutta method. Thereby the paraxial complex geometrical optics radically simplifies description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. By the way of example the known analytical solution for Gaussianbeam diffraction both in a free space and in lens-like medium (Bornatici, Maj 2003) are presented. It is pointed out, that the method of paraxial complex geometrical optics turns out to be equivalent to the solutions of the abridged parabolic wave equation.

  18. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  19. Electro-optic techniques in electron beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  20. Electro-optic techniques in electron beam diagnostics

    International Nuclear Information System (INIS)

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  1. Three-beam spectral-domain optical coherence tomography for retinal imaging

    Science.gov (United States)

    Suehira, Nobuhito; Ooto, Sotaro; Hangai, Masanori; Matsumoto, Kazuhiro; Tomatsu, Nobuhiro; Yuasa, Takashi; Yamada, Kazuro; Yoshimura, Nagahisa

    2012-10-01

    A three-beam spectral domain optical coherence tomography system (OCT) whose center wavelength is 840 nm was developed. The three beams focus on fundus 3.1 mm apart from each other and are detected by a single line sensor. The distance between the beams is fixed and the beams scan a total area of 10×10 mm2 while keeping this separation during three-dimensional (3-D) measurement. The line rate of the sensor is 70 kHz, therefore the total speed is equivalent to 210k A-scans per second in this system. A 1000(x)×500(z)×250(y) voxel volumetric 3D OCT data set can be acquired within 2 s. Images of a model eye, a healthy human eye and a diseased eye taken by this system are shown and evaluated. The image quality of one B-Scan is as good as an image from a single-beam OCT. Adjustment among the beams is solved by additional signal processing using a model eye. A multi-beam OCT has the potential not only for high speed imaging but also functional imaging although problems such as compensation among the beams and motion artifacts must be solved.

  2. Faraday effect and Bessel beams in a magneto-optic medium

    Energy Technology Data Exchange (ETDEWEB)

    Hacyan, S; Jauregui, R [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico DF 01000 (Mexico)

    2008-01-14

    We present a detailed theoretical study of Bessel beams propagating parallel to a magnetic field in a magneto-optic medium. Exact solutions of the Maxwell equations are presented from which the Faraday effect follows. The mechanical properties of light and some possible effects on the medium are also analysed.

  3. Faraday effect and Bessel beams in a magneto-optic medium

    International Nuclear Information System (INIS)

    We present a detailed theoretical study of Bessel beams propagating parallel to a magnetic field in a magneto-optic medium. Exact solutions of the Maxwell equations are presented from which the Faraday effect follows. The mechanical properties of light and some possible effects on the medium are also analysed

  4. Control system of magnetic optical element power supplies for some beam channels

    International Nuclear Information System (INIS)

    The control system of the magnetic optical element power supplies for some beam channels of the IHEP accelerator, based on the micro-computer ''Elektronika-60'' and its software are described. The remote control is supplied with three Multidrop Serial Busses (31 consumer per bus). The number of controlled elements can be increased by adding one or more serial busses

  5. Assessment of beam intensity profiles in an iodine laser using optical fibers

    Science.gov (United States)

    Raffo, C. A.; Rebollo, M. A.; Doti, R.

    1985-05-01

    A method has been developed for measuring the spatial profile of the output beam of an iodine laser at 1.315 μm, which requires only using two optical fibers, one for collecting a reference signal and the other for detecting the laser intensity at a given point of the wavefront. The precision is sufficient for laser engineering purposes.

  6. Preparation of a single-state atomic beam by optical pumping and radiative deflection

    International Nuclear Information System (INIS)

    A simple technique for producing a single-state sodium atomic beam is described. A single laser both optically pumps the F = 2 ground-state atoms into m/sub F/ = +2 and deflects the pumped atoms away from residual F = 1 atoms. Data demonstrating the technique are presented, and a practical design for an apparatus based on these principles is described

  7. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    International Nuclear Information System (INIS)

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation ±0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibility of the system was ±0.55% for dose fractions of ∼100 cGy. Energy dependence was within ±1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R2=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within ±0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.

  8. Velocity Distribution of Effective Atoms in a Small Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, the velocity distribution of effective atoms in a small optically pumped cesium beam frequency standard has been achieved from the Fourier transforms of the experimentally recorded Ramsey patterns. The result fits well with the theoretical calculation. The second order Doppler shift correction of the small cesium atomic clock is obtained from the velocity distribution of effective atoms.

  9. Theory on transmission of particle beam in a disalignmental optical system with compelling force

    International Nuclear Information System (INIS)

    The transport characteristics of particle beam congregation in the disalignmental phase space are given. The equations of phase point trajectory and the matrix of envelope are derived. The effects of disalignments of optical components on phase point trajectory and envelope are discussed

  10. Direct UV-Written Integrated Optical Beam Combiner for Stellar Interferometry

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael; Jocou, L.;

    2007-01-01

    In this paper, we report the fabrication of an optical-beam combiner for stellar interferometry by means of direct ultraviolet (UV) writing. The component is shown to have good performance (fringe contrast > 95%, total loss similar to 0.7, -40-dB crosstalk, broadband operation covering at least the...

  11. Collimation of a thulium atomic beam by two-dimensional optical molasses

    International Nuclear Information System (INIS)

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  12. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Science.gov (United States)

    Sukachev, D. D.; Kalganova, E. S.; Sokolov, A. V.; Savchenkov, A. V.; Vishnyakova, G. A.; Golovizin, A. A.; Akimov, A. V.; Kolachevsky, Nikolai N.; Sorokin, Vadim N.

    2013-04-01

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz.

  13. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  14. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    Science.gov (United States)

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm. PMID:23482053

  15. Experimental demonstration of optical transport, sorting and selfarrangement using a "tractor beam"

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Karásek, Vítězslav; Šiler, Martin; Chvátal, Lukáš; Čižmár, T.; Zemánek, Pavel

    Bellingham: SPIE, 2013, 881003:1-7. ISSN 0277-786X. [Optical Trapping and Optical Micromanipulation /10./. San Diego (US), 25.08.2013-29.08.2013] R&D Projects: GA TA ČR TE01020233; GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk LH12018; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser beam propagation * particles * photons * polarization Subject RIV: BH - Optics, Masers, Laser s

  16. The holographic optical micro-manipulation system based on counter-propagating beams

    Czech Academy of Sciences Publication Activity Database

    Čižmár, T.; Brzobohatý, Oto; Dholakia, K.; Zemánek, Pavel

    2011-01-01

    Roč. 8, č. 1 (2011), s. 50-56. ISSN 1612-2011 R&D Projects: GA ČR GA202/09/0348; GA MŠk(CZ) LC06007; GA MŠk OC08034; GA MŠk ED0017/01/01 Grant ostatní: EC(XE) COST MP0604 Institutional research plan: CEZ:AV0Z20650511 Keywords : holographic optical trapping * dual beam trap * spatial light modulator * optical rotator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 9.970, year: 2011

  17. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  18. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  19. Thermomagnetic recording and magneto-optic playback system having constant intensity laser beam control

    Science.gov (United States)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1973-01-01

    A system is developed for maintaining the intensity of a laser beam at a constant level in a thermomagnetic recording and magneto-optic playback system in which an isotropic film is heated along a continuous path by the laser beam for recording. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of a controlled magnetic field, a magneto-optic density is produced proportional to the amplitude of the controlled magnetic field. To play back the recorded signal, the intensity of the laser beam is reduced and a Faraday or Kerr effect analyzer is used, with a photodetector, as a transducer for producing an output signal.

  20. Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics

    International Nuclear Information System (INIS)

    A general design of metalenses for N-beam emissions is proposed based on transformation optics. A linear mapping function is adopted to achieve the homogeneous characterization of the transforming medium, which is therefore easy to be achieved compared with previous designs limited by inhomogeneity based on transformation optics. To verify the theoretical design, a four-beam antenna constructed with ultrathin, homogenous, and uniaxial anisotropic metalens is designed, fabricated, and measured. It is shown that the realized gain of the four-beam antenna is increased by 6 dB compared with the single dipole source, while working frequency and relative bandwidth are kept unchanged. The measured far-field pattern verifies theoretical design procedure

  1. Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kuang, E-mail: zhangkuang@hit.edu.cn [Department of Microwave Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Millimeter Waves, Nanjing 210096 (China); Ding, Xumin; Meng, Fanrong; Wu, Qun [Department of Microwave Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wo, Deliang [Shang Hai Electro-Mechanical Engineering Institute, Shanghai 201109 (China)

    2016-02-01

    A general design of metalenses for N-beam emissions is proposed based on transformation optics. A linear mapping function is adopted to achieve the homogeneous characterization of the transforming medium, which is therefore easy to be achieved compared with previous designs limited by inhomogeneity based on transformation optics. To verify the theoretical design, a four-beam antenna constructed with ultrathin, homogenous, and uniaxial anisotropic metalens is designed, fabricated, and measured. It is shown that the realized gain of the four-beam antenna is increased by 6 dB compared with the single dipole source, while working frequency and relative bandwidth are kept unchanged. The measured far-field pattern verifies theoretical design procedure.

  2. Influence of the Spot Size of the Probe Beam on the Detected THz Power Using Electro-Optic Detection Method

    Science.gov (United States)

    Metbulut, Mukaddes Meliz; Güllü, Hasan Hüseyin; Altan, Hakan

    We compared the detected THz power through electro-optic detection for different spot sizes of a probe beam on the ZnTe crystal. We find that there is a proportional relationship between the detected THz power and spot size of the probe beam by theoretically analyzing its effect on the intensity profile of the terahertz beam.

  3. High power coatings for line beam laser optics of up to 2-meter in length

    Science.gov (United States)

    Mende, Mathias; Kohlhaas, Jürgen; Ebert, Wolfgang

    2016-03-01

    Laser material processing plays an important role in the fabrication of the crucial parts for state-of-the-art smartphones and tablets. With industrial line beam systems a line shaped beam with a length above one meter and an average power of several thousand watts can be realized. To ensure excellent long axis beam homogeneity, demanding specifications regarding the substrate surface form tolerances and the coating uniformity have to be achieved for each line beam optic. In addition, a high laser damage threshold and a low defect density are required for the coatings. In order to meet these requirements, the MAXIMA ion beam sputtering machine was developed and built by LASEROPTIK. This contribution describes the functional principle of MAXIMA deposition machine, which adapts the ion beam sputtering technology with its highest coating quality to the field of large area deposition. Furthermore, recent developments regarding the process control by optical broadband monitoring are discussed. Finally experimental results on different thin film characteristics as for example the coating uniformity, the microstructure and the laser damage resistance of multilayers are presented.

  4. Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

    International Nuclear Information System (INIS)

    An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of about 0.5 m using the UV-sensitive channeltron and with slightly lower accuracy from the photomultiplier data due to the slower transitions in the red region of the spectrum. The Gaussian shape of the longitudinal distribution of ions inside the bunch was confirmed. With the information of the transverse beam size that can be measured simultaneously by a newly installed ionization profile monitor (IPM) at the ESR, an accurate determination of the ion density in the bunched beam will be allowed. -- Highlights: ► Optical methods to measure the bunch shape of ion beam at storage ring. ► High resolution of bunch length was obtained from the UV-sensitive channeltron. ► The Gaussian shape of longitudinal distribution of the ions in the bunch was confirmed

  5. Unified Approach towards the Dynamics of Optical and Electron Vortex Beams

    Science.gov (United States)

    Bandyopadhyay, Pratul; Basu, Banasri; Chowdhury, Debashree

    2016-04-01

    We have proposed a unified framework towards the dynamics of optical and electron vortex beams from the perspective of the geometric phase and the associated Hall effects. The unification is attributed to the notion that the spin degrees of freedom of a relativistic particle, either massive or massless, are associated with a vortex line. Based on a cylindrical coordinate formulation, which leads to a local vortex structure related to orbital angular momentum (OAM), it can be shown that, when electron vortex beams (EVBs) move in an external electric field, paraxial beams give rise to an OAM Hall effect, and nonparaxial beams with tilted vortices initiate a spin Hall effect in free space as well as in an external field. A similar analysis reveals that the paraxial optical vortex beams (OVBs) in an inhomogeneous medium induce an OAM Hall effect, whereas nonparaxial beams with tilted vortices drive the spin Hall effect. Moreover, both OVBs and EVBs with tilted vortices give rise to OAM states with an arbitrary fractional value.

