WorldWideScience

Sample records for beam micro-ct system

  1. An experimental cone-beam micro-CT system for small animal imaging

    Science.gov (United States)

    Zhu, Shouping; Tian, Jie; Yan, Guorui; Qin, Chenghu; Liu, Junting

    2009-02-01

    An experimental cone-beam Micro-CT system for small animal imaging is presented in the paper. The system is designed to obtain high-resolution anatomic information and will be integrated with our bioluminescence tomography system. A flat panel X-ray detector (CMOS technology with a column CsI scintillator plate, 50 micron pixel size, 120 mm × 120 mm photodiode area) and a micro-focus X-ray source (13 to 40 μm of focal spot size) are used in the system. The object (mouse or rat) is placed on a three-degree (two translations and one rotation) programming stage and could be located to an accurate position in front of the detector. The large field of view (FOV) of the system allows us to acquire the whole body imaging of a normal mouse in one scanning which usually takes about 6 to 15 minutes. Raw data from X-ray detector show spatial variation caused by dark image offset, pixel gain and defective pixels, therefore data pre-processing is needed before reconstruction. Geometry calibrations are also used to reduce the artifacts caused by geometric misalignment. In order to accelerate FDK filtered backprojection method, we develop a reconstruction software using GPU hardware in our system. System spacial resolution and image uniformity and voxel noise have been assessed and mouse reconstruction images are illuminated in the paper. Experiment results show that this system is suitable for small animal imaging.

  2. Self-calibration of a cone-beam micro-CT system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S. [Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); The Supercomputing Institute for Advanced Computational Research, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, Department of Physics, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physics, and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only

  3. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    Directory of Open Access Journals (Sweden)

    Bence Tamas Szabo

    2012-01-01

    Full Text Available The aim of this study was to compare three different cone-beam CT (CBCT instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL. After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 root canals were selected and analysed by three observers at RL and following cross sectional parameters were determined: area of the lumen, major and minor diameters, aspect ratio and mean thickness. Results suggest that only high resolution CBCT instruments allow dentists detecting the full length of the root canal.

  4. Cone-beam micro-CT system based on LabVIEW software.

    Science.gov (United States)

    Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen

    2008-09-01

    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.

  5. Cone Beam Micro-CT System for Small Animal Imaging and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Shouping Zhu

    2009-01-01

    in this paper. Experimental results show that the system is suitable for small animal imaging and is adequate to provide high-resolution anatomic information for bioluminescence tomography to build a dual modality system.

  6. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  7. Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system

    Science.gov (United States)

    Bysani Krishnakumar, Sumukh; Podgorsak, Alexander R.; Setlur Nagesh, S. V.; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.; Ionita, Ciprian N.

    2016-03-01

    A small animal micro-CT system was built using an EMCCD detectors having complex pre-digitization amplification technology, high-resolution, high-sensitivity and low-noise. Noise in CBCT reconstructed images when using predigitization amplification behaves differently than commonly used detectors and warrants a detailed investigation. In this study, noise power and contrast sensitivity were estimated for the newly built system. Noise analysis was performed by scanning a water phantom. Tube voltage was lowered to minimum delivered by the tube (20 kVp and 0.5 mA) and detector gain was varied. Contrast sensitivity was analyzed by using a phantom containing different iodine contrast solutions (20% to 70%) filled in six different tubes. First, we scanned the phantom using various x-ray exposures at 40 kVp while changing the gain to maintain the background air value of the projection images constant. Next, the exposure was varied while the detector gain was maintained constant. Radial NPS plots show that noise power level increases as gain increases. Contrast sensitivity was analyzed by calculating ratio of signal-to-noise ratios (SNR) for increased gain with those of low constant gain at each exposure. The SNR value at low constant gain was always lower than SNR of high detector gain at all x-ray settings and iodine contrast. The largest increase of SNR approached 1.3 for low contrast feature for an iodine concentration of 20%. Despite an increase in noise level as gain increases, the SNR improvement shows that signal level also increases because of the unique on-chip gain of the detector.

  8. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  9. Towards an inline reconstruction architecture for micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, David [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France); Humbert, Bernard [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France); Mathelin, Carole [Institut de genetique et de biologie moleculaire et cellulaire, Illkirch-Graffenstaden (France); Rio, Marie-Christine [Institut de genetique et de biologie moleculaire et cellulaire, Illkirch-Graffenstaden (France); Guyonnet, Jean-Louis [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France)

    2005-12-21

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 {mu}m. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection.

  10. High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Varslot, T.; Kingston, A.; Myers, G.; Sheppard, A. [Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2011-10-15

    Purpose: In this paper we show that optimization-based autofocus may be used to overcome the instabilities that have, until now, made high-resolution theoretically-exact tomographic reconstruction impractical. To our knowledge, this represents the first successful use of theoretically-exact reconstruction in helical micro computed tomography (micro-CT) imaging. We show that autofocus-corrected, theoretically-exact helical CT is a viable option for high-resolution micro-CT imaging at high cone-angles ({approx}50 deg.). The elevated cone-angle enables better utilization of the available X-ray flux and therefore shorter image acquisition time than conventional micro-CT systems. Methods: By using the theoretically-exact Katsevich 1PI inversion formula, we are not restricted to a low-cone-angle regime; we can in theory obtain artefact-free reconstructions from projection data acquired at arbitrary high cone-angles. However, this reconstruction method is sensitive to misalignments in the tomographic data, which result in geometric distortion and streaking artefacts. We use a parametric model to quantify the deviation between the actual acquisition trajectory and an ideal helix, and use an autofocus method to estimate the relevant parameters. We define optimal units for each parameter, and use these to ensure consistent alignment accuracy across different cone-angles and different magnification factors. The tomographic image is obtained from a set of virtual projections in which software correction for hardware misalignment has been applied. Results: We make significant modifications to the autofocus method that allow this method to be used in helical micro-CT reconstruction, and show that these developments enable theoretically-exact reconstruction from experimental data using the Katsevich 1PI (K1PI) inversion formula. We further demonstrate how autofocus-corrected, theoretically-exact helical CT reduces the image acquisition time by an order of magnitude compared to

  11. Micro-CT assessment of two different endodontic preparation systems

    Directory of Open Access Journals (Sweden)

    Cacio Moura-Netto

    2013-02-01

    Full Text Available The aim of this study was to compare two endodontic preparation systems using micro-CT analysis. Twenty-four one-rooted mandibular premolars were selected and randomly assigned to two groups. The samples (n = 12 of Group 1 were prepared using the ProTaper Universal rotary system, while Group 2 (n = 12 was prepared using the EndoEZE AET system complemented by manual apical preparation with K-type hand files up to #30. A 2.5% sodium hypochlorite solution was used in both groups for irrigating. Both groups were scanned by high-resolution microcomputed tomography before and after preparation (SkyScan 1172, SkyScan, Kontich, Belgium. The root canal volume and surface area was measured before and after preparation, and the differences were calculated and analyzed for statistically significant differences using ANOVA complemented by the Tukey test (p < 0.05. The results showed no statistically significant differences between the mean volumes of dentin removal by the two systems. However, the EndoEZE AET system presented a significantly greater mean surface area compared to the ProTaper system (p < 0.05. The EndoEZE AET system enabled preparation of a greater root canal surface area when compared to the ProTaper Universal system. There seemed to be no difference in dentin volume loss between the two systems used.

  12. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  13. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  14. Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology

    Science.gov (United States)

    Bouchet, A.; Colabella, L.; Omar, S.; Ballarre, J.; Pastore, J.

    2016-04-01

    The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is a technique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions. In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-bone system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials.

  15. Characterization of operating parameters of an in vivo micro CT system

    Science.gov (United States)

    Ghani, Muhammad U.; Ren, Liqiang; Yang, Kai; Chen, Wei R.; Wu, Xizeng; Liu, Hong

    2016-03-01

    The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system's specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.

  16. Investigation of signal thresholding to reduce the effects of instrument noise of an EMCCD based micro-CT system

    Science.gov (United States)

    Podgorsak, Alexander R.; Bysani Krishnakumar, Sumukh; Setlur Nagesh, S. V.; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    This project investigated the signal thresholding effectiveness at reducing the instrument noise of an electron multiplying charged coupled device (EMCCD) based micro-CT system at low x-ray exposure levels. Scans of a mouse spine and an iodine phantom were taken using an EMCCD detector coupled with a micro-CT system. An iodine filter of 4 mg/cm2 area density was placed in the beam. The output signal was thresholded using some multiple of the inherent background noise. For each threshold, 100, 200, and 300 frames were summed for each projection to evaluate the effect on the reconstructed image. The projection images from the scans were compared using line profiles and their SNR. Our results indicate that, as the threshold was increased, the line profiles of the projection images showed less statistical variation, but also lower signal levels, so that the SNR of the projection images decreased as the threshold increased. When the line profile of a projection image obtained using a signal threshold is compared with one obtained using energy integrating mode, the profile obtained using thresholding had less variation than that obtained using energy integration, which indicates less instrument noise. The SNR at the edges of the scan object is higher in the thresholded images when compared with the energy integrated projection images. We conclude that thresholding the output signal from an EMCCD detector at low x-ray exposure levels is an effective method to reduce the instrument noise of an EMCCD detector.

  17. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  18. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    Science.gov (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  19. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Cho, Myung Hye; Lee, Soo Yeol; Cho, Min Hyoung [Graduate School of East-West Medical Science, Kyung Hee University, 1 Seochun, Kiheung, Yongin, Kyungki 449-701 (Korea, Republic of)

    2003-12-21

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 x 120 mm{sup 2}, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:Tl (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 x 100 x 200 {mu}m{sup 3} and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 lp/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 lp/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented.

  20. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging.

    Science.gov (United States)

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Cho, Myung Hye; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-21

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 x 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:T1 (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 x 100 x 200 microm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 1p/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 1p/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented.

  1. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Benson, T M; Gregor, J [Department of Computer Science, University of Tennessee, Knoxville, Tennessee 37996-3450 (United States)

    2006-09-21

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  2. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    Science.gov (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  3. TU-F-CAMPUS-I-05: Investigation of An EMCCD Detector with Variable Gain in a Micro-CT System

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, S Bysani; Ionita, C; Rudin, S [Department of Biomedical Engineering, SUNY Buffalo, Buffalo, NY (United States); Toshiba Stroke and Vascular Research Center at SUNY Buffalo, Buffalo, NY (United States); Nagesh, S Setlur; Bednarek, D [Toshiba Stroke and Vascular Research Center at SUNY Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To investigate the performance of a newly built Electron Multiplying Charged Coupled Device (EMCCD) based Micro-CT system, with variable detector gain, using a phantom containing contrast agent of different concentrations. Methods: We built a micro- CT system with an EMCCD having 8 microns pixels and on-chip variable gain. We tested the system using a phantom containing five tubes filled with different iodine contrast solutions (30% to 70%). First, we scanned the phantom using various x-ray exposures values at 40 kVp and constant detector gain. Next, for the same tube currents, the detector gain was increased to maintain the air value of the projection image constant. A standard FDK algorithm was used to reconstruct the data. Performance was analyzed by comparing the signal-to-noise ratio (SNR) measurements for increased gain with those for the low constant gain at each exposure. Results: The high detector gain reconstructed data SNR was always greater than the low gain data SNR for all x-ray settings and for all iodine features. The largest increases were observed for low contrast features, 30% iodine concentration, where the SNR improvement approached 2. Conclusion: One of the first implementations of an EMCCD based micro- CT system was presented and used to image a phantom with various iodine solution concentrations. The analysis of the reconstructed volumes showed a significant improvement of the SNR especially for low contrast features. The unique on-chip gain feature is a substantial benefit allowing the use of the system at very low x-ray exposures per frame.Partial support: NIH grant R01EB002873 and Toshiba Medical Systems Corp. Partial support: NIH grant R01EB002873 and Toshiba Medical Systems Corp.