  6. Fiber optic microprobes with rare-earth-based phosphor tips for proton beam characterization

    Science.gov (United States)

    Darafsheh, Arash; Kassaee, Alireza; Taleei, Reza; Dolney, Derek; Finlay, Jarod C.

    2016-03-01

    We investigated the feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution based on TbF3 phosphors and evaluated its performance for measurement of proton beams including profiles and range. The fiber optic probe, embedded in tissue-mimicking plastics, was irradiated with a clinical proton beam and the luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. By using a linear fitting algorithm we extracted the contribution of the ionoluminescence signal to obtain the percentage depth dose in phantoms and compared that with measurements performed with a standard ion chamber. We observed a quenching effect in the spread out Bragg peak region, manifested as an under-responding of the signal due to the high linear energy transfer of the beam. However, the beam profiles measurements were not affected by the quenching effect indicating that the fiber probes can be used for high-resolution measurements of proton beams profile.

  7. Two orthogonally polarized optical beams in a family of Kerr-law nonlinear shifted parabolic graded-index rod lenses

    Science.gov (United States)

    Li, Y.

    1996-08-01

    The field, the propagation and the imaging characteristics of two Gaussian optical beams with orthogonal polarization passing through a family of Kerr-law nonlinear shifted parabolic graded-index rod lenses are investigated. The coupled differential equations of the dimensionless beam-width parameters of two Gaussian optical beams are derived by using a variational approach and then solved. It is concluded that there are two regimes of propagation and that the power, the incident waist radius and the position of one beam have large effects on the field, the propagation and the imaging characteristics of the other beam.

  8. Beam optics and lattice design for particle accelerators

    CERN Document Server

    Holzer, Bernhard J

    2013-01-01

    The goal of this manuscript is to give an introduction into the design of the magnet lattice and as a consequence into the transverse dynamics of the particles in a synchrotron or storage ring. Starting from the basic principles of how to design the geometry of the ring we will briefly review the transverse motion of the particles and apply this knowledge to study the layout and optimization of the principal elements, namely the lattice cells. The detailed arrangement of the accelerator magnets within the cells is explained and will be used to calculate well defined and predictable beam parameters. The more specific treatment of low beta insertions is included as well as the concept of dispersion suppressors that are an indispensable part of modern collider rings.

  9. Beam-steering array optics with the SMS method

    OpenAIRE

    Wang, Lin; Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos

    2012-01-01

    In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory calculated in the design process. Curved tracking trajectory helps to broaden the incident angle?s range significantly. We have chosen an afocal-type structure which aim to direct the parallel rays of large incident angles to parallel output rays. The RMS of the divergence angle of the output rays remains below 1 degree for an incident angular range ...

  10. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods

  11. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    Science.gov (United States)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  12. Study on optical radiation of a relativistic electron beam for giving reasons for the impulse-dosimetry absolute method

    International Nuclear Information System (INIS)

    Spectral and amplitude-time characteristics of optical emission of a relativistic electron beam in air is stidied by the photoelectron method. Application of the optical method for absolute measurements of characteristics of the dose field of an impulse relativistic electron beam is considered. The distribution of the energy absorbed along the 1 MeV electron beam axis is experimentally investigated. The absolute method of impulse dosimetry of heightened accuracy is substantiated on the basis of the results obtained

  13. Ion beam induced luminescence of germano-silicate optical fiber preform

    International Nuclear Information System (INIS)

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives

  14. Electron beam optics design of variable energy beam transport line for a tunable infra-red free electron laser at RRCAT

    International Nuclear Information System (INIS)

    A variable energy electron beam transport line has been designed to transport a 15-25 MeV electron beam from the injector linac to the undulator of a tuneable infra-red free electron laser (IR-FEL) being built at the Raja Ramanna Centre for Advanced Technology ( RRCAT). Beam optics of this transport line, which uses a dog-leg type bend, has been designed to match the twiss parameters of the beam to that of the undulator as per FEL design requirements and keep the beam envelop within acceptable limits through out the transport line. In this paper, we discuss the evolution of design of electron beam optics from the linac to the undulator. (author)

  15. Development of an optical feedback based high accuracy beam transmissometer

    Science.gov (United States)

    Bartz, Robert

    1987-11-01

    The Phase I research has addressed the need for spectral light transmission data. Over the years the oceanographic community has repeatedly asked for a transmissometer operating at other wavelengths, specifically blue and green. The existing Sea Tech transmissometer is only available with a red LED, (light emitting diode) light source, mainly because LED's at shorter wavelengths have much lower power output. The primary objective of Phase I research was to determine if the transmissometer could be redesigned using LED's of other wavelengths. Constraints imposed on the new design was to achieve the same high performance inherent in the existing red transmissometer that has served the oceanic community so well for over 10 years. During the research performed in Phase I of this project a methodology and technique has been successfully developed for the stabilization of low power LED light sources to be used in the transmissometer. During the Phase I research, both red and blue LED's were evaluated in a optical bridge configuration allowing stabilization of the LED's using optical feedback. The LED's were installed in a collimator having a spatial filter 0.25 mm in diameter and a lens with a focal length of 60 mm resulting in a collimation angle of 4.16 milliradians in air. This same high degree of collimation is used in the existing Sea Tech red transmissometer.

  16. Beam optics and the pp2pp experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Pile P. H.; Guryn, W.; Lee, J.H.; Tepikian, S.; Yip, K.

    2012-05-20

    The newly installed forward detector system at the STAR experiment at RHIC measures small angle elastic and inelastic scattering of polarized protons on polarized protons. The detector system makes use of a pair of Roman Pot (RP) detectors, instrumented with silicon detectors, and located on either side of the STAR intersection region downstream of the DX and D0 dipoles and quadrupole triplets. The parallel to point optics is designed so that scattering angles are determined from position measurements at the RP's with small error. The RP setup allows measurement of position and angle for a subset of the scattered protons. With this position/angle correlations at the RP's can be compared with optics model predictions to get a measure of the accuracy of the quadrupole triplet current settings. The current in each quadrupole in the triplets is comprised of sums and differences of up to six power supplies and an overall 1% error in the triplet field strengths results in a 4% error in four-momentum transfer squared. This technique is also useful to check the polarity of the skew elements located in each quadrupole triplet. Results of the analysis will be presented.

  17. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.

    Science.gov (United States)

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567

  18. Evolution of the phase singularities in edge-diffracted optical-vortex beams

    CERN Document Server

    Bekshaev, Aleksandr; Chernykh, Aleksey; Khoroshun, Anna

    2016-01-01

    We study, both theoretically and by experiment, migration of the amplitude zeros within a fixed cross section of the edge-diffracted optical-vortex beam, when the screen edge performs permanent translation in the transverse plane from the beam periphery towards the axis. Generally, the amplitude zeros (optical-vortex cores) describe spiral-like trajectories. When the screen edge advances uniformly, the motion of the amplitude zeros is not smooth and sometimes shows anomalously high rates, which make an impression of instantaneous "jumps" from one position to another. We analyze the nature, conditions and mechanism of these jumps and show that they are associated with the "birth - annihilation" topological reactions involving the optical vortex dipoles.

  19. The optical band gap and surface free energy of polyethylene modified by electron beam irradiations

    Science.gov (United States)

    Abdul-Kader, A. M.

    2013-04-01

    In this study, investigations have been carried out on electron beam irradiated ultra high molecular weight polyethylene (UHMWPE). Polyethylene samples were irradiated with 1.5 MeV electron beam at doses ranging from 50 to 500 kGy. Modifications in optical properties and photoluminescence behavior of the polymer were evaluated by UV-vis and photoluminescence techniques. Changes of surface layer composition of UHMWPE produced by electron irradiations were studied by Rutherford back scattering spectrometry (RBS). The change in wettability and surface free energy induced by irradiations was also investigated. The optical absorption studies reveal that both optical band gap and Urbach's energy decreases with increasing electron dose. A correlation between energy gap and the number of carbon atoms in clusters is discussed. Photoluminescence spectra were reveal remarkable decrease in the integrated luminescence intensity with increasing irradiation dose. Contact angle measurements showed that wettability and surface free energy increases with increasing the irradiation dose.

  20. Transversal symmetry breaking and axial spreading modification for Gaussian optical beams

    CERN Document Server

    Araujo, Manoel; Lima, Marina

    2016-01-01

    For a long time it was believed there was no reason to include the geometrical phase in studying the propagation of gaussian optical beams through dielectric blocks. This can be justified by the fact that the first order term in the Taylor expansion of this phase is responsible for the lateral shift of the optical beam which is also predicted by ray optics. From this point of view, the geometrical phase can be seen as a purely auxiliary concept. In this paper, we show how the second order term in the Taylor expansion accounts for the symmetry breaking of the transversal spatial distribution and acts as an axial spreading modifier. These new effects clearly shows the importance of the geometrical phase in describing the correct behavior of light. To test our theoretical predictions, we briefly discuss a possible experimental implementation.

  1. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  2. Self-trapping Characteristics of Partially Coherent Optical Beam in Photonic Crystal Fiber under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; LI Ji-zhou

    2007-01-01

    Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied.The study shows that the composition of the non-coherent optical beam in the optical spectrum and the diffraction effect are decreased by Compton scattering,and the probability of forming the soliton is greatly increased.The vibration peak value in the propagation,compressed degree,changed cycle,and radius of the soliton are all smaller than those before the scattering,but its coherent radius is larger than that before the scattering.In this propagation,the self-focusing plays a key role.

  3. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    International Nuclear Information System (INIS)

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  4. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  5. Slant path average intensity of finite optical beam propagating in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang; Gaogang Wang

    2006-01-01

    The average intensity of finite laser beam propagating through turbulent atmosphere is calculated from the extended Huygens Fresnel principle. Formulas are presented for the slant path average intensity from an arbitrarily truncated Gaussian beam. The new expressions are derived from the modified von Karman spectrum for refractive-index fluctuations, quadratic approximation of the structure function,and Gaussian approximation for the product of Gaussian function and Bessel function. It is shown that the form of average intensity is not a Gaussian function but a polynomial of the power of the binomial function, Gaussian function, and the incomplete gamma function. The results also show that the mean irradiance of a finite optical beam propagating in slant path turbulent atmosphere not only depends on the effective beam radius at the transmitting aperture plane, propagation distance, and long-term lateral coherence length of spherical wave, but also on the radius of emit aperture.

  6. Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements

    Science.gov (United States)

    Vijayakumar, Anand; Bhattacharya, Shanti

    2015-11-01

    Binary composite diffractive optical elements with the functions of a spiral phase plate (SPP), an axicon, and a Fresnel zone lens (FZL) were designed with different topological charges. The element was designed in two steps. In the first step, the function of an SPP was combined with that of an axicon by spiraling the periods of the axicon with respect to the phase of the SPP followed by a modulo-2π phase addition with the phase of an FZL in the second step. The higher-order Bessel beams generated by the binary phase spiral axicon are superposed at the FZL's focal plane. Although location of the focal plane is wavelength dependent, the radius of the flower-like beams generated by the element was found to be independent of wavelength. The element was fabricated using electron-beam direct writing. The evaluation results matched well with the simulation results, generating flower-like beams at the focal plane of the FZL.

  7. Slant path average intensity of finite optical beam propagating in turbulent atmosphere

    Science.gov (United States)

    Zhang, Yixin; Wang, Gaogang

    2006-10-01

    The average intensity of finite laser beam propagating through turbulent atmosphere is calculated from the extended Huygens Fresnel principle. Formulas are presented for the slant path average intensity from an arbitrarily truncated Gaussian beam. The new expressions are derived from the modified von Karman spectrum for refractive-index fluctuations, quadratic approximation of the structure function, and Gaussian approximation for the product of Gaussian function and Bessel function. It is shown that the form of average intensity is not a Gaussian function but a polynomial of the power of the binomial function, Gaussian function, and the incomplete gamma function. The results also show that the mean irradiance of a finite optical beam propagating in slant path turbulent atmosphere not only depends on the effective beam radius at the transmitting aperture plane, propagation distance, and long-term lateral coherence length of spherical wave, but also on the radius of emit aperture.