  4. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  5. Development of X-ray CCD camera based X-ray micro-CT system

    Science.gov (United States)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  6. Development of X-ray CCD camera based X-ray micro-CT system.

    Science.gov (United States)

    Sarkar, Partha S; Ray, N K; Pal, Manoj K; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y; Sinha, A; Gadkari, S C

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  7. Recent micro-CT scanner developments at UGCT

    OpenAIRE

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Boone, Matthieu; Van Hoorebeke, Luc; Cnudde, Veerle

    2013-01-01

    UGCT is a user facility for multidisciplinary micro-CT research. The scanners at UGCT are custom designed and built by the Radiation Physics research group (UGent). This paper describes the two latest scanners that were developed in collaboration with XRE: HECTOR, a high energy micro-CT scanner, and EMCT, a gantry based micro-CT scanner with variable magnification. HECTOR is a 240 kV 280 W system with a nominal resolution of 4 micrometer. A 40x40 cm² flat panel detector which can be tiled res...

  8. Clinical micro-CT for dental imaging

    Science.gov (United States)

    Youn, Hanbean; Cho, Min Kook; Shon, Cheol-Soon; Cho, Bong Hae; Kim, Chang Hyuk; Kim, Ho Kyung

    2009-02-01

    We exploit the development of a clinical computed microtomography (micro-CT) system for dental imaging. While the conventional dental CT simply serves implant treatment, the clinical dental micro-CT may provide clinicians with a histologic evaluation. To investigate the feasibility of the realization of a dental micro-CT, we have constructed an experimental test system which mainly consists of a microfocus x-ray source, a rotational subject holder, and a flat-panel detector. The flat-panel detector is based on a matrix-addressed photodiode array coupled to a CsI:Tl scintillator. The detective quantum efficiency (DQE) of the detector was measured as a function of magnification based on the measured modulation-transfer function (MTF) and noise-power spectrum (NPS). The best MTF and DQE performances were achieved at the magnification factor of 3. Similar tendency of the spatial resolving power in tomography was also observed with a wire phantom having a 25 μm diameter. From the investigation of tomographs reconstructed from a humanoid skull phantom, the application of magnification in the system largely reduced both signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for a fixed dose at the entrance surface of the detector, 1.2 mGy, while this setup increased the dose at the object plane from 4.7 mGy to 19.1 mGy for the magnification factor from 2 to 4, respectively. Although the quantum mottles at the high magnification factor tackled the practical use in the clinic, the information contained in the magnified CT images was quite promising.

  9. Comparative study of two flat-panel x-ray detectors applied to small-animal imaging cone-beam micro-CT

    OpenAIRE

    2008-01-01

    Proceeding of: 2008 IEEE Nuclear Science Symposium Conference Record (NSS '08), Dresden, Germany, 19-25 Oct. 2008 This work compares two different X-ray flat-panel detectors for its use in high-speed, cone-beam CT applied to small-animal imaging. The main differences between these two devices are the scintillators and the achievable frame rate. Both devices have been tested in terms of system linearity, sensitivity, resolution, stability and noise properties, taking into account the dif...

  10. Recent micro-CT scanner developments at UGCT

    Energy Technology Data Exchange (ETDEWEB)

    Dierick, Manuel, E-mail: Manuel.Dierick@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van Loo, Denis, E-mail: info@XRE.be [XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Masschaele, Bert [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van den Bulcke, Jan [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Van Acker, Joris, E-mail: Joris.VanAcker@UGent.be [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Cnudde, Veerle, E-mail: Veerle.Cnudde@UGent.be [UGCT-SGIG, Department of Geology and Soil Science, Faculty of Sciences, Ghent University, Krijgslaan 281, S8, 9000 Ghent (Belgium); Van Hoorebeke, Luc, E-mail: Luc.VanHoorebeke@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium)

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography ( (www.ugct.ugent.be)) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kV{sub max}) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  11. Recent micro-CT scanner developments at UGCT

    Science.gov (United States)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  12. 4D micro-CT using fast prospective gating

    Science.gov (United States)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  13. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM).

    Science.gov (United States)

    Bera, Bijoyendra; Mitra, Sushanta K; Vick, Douglas

    2011-07-01

    Berea sandstone is the building block for reservoirs containing precious hydrocarbon fuel. In this study, we comprehensively reveal the microstructure of Berea sandstone, which is often treated as a porous material with interconnected micro-pores of 2-5 μm. This has been possible due to the combined application of micro-computed tomography (CT) and focused ion beam (FIB)-scanning electron microscopy (SEM) on a Berea sample. While the use of micro-CT images are common for geological materials, the clubbing and comparison of tomography on Berea with state-of-the-art microstructure imaging techniques like FIB-SEM reveals some unforeseen features of Berea microstructure. In particular, for the first time FIB-SEM has been used to understand the micro-structure of reservoir rock material like Berea sandstone. By using these characterization tools, we are able to show that the micro-pores (less than 30 μm) are absent below the solid material matrix, and that it has small interconnected pores (30-40 μm) and large crater-like voids (100-250 μm) throughout the bulk material. Three-dimensional pore space reconstructions have been prepared from the CT images. Accordingly, characterization of Berea sandstone specimen is performed by calculation of pore-structure volumes and determination of porosity values.

  14. Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Cao Guohua; Burk, Laurel M.; Lee, Yueh Z.; Calderon-Colon, Xiomara; Sultana, Shabana; Lu Jianping; Zhou, Otto [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 and Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States) and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States) and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2010-10-15

    Purpose: Carbon nanotube (CNT) based field emission x-ray source technology has recently been investigated for diagnostic imaging applications because of its attractive characteristics including electronic programmability, fast switching, distributed source, and multiplexing. The purpose of this article is to demonstrate the potential of this technology for high-resolution prospective-gated cardiac micro-CT imaging. Methods: A dynamic cone-beam micro-CT scanner was constructed using a rotating gantry, a stationary mouse bed, a flat-panel detector, and a sealed CNT based microfocus x-ray source. The compact single-beam CNT x-ray source was operated at 50 KVp and 2 mA anode current with 100 {mu}mx100 {mu}m effective focal spot size. Using an intravenously administered iodinated blood-pool contrast agent, prospective cardiac and respiratory-gated micro-CT images of beating mouse hearts were obtained from ten anesthetized free-breathing mice in their natural position. Four-dimensional cardiac images were also obtained by gating the image acquisition to different phases in the cardiac cycle. Results: High-resolution CT images of beating mouse hearts were obtained at 15 ms temporal resolution and 6.2 lp/mm spatial resolution at 10% of system MTF. The images were reconstructed at 76 {mu}m isotropic voxel size. The data acquisition time for two cardiac phases was 44{+-}9 min. The CT values observed within the ventricles and the ventricle wall were 455{+-}49 and 120{+-}48 HU, respectively. The entrance dose for the acquisition of a single phase of the cardiac cycle was 0.10 Gy. Conclusions: A high-resolution dynamic micro-CT scanner was developed from a compact CNT microfocus x-ray source and its feasibility for prospective-gated cardiac micro-CT imaging of free-breathing mice under their natural position was demonstrated.

  15. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  16. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  17. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  18. Acoustic emissions in rock deformation experiments under micro-CT

    Science.gov (United States)

    Tisato, Nicola; Goodfellow, Sebastian D.; Moulas, Evangelos; Di Toro, Giulio; Young, Paul; Grasselli, Giovanni

    2016-04-01

    The study of acoustic emissions (AE) generated by rocks undergoing deformation has become, in the last decades, one of the most powerful tools for boosting our understanding of the mechanisms which are responsible for rock failures. AE are elastic waves emitted by the local failure of micro- or milli-metric portions of the tested specimen. At the same time, X-ray micro computed tomography (micro-CT) has become an affordable, reliable and powerful tool for imaging the internal structure of rock samples. In particular, micro-CT coupled with a deformation apparatus offers the unique opportunity for observing, without perturbing, the sample while the deformation and the formation of internal structures, such as shear bands, is ongoing. Here we present some preliminary results gathered with an innovative apparatus formed by the X-ray transparent pressure vessel called ERDμ equipped with AE sensors, an AE acquisition system and a micro-CT apparatus available at the University of Toronto. The experiment was performed on a 12 mm diameter 36 mm long porous glass sample which was cut on a 60 deg inclined plane (i.e. saw-cut sample). Etna basaltic sand with size ~1 mm was placed between the two inclined faces forming an inclined fault zone with ~2 mm thickness. The sample assembly was jacketed with a polyefin shrink tube and two AE sensors were glued onto the glass samples above and below the fault zone. The sample was then enclosed in the pressure vessel and confined with compressed air up to 3 MPa. A third AE sensor was placed outside the vessel. The sample was saturated with water and AE were generated by varying the fluid and confining pressure or the vertical force, causing deformations concentrated in the fault zone. Mechanical data and AE traces were collected throughout the entire experiment which lasted ~24 hours. At the same time multiple micro-CT 3D datasets and 2D movie-radiographies were collected, allowing the 3D reconstruction of the deformed sample at

  19. 4D micro-CT for cardiac and perfusion applications with view under sampling

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Cristian T; Johnston, Samuel M; Qi Yi; Johnson, G Allan, E-mail: Cristian.Badea@duke.edu [Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710 (United States)

    2011-06-07

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  20. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  1. 4-D Micro-CT of the Mouse Heart

    Directory of Open Access Journals (Sweden)

    Cristian T. Badea

    2005-04-01

    Full Text Available Purpose: Demonstrate noninvasive imaging methods for in vivo characterization of cardiac structure and function in mice using a micro-CT system that provides high photon fluence rate and integrated motion control. Materials and Methods: Simultaneous cardiac- and respiratory-gated micro-CT was performed in C57BL/6 mice during constant intravenous infusion of a conventional iodinated contrast agent (Isovue-370, and after a single intravenous injection of a blood pool contrast agent (Fenestra VC. Multiple phases of the cardiac cycle were reconstructed with contrast to noise and spatial resolution sufficient for quantitative assessment of cardiac function. Results: Contrast enhancement with Isovue-370 increased over time with a maximum of ~500 HU (aorta and 900 HU (kidney cortex. Fenestra VC provided more constant enhancement over 3 hr, with maximum enhancement of ~620 HU (aorta and ~90 HU (kidney cortex. The maximum enhancement difference between blood and myocardium in the heart was ~250 HU for Isovue-370 and ~500 HU for Fenestra VC. In mice with Fenestra VC, volumetric measurements of the left ventricle were performed and cardiac function was estimated by ejection fraction, stroke volume, and cardiac output. Conclusion: Image quality with Fenestra VC was sufficient for morphological and functional studies required for a standardized method of cardiac phenotyping of the mouse.