  8. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam

    Science.gov (United States)

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light–matter interaction. PMID:22893122

  9. ESA's Toolboxes for Optical Earth Observation Data: BEAM, CHRIS-Box and the Glob-Toolbox

    Science.gov (United States)

    Fomferra, Norman; Peters, Marco; Quast, Ralf; Zuhlke, Marco; Danne, Olaf; Storm, Thomas; Brockmann, Carsten; Regner, Peter

    2010-12-01

    With the launch of ENVISAT in 2002 ESA started the development of the Basic AATSR and MERIS toolbox BEAM [1]. With the requirement to be an open platform for scientists and operational users as well as software developers, ESA laid the foundation for this sustainable and successful open source software development project. Today BEAM is a toolbox and development platform supporting a wide range of optical sensors for Earth Observation, including SMOS, CHRIS/Proba, Landsat/TM, AVNIR, PRISM, MODIS and AVHRR, and enables importing of generic formats such as Geo-TIFF and NetCDF. Widely known is the interactive Visualisation and Analysis Tool VISAT of the BEAM toolbox. On top of the various EO data sources, a wide range of tools and data processors have meanwhile been developed for BEAM.

  10. Beam optics optimization in the KEK digital accelerator LEBT considering the effect of remnant magnetic fields

    International Nuclear Information System (INIS)

    KEK Digital Accelerator is a compact induction synchrotron which sets little limitation on the charged ion beam's species and injection velocities. Extracted from an Electron Cyclotron Resonance Ion Source (ECRIS), the ion beam (A/Q=2, 4) is transported though Low Energy Beam Transport (LEBT) line before injected into the ring for acceleration. As the velocity is relatively small (β∼10-2), effects originating from remnant fields in different magnets along the LEBT line should be taken into account for orbit correction and optics optimization. With the help of online wire monitors, the following goals have been realized: (1) Beam orbit correction; (2) Twiss parameters and emittance at a chosen position are estimated; (3) beta function and injection focusing mismatch are studied with fitted results. These processes and results are presented and discussed in this paper. (author)

  11. Effects of truncated Gaussian beam on the performance of fiber optical synthetic aperture system

    Institute of Scientific and Technical Information of China (English)

    LIU Li; WANG Chang-wei; JIANG Yue-song

    2012-01-01

    In the fiber optical synthetic aperture (FOSA) system,the diffraction of the Gaussian beam limited by the aperture in exit pupil plane of fiber collimator is studied theoretically,and the axial and transverse irradiance distributions are obtained.The point spread function (PSF) and modulation transfer function (MTF) of the truncated Gaussian beam array are computed numerically with different truncation factors.The results show that the diffraction of the truncated Gaussian beam array agrees with the uniform-beam Rayleigh diffraction when the truncation factor is less than 0.5,but little power is transmitted.The PSF and MTF are degraded,but more power can be contained when the truncation factor is larger.The selection of the truncation factor is a trade-off between the loss of transmission and the qualities of PSF and MTF in practical application.

  12. Underwater optical wireless communications: depth-dependent beam refraction.

    Science.gov (United States)

    Johnson, Laura J; Green, Roger J; Leeson, Mark S

    2014-11-01

    Global refractive gradients in seawater cause pointing problems for optical wireless communications. A refractive index depth profile of the Pacific Ocean was calculated from measured salinity, temperature, and pressure, determining the end points of a refracted and nonrefracted 200 m communication link. Numerical ray tracing was used with a point source for angles between 10° and 80° and transmission wavelengths of 500-650 nm; the maximum end-point difference found was 0.23 m. A 500 nm laser with a 0.57° full-angle FOV was traced; the nonrefracted receiver location was outside the FOV for all links angled >15° to the vertical. However, most pointing issues underwater are unlikely to be significant with suitable FOV choice and natural scattering of the source. PMID:25402887

  13. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    Science.gov (United States)

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  14. Ultra-fast detection of relativistic charged particle beam bunches using optical techniques

    Science.gov (United States)

    Nikas, Dimitrios S.

    The use of light as a carrier of information has been the subject of discussion for many scientific papers. This approach has some unique features which distinguish it from conventional electronics. These are realized in applications like telecommunications where the use of optical fibers and Electro-Optic sampling is the industry standard. Electro-Optic sampling employs the "Pockels" or "Electro-Optic" effect. Pockels discovered that an electric field applied to some crystals changes the birefringence properties of the crystal, and hence the polarization of light that propagates through it. By placing the crystal between crossed polarizers, the transmitted light intensity changes as a function of the applied field. We made the first Electro-Optical (EO) detection of a relativistic charged particle beam, applying its Lorentz contracted electric field on an EO LiNbO 3 crystal. The resulted intensity modulation was initially reconstructed using a fast photodiode and a digital oscilloscope. The signal rise time was bandwidth limited (˜90ps) from the electronics used and a series of tests to establish our signal EO nature was performed. In particular, the amplitude of the EO modulation was found to increase linearly with the charge of the particle beam and decrease with the optical beam path distance from the charged particle beam. Also the signal polarity changed sign when the direction of the applied electric field was reversed. Next an optimized (for maximum modulation), zero bias, EO modulator was constructed for use with the limited dynamic range of the Streak Camera for the first non destructive, completely optical, detection of a charged particle beam. The observed signal may be an image of unexpected piezoelectrically generated sound waves that propagate at the X-axis of the LiNbO3 crystal. In such a case, sound waves generated in the surface as well as inside the crystal, change the index of refraction of the crystal through the photoelastic effect and as a

  15. VISION: Next Generation Beam Combiner for the Navy Precision Optical Interferometer

    Science.gov (United States)

    Garcia, Eugenio; van Belle, G.; Muterspaugh, M. W.; Swihart, S.

    2014-01-01

    The Visible Imaging System for Interferometric Observations at NPOI (VISION) is a versatile beam combiner for the Navy Precision Optical Interferometer (NPOI). VISION is a fiber-optics based beam combiner that can coherently combine light from up to 6 telescopes simultaneously using an image-plane combination scheme. VISION was inspired by the Michigan Infrared Combiner (MIRC) for the CHARA array - but VISION operates at optical wavelengths. With planned resolutions of VISION will be used to reconstruct multi-pixel time-varying images of evolved (luminosity class I-III) stars - in other words, movies of stellar surface variations. VISION’s visible light beam combination will be able to uniquely characterize surface features of stars less accessible at infrared wavelengths by interferometers such as CHARA. The “classic” beam combiner for NPOI employs a pupil-plane image combination which has visibility amplitude and closure phase precisions of 5-20% and 1-10 degrees respectively.VISION features a photometric camera for calibrations, spatial filtering from single mode fibers, and negligible read noise with a modern Andor Ixon CCD. These features will enable a factor of 10 improvement in visibility amplitude and closure phase precisions.

  16. Plasma based optical guiding of an amplitude-modulated electromagnetic beam

    Science.gov (United States)

    Singh, Mamta; Gupta, D. N.

    2015-06-01

    We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.

  17. The integrated optics beam combiner assembly of the GRAVITY/VLTI instrument

    Science.gov (United States)

    Jocou, L.; Perraut, K.; Nolot, A.; Moulin, T.; Magnard, Y.; Labeye, P.; Lapras, V.; Eisenhauer, F.; Perrin, G.; Amorim, A.; Brandner, W.; Straubmeier, C.

    2012-07-01

    Gravity aims at enhancing infrared imaging at VLTI to significantly improve our understanding of the physical processes related to gravitation and accretion within compact objects. With its fiber-fed integrated optics, infrared wavefront sensors, fringe tracker, beam stabilization and a novel metrology concept, GRAVITY will push the sensitivity and accuracy of astrometry and interferometric imaging far beyond what is offered today. Four telescopes will be combined in dual feed in the K band providing precision astrometry of order 10 micro-arcseconds, and imaging with 4- milliarcsecond resolution. The fringe tracker and the scientific instrument host an identical integrated optics beam combiner made by silica-on-silicon etching technology that is put inside a cryogenic vessel and cooled down to 200K to reduce thermal background and increase sensitivity. This paper gives the design of the integrated beam combiner and of its fibered array that allows feeding the combiner with stellar light. Lab measurement of spectral throughput and interferometric performance for beam combiners made by Flame Hydrolysis Deposition and by Plasma-Enhanced Chemical Vapor Deposition (PECVD) are given. The procedure to glue together the beam combiner and its fibered array is described as well as the tests to validate the performance and the ageing effects at low temperature. Finally the thermal analysis and the eigen-frequency study of the whole device are presented.

  18. A method for evaluating aberration in the crossover image in mask irradiation optics of electron beam

    Science.gov (United States)

    Sohda, Yasunari; Ohta, Hiroya; Saitou, Norio

    2002-02-01

    A method for evaluating aberration in the crossover image in a cell projection lithography system has been developed. In an electron-beam lithography system of projection-type such as a cell projection lithography system, the aberration in the crossover image causes the electron beam to pass off-axis in the electron optics. Optical simulation has quantitatively shown that the aberration in the crossover image causes an electron-beam blur and a positioning error on a writing sample. The evaluating method consists of four square apertures and a mark-detection function in a cell projection system. By measuring each position of the images of the four square apertures on the writing sample at difference focuses, the aberration can be calculated. The field curvature and the astigmatism in a cell projection system were evaluated by using this method. The field curvature agrees with the simulation. In addition, the measurement of the effect of beam alignment is also demonstrated. It is thus concluded that the method can effectively evaluate the aberration in the crossover image. This method is also useful for other projection-type lithographies of charged particles—like ion and electron beams.

  19. Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

    International Nuclear Information System (INIS)

    Proton beam micro-machining (PBM) is a direct write lithographic technique that utilizes a high energy (MeV) sub-micron focused proton beam to machine or modify a material, usually a polymer. The technique has been developed in recent years at the Research Centre for Nuclear Microscopy, National University of Singapore where structures with feature sizes of well below 1 μm have recently been demonstrated. The PBM technique has several desirable features that make it suitable for rapid prototyping of micro-optical components. Structures made using PBM have very smooth side walls, high aspect ratio, and a scale that can be easily matched to existing optical fiber technology (0.1-1000 μm). Furthermore, PBM can also be used to modify the optical properties of polymers, particularly if the end of range is used. In this paper we demonstrate the use of proton beam micro-machining and modification for manufacturing micro-optical components in positive and negative resist. The structures that are fabricated can be used for both rapid prototyping and for large scale replication

  20. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications. PMID:27607486

  1. Propagation of hermite-cosh-gaussian beams passing through ABCD optical system with an annular aperture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using the expansion of the aperture function into a finte sum of complex Gaussian functions, the corresponding analytical expressions of Hermite-cosh-Gaussian beams passing through annular apertured paraxially and symmetrically optical systems written in terms of ABCD matrix were derived, and they could reduce to the cases with squared aperture. In a similar way, the corresponding analytical expressions of cosh-Gaussian beams through annular apertured ABCD matrix were also given. The method could save more calculation time than that by using the diffraction integral formula directly.

  2. Experimental validation of a transformation optics based lens for beam steering

    Science.gov (United States)

    Yi, Jianjia; Burokur, Shah Nawaz; de Lustrac, André

    2015-10-01

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  3. Experimental validation of a transformation optics based lens for beam steering

    International Nuclear Information System (INIS)

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed

  4. Optimization of optical beam steering in nonlinear Kerr media by spatial phase modulation

    International Nuclear Information System (INIS)

    The optimum conditions for optical beam steering by spatial phase modulation in nonlinear Kerr media are obtained by use of the conservation laws of the nonlinear Schroedinger equation together with the moment method. The operating conditions under which the deflection angle is largest and the deflected beam carries the most energy in the form of a spatial soliton are determined. The analytical theory is applied to both planar waveguides and bulk Kerr media. The analytical predictions are compared with numerical simulations for the case of sinusoidal spatial phase modulation. Good agreement has been found between the analytical results and computer simulations

  5. Experimental validation of a transformation optics based lens for beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jianjia [IEF, CNRS, UMR 8622, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay (France); Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de [IEF, CNRS, UMR 8622, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay (France); Université Paris-Ouest, 92410 Ville d' Avray (France)

    2015-10-12

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  6. Propagation characteristics of a high-power broadband laser beam passing through a nonlinear optical medium with defects

    Institute of Scientific and Technical Information of China (English)

    Xueqiong; Chen; Xiaoyan; Li; Ziyang; Chen; Jixiong; Pu; Guowen; Zhang; Jianqiang; Zhu

    2013-01-01

    The intensity distributions of a high-power broadband laser beam passing through a nonlinear optical medium with defects and then propagating in free space are investigated based on the general nonlinear Schr¨odinger equation and the split-step Fourier numerical method. The influences of the bandwidth of the laser beam, the thickness of the medium,and the defects on the light intensity distribution are revealed. We find that the nonlinear optical effect can be suppressed and that the uniformity of the beam can be improved for a high-power broadband laser beam with appropriate wide bandwidth. It is also found that, under the same incident light intensity, a thicker medium will lead to a stronger self-focusing intensity, and that the influence of defects in the optical elements on the intensity is stronger for a narrowband beam than for a broadband beam.

  7. Design and optimization of a highly efficient optical multipass system for γ-ray beam production from electron laser beam Compton scattering

    Science.gov (United States)

    Dupraz, K.; Cassou, K.; Delerue, N.; Fichot, P.; Martens, A.; Stocchi, A.; Variola, A.; Zomer, F.; Courjaud, A.; Mottay, E.; Druon, F.; Gatti, G.; Ghigo, A.; Hovsepian, T.; Riou, J. Y.; Wang, F.; Mueller, A. C.; Palumbo, L.; Serafini, L.; Tomassini, P.

    2014-03-01

    A new kind of nonresonant optical recirculator, dedicated to the production of γ rays by means of Compton backscattering, is described. This novel instrument, inspired by optical multipass systems, has its design focused on high flux and very small spectral bandwidth of the γ-ray beam. It has been developed to fulfill the project specifications of the European Extreme Light Infrastructure "Nuclear Pillar," i.e., the Gamma Beam System. Our system allows a single high power laser pulse to recirculate 32 times synchronized on the radio frequency driving accelerating cavities for the electron beam. Namely, the polarization of the laser beam and crossing angle between laser and electrons are preserved all along the 32 passes. Moreover, optical aberrations are kept at a negligible level. The general tools developed for designing, optimizing, and aligning the system are described. A detailed simulation demonstrates the high efficiency of the device.

  8. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean.

    Science.gov (United States)

    Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing; Cheng, Qi; Zhang, Dan

    2016-06-10

    The analytical formulas for the orbital angular momentum (OAM) mode probability density, signal OAM mode detection probability, and spiral spectrum of partially coherent Laguerre-Gaussian (LG) beams with optical vortices propagation in weak horizontal oceanic turbulent channels were developed, based on the Rytov approximation theory. The effect of oceanic turbulence and beam source parameters on the propagation behavior of the optical vortices carried by partially coherent LG beams was investigated in detail. Our results indicated that optical turbulence in an ocean environment produced a much stronger effect on the optical vortex than that in an atmosphere environment; the effective range of the signal OAM mode of LG beams with a smaller ratio of the mode crosstalk was limited to only several tens of meters in turbulent ocean. The existence of oceanic turbulence evidently induced OAM mode crosstalk and spiral spectrum spread. The effects of oceanic turbulence on the OAM mode detection probability increased with the increase of radial and azimuthal mode orders, oceanic turbulent equivalent temperature structure parameter, and temperature-salinity balance parameter. The spatial partial coherence of the beam source would enhance the effect of turbulent aberrations on the signal OAM mode detection probability, and fully coherent vortex beams provided better performance than partially coherent ones. Increasing wavelength of the vortex beams would help improve the performance of this quantum optical communication system. These results might be of interest for the potential application of optical vortices in practical underwater quantum optical communication among divers, submarines, and sensors in the ocean environment. PMID:27409021

  9. Optical characteristics of e-beam sputtered ZnSe thin films

    International Nuclear Information System (INIS)

    Polycrystalline thin films of ZnSe have been prepared by e-beam sputtering of ZnSe granules (3-7 mm diameter) onto glass substrate in a vacuum of ∼ 10 sup -5 torr at 55 degree C. Interference fringes of optical transmission in the wavelength range 200 - 2000 nm are used to estimate the sample thickness of 2.7 μ m and the refractive index n(λ) at various wavelengths. The variation of n(λ) at short wavelength satisfies the Cauchy dispersion relation and the Wemple-de Dominico empirical relation was used to determine the oscillator strength and dispersion energy of optical transition. In the long wavelength limit where the absorption is negligible, the refractive index is constant at n=2.28. The optical band gap is 2.52 eV at 300 K estimated for a direct optical transition of electrons from valence band to the conduction band

  10. Optical modulation of electron beam using the opto-semiconductor device on the photocathode RF gun for the radiation therapy

    International Nuclear Information System (INIS)

    The radiation therapy of cancer is developing to un-uniform irradiation, for concentrating dose to a tumor and reducing dose to normal tissue. For the un-uniform irradiation, optical modulation of electron beam using the Digital Micro Mirror Device was studied on a photocathode RF gun. The optical modulation of electron beam and dynamic control succeeded by a digital micro mirror device. Fundamental data such as the spatial resolution and the contrast of the optical modulated electron beam was measured. It will be reported that the relations between the intensity distribution and the emittance. (author)

  11. Reproducibilty test of ferrous xylenol orange gel dose response with optical cone beam CT scanning

    Science.gov (United States)

    Jordan, K.; Battista, J.

    2004-01-01

    Our previous studies of ferrous xylenol orange gelatin gel have revealed a spatial dependence to the dose response of samples contained in 10 cm diameter cylinders. Dose response is defined as change in optical attenuation coefficient divided by the dose (units cm-1 Gy-1). This set of experiments was conducted to determine the reproducibility of our preparation, irradiation and full 3D optical cone beam CT scanning. The data provided an internal check of a larger storage time-dose response dependence study.

  12. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2015-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  13. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    Science.gov (United States)

    Pan, R.; Jamison, S. P.; Lefevre, T.; Gillespie, W. A.

    2016-06-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  14. Design of Super-resolution Filters with a Gaussian Beam in Optical Data Storage Systems

    International Nuclear Information System (INIS)

    Super-resolution filters based on a Gaussian beam are proposed to reduce the focusing spot in optical data storage systems. Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions. Their performances are analysed and compared with those based on plane wave in detail. The energy utilizations are presented. The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization

  15. An adaptive optics approach to the reduction of misalignments and beam jitters in gravitational wave interferometers

    International Nuclear Information System (INIS)

    We describe a study and the preliminary experimental results on the possibility of using adaptive optics systems for the reduction of geometrical fluctuations of input laser beams in long baseline interferometric detectors of gravitational waves. The experimental tests aimed to test the efficiency of Hermite-Gauss versus Shack-Hartmann wavefront reconstruction and feedback diagonalization. These preliminary results seem to indicate that the adaptive optics systems may be integrated in the near future as stabilization stages before a passive mode cleaner cavity, provided that the operational band of the mirror is increased together with the efficiency of the control system

  16. Three-dimensional arrays of submicron particles generated by a four-beam optical lattice.

    Science.gov (United States)

    Slama-Eliau, B N; Raithel, G

    2011-05-01

    Using an optical lattice formed by four laser beams, we obtain three-dimensional light-induced crystals of 490-nm-diameter polystyrene spheres in solution. The setup yields face-centered orthorhombic optical crystals of a packing density of about 40%. An alignment procedure is developed in which the crystals are first prepared near a sample wall, and then in the bulk of the sample. A series of tests is performed that demonstrate particle trapping in all three dimensions. For one case, the trapping force is measured, and good agreement with a simple theoretical model is found. Possible applications are discussed. PMID:21728533

  17. Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials

    CERN Document Server

    Sun, Lei; Wang, Wei; Gao, Jie

    2015-01-01

    Extremely anisotropic metal-dielectric multilayer metamaterials are designed to have the effective permittivity tensor of a transverse component (parallel to the interfaces of the multilayer) with zero real part and a longitudinal component (normal to the interfaces of the multilayer) with ultra-large imaginary part at the same wavelength, including the optical nonlocality analysis based on the transfer-matrix method. The diffraction-free deep-subwavelength optical beam propagation with near-zero phase variation in the designed multilayer stack due to the near-flat iso-frequency contour is demonstrated and analyzed, including the effects of the multilayer period and the material loss.

  18. Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials

    International Nuclear Information System (INIS)

    Extremely anisotropic metal-dielectric multilayer metamaterials are designed to have the effective permittivity tensor of a transverse component (parallel to the interfaces of the multilayer) with zero real part and a longitudinal component (normal to the interfaces of the multilayer) with ultra-large imaginary part at the same wavelength, including the optical nonlocality analysis based on the transfer-matrix method. The diffraction-free deep-subwavelength optical beam propagation with near-zero phase variation in the designed multilayer stack due to the near-flat iso-frequency contour is demonstrated and analyzed, including the effects of the multilayer period and the material loss. (paper)

  19. Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials

    Science.gov (United States)

    Sun, Lei; Yang, Xiaodong; Wang, Wei; Gao, Jie

    2015-03-01

    Extremely anisotropic metal-dielectric multilayer metamaterials are designed to have the effective permittivity tensor of a transverse component (parallel to the interfaces of the multilayer) with zero real part and a longitudinal component (normal to the interfaces of the multilayer) with ultra-large imaginary part at the same wavelength, including the optical nonlocality analysis based on the transfer-matrix method. The diffraction-free deep-subwavelength optical beam propagation with near-zero phase variation in the designed multilayer stack due to the near-flat iso-frequency contour is demonstrated and analyzed, including the effects of the multilayer period and the material loss.

  20. Modulation instability of quasi-plane-wave optical beams in biased photorefractive- photovoltaic crystals

    Institute of Scientific and Technical Information of China (English)

    Lu Ke-Qing; Zhao Wei; Yang Yan-Long; Zhu Xiang-Ping; Li Jin-Ping; Zhang Yan-Peng

    2004-01-01

    We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.

  1. Phased-array beam steering using optical true time delay technique

    Science.gov (United States)

    Yang, Dong-Hua; Lin, Wen-Piao

    2015-09-01

    An optical dispersion technique for phased-array beam steering is proposed and analyzed. Optical true time delay using a high-dispersion compensation fiber (HDCF) and a phased array antenna (PAA) can provide a continuous radio-frequency squint-free beam scanning. When the dispersion of the fabricated DCF-C band is as high as -1020±31 ps/nm/km, the laser wavelength can be tuned from 1549.95 to 1550.2 nm. The experimental results confirmed that the scanning angle of far field radiation patterns for proposed technique can be tuned to have a range 51° (from -22° to +29°) at frequency of 5.9, 12.7 and 17 GHz.

  2. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    CERN Document Server

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  3. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    International Nuclear Information System (INIS)

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens–Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly. (paper)

  4. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    Science.gov (United States)

    Tang, Bin; Jiang, Chun; Zhu, Haibin; Zhou, Xin; Wang, Shuai

    2014-12-01

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens-Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly.

  5. Measurements and elimination of Cherenkov light in fiber-optic scintillating detector for electron beam therapy dosimetry

    International Nuclear Information System (INIS)

    In this study, a miniature fiber-optic radiation detector has been developed using a water-equivalent organic scintillator for electron beam therapy dosimetry. Usually, two kinds of light signals such as fluorescent and Cherenkov lights are generated in a fiber-optic radiation detector when a high-energy electron beam is irradiated. The fluorescent light signal is produced in the scintillator and is transmitted through a plastic optical fiber to a remote light-measuring device such as a PMT or a photodiode. The Cherenkov light could be also produced in the plastic optical fiber itself and be detected by a light-measuring device. Therefore, it could cause problems or limit the accuracy of the detection of a fluorescent light signal that is proportional to dose. The objectives of this study are to measure, characterize and eliminate Cherenkov light generated in a plastic optical fiber used as a component of a fiber-optic radiation detector and to detect a real fluorescent light signal from the scintillator. In this study, the intensity of Cherenkov light is measured and characterized as a function of the incident angle of an electron beam from a LINAC, as a function of the electron beam energy, and as a function of electron beam size. Also, a subtraction method using a background optical fiber without a scintillator and an optical discrimination method using optical filters are investigated to remove Cherenkov light

  6. Effect of polarization on transport of particles in air by optical vortex beam

    International Nuclear Information System (INIS)

    Experiments on transport of spherical particles in air by optical vortex beam show that the speed of transport depends drastically on light polarization. There is a clear correlation between the speed of particle transport in a pipeline formed by cross-polarized vortices: a horizontally polarized beam moves particles faster than a vertically polarized one. To elucidate this effect we demonstrate, both in theory and experiments, that a radial shift of particles away from the vortex axis due to gravity results in polarization dependence of the laser intensity absorbed by the particle and thus determines the speed of transport. The results demonstrate an additional degree of freedom to control particle transport by varying the polarization of the driving vortex beams. (paper)

  7. Laser-electron beam interaction applied to optical amplifiers and oscillators

    Science.gov (United States)

    Pantell, R. H.; Piestrup, M. A.