  2. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  3. Small animal micro-CT colonography.

    Science.gov (United States)

    Durkee, Benjamin Y; Weichert, Jamey P; Halberg, Richard B

    2010-01-01

    Microcomputed tomography colonography (mCTC) is a new method for detecting colonic tumors in living animals and estimating their volume, which allows investigators to determine the spontaneous fate of individually annotated tumors as well as their response to chemotherapeutics. This imaging platform was developed using the Min mouse, but is applicable to any murine model of human colorectal cancer. MicroCT is capable of 20 micron resolution, however, 100 microns is sufficient for this application. Scan quality is primarily dependent on animal preparation with the most critical parameters being proper anesthesia, bowel cleansing, and sufficient insufflation. The detection of colonic tumors is possible by both 2D and 3D rendering of image data. Tumor volume is estimated using a semi-automated five-step process which is based on three algorithms within the Amira software package. The estimates are precise, accurate and reproducible enabling changes in volume as small as 16% to be readily observed. Confirmation of mCTC observations by gross examination and histology is sometimes useful in this otherwise non-invasive protocol. Finally, mCTC is compared to other newly developed small animal imaging platforms including microMRI and microoptical colonoscopy. A major advantage of these platforms is that investigators can be perform longitudinal studies, which often have much greater statistical power than traditional cross-sectional studies; consequently, fewer animals are required for testing.

  4. MicroCT vs. Hg porosimetry: microporosity in commercial stones

    Science.gov (United States)

    Fusi, N.; Martinez-Martinez, J.; Barberini, V.; Galimberti, L.

    2009-04-01

    have been cut and scanned by means of a X ray microCT system before and after mercury saturation with Hg porosimeter. The microCT system used is a BIR Actis 130/150 with nominal resolution of 5 micron; for our samples resolution is of 25 microns. Generator and detector are fixed, while the sample rotates; the scanning plane is horizontal. Samples reduce the X rays energy passing through, as a function of its density and atomic number. X rays are then collected on a detector, which converts them into light radiations; a digital camera collects light radiations in raw data and send them to the computer, where they are processed as black/white images. The Hg porosimeter used is a Pascal 140/240 Thermo Fisher. Samples were first degassed and then intruded by Hg. Apparent density, bulk density, porosity and open pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample have been computed using the PASCAL (Pressurization with Automatic Speed-up by Continuous Adjustametnt Logic) method and the Washburn equation; this equation assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a surface tension of mercury vacuum of 0,480 N/m and mercury density equal to 13.5 g/cm³. MicroCT images and porosity data from Hg porosimeter have been compared by several authors both for rocks (Klobes et alii, 1997) and for artificial materials with medical applications (Lin-Gibson et alii, 2007) In samples with no density/composition differences microCT images are homogeneous and gives no information on the internal structure of the sample. This is the case of massive samples (such as BA, BT, GM and TB) and of samples without any significant density differences between clasts and matrix (A and BS) or rock and veins (RC). MicroCT images of the same sample after mercury saturation offer a detailed map of microporosity of the rock, due to the high density contrast between mercury (13.6 g/cm3) and the rock (2.71 g/cm3 for calcite and 2.86 g/cm3 for

  5. Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system using propagation-based phase retrieval.

    Science.gov (United States)

    Bidola, P; Morgan, K; Willner, M; Fehringer, A; Allner, S; Prade, F; Pfeiffer, F; Achterhold, K

    2017-02-09

    Several dedicated commercial lab-based micro-computed tomography (μCT) systems exist, which provide high-resolution images of samples, with the capability to also deliver in-line phase contrast. X-ray phase contrast is particularly beneficial when visualizing very small features and weakly absorbing samples. The raw measured projections will include both phase and absorption effects. Extending our previous work that addressed the optimization of experimental conditions at the commercial ZEISS Xradia 500 Versa system, single-distance phase-contrast imaging is demonstrated on complex biological and material samples. From data captured at this system, we demonstrate extraction of the phase signal or the correction of the mixed image for the phase shift, and show how this procedure increases the contrast and removes artefacts. These high-quality images, measured without the use of a synchrotron X-ray source, demonstrate that highly sensitive, micrometre-resolution imaging of 3D volumes is widely accessible using commercially advanced laboratory devices.

  6. Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age.

    Science.gov (United States)

    Maggiano, Isabel S; Maggiano, Corey M; Clement, John G; Thomas, C David L; Carter, Yasmin; Cooper, David M L

    2016-05-01

    interpretation of morphological variants of osteons in cross-sectional microscopy. Permitting visibility of reversal lines, synchrotron radiation-based micro-CT is a valuable tool for the reconstruction of Haversian systems, and future analyses have the potential to further improve understanding of various important aspects of bone growth, maintenance and health.

  7. Micro CT settings for caries detection: how to optimize.

    Directory of Open Access Journals (Sweden)

    Chaiben CL

    2015-11-01

    Full Text Available Some important items that can influence micro CT image were reviewed in this study. Different settings were optimized for the assessment of early caries lesions. There are several researches on bone using micro CT but not too much on dental hard tissues when assessing mineral loss. Different kinds of micro CT devices and technologies are taking place today, each requiring unique settings, and this consists one of the greatest obstacles for the use of micro CT on dental hard tissues. Achieving the settings for an ideal dental image is therefore a challenge. The purpose of this study was to evaluate different micro CT settings to optimize the assessment of early caries lesions aiming the integrity of the dental specimen thus, making possible to reuse it for further studies. Three teeth with early caries lesions were submitted to different micro CT settings and different reconstruction settings, aiming a better image. The final image was compared visually through different densities and attenuation coefficients. The best setting for teeth tissues was achieved regarding contrast, definition, noise reduction and the larger difference between sound enamel and early lesions attenuation coefficient.

  8. A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source.

    Science.gov (United States)

    Cao, G; Lee, Y Z; Peng, R; Liu, Z; Rajaram, R; Calderon-Colon, X; An, L; Wang, P; Phan, T; Sultana, S; Lalush, D S; Lu, J P; Zhou, O

    2009-04-21

    Current commercial micro-CT scanners have the capability of imaging objects ex vivo with high spatial resolution, but performing in vivo micro-CT on free-breathing small animals is still challenging because their physiological motions are non-periodic and much faster than those of humans. In this paper, we present a prototype physiologically gated micro-computed tomography (micro-CT) scanner based on a carbon nanotube field emission micro-focus x-ray source. The novel x-ray source allows x-ray pulses and imaging sequences to be readily synchronized and gated to non-periodic physiological signals from small animals. The system performance is evaluated using phantoms and sacrificed and anesthetized mice. Prospective respiratory-gated micro-CT images of anesthetized free-breathing mice were collected using this scanner at 50 ms temporal resolution and 6.2 lp mm(-1) at 10% system MTF. The high spatial and temporal resolutions of the micro-CT scanner make it well suited for high-resolution imaging of free-breathing small animals.

  9. 4D micro-CT for cardiac and perfusion applications with view under sampling

    Science.gov (United States)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  10. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Haksoo; Welford, Scott [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W., E-mail: jason.sohn@case.edu [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106 (United States); Sloan, Andrew [Department of Neurosurgery, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm

  11. 4D micro-CT-based perfusion imaging in small animals

    Science.gov (United States)

    Badea, C. T.; Johnston, S. M.; Lin, M.; Hedlund, L. W.; Johnson, G. A.

    2009-02-01

    Quantitative in-vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in rodents. We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first-pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that the same time density curves can be reproduced in a number of consecutive, small (i.e. 50μL) injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system, with a micro-injector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LabVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a GPU. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution of 140 ms and reconstructed voxels of 88 μm. The approach can be readily extended to a wide range of important preclinical models, such as tumor perfusion and angiogenesis, and renal function.

  12. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Science.gov (United States)

    Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pictures of structures inside of the body. Combining micro-CT with Digital Video Library systems, and linking this to Big Data, will change the way researchers, entomologist, and the public search and use anato...

  13. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Général Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loïc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, François [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

    2013-12-15

    -like phantom. OSLDs exhibited a reproducibility of 2.4% and good linearity was found between 60 and 450 mGy. The energy scaling factor was calculated to be between 1.80 ± 0.16 and 1.86 ± 0.16, depending on protocol used. In phantoms, mean doses to tissue over a whole-body CT examination were ranging from 186.4 ± 7.6 to 234.9 ± 7.1 mGy. In mice, mean doses to tissue in the mouse trunk (thorax, abdomen, pelvis, and flanks) were between 213.0 ± 17.0 and 251.2 ± 13.4 mGy. Skin doses (3 OSLDs) were much higher with average doses between 350.6 ± 25.3 and 432.5 ± 34.1 mGy. The dose delivered during a topogram was found to be below 10 mGy. Use of the multimouse bed of the system gave a significantly 20%–40% lower dose per animal (p < 0.05).Conclusions: Absorbed doses in micro-CT were found to be relatively high. In micro-SPECT/CT imaging, the micro-CT unit is mainly used to produce a localization frame. As a result, users should pay attention to adjustable CT parameters so as to minimize the radiation dose and avoid any adverse radiation effects which may interfere with biological parameters studied.

  14. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  15. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology

    Directory of Open Access Journals (Sweden)

    Marcia Borba

    2013-09-01

    Full Text Available The objective of the study was to measure the marginal and internal fit of zirconia-based all-ceramic three-unit fixed partial dentures (FPDs (Y-TZP - LAVA, 3M-ESPE, using a novel methodology based on micro-computed tomography (micro-CT technology. Stainless steel models of prepared abutments were fabricated to design FPDs. Ten frameworks were produced with 9 mm2 connector cross-sections using a LAVATM CAD-CAM system. All FPDs were veneered with a compatible porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sectional images. Five measuring points were selected, as follows: MG - marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. Results were statistically analyzed by Kruskall-Wallis and Tukey's post hoc test (α= 0.05. There were significant differences for the gap width between the measurement points evaluated. MG showed the smallest median gap width (42 µm. OA had the highest median gap dimension (125 µm, followed by the AOT point (105 µm. CA and AW gap width values were statistically similar, 66 and 65 µm respectively. Thus, it was possible to conclude that different levels of adaptation were observed within the FPD, at the different measuring points. In addition, the micro-CT technology seems to be a reliable tool to evaluate the fit of dental restorations.