    1976-01-01

    Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.

  8. Composite optical vortices in noncollinear Laguerre-Gaussian beams and their propagation in free space

    Institute of Scientific and Technical Information of China (English)

    Cheng Ke; Liu Pu-Sheng; Lü Bai-Da

    2008-01-01

    Taking two Laguerre-Gauasian beams with topological charge l=±1 as an example,this paper studies the composite optical vortices formed by two noncollinear Laguerre-Gaussian beams with different phases,amplitudes,waist widths,off-axis distances,and their propagation in flee space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β,amplitude ratio η,waist width ratio ξ,or off-axis distance ratio μ.The net topological charge lnet is not always equal to the sum lsum of charges of the two component beams.The motion,creation and annihilation of composite vortices take place in the free-space propagation,and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane.

  9. Electron-beam induced optical superresolution in integrated light-electron microscopy

    OpenAIRE

    Väkeväinen, Aaro

    2014-01-01

    We have developed an optical superresolution method based on electronbleaching of fluorophores in integrated light-electron microscopy. The main advantage of this novel superresolution method is that the non-fluorescent ultrastructure of the sample can be revealed by the simultaneously acquired SEM image. Furthermore, as the fluorescence superresolution image is based on an electron-beam-induced modification of the specimen, by "switching off" fluorescent probes, both the fluorescence and SEM...

  10. Confirmation and Readjustment of Bending Magnet Beam-Line Optics Using SHADOW

    Science.gov (United States)

    Matsubara, Takahiro; Kanda, Kazuhiro; Kato, Yuri; Hisao, Shintarou; Shoji, Yoshihiko

    2007-01-01

    Optical alignment of the NewSUBARU beam-line 6 (BL6) is discussed by comparing the observed SR profiles with the calculated results of ray-tracing using SHADOW. A new screen monitor was mounted downstream of the first mirror to observe the synchrotron radiation profile. The distorted profile downstream of the second mirror was attributed to the rotation of the first mirror along the vertical axis. The distortion was successfully improved by a re-adjustment according to the calculations.

  11. Confirmation and Readjustment of Bending Magnet Beam-Line Optics Using SHADOW

    International Nuclear Information System (INIS)

    Optical alignment of the NewSUBARU beam-line 6 (BL6) is discussed by comparing the observed SR profiles with the calculated results of ray-tracing using SHADOW. A new screen monitor was mounted downstream of the first mirror to observe the synchrotron radiation profile. The distorted profile downstream of the second mirror was attributed to the rotation of the first mirror along the vertical axis. The distortion was successfully improved by a re-adjustment according to the calculations

  12. Modulation instability of broad optical beams in nonlinear media with general nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Hongcheng Wang; Weilong She

    2006-01-01

    @@ The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized Schr(o)dinger equation with the nonlinear term of a general form. General expressions are derived for the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.The analysis generalizes the known results reported previously. A detailed discussion on the modulation instability in biased centrosymmetric photorefractive media is also given.

  13. Quantitative beam-deflection optical tomographic imaging of fluid flows and flames

    International Nuclear Information System (INIS)

    The authors previously described the application of beam-deflection optical tomography to density measurements in a supersonic jet. They showed that the technique can give very accurate quantitative 2-D images of density. In this work they describe extension of this technique to 3-D measurements in a flame, supersonic jet, and subsonic jet. Near-diffraction-limited measurements also are reported. The experiment apparatus is discussed

  14. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    OpenAIRE

    Jofre M.; Anzolin G.; Steinlechner F.; Oliverio N.; Torres J. P.; Pruneri V.; Mitchell M.W.

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galva...

  15. Beam optics of a 10-cm diameter high current heavy ion diode

    International Nuclear Information System (INIS)

    Typically a large diameter surface ionization source is used to produce > 0.5 A K+ current with emittance < 1 π-mm-mrad for heavy ion fusion experiments. So far we have observed aberrations that are slightly different from those predicted by computer simulations. We have now set up an experiment to study in detail the beam optics of such a large diameter ion diode and to benchmark the simulation code

  16. All-optical optoacoustic microscopy system based on probe beam deflection technique

    Science.gov (United States)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  17. Fiber coupling and field mixing of coherent free-space optical beams in satellite communications

    Science.gov (United States)

    Poliak, J.; Giggenbach, D.; Mata Calvo, R.; Bok, D.

    2016-03-01

    Effective coupling of the optical field from free-space to optical fiber is an essential prerequisite for modern free-space optical communications systems. It allows for easier system integration with active and passive optical fiber-coupled components as well as for efficient optical field mixing for coherent communications. While coupling into single-mode fiber provides the advantage of using low-noise erbium-doped fiber preamplifiers, its relatively small mode field diameter limits achievable fiber coupling efficiency. Coupling into multimode fiber (MMF) increases the fiber coupling efficiency while introducing other spurious effects the authors have set out to analyze. The study of free-space optical beam coupling in the context of satellite communications will be presented. Here, we assume satellite link scenarios with different elevations, which correspond to different index-of-refraction turbulence (IRT) conditions. IRT gives rise to both intensity and phase aberration of the received optical field, which then causes extended speckle patterns in the focus of the receiver telescope. The speckle field at the fiber input is calculated by means of Fourier transform of the received field. Using dedicated modelling software, study of the fiber coupling efficiency, polarization preservation and high-order mode coupling in different multi-mode fibers is carried out.

  18. Intrinsic corrections to optical guiding in a free-electron laser: Beam Research Program

    Science.gov (United States)

    Chen, Yu-Jiuan; Scharlemann, E. T.; Sessler, A. M.

    The effect on optical guiding of the undulations of an electron beam in a free electron laser (FEL) is investigated. A model for a fully saturated FEL amplifier with no remaining gain is developed. The density of the electron beam includes the effects of both transverse and longitudinal undulation. The longitudinal density modulation is expressed in terms of the Bessel functions of zeta, where zeta = a(sub w)/2(1 + a(sub w)) is the shift of the electron phase in the electron bucket caused by its longitudinal undulation. The transverse density modulation is evaluated to second order in the ratio of undulation amplitude delta r to beam radial scale length r(sub b). The radiation field is calculated in terms of spatial modes proportional to exp(i(k + delta k + lk(sub w)z - iwt)), where l is an arbitrary integer. Here, delta k is the change of the wavenumber of the radiation caused by the electron bunches. Radially radiating modes with intensity on the order of (delta k/k(sub w))zeta sup 2 are found. Optical guiding is modified by the transverse undulations of the beam at second order in delta r(sub b), and by the longitudinal undulations to first order in delta k/k (sub w). For the usual FEL parameters, the correction is quite small.

  19. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    International Nuclear Information System (INIS)

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking - for comparison - examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration

  20. A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics

    Science.gov (United States)

    Runkel, Mike; Hawley-Fedder, Ruth; Widmayer, Clay; Williams, Wade; Weinzapfel, Carolyn; Roberts, Dave

    2005-12-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO2 lasers.

  1. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  2. Neutron optical imaging study of neutron moderator and beam extraction system

    Energy Technology Data Exchange (ETDEWEB)

    Fuezi, J. [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary) and Transilvania University, R-2200 Brasov (Romania)]. E-mail: fuzi@szfki.hu; David, E. [OPEN Optoelectronics, 1121 Budapest (Hungary); Kozlowski, T. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lewis, P. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Messing, G. [OPEN Optoelectronics, 1121 Budapest(Hungary); Mezei, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hahn-Meitner-Institut, 14109 Berlin (Germany); Penttila, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rosta, L. [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Russina, M. [Hahn-Meitner-Institut, 14109 Berlin (Germany); Toeroek, Gy. [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary)

    2006-11-15

    The study of the performance of a cold-hydrogen moderator and a supermirror-based neutron beam extraction system of the flight path 12 at LANSCE has been performed based on energy-resolved neutron optical imaging. We have developed a pinhole camera system with a 2D position-sensitive {sup 3}He multiwire proportional chamber neutron detector with delay line position encoding (0.75 mm pixel size), together with a standalone time-of-flight electronic system with 1.2 {mu}s dead time. We have determined the efficiency, resolution, and counting rate saturation of the detector. In particular, we have considered an impact of these parameters on the quality of the images. The neutron images of the moderator were taken as a function of the neutron wavelength given by the time-of-flight information. The images were recorded as arrays of 256x256x2000 pixels; x and y coordinates, and time of flight. Information obtained from the images includes a distribution of the brightness on the neutron moderator, the efficiency and geometrical accuracy of the beam extraction system, and the reflectivity of the supermirror-coated elements of its optics. Our results demonstrate that the pinhole optical camera-based neutron imaging method combined with time-of-flight information is an extremely efficient tool to characterize neutron sources and neutron beam extraction systems.

  3. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator

    OpenAIRE

    Van Acoleyen, Karel; Bogaerts, Wim; Jágerská, Jana; Le Thomas, Nicolas; Houdré, Romuald; Baets, Roel

    2009-01-01

    Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mu m apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tu...

  4. Nonlinear optical beam manipulation and high energy beam propagation through the atmosphere; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1989

    Science.gov (United States)

    Fisher, Robert A.; Wilson, Leroy E.

    Various papers on nonlinear optical beam manipulation and high-energy beam propagation through the atmosphere are presented. Individual topics addressed include: suppression of Raman amplification using large Stokes seeds, review of multiple-short-pulse SBS experiments and theory, laser-induced gratings for beam manipulation in a gas, considerations for computing realistic atmospheric distortion parameter profiles, effect of turbulent diffusion on laser propagation, use of multiple photon processes in krypton for laser guiding of electron beams, effect of ionization on intense electron beam propagation in low-pressure media, lidar measurements of the troposphere and middle atmosphere, seasonal and diurnal changes in cloud obscuration to visible and IR energy transmission, new cloud composite climatologies using meteorological satellite imagery, effect of neutral atmospheric structure on beam propagation, small-scale electron density fluctuations in a disturbed ionospheric environment, and SDIO radio frequency communications in a structured environment.

  5. Optimisation of the ion optical range adaptation method for tracking of moving tumours with scanned ion beams

    International Nuclear Information System (INIS)

    Currently an ion optical solution for beam tracking of moving targets with scanned ion beams is being investigated at GSI for the treatment of moving tumours, such as lung cancer. Beam tracking compensates target motion by adapting the lateral beam position as well as the beam range according to the motion parameters. Tracking of the lateral position is achieved via scanning magnets. For range adaptation the proposed ion optical solution uses an energy degrader with variable thickness inserted into the therapy beam line downstream of the synchrotron. By deflecting the particle beam via dipole magnets to different positions on the degrader, the range of the Bragg peak can be adjusted in real-time. Hence density changes due to organ motion can be compensated for each target spot during beam scanning. In order to reach a beam quality suitable for therapy with this method, systematic studies on the ion optical parameters have to be carried out. Different degrader designs (ramp or discrete step shaped), different materials (e.g. PMMA, graphite), as well as optimised degrader positions have been examined. The results of simulated beam profiles are presented.

  6. Combined system for optical cutting and multiple-beam optical trapping

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Jonáš, Alexandr; Liška, M.; Jedlička, P.; Lukášová, Emilie; Kozubek, Stanislav; Zemánek, Pavel

    Washington : SPIEThe International Society for Optical Engineering, 2000 - (Hrabovský, M.; Tománek, P.; Miler, M.), s. 303-308 ISBN 0-8194-3641-0. ISSN 0277-786X. [SPIE: Photonics, Devices, and Systems. Praha (CZ), 21.06.1999-23.06.1999] R&D Projects: GA ČR GV101/97/K009; GA ČR GA202/96/1077; GA ČR GA101/98/P106; GA ČR GA202/99/0959 Institutional research plan: CEZ:AV0Z2065902 Subject RIV: BH - Optics, Masers, Lasers

  7. Optical SideBand Filtering in an optical beam forming system for phased-array antennas

    OpenAIRE

    Peña Hevilla, J.

    2007-01-01

    Directionally controlled antennas — or phased array antennas — are widely used in many mobile telecom markets and recently they have a space in consumer products and transport vehicles, as an aircraft, ships, etcetera. In this project, the field of interest will be the satellite comunications between a satellite transmitter and an aircraft using a DVB-S signal. Smart antennas in either transmission or reception have a directionally controlled radiation beam based on multiple antenna array ele...

  8. A new generation of IC based beam steering devices for free-space optical communication

    Science.gov (United States)

    Bedi, Vijit

    Free Space Optical (FSO) communication has tremendously advanced within the last decade to meet the ever increasing demand for higher communication bandwidth. Advancement in laser technology since its invention in the 1960's [1] attracted them to be the dominant source in FSO communication modules. The future of FSO systems lay in implementing semiconductor lasers due to their small size, power efficiency and mass fabrication abilities. In the near future, these systems are very likely to be used in space and ground based applications and revolutionary beam steering technologies will be required for distant communications in free-space. The highly directional characteristic inherent to a laser beam challenges and calls for new beam pointing and steering technologies for such type of communication. In this dissertation, research is done on a novel FSO communication device based on semiconductor lasers for high bandwidth communication. The "Fly eye transceiver" is an extremely wide steering bandwidth, completely non-mechanical FSO laser communication device primarily designed to replace traditional mechanical beam steering optical systems. This non-mechanical FSO device possesses a full spherical steering range and a very high tracking bandwidth. Inspired by the evolutionary model of a fly's eye, the full spherical steering range is assured by electronically controlled switching of its sub-eyes. Non mechanical technologies used in the past for beam steering such as acousto-optic Bragg cells, liquid crystal arrays or piezoelectric elements offer the wide steering bandwidth and fast response time, but are limited in their angular steering range. Mechanical gimbals offer a much greater steering range but face a much slower response time or steering bandwidth problem and often require intelligent adaptive controls with bulky driver amplifiers to feed their actuators. As a solution to feed both the fast and full spherical steering, the Fly-eye transceiver is studied as

  9. Analysis of the deviation of the diffracted beams caused by acousto-optic tunable filter in multispectral imaging

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Xuejun Sha; Zhonghua Zhang

    2011-01-01

    The deviation caused by acousto-optic tunable filter (AOTF) diffraction in multispectral imaging is analyzed through derivation calculus of the deviation angle. The rotatory polarization of acousto-optic crystal is taken into account in this analysis. The relationships between the polar angle of the incident and the diffracted beams are acquired by using the momentum-matching condition. During the diffraction of the incident beams, far more deviations are induced.%@@ The deviation caused by acousto-optic tunable filter(AOTF) diffraction in multispectral imaging is analyzed through derivation calculus of the deviation angle.The rotatory polarization of acousto-optic crystal is taken into account in this analysis.The relationships between the polar angle of the incident and the diffracted beams are acquired by using the momentum-matching condition.During the diffraction of the incident beams,far more deviations are induced.

  10. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  11. Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

    Science.gov (United States)

    Wen, W. Q.; Lochmann, M.; Ma, X.; Bussmann, M.; Winters, D. F. A.; Nörtershäuser, W.; Botermann, B.; Geppert, C.; Frömmgen, N.; Hammen, M.; Hannen, V.; Jöhren, R.; Kühl, Th.; Litvinov, Yu. A.; Sánchez, R.; Stöhlker, Th.; Vollbrecht, J.; Weinheimer, C.; Dimopoulou, C.; Nolden, F.; Steck, M.

    2013-05-01

    An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of about 0.5 m using the UV-sensitive channeltron and with slightly lower accuracy from the photomultiplier data due to the slower transitions in the red region of the spectrum. The Gaussian shape of the longitudinal distribution of ions inside the bunch was confirmed. With the information of the transverse beam size that can be measured simultaneously by a newly installed ionization profile monitor (IPM) at the ESR, an accurate determination of the ion density in the bunched beam will be allowed.

  12. Adaptive optical beam shaping for compensating projection-induced focus deformation

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  13. Output optics for Aurora: Beam separation, pulse stacking, and target focusing

    International Nuclear Information System (INIS)

    An end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. The optical system has been designed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. During first-phase design, the system was conceived of as only an amplifier demonstration and not as an end-to-end system demonstration. The design concept for second-phase optics that provides demultiplexing and carries the laser light to target is presented

  14. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition.

    Science.gov (United States)

    Woźniak, P; Höflich, K; Brönstrup, G; Banzer, P; Christiansen, S; Leuchs, G

    2016-01-15

    Direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In the case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium. PMID:26629782

  15. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    CERN Document Server

    Woźniak, Paweł; Brönstrup, Gerald; Banyer, Peter; Christiansen, Silke; Leuchs, Gerd

    2015-01-01

    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.

  16. Effect of electron beam irradiation on the structure and optical properties of nickel oxide nanocubes

    Indian Academy of Sciences (India)

    P A Sheena; K P Priyanka; N Aloysius Sabu; S Ganesh; Thomas Varghese

    2015-08-01

    This work reports the effect of electron beam (EB) irradiation on the structure and optical properties of nanocrystalline nickel oxide (NiO) cubes. NiO nanocubes were synthesized by the chemical precipitation method. The characterization was carried out by employing analytical techniques like X-ray diffraction, transmission electron microscopy, UV–visible and photoluminescence (PL) spectroscopy. The present investigation found that non-stoichiometry, defects and particle size variation caused by EB irradiation have a great influence on optical band gap, blue shift and band modification of absorption and PL spectra. Moreover, EB irradiation can result enhanced optical absorption performance and photo-activity in NiO nanocubes for optoelectronics and photo-catalytic applications. The study of International Commission on Illumination chromaticity diagram indicates that NiO can be developed as a suitable phosphor material for the application in near ultraviolet excited colour LEDs.

  17. Topological aberration of optical vortex beams and singularimetry of dielectric interfaces

    CERN Document Server

    Dennis, Mark R

    2012-01-01

    The splitting of a high-order optical vortex into a constellation of unit vortices, upon total reflection, is described and analyzed. The vortex constellation generalizes, in a local sense, the familiar longitudinal Goos-H\\"anchen and transverse Imbert-Federov shifts of the centroid of a reflected optical beam. The centroid shift is related to the centre of the constellation, whose geometry otherwise depends on higher-order terms in an expansion of the reflection matrix. We present an approximation of the field around the constellation of increasing order as an Appell sequence of complex polynomials whose roots are the vortices, and explain the results by an analogy with the theory of optical aberration.

  18. Diffraction of Gaussian beam in a 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach

    OpenAIRE

    Berczynski, P.; Bliokh, K. Yu.; Kravtsov, Yu. A.; Stateczny, A.

    2005-01-01

    The paper presents an ab initio account of the paraxial complex geometrical optics (CGO) in application to a scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of Riccati type. This substantially simplifies description of Gaussian beams diffraction as compared to full wave or parabolic (quasi-optics) equatio...

  19. On-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator

    OpenAIRE

    Van Acoleyen, Karel; Komorowska, Katarzyna; Bogaerts, Wim; Baets, Roel

    2011-01-01

    Optical beam steering can find applications in several domains such as laser scanning, LiDAR (Light Detection And Ranging), wireless data transfer and optical switches and interconnects. As present beam steering approaches use mechanical motion such as moving mirrors or MEMS (Micro Electro Mechanical Systems) or molecular movement using liquid crystals, they are usually limited in speed and/or performance. Therefore we have studied the possibilities of the integrated silicon photonics platfor...

  20. Optical nanostructures in 2D for wide-diameter and broadband beam collimation.

    Science.gov (United States)

    Clark, James; Anguita, José V; Chen, Ying; Silva, S Ravi P

    2016-01-01

    Eliminating curved refracting lensing components used in conventional projection, imaging and sensing optical assemblies, is critical to enable compactness and miniaturisation of optical devices. A suitable means is replacing refracting lenses with two-dimensional optical media in flat-slab form, to achieve an equivalent optical result. One approach, which has been the focus of intense research, uses a Veselago lens which features a negative-index metamaterial. However, practical implementations rely on resonance techniques, thus broadband operation at optical frequencies imposes significant technical challenges that have been difficult to overcome. Here, we demonstrate a highly-collimated, broadband, wide-diameter beam from a compact source in flat-slab form, based on light collimation using nanomaterials ordered in patterns and embedded into flexible polymers. These provide a highly anisotropic absorption coefficient due to patterns created by vertical carbon nanotube structures grown on glass, and the anisotropic electrical conductivity of the nanotubes. We show this nanostructure strongly absorbs unwanted off-axis light rays, whilst transmitting the desired on-axis rays, to achieve the required optical effect over broadband, from visible to short-infrared, thus circumventing some technical limitations of negative-index metamaterials. We further show a low substrate-temperature system for nanotube growth, allowing direct implementation into heat-sensitive large-area devices. PMID:26732851

  1. Nonlinear optical studies of inorganic nanoparticles-polymer nanocomposite coatings fabricated by electron beam curing

    Science.gov (United States)

    Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra

    2016-05-01

    The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.

  2. Evaluation of low energy electron beam dose application by means of a portable optical device

    Science.gov (United States)

    Reitzig, Manuela; Winkler, Martin; Härtling, Thomas; Röder, Olaf; Opitz, Jörg

    2014-11-01

    We present our recent development concerning the evaluation of a low energy dose application to electron beam responding materials with a simple portable optical device. Electron beam irradiation is a promising option to sterilize sensitive and high performance products or surfaces at a low temperature and without moisture. Especially in the fields of the food industry and medicine, regulations regarding sterility are increasingly tightened. Because of this, a secure proof for electron-beam-assisted sterilization is required. However, no nondestructive and in situ method exists up until now. Our approach to provide a secure proof of sterilization is to place a suitable marker material based on rare-earth-doped phosphors inside or on the top of the packaging material of the respective product. Upon electron irradiation the marker material changes its luminescence properties as a function of the applied energy dose. We verified the energy dependence by means of time-resolved measurements of the luminescence decay of an upconversion phosphor with a portable optical device. In our experimental realization, short laser pulses in the near-infrared range are triggered by a microcontrol unit (MCU) and excite the marker material. The light emitted by the marker is collected in the range between 400 and 1100 nm via a silicon photodiode, processed by the MCU, and analyzed in a Labview program via a single-exponential fit. As a main result, we observe an increasing reduction of the luminescence lifetime with higher dose applications.

  3. Direct femtosecond laser ablation of copper with an optical vortex beam

    International Nuclear Information System (INIS)

    Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N = 1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (2  1000) and a deep crater is formed. The nanostructure variation with the laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.

  4. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate

    International Nuclear Information System (INIS)

    We report on laser surface structuring of silicon using Ti:Sa femtosecond laser ablation with optical vortex beams. A q-plate is used to generate an optical vortex beam with femtosecond pulse duration through spin-to-orbital conversion of the angular momentum of light. The variation of the produced surface structures is investigated as a function of the number of pulses, N, at laser fluence slightly above the ablation threshold value. At low N (≈10), only surface corrugation of the irradiated, ring-shaped area is observed. This is followed by a progressive formation of regular ripples at larger N (≈100–500), which eventually transform in smaller columnar structures for N ≈ 1000. Moreover, the central, non-ablated part is gradually decorated by nanoparticles produced during laser ablation, a process which eventually leads to the formation of a central turret of assembled nanoparticles. Our experimental findings suggest the importance of a feedback mechanism and a cumulative effect on the formation of ripples with interesting patterns not achievable by the more standard beams with a Gaussian intensity profile.