  16. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Marcia; Bona, Alvaro Della, E-mail: marcia_borb@hotmail.com [Universidade de Passo Fundo (UPF), RS (Brazil). Fac. de Odontologia; Miranda Junior, Walter Gomes; Cesar, Paulo Francisco [Universidade de Sao Paulo (USP), SP (Brazil). Fac. de Odontologia. Dept. de Biomateriais e Bioquimica Oral; Griggs, Jason Allan [Department of Biomedical Materials Science, Dental School, University of Mississippi Medical Center - UMMC, Jackson, MS (United States)

    2013-09-15

    The objective of the study was to measure the marginal and internal fit of zirconia-based all-ceramic three-unit fixed partial dentures (FPDs) (Y-TZP - LAVA, 3M-ESPE), using a novel methodology based on micro-computed tomography (micro-CT) technology. Stainless steel models of prepared abutments were fabricated to design FPDs. Ten frameworks were produced with 9 mm² connector cross-sections using a LAVA® CAD-CAM system. All FPDs were veneered with a compatible porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross sectional images. Five measuring points were selected, as follows: MG- marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. Results were statistically analyzed by Kruskall-Wallis and Tukey's post hoc test (α = 0.05). There were significant differences for the gap width between the measurement points evaluated. MG showed the smallest median gap width (42 μm). OA had the highest median gap dimension (125 μm), followed by the AOT point (105 μm). CA and AW gap width values were statistically similar, 66 and 65 μm respectively. Thus, it was possible to conclude that different levels of adaptation were observed within the FPD, at the different measuring points. In addition, the micro-CT technology seems to be a reliable tool to evaluate the fit of dental restorations. (author)

  17. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  18. Rotational micro-CT using a clinical C-arm angiography gantry

    Energy Technology Data Exchange (ETDEWEB)

    Patel, V.; Hoffmann, K. R.; Ionita, C. N.; Keleshis, C.; Bednarek, D. R.; Rudin, S. [Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, Department of Physics, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Computer Science, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physics, and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2008-10-15

    Rotational angiography (RA) gantries are used routinely to acquire sequences of projection images of patients from which 3D renderings of vascular structures are generated using Feldkamp cone-beam reconstruction algorithms. However, these systems have limited resolution (<4 lp/mm). Micro-computed tomography (micro-CT) systems have better resolution (>10 lp/mm) but to date have relied either on rotating object imaging or small bore geometry for small animal imaging, and thus are not used for clinical imaging. The authors report here the development and use of a 3D rotational micro-angiography (RMA) system created by mounting a micro-angiographic fluoroscope (MAF) [35 {mu}m pixel, resolution >10 lp/mm, field of view (FOV)=3.6 cm] on a standard clinical FPD-based RA gantry (Infinix, Model RTP12303J-G9E, Toshiba Medical Systems Corp., Tustin, CA). RA image sequences are obtained using the MAF and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to MAF acquisition) full-FOV (FFOV) FPD RA sequences (194 {mu}m pixel, FOV=20 cm) were also obtained to complete the missing data. The RA gantry was calibrated using a helical bead phantom. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF were aligned spatially with the lower-dose FPD images, and the pixel values in the FPD image data were scaled to match those of the MAF. Images of a rabbit with a coronary stent placed in an artery in the Circle of Willis were obtained and reconstructed. The MAF images appear well aligned with the FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97, respectively) Greater details without any visible truncation artifacts are seen in 3D RMA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 {mu}m diameter) are approximately 192{+-}21 and 313{+-}38 {mu}m for the 3D RMA and FPD data, respectively. In addition, for the dual-acquisition 3D RMA

  19. Beam Synchronous Timing Systems

    CERN Document Server

    Peters, A

    2003-01-01

    For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.

  20. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  1. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    Directory of Open Access Journals (Sweden)

    Laurel M Burk

    Full Text Available We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic

  2. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain, E-mail: aseret@ulg.ac.be [Cyclotron Research Centre, University of Liège, Sart Tilman B30, Liège 4000 (Belgium)

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  3. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Lung; Min, Hooney [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Befera, Nicholas; Clark, Darin; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Das, Shiva [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Johnson, G. Allan; Badea, Cristian T. [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G., E-mail: david.kirsch@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-03-01

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches

  4. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  5. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.

    Science.gov (United States)

    Renghini, Chiara; Komlev, Vladimir; Fiori, Fabrizio; Verné, Enrica; Baino, Francesco; Vitale-Brovarone, Chiara

    2009-05-01

    The aim of this study was the preparation and characterization of bioactive glass-ceramic scaffolds for bone tissue engineering. For this purpose, a glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O (CEL2) was used. The sponge-replication method was adopted to prepare the scaffolds; specifically, a polymeric skeleton was impregnated with a slurry containing CEL2 powder, polyvinyl alcohol (PVA) as a binding agent and distilled water. The impregnated sponge was then thermally treated to remove the polymeric phase and to sinter the inorganic one. The obtained scaffolds possessed an open and interconnected porosity, analogous to cancellous bone texture, and with a mechanical strength above 2 MPa. Moreover, the scaffolds underwent partial bioresorption due to ion-leaching phenomena. This feature was investigated by X-ray computed microcomputed tomography (micro-CT). Micro-CT is a three-dimensional (3-D) radiographic imaging technique, able to achieve a spatial resolution close to 1 microm(3). The use of synchrotron radiation allows the selected photon energy to be tuned to optimize the contrast among the different phases in the investigated samples. The 3-D scaffolds were soaked in a simulated body fluid (SBF) to study the formation of hydroxyapatite microcrystals on the scaffold struts and on the internal pore walls. The 3-D scaffolds were also soaked in a buffer solution (Tris-HCl) for different times to assess the scaffold bioresorption according to the ISO standard. A gradual resorption of the pores walls was observed during the soakings both in SBF and in Tris-HCl.

  6. Automatic quantification of neo-vasculature from micro-CT

    Science.gov (United States)

    Mallya, Yogish; Narayanan, A. K.; Zagorchev, Lyubomir

    2009-02-01

    Angiogenesis is the process of formation of new blood vessels as outgrowths of pre-existing ones. It occurs naturally during development, tissue repair, and abnormally in pathologic diseases such as cancer. It is associated with proliferation of blood vessels/tubular sprouts that penetrate deep into tissues to supply nutrients and remove waste products. The process starts with migration of endothelial cells. As the cells move towards the target area they form small tubular sprouts recruited from the parent vessel. The sprouts grow in length due to migration, proliferation, and recruitment of new endothelial cells and the process continues until the target area becomes fully vascular. Accurate quantification of sprout formation is very important for evaluation of treatments for ischemia as well as angiogenesis inhibitors and plays a key role in the battle against cancer. This paper presents a technique for automatic quantification of newly formed blood vessels from Micro-CT volumes of tumor samples. A semiautomatic technique based on interpolation of Bezier curves was used to segment out the cancerous growths. Small vessels as determined by their diameter within the segmented tumors were enhanced and quantified with a multi-scale 3-D line detection filter. The same technique can be easily extended for quantification of tubular structures in other 3-D medical imaging modalities. Experimental results are presented and discussed.

  7. Measurement of the spatial resolution and the relative density resolution in an industrial cone-beam micro computed tomography system

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Fang; QUE Jie-Min; CAO Da-Quan; SUN Cui-Li; ZHAO Wei; WEI Cun-Feng; SHI Rong-Jian

    2013-01-01

    The spatial resolution and the relative density resolution are the two most critical indicators in CT system.The method recommended in the ASTM E1695-95 and GJB 5311-2004 is only suitable to the fan-beam CT system.In this paper,for industrial cone-beam micro CT system,we will adopt the edge response function (ERF) created by the step edges of a steel ball to measure the system 3D PSF and MTF.To describe the contrast discrimination function more accurately,we will first propose to extend the two-dimensional measurement region to the three-dimensional space.Our experimental spatial resolution is (55.56±0.56) lp/mm and the relative density resolution is 1% within 300 μm×300 μm×300 μm according to the 3σ rule.

  8. A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating

    Science.gov (United States)

    Badea, Cristian T.; Schreibmann, Eduard; Fox, Tim

    2008-01-01

    Recent advances in murine cardiac studies with three-dimensional cone beam micro-computed tomography (CT) have used either prospective or retrospective gating technique. While prospective gating ensures the best image quality and the highest resolution, it involves longer sampling times and higher radiation dose. Sampling is faster and the radiation dose can be reduced with retrospective gating but the image quality is affected by the limited number of projections with an irregular angular distribution which complicate the reconstruction process, causing significant streaking artifacts. This work involves both prospective and retrospective gating in sampling. Deformable registration is used between a high quality image set acquired with prospective gating with the multiple data sets during the cardiac cycle obtained using retrospective gating. Tests were conducted on a four-dimensional (4D) cardiac mouse phantom and after optimization, the method was applied to in vivo cardiac micro-CT data. Results indicate that, by using our method, the sampling time can be reduced by a factor of 2.5 and the radiation dose can be reduced 35% compared to the prospective sampling while the image quality can be maintained. In conclusion, we proposed a novel solution to 4D cine cardiac micro-CT based on a combined prospective with retrospective gating in sampling and deformable registration post reconstruction that mixed the advantages of both strategies. PMID:18491508

  9. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    Science.gov (United States)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  10. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    Science.gov (United States)

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand

    2016-04-01

    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90

  11. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Cuif, J.-P. [UMR IDES 8148, Universite Paris XI-Orsay, 91405 Orsay cedex (France); Pichon, L. [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Vaubaillon, S. [CEA, INSTN, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Dambricourt Malasse, A. [Departement de Prehistoire, Museum national d' Histoire naturelle, UMR 7194 - CNRS, Institut de Paleontologie Humaine, 1, rue Rene Panhard, 75013 Paris (France); Abel, R.L. [The Natural History Museum, London (United Kingdom)

    2012-02-15

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by {sup 14}C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before {sup 14}C dating.

  12. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  13. Methods of in-vivo mouse lung micro-CT

    Science.gov (United States)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  14. Performance evaluation of the General Electric eXplore CT 120 micro-CT using the vmCT phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, M.A., E-mail: M.Bahri@ulg.ac.be [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Warnock, G.; Plenevaux, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Choquet, P.; Constantinesco, A. [Biophysique et Medecine Nucleaire, Hopitaux universitaires de Strasbourg, Strasbourg (France); Salmon, E.; Luxen, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Seret, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); ULg-Liege University, Experimental Medical Imaging, Liege (Belgium)

    2011-08-21

    The eXplore CT 120 is the latest generation micro-CT from General Electric. It is equipped with a high-power tube and a flat-panel detector. It allows high resolution and high contrast fast CT scanning of small animals. The aim of this study was to compare the performance of the eXplore CT 120 with that of the eXplore Ultra, its predecessor for which the methodology using the vmCT phantom has already been described . The phantom was imaged using typical a rat (fast scan or F) or mouse (in vivo bone scan or H) scanning protocols. With the slanted edge method, a 10% modulation transfer function (MTF) was observed at 4.4 (F) and 3.9-4.4 (H) mm{sup -1} corresponding to 114 {mu}m resolution. A fairly larger MTF was obtained by the coil method with the MTF for the thinnest coil (3.3 mm{sup -1}) equal to 0.32 (F) and 0.34 (H). The geometric accuracy was better than 0.3%. There was a highly linear (R{sup 2}>0.999) relationship between measured and expected CT numbers for both the CT number accuracy and linearity sections of the phantom. A cupping effect was clearly seen on the uniform slices and the uniformity-to-noise ratio ranged from 0.52 (F) to 0.89 (H). The air CT number depended on the amount of polycarbonate surrounding the area where it was measured; a difference as high as approximately 200 HU was observed. This hindered the calibration of this scanner in HU. This is likely due to the absence of corrections for beam hardening and scatter in the reconstruction software. However in view of the high linearity of the system, the implementation of these corrections would allow a good quality calibration of the scanner in HU. In conclusion, the eXplore CT 120 achieved a better spatial resolution than the eXplore Ultra (based on previously reported specifications) and future software developments will include beam hardening and scatter corrections that will make the new generation CT scanner even more promising.