  5. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    International Nuclear Information System (INIS)

    difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation

  6. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  7. Flattop beam illumination for 3D imaging ladar with simple optical devices in the wide distance range

    Science.gov (United States)

    Tsuji, Hidenobu; Nakano, Takayuki; Matsumoto, Yoshihiro; Kameyama, Shumpei

    2016-04-01

    We have developed an illumination optical system for 3D imaging ladar (laser detection and ranging) which forms flattop beam shape by transformation of the Gaussian beam in the wide distance range. The illumination is achieved by beam division and recombination using a prism and a negative powered lens. The optimum condition of the transformation by the optical system is derived. It is confirmed that the flattop distribution can be formed in the wide range of the propagation distance from 1 to 1000 m. The experimental result with the prototype is in good agreement with the calculation result.

  8. Monitoring of transverse displacement of reinforced concrete beams under flexural loading with embedded arrays of optical fibers

    Science.gov (United States)

    Gonzalez-Tinoco, Juan E.; Gomez-Rosas, Enrique R.; Guzmán-Olguín, Héctor; Khotiaintsev, Sergei; Zuñiga-Bravo, Miguel A.

    2015-04-01

    We present results of an ongoing study of structural health monitoring of concrete elements by means of arrays of telecommunications-grade optical fibers embedded in such elements. In this work, we show a possibility of using this technique for monitoring the transverse displacement of the reinforced concrete beams under flexural loading. We embedded a number of multimode silica-core/polymer-clad/polymer-coated optical fibers in a mold with preinstalled reinforcing steel bars and fresh concrete mix. Then the concrete was compacted and cured. Some optical fibers were broken during the fabrication process. The fiber survival rate varied with concrete grade, compacting technique and optical fiber type. The fibers that survived the fabrication process were employed for the monitoring. They were connected to the optical transmitter and receiver that formed a part of a larger measurement system. The system continuously measured the optical transmission of all optical fibers while the reinforced concrete beams were subjected to incremental transverse loading. We observed a quasi-linear decrease in optical transmission in all optical fibers of the array vs. the applied load and respective flexural displacement. Although the underlying phenomena that lead to such a variation in optical transmission are not clear yet, the observed behavior might be of interest for assessing the transverse displacement of the reinforced concrete beams under flexural loading.

  9. Extended optical theorem for scalar monochromatic acoustical beams of arbitrary wavefront in cylindrical coordinates.

    Science.gov (United States)

    Mitri, F G

    2016-04-01

    One of the fundamental theorems in (optical, acoustical, quantum, gravitational) wave scattering is the optical theorem for plane waves, which relates the extinction cross-section to the forward scattering complex amplitude function. In this analysis, the optical theorem is extended for the case of 3D-beams of arbitrary character in a cylindrical coordinates system for any angle of incidence and any scattering angle. Generalized analytical expressions for the extinction, absorption, scattering cross-sections and efficiency factors are derived in the framework of the scalar resonance scattering theory for an object of arbitrary shape. The analysis reveals the presence of an interference scattering cross-section term, which describes interference between the diffracted or specularly reflected inelastic (Franz) waves with the resonance elastic waves. Moreover, an alternate expression for the extinction cross-section, which relates the resonance cross-section with the scattering cross-section for an impenetrable object, is obtained, suggesting an improved method for particle characterization. Cross-section expressions are also derived for known acoustical wavefronts centered on the object, defined as the on-axis case. The extended optical theorem in cylindrical coordinates can be applied to evaluate the extinction efficiency from any object of arbitrary geometry placed on or off the axis of the incident beam. Applications in acoustics, optics, and quantum mechanics should benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by many particles, as well as the radiation force and torque. PMID:26836290

  10. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    Science.gov (United States)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  11. Optical contrast formation in amorphous silicon carbide with high-energy focused ion beams

    International Nuclear Information System (INIS)

    Thin films (d ∼ 1 μm) of hydrogenated amorphous silicon carbide (a-Si1-xCx:H), deposited by RF reactive magnetron sputtering with different carbon content x, have been implanted with high fluences (Φ = 1016-1017 cm-2) of high-energy (E = 0.2-1 MeV) He+ ions as the implant species. The induced structural modification of the implanted material results in a considerable change of its optical properties, best manifested by a significant shift of the optical absorption edge to lower photon energies as obtained from photo-thermal-deflection spectroscopy (PDS) data. This shift is accompanied by a remarkable increase of the absorption coefficient over one order of magnitude (photo-darkening effect) in the measured photon energy range (0.6-3.8 eV), depending on the ion fluence, energy and carbon content of the films. These effects could be attributed both to additional defect introduction and increased graphitization, as confirmed by Raman spectroscopy and infra-red (IR) optical transmission measurements. The optical contrast thus obtained (between implanted and unimplanted film material) could be made use of in the area of high-density optical data storage using focused high-energy He+ ion beams.

  12. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    DEFF Research Database (Denmark)

    Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L.;

    2004-01-01

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm), high sensitivity,...

  13. Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering.

    Science.gov (United States)

    Cetinörgü, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik

    2009-08-10

    Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide (Nb(2)O(5)), tantalum oxide (Ta(2)O(5)), and silicon dioxide (SiO(2)) thin films prepared by dual ion beam sputtering. First, we investigate the stress (sigma), hardness (H), reduced Young's modulus (E(r)), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson's ratio (nu) using the two-substrate method. For the high refractive index films, namely, Nb(2)O(5) (n at 550 nm=2.30) and Ta(2)O(5) (n at 550 nm=2.13), we obtained H approximately 6 GPa, E(r) approximately 125 GPa, CTE=4.9x10(-6) degrees C(-1), nu=0.22, and H approximately 7 GPa, E(r) approximately 133 GPa, CTE=4.4x10(-6) degrees C(-1), and nu=0.27, respectively. In comparison, for SiO(2) (n at 550 nm=1.48), these values are H approximately 9.5 GPa, E(r) approximately 87 GPa, CTE=2.1x10(-6) degrees C(-1), and nu=0.11. Correlations between the growth conditions (secondary beam ion energy and ion current), the microstructure, and the film properties are discussed. PMID:19668268

  14. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    International Nuclear Information System (INIS)

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape

  15. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  16. The task of beam abort module optical link network for XFEL safety interlock system

    International Nuclear Information System (INIS)

    X-ray Free Electron Laser (XFEL) facility will provide an environment to experiment using high coherent X-ray laser beam, which is generated by electron beam accelerated by a linear accelerator, passing the undulator. The XFEL facility (SACLA) which is constructed at SPring-8 site, is necessary to build the two interlock systems for human radiation protection. One is accelerator safety interlock system to ensure the safety of the accelerator housing portion. Another is the beamline interlock system to ensure the safety of beamlines and experimental hutch. Two interlock systems, alone or together, stop the accelerator, to ensure the safety of facility. This system can stop the accelerator at high speed, using high-speed stop signal optical transmission equipments connected in series, without PLC. The high-speed stop signal optical transmission equipment was designed and has achieved, to be within 5 ms delay time, when connected in series 70 equipments. This paper reports about the role and characteristics of the high-speed stop signal optical transmission equipment. (author)

  17. Trapping atoms in a bottle beam generated by a diffractive optical element

    Science.gov (United States)

    Ivanov, V.; Isaacs, J.; Saffman, M.; Kemme, S. A.; Brady, G. R.; Ellis, A. R.; Wendt, J. R.

    2012-06-01

    Highly excited Rydberg states have been used to demonstrate a neutral atom quantum gate, two-atom entanglement and hold promise for studies of surface potentials, such as the Casimir-Polder potential. Blue detuned Optical Bottle Beam (BoB) traps where atoms are confined in intensity minima trap both ground and Rydberg state atoms. This minimizes qubit decoherence and allows accurate measurements of the frequencies of the Rydberg transitions. We have generated optical bottle beam traps using a segmented diffractive optical element with π phase shift between the inner and outer regions. The idea for this trap follows the approach used by Ozeri, et al. Phys. Rev. A 59, R1750 (1999) but integrates the phase shift and focusing lens into a single diffractive element fabricated at Sandia National Lab. Measured profiles of the trap light intensity are compared with numerical predictions using a Fresnel diffraction code. Progress towards atom trapping in the bottle for studies of atom-surface interactions will be presented.

  18. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    Science.gov (United States)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  19. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    International Nuclear Information System (INIS)

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO2–WO3 glass through a special silicon mask using 1.5 MeV N+ irradiation. This method was improved by increasing N+ energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C3+ and C5+ and 5 MeV N3+, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi4Ge3O12) and sillenite type (Bi12GeO20) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N+ irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method

  20. Generalized huygens-fresnel diffraction integral for misaligned asymmetric first-order optical systems and decentered anisotropic Gaussian Schell-model beams.

    Science.gov (United States)

    Ding, Guilin; Lü, Baida

    2002-03-01

    The generalized Huygens-Fresnel diffraction integral for misaligned asymmetric first-order optical systems is derived by using the canonical operator method, which enables us to study propagation properties of anisotropic Gaussian Schell-model (AGSM) beams through misaligned asymmetric first-order optical systems. It is shown that under the action of misaligned asymmetric first-order optical systems AGSM beams do not preserve the closed property. Therefore generalized partially coherent anisotropic Gaussian Schell-model beams called decentered anisotropic Gaussian Schell-model (DAGSM) beams are introduced, and AGSM beams can be regarded as a special case of DAGSM beams. PMID:11876311

  1. Deflection of a monochromatic THz beam by acousto-optic methods

    International Nuclear Information System (INIS)

    The possibility of controlled deflection of an electromagnetic THz beam of a free-electron laser by acousto-optic (AO) methods has been demonstrated for the first time. The material of the AO deflector was chosen to be single-crystal germanium, which has a fairly large refractive index (n = 4.0) and a relatively low absorption coefficient for electromagnetic waves. The absorption coefficient α in germanium is 0.75 ± 0.02 cm-1 at a wavelength λ = 140 μm. The diffracted beam intensity is shown to be maximum at an effective AO interaction length l = 1/α. A diffraction efficiency of 0.05% at a travelling acoustic wave power of 1.0 W is experimentally obtained. It is established that a change in the ultrasonic frequency from 25 to 39 MHz leads to variation in the external Bragg angle in the range from 19.5° to 27.5°. At a fixed Bragg angle θB = 22.4° the frequency band of diffraction is 4.2 ± 0.1 MHz and the angular range of laser beam scanning reaches 2.5° ± 0.5°. The results obtained indicate that AO interaction can be used for controlled deflection of electromagnetic THz beams. (terahertz radiation)

  2. Deflection of a monochromatic THz beam by acousto-optic methods

    Energy Technology Data Exchange (ETDEWEB)

    Voloshinov, V B; Nikitin, P A [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Gerasimov, V V; Choporova, Yu Yu [G.I. Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation); Knyazev, B A [Novosibirsk National Research State University, Novosibirsk (Russian Federation)

    2013-12-31

    The possibility of controlled deflection of an electromagnetic THz beam of a free-electron laser by acousto-optic (AO) methods has been demonstrated for the first time. The material of the AO deflector was chosen to be single-crystal germanium, which has a fairly large refractive index (n = 4.0) and a relatively low absorption coefficient for electromagnetic waves. The absorption coefficient α in germanium is 0.75 ± 0.02 cm{sup -1} at a wavelength λ = 140 μm. The diffracted beam intensity is shown to be maximum at an effective AO interaction length l = 1/α. A diffraction efficiency of 0.05% at a travelling acoustic wave power of 1.0 W is experimentally obtained. It is established that a change in the ultrasonic frequency from 25 to 39 MHz leads to variation in the external Bragg angle in the range from 19.5° to 27.5°. At a fixed Bragg angle θ{sub B} = 22.4° the frequency band of diffraction is 4.2 ± 0.1 MHz and the angular range of laser beam scanning reaches 2.5° ± 0.5°. The results obtained indicate that AO interaction can be used for controlled deflection of electromagnetic THz beams. (terahertz radiation)

  3. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation

    International Nuclear Information System (INIS)

    The open-source beam-splitting code is described which implements the geometric-optics approximation to light scattering by convex faceted particles. This code is written in C++ as a library which can be easy applied to a particular light scattering problem. The code uses only standard components, that makes it to be a cross-platform solution and provides its compatibility to popular Integrated Development Environments (IDE's). The included example of solving the light scattering by a randomly oriented ice crystal is written using Qt 5.1, consequently it is a cross-platform solution, too. Both physical and computational aspects of the beam-splitting algorithm are discussed. Computational speed of the beam-splitting code is obviously higher compared to the conventional ray-tracing codes. A comparison of the phase matrix as computed by our code with the ray-tracing code by A. Macke shows excellent agreement. - Highlights: • The beam-splitting code is presented as open-source software. • Both physical and computational aspects of the code are discussed. • Computational speed of the code is higher than ray-tracing codes. • A comparison with the ray-tracing Macke's code shows excellent agreement

  4. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Masahiro, E-mail: hino@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto university, Kumatori, Osaka 590-0494 (Japan); Oda, Tatsuro [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kitaguchi, Masaaki [Center for Experimental Studies, KMI, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Tasaki, Seiji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kawabata, Yuji [Research Reactor Institute, Kyoto university, Kumatori, Osaka 590-0494 (Japan)

    2015-10-11

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS.

  5. Characteristics of the orbital rotation in dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Yang, Kaiyong; Xiong, Wei; Luo, Hui

    2016-07-25

    The orbital rotation is an important type of motion of trapped particles apart from translation and spin rotation. It could be realized by introducing a transverse offset to the dual-beam fiber-optic trap. The characteristics (e.g. rotation perimeter and frequency) of the orbital rotation have been analyzed in this article. We demonstrate the influences of offset distance, beam waist separation distance, light power, and radius of the microsphere by both experimental and numerical work. The experiment results, i.e. orbital rotation perimeter and frequency as functions of these parameters, are consistent with the theoretical model in the present work. The orbital rotation amplitude and frequency could be exactly controlled by varying these parameters. This controllable orbital rotation can be easily applied to the area where microfluidic mixing is required. PMID:27464147

  6. Study on the roughness evolution of optical surfaces during ion beam sputtering

    Science.gov (United States)

    Liang, Xiao; Wang, Xiang; Gu, Yong-Qiang; Zheng, Jin-Jin; Yang, Huai-Jiang; Sui, Yong-Xin

    2015-10-01

    Ion beam machining technology has been extensively adopted to obtain an ultraprecision surface in ultraviolet lithography optics. However, there exist complex mechanisms leading the surface to evolve complicated topographies and increasing roughness. We build a kinetic model integrating with the typical sputter theory and a bond-counting Monte Carlo algorithm based on the compound materials to investigate the surface roughness evolution during ion beam sputtering. The influences of primary sputter, reflection, secondary sputter, geometrical shadowing, redeposition, and thermal diffusion were all taken into consideration to compose a dynamic evolution process. In calculation, using this model the surface first possesses a period of smoothing and then goes into a roughening stage, where the roughness follows the regular power law. Quantitative analyses of surface roughness derived from calculations are also examined and compared with experiments.

  7. An Integrated Optics beam combiner for the second generation VLTI instruments

    CERN Document Server

    Benisty, M; Jocou, L; Labeye, P; Malbet, F; Perraut, K; Kern, P

    2009-01-01

    The very recent years have seen a promising start in scientific publications making use of images produced by near-infrared long-baseline interferometry. The technique has reached, at last, a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli-arcsecond model-independent imaging. The Very Large Telescope Interferometer (VLTI) is on the path to be equipped with instruments capable to combine between four to six telescopes. In the framework of the VLTI second generation instruments Gravity and VSI, we propose a new beam combining concept using Integrated Optics (IO) technologies with a novel ABCD-like fringe encoding scheme. Our goal is to demonstrate that IO-based combination brings considerable advantages in terms of instrumental design and performance. We therefore aim at giving a full characterization of an IO beam combiner to establish its performances and check its compliance with the specifications of an imaging instrument. Laboratory measurements were made i...

  8. Use of an optical digital reader for establishing criterion of quality control in clinical beams

    International Nuclear Information System (INIS)

    The goal of this work is to present a procedure for realizing the control of the clinical radiation fields through typical radiographic film of verification in radiotherapy and showing the results of the analysis carried out in the expositions of reference fields for photons and electrons using an optical digital reader of high resolution (600 x 1200 dpi) named scanner and a computer program for images edition. It was possible to obtain the quantification of the following parameters: alinement of the radiation beam with the luminous beam, homogeneity or levelling of the radiation field, and self symmetry with respect to the center of the luminous field. With the purpose to compare the results versus an usual method it was realized measurements of the same images with a luminous photo densitometer with 1 mm collimation window. (Author)

  9. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  10. Optical tomographic in-air scanner for external radiation beam 3D gel dosimetry

    International Nuclear Information System (INIS)

    Full text: Optical CT scanners are used to measure 3D radiation dose distributions in radiosensitive gels. For radiotherapy dose verification, 3D dose measurements are useful for verification of complex linear accelerator treatment planning and delivery techniques. Presently optical CTs require the use of a liquid bath to match the refractive index of the gel to minimise refraction of the light rays leading to distortion and artifacts. This work aims to develop a technique for scanning gel samples in free-air, without the requirement for a matching liquid bath. The scanner uses a He-Ne laser beam, fanned across the acrylic cylindrical gel container by a rotating mirror. The gel container was designed to produce parallel light ray paths through the gel. A pin phantom was used to quantify geometrical distortion of the reconstructed image, while uniform field exposures were used to consider noise, uniformity and artifacts. Small diameter wires provided an indication of the spatial resolution of the scanner. Pin phantom scans show geometrical distortion comparable to scanners using matching fluid baths. Noise, uniformity and artifacts were not found to be major limitations for this scanner approach. Spatial resolution was limited by laser beam spot size, typically 0.4 mm full width half maximum. A free-air optical CT scanner has been developed with the advantage of scanning without a matching fluid bath. Test results show it has potential to provide suitable quality 3D dosimetry measurements for external beam dose verification, while offering significant advantages in convenience and efficiency for routine use.

  11. Process and device for controlling an optical chain operation of a laser beam carried by a welding tool

    International Nuclear Information System (INIS)

    In controlling the operation of the optical system the following steps are applied: the welding tool is displaced from the working position to a non-working position, the optical system is fed with an auxiliary optical beam of low power, the luminous intensity passing through the tool is measured by a photoelectrical cell and compared with a threshold value which corresponds with satisfactory operation of the welding tool

  12. Protection of final optics in megajoule-class lasers by steering of UV beams using diffraction gratings

    International Nuclear Information System (INIS)

    In order to protect most the final optics hardware of megajoule-class lasers from the radiations produced by ignition shots, it is desirable to steer the laser beams after frequency conversion. Using a transmission grating etched in fused silica is an attractive solution for 3ω beam steering. The conceptual design of a focusing system based on this device is reviewed. The issues of pulse temporal shear and beam transport are addressed. The compatibility of 3ω gratings with other beam steering devices is assessed in view of possible evolution of the focusing system during the lifetime of the laser facility

  13. Multicomponent measurements of the Jefferson Lab energy recovery linac electron beam using optical transition and diffraction radiation

    Science.gov (United States)

    Holloway, M. A.; Fiorito, R. B.; Shkvarunets, A. G.; O'Shea, P. G.; Benson, S. V.; Douglas, D.; Evtushenko, P.; Jordan, K.

    2008-08-01

    High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI), and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences, and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and optical diffraction radiation conducted at the Jefferson Laboratory’s 115 MeV ERL which show the presence of two separate components within the beam’s spatial and angular distributions. By assuming a correlation between the spatial and angular features, we estimate an rms emittance value for each of the two components.

  14. Positron beam optics for the 2D-ACAR spectrometer at the NEPOMUC beamline

    International Nuclear Information System (INIS)

    In the last year a conventional 2D-ACAR spectrometer has been set up and brought to operation at TUM. Once the NEPOMUC beamline is extended to the new experimental hall at the research reactor FRM-II the conventional 2D-ACAR spectrometer will be upgraded with a second sample chamber in order to be integrated to the NEPOMUC beamline facility. This spectrometer will add a complete new quality to 2D-ACAR experiments as it allows to track the evolution of the electronic structure from the surface to the bulk. We present the design features of the positron beam optics and the sample environment.

  15. Positron beam optics for the 2D-ACAR spectrometer at the NEPOMUC beamline

    Science.gov (United States)

    Ceeh, H.; Weber, J. A.; Hugenschmidt, C.; Leitner, M.; Boni, P.

    2014-04-01

    In the last year a conventional 2D-ACAR spectrometer has been set up and brought to operation at TUM. Once the NEPOMUC beamline is extended to the new experimental hall at the research reactor FRM-II the conventional 2D-ACAR spectrometer will be upgraded with a second sample chamber in order to be integrated to the NEPOMUC beamline facility. This spectrometer will add a complete new quality to 2D-ACAR experiments as it allows to track the evolution of the electronic structure from the surface to the bulk. We present the design features of the positron beam optics and the sample environment.

  16. A simple method for creating a robust optical vortex beam with a single cylinder lens

    Science.gov (United States)

    Nam, Hannarae Annie; Cohen, Martin G.; Noé, John W.

    2011-06-01

    We describe a simple method for creating Laguerre-Gauss (LG) optical vortex beams from Hermite-Gauss (HG) modes with a single cylinder lens. The diverging vortex created by the cylinder lens has the correct intensity distribution in the far-field but its residual longitudinal astigmatism causes the vortex to revert to the original HG mode when it is brought to a focus. We show that an appropriate small tilt of the focusing lens can prevent this effect by introducing a compensating astigmatism. The corrected vortex is a good approximation to an exact LG mode and should be useful for a variety of demonstrations and experiments.

  17. A simple method for creating a robust optical vortex beam with a single cylinder lens

    International Nuclear Information System (INIS)

    We describe a simple method for creating Laguerre–Gauss (LG) optical vortex beams from Hermite–Gauss (HG) modes with a single cylinder lens. The diverging vortex created by the cylinder lens has the correct intensity distribution in the far-field but its residual longitudinal astigmatism causes the vortex to revert to the original HG mode when it is brought to a focus. We show that an appropriate small tilt of the focusing lens can prevent this effect by introducing a compensating astigmatism. The corrected vortex is a good approximation to an exact LG mode and should be useful for a variety of demonstrations and experiments

  18. All-Optical Steering of Laser-Wakefield-Accelerated Electron Beams

    International Nuclear Information System (INIS)

    We investigate the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration. Such asymmetric light pulses may be exploited to obtain control over the electron-bunch-pointing direction and in our case allowed for reproducible electron-beam steering in an all-optical way within an 8 mrad opening window with respect to the initial laser axis. We also discovered evidence of collective electron-betatron oscillations due to off-axis electron injection into the wakefield induced by a pulse-front tilt. These findings are supported by 3D particle-in-cell simulations.

  19. Recent progress in optically-pumped cesium beam clock at Peking University

    Science.gov (United States)

    Liu, C.; Zhou, S.; Wan, J.; Wang, S.; Wang, Y.

    2016-06-01

    A compact, long-life, and low-drift cesium beam clock is investigated at Peking University, where the atoms are magnetic-state selected and optically detected. Stability close to that of the best commercial cesium clocks has been achieved from 10 to 105 s. As previously shown, the short-term stability is determined by atomic shot noise or laser frequency noise. The stabilizations of microwave power and C-field improve the long-term stability, with the help of a digital servo system based on field-programmable gate array.

  20. Improved calibration of the nonlinear regime of a single-beam gradient optical trap.

    Science.gov (United States)

    Wilcox, Jamianne C; Lopez, Benjamin J; Campàs, Otger; Valentine, Megan T

    2016-05-15

    We report an improved method for calibrating the nonlinear region of a single-beam gradient optical trap. Through analysis of the position fluctuations of a trapped object that is displaced from the trap center by controlled flow we measure the local trap stiffness in both the linear and nonlinear regimes without knowledge of the magnitude of the applied external forces. This approach requires only knowledge of the system temperature, and is especially useful for measurements involving trapped objects of unknown size, or objects in a fluid of unknown viscosity. PMID:27177009