  15. Present and future in the use of micro-CT scanner 3D analysis for the study of dental and root canal morphology

    Directory of Open Access Journals (Sweden)

    Nicola M. Grande

    2012-01-01

    Full Text Available The goal of the present article is to illustrate and analyze the applications and the potential of microcomputed tomography (micro-CT in the analysis of tooth anatomy and root canal morphology. The authors performed a micro-CT analysis of the following different teeth: maxillary first molars with a second canal in the mesiobuccal (MB root, mandibular first molars with complex anatomy in the mesial root, premolars with single and double roots and with complicated apical anatomy. The hardware device used in this study was a desktop X-ray microfocus CT scanner (SkyScan 1072, SkyScan bvba, Aartselaar, Belgium. A specific software ResolveRT Amira (Visage Imaging was used for the 3D analysis and imaging. The authors obtained three-dimensional images from 15 teeth. It was possible to precisely visualize and analyze external and internal anatomy of teeth, showing the finest details. Among the 5 upper molars analyzed, in three cases, the MB canals joined into one canal, while in the other two molars the two mesial canals were separate. Among the lower molars two of the five samples exhibited a single canal in the mesial root, which had a broad, flat appearance in a mesiodistal dimension. In the five premolar teeth, the canals were independent; however, the apical delta and ramifications of the root canals were quite complex. Micro-CT offers a simple and reproducible technique for 3D noninvasive assessment of the anatomy of root canal systems.

  16. Present and future in the use of micro-CT scanner 3D analysis for the study of dental and root canal morphology.

    Science.gov (United States)

    Grande, Nicola M; Plotino, Gianluca; Gambarini, Gianluca; Testarelli, Luca; D'Ambrosio, Ferdinando; Pecci, Raffaella; Bedini, Rossella

    2012-01-01

    The goal of the present article is to illustrate and analyze the applications and the potential of microcomputed tomography (micro-CT) in the analysis of tooth anatomy and root canal morphology. The authors performed a micro-CT analysis of the following different teeth: maxillary first molars with a second canal in the mesiobuccal (MB) root, mandibular first molars with complex anatomy in the mesial root, premolars with single and double roots and with complicated apical anatomy. The hardware device used in this study was a desktop X-ray microfocus CT scanner (SkyScan 1072, SkyScan bvba, Aartselaar, Belgium). A specific software ResolveRT Amira (Visage Imaging) was used for the 3D analysis and imaging. The authors obtained three-dimensional images from 15 teeth. It was possible to precisely visualize and analyze external and internal anatomy of teeth, showing the finest details. Among the 5 upper molars analyzed, in three cases, the MB canals joined into one canal, while in the other two molars the two mesial canals were separate. Among the lower molars two of the five samples exhibited a single canal in the mesial root, which had a broad, flat appearance in a mesiodistal dimension. In the five premolar teeth, the canals were independent; however, the apical delta and ramifications of the root canals were quite complex. Micro-CT offers a simple and reproducible technique for 3D noninvasive assessment of the anatomy of root canal systems.

  17. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate o

  18. Efficient digitalization method for dental restorations using micro-CT data.

    Science.gov (United States)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-15

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  19. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    Science.gov (United States)

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  20. EXD HME MicroCT Data Acquisition, Processing and Data Request Overview

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isaac M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    This document is a short summary of the steps required for MicroCT evaluation of a specimen. This includes data acquisition through image analysis, for the EXD HME program. Expected outputs for each stage are provided. Data shall be shipped to LLNL as described herein.

  1. A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-CT Images

    Science.gov (United States)

    Yan, Dongmei; Zhang, Zhihong; Luo, Qingming; Yang, Xiaoquan

    2017-01-01

    With the development of hybrid imaging scanners, micro-CT is widely used in locating abnormalities, studying drug metabolism, and providing structural priors to aid image reconstruction in functional imaging. Due to the low contrast of soft tissues, segmentation of soft tissue organs from mouse micro-CT images is a challenging problem. In this paper, we propose a mouse segmentation scheme based on dynamic contrast enhanced micro-CT images. With a homemade fast scanning micro-CT scanner, dynamic contrast enhanced images were acquired before and after injection of non-ionic iodinated contrast agents (iohexol). Then the feature vector of each voxel was extracted from the signal intensities at different time points. Based on these features, the heart, liver, spleen, lung, and kidney could be classified into different categories and extracted from separate categories by morphological processing. The bone structure was segmented using a thresholding method. Our method was validated on seven BALB/c mice using two different classifiers: a support vector machine classifier with a radial basis function kernel and a random forest classifier. The results were compared to manual segmentation, and the performance was assessed using the Dice similarity coefficient, false positive ratio, and false negative ratio. The results showed high accuracy with the Dice similarity coefficient ranging from 0.709 ± 0.078 for the spleen to 0.929 ± 0.006 for the kidney. PMID:28060917

  2. Efficient digitalization method for dental restorations using micro-CT data

    Science.gov (United States)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-01-01

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method. PMID:28294188

  3. In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.

    Science.gov (United States)

    De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian

    2014-07-01

    Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology.

  4. The development and validation of micro-CT of large deep frozen specimens.

    Science.gov (United States)

    Kampschulte, Marian; Erdmann, Georg; Sender, Jonas; Martels, Gunhild; Böcker, Wolfgang; ElKhassawna, Thaqif; Heiß, Christian; Langheinrich, Alexanders Claus; Roeb, Elke; Roderfeld, Martin; Krombach, Gabriele Anja

    2015-01-01

    Repetitive freeze/thaw cycles lead to a progressive loss of structural and molecular integrity in deep frozen specimens. The aim of this study was to evaluate a micro-CT stage, which maintains the cryoconservation of large specimens throughout micro-CT imaging. Deep frozen ovine vertebral segments (-20 °C) were fixed in a micro-CT stage made of expanded polystyrene and cooled with dry ice (0 g, 60 g and 120 g). The temperature inside the stage was measured half-hourly over a time span of three hours with subsequent measurement of surface temperature. The method was validated in a series of 30 deep frozen vertebral specimens and in liver tissue after repetitive micro-CT scanning. Isolation without cooling resulted in defrosting. Cooling with 60 g of dry ice led to a temperature rise inside the stage (max. 5.1 °C) and on the specimen surfaces (max. -3 °C). Cooling with 120 g of dry ice resulted in a significant (p CT validation study did not exceed -16 °C (processing time 1 h 45 min). The resolution was 33 μm isotropic voxel side length, enabling a binarization of bone microstructures. Temperature can reliably be maintained below -10 °C during a micro-CT scan by applying the described technique. The resulting spatial resolution and image quality permits a binarization of bone microstructure.

  5. Micro CT imaging assessment for spatial distribution of magnetic nanoparticles in an ex vivo thrombolysis model

    Science.gov (United States)

    Wang, Fu-Sheng; Chao, Tsi-Chian; Tu, Shu-Ju

    2012-03-01

    In recent nanotechnology development, iron-based magnetic nanoparticles (MNPs) have been used in several investigations on biomedical research for small animal experiments. Their important applications include targeted drug delivery for therapeutic purpose, contrast agent for magnetic resonance imaging, and hyperthermia treatment for tumors. These MNPs can be guided by an external magnetic field due to their physical characteristics of superparamagnetism. In a recent report, authors indicated that covalently bound recombinant tissue plasminogen activator (rtPA) to MNP (MNPrtPA) with preserved enzyme activity may be guided by a bar magnet and induce target thrombolysis in an embolic model in rats. Delivery of rtPA by binding the thrombolytic drug to MNPs will improve the possibility of the drug to be delivered under magnetic guidance and retained in a local targeted area in the circulation system. In this work, an ex vivo intravascular thrombolysis model was developed to study the impact of external magnetic field on the penetration of MNP-rtPA in the blood clot samples. The samples were then scanned by a micro CT system for quantification. Images of MNPs show strong contrast with their surrounding blood clot materials. The optimum drug loading was found when 0.5 mg/ml rtPA is conjugated with 10 mg SiO2-MNP where 98% drug was attached to the carrier with full retention of its thrombolytic activity. Effective thrombolysis with tPA bound to SiO2-MNP under magnetic guidance was demonstrated in our ex vivo model where substantial reduction in time for blood clot lysis was observed compared with control groups without magnetic field application.

  6. Electrostatic ion beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Harper, G.C.; Curtis, W.D.

    1978-04-01

    An electrostatic scanning system has been designed and built to uniformly implant a 1 cm/sup 2/ sample with a charged particle beam. The full angular scan capability for a 2 MeV beam is 0.5 degrees at 6 kV p-p. The design of the system is extremely simple so it is very compact, easy to operate, and has shown very good reliability.

  7. Longitudinal study of a mouse model of chronic pulmonary inflammation using breath hold gated micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Artaechevarria, Xabier; Perez-Martin, Daniel; Munoz-Barrutia, Arrate; Ortiz-de-Solorzano, Carlos [Center for Applied Medical Research, University of Navarra, Cancer Imaging Laboratory, Oncology Division, Pamplona (Spain); Blanco, David; Biurrun, Gabriel de; Montuenga, Luis M. [Center for Applied Medical Research, University of Navarra, Biomarkers Laboratory, Pamplona (Spain); Torres, Juan P. de; Zulueta, Javier J. [Clinica Universidad de Navarra, Pneumology Department, Pamplona (Spain); Bastarrika, Gorka [Clinica Universidad de Navarra, Radiology Department, Pamplona (Spain)

    2010-11-15

    To evaluate the feasibility of using automatic quantitative analysis of breath hold gated micro-CT images to detect and monitor disease in a mouse model of chronic pulmonary inflammation, and to compare image-based measurements with pulmonary function tests and histomorphometry. Forty-nine A/J mice were used, divided into control and inflammation groups. Chronic inflammation was induced by silica aspiration. Fourteen animals were imaged at baseline, and 4, 14, and 34 weeks after silica aspiration, using micro-CT synchronized with ventilator-induced breath holds. Lung input impedance was measured as well using forced oscillation techniques. Five additional animals from each group were killed after micro-CT for comparison with histomorphometry. At all time points, micro-CT measurements show statistically significant differences between the two groups, while first differences in functional test parameters appear at 14 weeks. Micro-CT measurements correlate well with histomorphometry and discriminate diseased and healthy groups better than functional tests. Longitudinal studies using breath hold gated micro-CT are feasible on the silica-induced model of chronic pulmonary inflammation, and automatic measurements from micro-CT images correlate well with histomorphometry, being more sensitive than functional tests to detect lung damage in this model. (orig.)

  8. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  9. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT.

    Science.gov (United States)

    Clark, Darin P; Ghaghada, Ketan; Moding, Everett J; Kirsch, David G; Badea, Cristian T

    2013-03-21

    Tumor blood volume and vascular permeability are well established indicators of tumor angiogenesis and important predictors in cancer diagnosis, planning and treatment. In this work, we establish a novel preclinical imaging protocol which allows quantitative measurement of both metrics simultaneously. First, gold nanoparticles are injected and allowed to extravasate into the tumor, and then liposomal iodine nanoparticles are injected. Combining a previously optimized dual energy micro-CT scan using high-flux polychromatic x-ray sources (energies: 40 kVp, 80 kVp) with a novel post-reconstruction spectral filtration scheme, we are able to decompose the results into 3D iodine and gold maps, allowing simultaneous measurement of extravasated gold and intravascular iodine concentrations. Using a digital resolution phantom, the mean limits of detectability (mean CNR = 5) for each element are determined to be 2.3 mg mL(-1) (18 mM) for iodine and 1.0 mg mL(-1) (5.1 mM) for gold, well within the observed in vivo concentrations of each element (I: 0-24 mg mL(-1), Au: 0-9 mg mL(-1)) and a factor of 10 improvement over the limits without post-reconstruction spectral filtration. Using a calibration phantom, these limits are validated and an optimal sensitivity matrix for performing decomposition using our micro-CT system is derived. Finally, using a primary mouse model of soft-tissue sarcoma, we demonstrate the in vivo application of the protocol to measure fractional blood volume and vascular permeability over the course of five days of active tumor growth.

  10. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT

    Science.gov (United States)

    Clark, Darin P.; Ghaghada, Ketan; Moding, Everett J.; Kirsch, David G.; Badea, Cristian T.

    2013-03-01

    Tumor blood volume and vascular permeability are well established indicators of tumor angiogenesis and important predictors in cancer diagnosis, planning and treatment. In this work, we establish a novel preclinical imaging protocol which allows quantitative measurement of both metrics simultaneously. First, gold nanoparticles are injected and allowed to extravasate into the tumor, and then liposomal iodine nanoparticles are injected. Combining a previously optimized dual energy micro-CT scan using high-flux polychromatic x-ray sources (energies: 40 kVp, 80 kVp) with a novel post-reconstruction spectral filtration scheme, we are able to decompose the results into 3D iodine and gold maps, allowing simultaneous measurement of extravasated gold and intravascular iodine concentrations. Using a digital resolution phantom, the mean limits of detectability (mean CNR = 5) for each element are determined to be 2.3 mg mL-1 (18 mM) for iodine and 1.0 mg mL-1 (5.1 mM) for gold, well within the observed in vivo concentrations of each element (I: 0-24 mg mL-1, Au: 0-9 mg mL-1) and a factor of 10 improvement over the limits without post-reconstruction spectral filtration. Using a calibration phantom, these limits are validated and an optimal sensitivity matrix for performing decomposition using our micro-CT system is derived. Finally, using a primary mouse model of soft-tissue sarcoma, we demonstrate the in vivo application of the protocol to measure fractional blood volume and vascular permeability over the course of five days of active tumor growth.

  11. Experimental validation of a rapid Monte Carlo based micro-CT simulator

    Science.gov (United States)

    Colijn, A. P.; Zbijewski, W.; Sasov, A.; Beekman, F. J.

    2004-09-01

    We describe a newly developed, accelerated Monte Carlo simulator of a small animal micro-CT scanner. Transmission measurements using aluminium slabs are employed to estimate the spectrum of the x-ray source. The simulator incorporating this spectrum is validated with micro-CT scans of physical water phantoms of various diameters, some containing stainless steel and Teflon rods. Good agreement is found between simulated and real data: normalized error of simulated projections, as compared to the real ones, is typically smaller than 0.05. Also the reconstructions obtained from simulated and real data are found to be similar. Thereafter, effects of scatter are studied using a voxelized software phantom representing a rat body. It is shown that the scatter fraction can reach tens of per cents in specific areas of the body and therefore scatter can significantly affect quantitative accuracy in small animal CT imaging.

  12. A method to quantify and visualize femoral head intraosseous arteries by micro-CT.

    Science.gov (United States)

    Qiu, Xing; Shi, Xiaotian; Ouyang, Jun; Xu, Dachuan; Zhao, Dewei

    2016-08-01

    We describe a technique for perfusing a barium sulphate suspension into the intraosseous artery. Following the perfusion of abarium sulphate suspension into 14 fresh lower limbs of Chinese cadavers, micro-CT scanning was applied to digitize, quantify and visualize the intraosseous arteries in the human femoral heads. Then, the femoral heads were removed and subjected to micro-CT scanning. The data were imported into the amira and mimics programs to reconstruct and quantify the intraosseous arteries. The femoral head intraosseous artery lengths, areas, volumes, and femoral head bone volumes were quantified. The artery densities and artery ratios were calculated and analysed with independent-samples t-tests. The intraosseous vasculature volume renderings were displayed as screenshots and videos made with amira. Many intraosseous artery study technologies were compared. The barium sulphate suspension was milky white in colour. The perfusion of the barium sulphate suspension followed by micro-CT scanning provided a good representation of the intraosseous artery. The femoral head intraosseous artery lengths, areas and volumes, and the femoral head bone volumes were displayed as the X¯±S . No differences were observed between the left and right femoral head intraosseous arteries in terms of the artery densities or artery ratios. The volume renderings and 3-D orthogonal projections displayed the overall distributions of the intraosseous arteries. The videos clearly demonstrated the entry sites of the nutrition-carrying arteries, their courses and branches, and the intraosseous arterial anastomoses. Our technique is the simplest and least time-consuming method of producing accurate vascular three-dimensional reconstructions. The perfusion of a barium sulphate suspension into intraosseous arteries combined with micro-CT scanning can deliver high-resolution 3-D digitized data and images of intraosseous arteries. This technique does not require bone decalcification or bone

  13. The extensor carpi ulnaris pseudolesion: evaluation with microCT, histology, and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sayed; Cunningham, Ryan; Mohamed, Feroze [Temple University Hospital, Department of Radiology, Philadelphia, PA (United States); Amin, Mamta; Popoff, Steven N.; Barbe, Mary F. [Temple University School of Medicine, Department of Anatomy, Philadelphia, PA (United States)

    2015-12-15

    To determine if magic angle plays a role in apparent central increased signal intensity of the distal extensor carpi ulnaris tendon (ECU) on MRI, to see if histologic findings of tendon degeneration are associated with increased T1 or T2 tendon signal on MR imaging, and to determine the prevalence of the ECU ''pseudolesion''. A standard 3 Tesla protocol was utilized to scan ten cadaveric wrists. A 40 mm length of 10 ECU and four extensor carpi radialis brevis (ECRB) tendons were immersion fixed before microCT scanning. Staining with Alcian blue, Masson's trichrome and Safranin O was performed before light microscopy. Fifty clinical wrist MRIs were also reviewed for the presence of increased T1 and/or T2 signal. Central increased T1 and/or T2 signal was observed in 9 of 10 cadaveric ECU tendons, but not in ECRB tendons. MicroCT and histology showed inter-tendinous matrix between the two distal heads of the ECU. Increased mucoid degeneration correlated with increased MRI signal intensity. The tendon fibers were at a maximum of 8.39 to the longitudinal axis on microCT. Clinical MRIs showed increased T1 signal in 6 %, increased T2 signal in 8 %, increased T1 and T2 signal in 80 %, and 6 % showing no increased signal. Central increased T1 and/or T2 signal in the ECU tendon indicates the presence of normal inter-tendinous ground substance, with increased proteoglycan content (mucoid degeneration) responsible for increased signal intensity. None of the fibers were shown on microCT to approach the magic angle. (orig.)

  14. Recent Progress Validating the HADES Model of LLNL's HEAF MicroCT Measurements

    Energy Technology Data Exchange (ETDEWEB)

    White, W. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, K. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lennox, K. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aufderheide, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seetho, I. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberson, G. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-17

    This report compares recent HADES calculations of x-ray linear attenuation coefficients to previous MicroCT measurements made at Lawrence Livermore National Laboratory’s High Energy Applications Facility (HEAF). The chief objective is to investigate what impact recent changes in HADES modeling have on validation results. We find that these changes have no obvious effect on the overall accuracy of the model. Detailed comparisons between recent and previous results are presented.

  15. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  16. The Characteristics of Vascular Growth in VX2 Tumor Measured by MRI and Micro-CT

    Directory of Open Access Journals (Sweden)

    X.-L. Qi

    2012-01-01

    Full Text Available Blood supply is crucial for rapid growth of a malignant tumor; medical imaging can play an important role in evaluating the vascular characterstics of tumors. Magnetic resonance imaging (MRI and micro-computed tomography (CT are able to detect tumors and measure blood volumes of microcirculation in tissue. In this study, we used MR imaging and micro-CT to assess the microcirculation in a VX2 tumor model in rabbits. MRI characterization was performed using the intravascular contrast agent Clariscan (NC100150-Injection; micro-CT with Microfil was used to directly depict blood vessels with diameters as low as 17 um in tissue. Relative blood volume fraction (rBVF in the tumor rim and blood vessel density (rBVD over the whole tumor was calculated using the two imaging methods. Our study indicates that rBVF is negatively related to the volume of the tumor measured by ultrasound (R=0.90. rBVF in the tissue of a VX2 tumor measured by MRI in vivo was qualitatively consistent with the rBVD demonstrated by micro-CT in vitro (R=0.97. The good correlation between the two methods indicates that MRI studies are potentially valuable for assessing characteristics or tumor vascularity and for assessing response to therapy noninvasively.

  17. MR spectroscopy and micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guan-wu; Tang, Guang-yu; Liu, Yong; Tang, Rong-biao; Peng, Yi-feng; Li, Wei [People' s Hospital of Tongji University, Department of Radiology, Shanghai (China)

    2012-04-15

    To explore the evidence of regular alteration of bone quality in osteoporosis dynamically examined by MRS and micro-CT, comparing with histopathology. Forty rabbits were allocated into two groups. Group A were used as sham. Group B underwent bilateral ovariectomy (OVX) combined with daily intramuscular methylprednisolone, underwent MR spectroscopy, micro-CT, and histopathology of L5 at 2, 4, 8, and 10 weeks after operation. Fat fraction as shown by MRS in Group B was significantly increased over the time course of osteoporosis development with significant difference between two groups at 4, 8, and 10 weeks after OVX. Continuous deterioration of cancellous bone architecture in Group B, was first detected at week4. FF value in group B correlated with micro-CT parameters. Marrow fat as measured by MR and CT was positively correlated with both the mean density and diameter of adipocytes (both of which increased over time). Marrow adipogenesis occurs in synchrony with deterioration of trabecular microarchitecture.MRS may be valuable to assess the pathophysiological changes of bone marrow in osteoporosis in early stage. (orig.)

  18. Single energy micro CT SkyScan 1173 for the characterization of urinary stone

    Science.gov (United States)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-08-01

    A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.

  19. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won [Samsung Medical Center, Sungkyunkwan University, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-10-15

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

  20. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  1. Combined micro-PET/micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice.

    Directory of Open Access Journals (Sweden)

    Thomas Rodt

    Full Text Available INTRODUCTION: SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. MATERIAL AND METHODS: 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic were examined using micro-CT and (18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. RESULTS: Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. CONCLUSIONS: Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours.

  2. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  3. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  4. In vivo micro-CT assessment of airway remodeling in a flexible OVA-sensitized murine model of asthma.

    Directory of Open Access Journals (Sweden)

    Mathieu Lederlin

    Full Text Available Airway remodeling is a major pathological feature of asthma. Up to now, its quantification still requires invasive methods. In this study, we aimed at determining whether in vivo micro-computed tomography (micro-CT is able to demonstrate allergen-induced airway remodeling in a flexible mouse model of asthma. Sixty Balb/c mice were challenged intranasally with ovalbumin or saline at 3 different endpoints (Days 35, 75, and 110. All mice underwent plethysmography at baseline and just prior to respiratory-gated micro-CT. Mice were then sacrificed to assess bronchoalveolar lavage and lung histology. From micro-CT images (voxel size = 46×46×46 µm, the numerical values of total lung attenuation, peribronchial attenuation (PBA, and PBA normalized by total lung attenuation were extracted. Each parameter was compared between OVA and control mice and correlation coefficients were calculated between micro-CT and histological data. As compared to control animals, ovalbumin-sensitized mice exhibited inflammation alone (Day 35, remodeling alone (Day 110 or both inflammation and remodeling (Day 75. Normalized PBA was significantly greater in mice exhibiting bronchial remodeling either alone or in combination with inflammation. Normalized PBA correlated with various remodeling markers such as bronchial smooth muscle size or peribronchial fibrosis. These findings suggest that micro-CT may help monitor remodeling non-invasively in asthmatic mice when testing new drugs targeting airway remodeling in pre-clinical studies.

  5. Serial micro-CT assessment of the therapeutic effects of rosiglitazone in a bleomycin-induced lung fibrosis mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Jung; Jin, Gong Yong; Bok, Se Mi; Han, Young Min; Lee, Young Sun; Jung, Myung Ja; Kwon, Keun Sang [Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju (Korea, Republic of)

    2014-08-15

    The aim of this study was to assess the therapeutic effects of rosiglitazone with serial micro-CT findings before and after rosiglitazone administration in a lung fibrosis mouse model induced with bleomycin. We instilled the bleomycin solution directly into the trachea in twenty mice (female, C57BL/6 mice). After the instillation with bleomycin, mice were closely observed for 3 weeks and then all mice were scanned using micro-CT without sacrifice. At 3 weeks, the mice were treated with rosiglitazone on days 21 to 27 if they had abnormal CT findings (n = 9, 45%). For the mice treated with rosiglitazone, we performed micro-CT with mouse sacrifice 2 weeks after the rosiglitazone treatment completion. We assessed the abnormal CT findings (ground glass attenuation, consolidation, bronchiectasis, reticular opacity, and honeycombing) using a five-point scale at 3 and 6 weeks using Wilcoxon-signed ranked test. The micro-CT findings were correlated with the histopathologic results. One out of nine (11.1%) mice improved completely. In terms of consolidation, all mice (100%) showed marked decrease from 3.1 ± 1.4 at 3 weeks to 0.9 ± 0.9 at 6 weeks (p = 0.006). At 6 weeks, mild bronchiectasis (n = 6, 66.7%), mild reticular opacity (n 7, 77.8%) and mild honeycomb patterns (n = 3, 33.3%) appeared. A serial micro-CT enables the evaluation of drug effects in a lung fibrosis mouse model.

  6. Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques.

    Science.gov (United States)

    De Backer, Jan W; Vos, Wim G; Burnell, Patricia; Verhulst, Stijn L; Salmon, Phil; De Clerck, Nora; De Backer, Wilfried

    2009-05-01

    Animal models are being used extensively in pre-clinical and safety assessment studies to assess the effectiveness and safety of new chemical entities and delivery systems. Although never entirely replacing the need for animal testing, the use of computer simulations could eventually reduce the amount of animals needed for research purposes and refine the data acquired from the animal studies. Computational fluid dynamics is a powerful tool that makes it possible to simulate flow and particle behavior in animal or patient-specific respiratory models, for purposes of inhaled delivery. This tool requires an accurate representation of the respiratory system, respiration and dose delivery attributes. The aim of this study is to develop a representative airway model of the Sprague-Dawley rat using static and dynamic micro-CT scans. The entire respiratory tract was modeled, from the snout and nares down to the central airways at the point where no distinction could be made between intraluminal air and the surrounding tissue. For the selection of the representative model, variables such as upper airway movement, segmentation length, airway volume and size are taken into account. Dynamic scans of the nostril region were used to illustrate the characteristic morphology of this region in anaesthetized animals. It could be concluded from this study that it was possible to construct a highly detailed representative model of a Sprague-Dawley rat based on imaging modalities such as micro-CT scans.

  7. Automated detection of retinal cell nuclei in 3D micro-CT images of zebrafish using support vector machine classification

    Science.gov (United States)

    Ding, Yifu; Tavolara, Thomas; Cheng, Keith

    2016-03-01

    Our group is developing a method to examine biological specimens in cellular detail using synchrotron microCT. The method can acquire 3D images of tissue at micrometer-scale resolutions, allowing for individual cell types to be visualized in the context of the entire specimen. For model organism research, this tool will enable the rapid characterization of tissue architecture and cellular morphology from every organ system. This characterization is critical for proposed and ongoing "phenome" projects that aim to phenotype whole-organism mutants and diseased tissues from different organisms including humans. With the envisioned collection of hundreds to thousands of images for a phenome project, it is important to develop quantitative image analysis tools for the automated scoring of organism phenotypes across organ systems. Here we present a first step towards that goal, demonstrating the use of support vector machines (SVM) in detecting retinal cell nuclei in 3D images of wild-type zebrafish. In addition, we apply the SVM classifier on a mutant zebrafish to examine whether SVMs can be used to capture phenotypic differences in these images. The longterm goal of this work is to allow cellular and tissue morphology to be characterized quantitatively for many organ systems, at the level of the whole-organism.

  8. A Look from the Inside: MicroCT Analysis of Burned Bones

    Directory of Open Access Journals (Sweden)

    Francesco Boschin

    2015-12-01

    Full Text Available MicroCT imaging is increasingly used in paleoanthropological and zooarchaeological research to analyse the internal microstructure of bone, replacing comparatively invasive and destructive methods. Consequently the analytical potential of this relatively new 3D imaging technology can be enhanced by developing discipline specific protocols for archaeological analysis. Here we examine how the microstructure of mammal bone changes after burning and explore if X-ray computed microtomography (microCT can be used to obtain reliable information from burned specimens. We subjected domestic pig, roe deer, and red fox bones to burning at different temperatures and for different periods using an oven and an open fire. We observed significant changes in the three-dimensional microstructure of trabecular bone, suggesting that biomechanical studies or other analyses (for instance, determination of age-at-death can be compromised by burning. In addition, bone subjected to very high temperatures (600°C or more became cracked, posing challenges for quantifying characteristics of bone microstructure. Specimens burned at 600°C or greater temperatures, exhibit a characteristic criss-cross cracking pattern concentrated in the cortical region of the epiphyses. This feature, which can be readily observed on the surface of whole bone, could help the identification of heavily burned specimens that are small fragments, where color and surface texture are altered by diagenesis or weathering.

  9. Bone Micro-CT Assessments in an Orchidectomised Rat Model Supplemented with Eurycoma longifolia

    Directory of Open Access Journals (Sweden)

    Rosmaliza Ramli

    2012-01-01

    Full Text Available Recent studies suggested that Eurycoma longifolia, a herbal plant, may have the potential to treat osteoporosis in elderly male. This study aimed to determine the effects of Eurycoma longifolia supplementation on the trabecular bone microarchitecture of orchidectomised rats (androgen-deficient osteoporosis model. Forty-eight-aged (10–12 months old Sprague Dawley rats were divided into six groups of sham-operated (SHAM, orchidectomised control (ORX, orchidectomised + 7 mg/rat testosterone enanthate (TEN and orchidectomised + Eurycoma longifolia 30 mg/kg (EL30, orchidectomised + Eurycoma longifolia 60 mg/kg (EL60, orchidectomised + Eurycoma longifolia 90 mg/kg (EL90. Rats were euthanized following six weeks of treatment. The left femora were used to measure the trabecular bone microarchitecture using micro-CT. Orchidectomy significantly decreased connectivity density, trabecular bone volume, and trabecular number compared to the SHAM group. Testosterone replacement reversed all the orchidectomy-induced changes in the micro-CT parameters. EL at 30 and 60 mg/kg rat worsened the trabecular bone connectivity density and trabecular separation parameters of orchidectomised rats. EL at 90 mg/kg rat preserved the bone volume. High dose of EL (90 mg/kg may have potential in preserving the bone microarchitecture of orchidectomised rats, but lower doses may further worsen the osteoporotic changes.

  10. Robust separation of visceral and subcutaneous adipose tissues in micro-CT of mice.

    Science.gov (United States)

    Shi, Bibo; Xie, Shuisheng; Berryman, Darlene; List, Ed; Liu, Jundong

    2013-01-01

    One of the common practices in obesity and diabetes studies is to measure the volumes and weights of various adipose tissues, among which, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) play critical yet different physiological roles in mouse aging. In this paper, a robust two-stage VAT/SAT separation framework for micro-CT mouse data is proposed. The first stage is to distinguish adipose from other tissue types, including background, soft tissue and bone, through a robust mixture of Gaussian model. Spatial recognition relevant to anatomical locations is carried out in the second step to determine whether the adipose is visceral or subcutaneous. We tackle this problem through a novel approach that relies on evolving the abdominal muscular wall to keep VAT/SAT separated. The VAT region of interest (ROI) is also automatically set up through an atlas based skeleton matching procedure. The results of our method are compared with VAT/SAT delineations by human experts, and a high classification accuracy is demonstrated on eight micro-CT mouse volume sets.

  11. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    Institute of Scientific and Technical Information of China (English)

    Hong-kui Wang; Ya-xian Wang; Cheng-bin Xue; Zhen-mei-yu Li; Jing Huang; Ya-hong Zhao; Yu-min Yang; Xiao-song Gu

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the speciifc ifeld of nerve regeneration. However, no conve-nient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructedin vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk ifbroin ifbers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-di-mensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the prox-imal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301µm. The blood vessels with diameters from 27 to 155µm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implantedin vivo were relatively well-identiifed using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tis-sue-engineered nerves implantedin vivo.

  12. In Vivo MicroCT Monitoring of Osteomyelitis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Vincent A. Stadelmann

    2015-01-01

    Full Text Available Infection associated with orthopedic implants often results in bone loss and requires surgical removal of the implant. The aim of this study was to evaluate morphological changes of bone adjacent to a bacteria-colonized implant, with the aim of identifying temporal patterns that are characteristic of infection. In an in vivo study with rats, bone changes were assessed using in vivo microCT at 7 time points during a one-month postoperative period. The rats received either a sterile or Staphylococcus aureus-colonized polyetheretherketone screw in the tibia. Bone-implant contact, bone fraction, and bone changes (quiescent, resorbed, and new bone were calculated from consecutive scans and validated against histomorphometry. The screw pullout strength was estimated from FE models and the results were validated against mechanical testing. In the sterile group, bone-implant contact, bone fraction, and mechanical fixation increased steadily until day 14 and then plateaued. In the infected group, they decreased rapidly. Bone formation was reduced while resorption was increased, with maximum effects observed within 6 days. In summary, the model presented is capable of evaluating the patterns of bone changes due to implant-related infections. The combined use of longitudinal in vivo microCT imaging and image-based finite element analysis provides characteristic signs of infection within 6 days.

  13. In Vivo MicroCT Monitoring of Osteomyelitis in a Rat Model.

    Science.gov (United States)

    Stadelmann, Vincent A; Potapova, Inga; Camenisch, Karin; Nehrbass, Dirk; Richards, R Geoff; Moriarty, T Fintan

    2015-01-01

    Infection associated with orthopedic implants often results in bone loss and requires surgical removal of the implant. The aim of this study was to evaluate morphological changes of bone adjacent to a bacteria-colonized implant, with the aim of identifying temporal patterns that are characteristic of infection. In an in vivo study with rats, bone changes were assessed using in vivo microCT at 7 time points during a one-month postoperative period. The rats received either a sterile or Staphylococcus aureus-colonized polyetheretherketone screw in the tibia. Bone-implant contact, bone fraction, and bone changes (quiescent, resorbed, and new bone) were calculated from consecutive scans and validated against histomorphometry. The screw pullout strength was estimated from FE models and the results were validated against mechanical testing. In the sterile group, bone-implant contact, bone fraction, and mechanical fixation increased steadily until day 14 and then plateaued. In the infected group, they decreased rapidly. Bone formation was reduced while resorption was increased, with maximum effects observed within 6 days. In summary, the model presented is capable of evaluating the patterns of bone changes due to implant-related infections. The combined use of longitudinal in vivo microCT imaging and image-based finite element analysis provides characteristic signs of infection within 6 days.

  14. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry

    Science.gov (United States)

    Kim, Jia; Song, Young-Sang; Min, Kyung-San; Kim, Sun-Hun; Koh, Jeong-Tae

    2016-01-01

    Objectives The purpose of this study was to assess the ability of two new calcium silicate-based pulp-capping materials (Biodentine and BioAggregate) to induce healing in a rat pulp injury model and to compare them with mineral trioxide aggregate (MTA). Materials and Methods Eighteen rats were anesthetized, cavities were prepared and the pulp was capped with either of ProRoot MTA, Biodentine, or BioAggregate. The specimens were scanned using a high-resolution micro-computed tomography (micro-CT) system and were prepared and evaluated histologically and immunohistochemically using dentin sialoprotein (DSP). Results On micro-CT analysis, the ProRoot MTA and Biodentine groups showed significantly thicker hard tissue formation (p Biodentine and BioAggregate groups, a thick, homogeneous hard tissue barrier was observed. The ProRoot MTA specimens showed strong immunopositive reaction for DSP. Conclusions Our results suggest that calcium silicate-based pulp-capping materials induce favorable effects on reparative processes during vital pulp therapy and that both Biodentine and BioAggregate could be considered as alternatives to ProRoot MTA. PMID:26877988

  15. Boundary Element Method for Reconstructing Absorption and Diffusion Coefficients of Biological Tissues in DOT/MicroCT Imaging.

    Science.gov (United States)

    Xie, Wenhao; Deng, Yong; Lian, Lichao; Yan, Dongmei; Yang, Xiaoquan; Luo, Qingming

    2016-01-01

    The functional information, the absorption and diffusion coefficients, as well as the structural information of biological tissues can be provided by the DOT(Diffuse Optical Tomograph)/MicroCT. In this paper, we use boundary element method to calculate the forward problem of DOT based on the structure prior given by the MicroCT, and then we reconstruct the absorption and diffusion coefficients of different biological tissues by the Levenberg-Marquardt algorithm. The method only needs surface meshing, reducing the complexity of calculation; in addition, it reconstructs a single value within an organ, which reduces the ill-posedness of the inverse problem to make reconstruction results have good noise stability. This indicates that the boundary element method-based reconstruction can serve as an new scheme for getting absorption and diffusion coefficients in DOT/MicroCT multimodality imaging.

  16. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han (NIH)

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  17. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  18. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    Science.gov (United States)

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  19. Denoising of 4D cardiac micro-CT data using median-centric bilateral filtration

    Science.gov (United States)

    Clark, D.; Johnson, G. A.; Badea, C. T.

    2012-02-01

    Bilateral filtration has proven an effective tool for denoising CT data. The classic filter uses Gaussian domain and range weighting functions in 2D. More recently, other distributions have yielded more accurate results in specific applications, and the bilateral filtration framework has been extended to higher dimensions. In this study, brute-force optimization is employed to evaluate the use of several alternative distributions for both domain and range weighting: Andrew's Sine Wave, El Fallah Ford, Gaussian, Flat, Lorentzian, Huber's Minimax, Tukey's Bi-weight, and Cosine. Two variations on the classic bilateral filter, which use median filtration to reduce bias in range weights, are also investigated: median-centric and hybrid bilateral filtration. Using the 4D MOBY mouse phantom reconstructed with noise (stdev. ~ 65 HU), hybrid bilateral filtration, a combination of the classic and median-centric filters, with Flat domain and range weighting is shown to provide optimal denoising results (PSNRs: 31.69, classic; 31.58 median-centric; 32.25, hybrid). To validate these phantom studies, the optimal filters are also applied to in vivo, 4D cardiac micro-CT data acquired in the mouse. In a constant region of the left ventricle, hybrid bilateral filtration with Flat domain and range weighting is shown to provide optimal smoothing (stdev: original, 72.2 HU; classic, 20.3 HU; median-centric, 24.1 HU; hybrid, 15.9 HU). While the optimal results were obtained using 4D filtration, the 3D hybrid filter is ultimately recommended for denoising 4D cardiac micro-CT data, because it is more computationally tractable and less prone to artifacts (MOBY PSNR: 32.05; left ventricle stdev: 20.5 HU).

  20. Assessment of scatter for the micro-CT subsystem of the trimodality FLEX Triumph (TM) preclinical scanner

    NARCIS (Netherlands)

    Gutierrez, Daniel; Zaidi, Habib

    2011-01-01

    Purpose: This work aims at assessing, through experimental measurements and Monte Carlo calculations, the scatter to primary ratio (SPR) for the micro-CT subsystem of the FLEX Triumph (TM) preclinical PET-CT scanner to improve its quantitative capabilities. Methods: Experimental measurements were ca

  1. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    Science.gov (United States)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  2. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit of the...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  3. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  4. The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo

    Science.gov (United States)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo

    2014-06-01

    Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore, micro-CT is a reliable and sensitive method for predicting unloading-induced bone loss in small animals.

  5. Analysis of image sharpness reproducibility on a novel engineered micro-CT scanner with variable geometry and embedded recalibration software.

    Science.gov (United States)

    Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A

    2012-04-01

    This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration.

  6. Effects of growth hormone and ultrasound on mandibular growth in rats: MicroCT and toxicity analyses.

    Science.gov (United States)

    Khan, Imran; El-Kadi, Ayman O; El-Bialy, Tarek

    2013-09-01

    It has been shown by previous studies that mandibular growth can be enhanced by the systemic administration of recombinant growth hormone (rGH) and/or local application of therapeutic low intensity pulsed ultrasound (LIPUS). The purpose of this study was to determine if local injection of rGH and application of LIPUS to the temporomandibular joint (TMJ) would synergistically enhance mandibular growth. In an animal study, the effect of rGH, LIPUS, and combination of rGH and LIPUS on male Sprague-Dawley rats was observed. Mandibular growth was evaluated by measuring total hemimandibular and condylar bone volume and bone surface area as well as condylar bone mineral density (BMD) after 21 days on dissected rats' mandibles using micro-computed tomography (MicroCT). The expression of c-jun mRNA extracted from the liver of each of these rats was also quantified by real-time polymerase chain reaction to evaluate possible systemic effect of local rGH administration. Significant growth stimulation was observed in the mandibular and condylar bone of the animals treated with rGH, LIPUS, and rGH/LIPUS combined when compared with the control group. Bone volume, surface area, condylar bone mineral density, and c-jun expression were also compared between the treatment groups and the control in the liver. The results suggest that mandibular growth may be enhanced by injection of rGH or LIPUS application. The current study although showed synergetic effect of rGH and LIPUS application in increasing mandibular condylar head length, there was no significant changes in mandibular bone volume using both treatments together when compared to the two individual treatments. Moreover, combined rGH and LIPUS decreased condylar bone mineral density than each treatment separately. Future research could be directed to investigate the effects of different rGH doses and/or different LIPUS exposures parameters on lower jaw growth.

  7. A Combined Micro-CT Imaging/Microfluidic Approach for Understating Methane Recovery in Coal Seam Gas Reservoirs

    Science.gov (United States)

    Mostaghimi, P.; Armstrong, R. T.; Gerami, A.; Lamei Ramandi, H.; Ebrahimi Warkiani, M.

    2015-12-01

    Coal seam methane is a form of natural gas stored in coal beds and is one of the most important unconventional resources of energy. The flow and transport in coal beds occur in a well-developed system of natural fractures that are also known as cleats. We use micro-Computed Tomography (CT) imaging at both dry and wet conditions to resolve the cleats below the resolution of the image. Scanning Electron Microscopy (SEM) is used for calibration of micro-CT data. Using soft lithography technique, the cleat system is duplicated on a silicon mould. We fabricate a microfluidic chip using Polydimethylsiloxane (PDMS) to study both imbibition and drainage in generated coal structures for understating gas and water transport in coal seam reservoirs. First, we use simple patterns observed on coal images to analyse the effects of wettability, cleat size and distribution on flow behaviour. Then, we study transport in a coal by injecting both distilled water and decane with a rate of 1 microliter/ min into the fabricated cleat structure (Figure 1), initially saturated with air. We repeat the experiment for different contact angles by plasma treating the microfluidic chip, and results show significant effects of wettability on the displacement efficiency. The breakthrough time in the imbibition setup is significantly longer than in the drainage. Using rapid video capturing, and high resolution microscopy, we measure the saturation of displacing fluid with respect to time. By measuring gas and liquid recovery in the outlet at different saturation, we predict relative permeability of coal. This work has important applications for optimising gas recovery and our results can serve as a benchmark in the verification of multiphase numerical models used in coal seam gas industry.

  8. BEAM COUPLING PHENOMENA IN FAST KICKER SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; AHRENS,L.A.; GLENN,J.; SANDBERG,J.; TSOUPAS,N.

    2001-06-18

    Beam coupling phenomena have been observed in most fast kicker systems through out Brookhaven Collider-Accelerator complex. With ever-higher beam intensity, the signature of the beam becomes increasingly recognizable. The beam coupling at high intensity produced additional heat dissipation in high voltage modulator, thyratron grids, thyratron driver circuit sufficient to damage some components, and causes trigger instability. In this paper, we will present our observations, basic coupling mode analysis, relevance to the magnet structures, issues related to the existing high voltage modulators, and considerations of the future design of the fast kicker systems.

  9. Gamma beam system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Ur, Calin Alexandru, E-mail: calin.ur@eli-np.ro [Extreme Light Infrastructure, IFIN-HH, Magurele-Bucharest (Romania)

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  10. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

    Directory of Open Access Journals (Sweden)

    Jørgensen Jesper

    2008-10-01

    Full Text Available Abstract Background In animal studies tumor size is used to assess responses to anticancer therapy. Current standard for volumetric measurement of xenografted tumors is by external caliper, a method often affected by error. The aim of the present study was to evaluate if microCT gives more accurate and reproducible measures of tumor size in mice compared with caliper measurements. Furthermore, we evaluated the accuracy of tumor volume determined from 18F-fluorodeoxyglucose (18F-FDG PET. Methods Subcutaneously implanted human breast adenocarcinoma cells in NMRI nude mice served as tumor model. Tumor volume (n = 20 was determined in vivo by external caliper, microCT and 18F-FDG-PET and subsequently reference volume was determined ex vivo. Intra-observer reproducibility of the microCT and caliper methods were determined by acquiring 10 repeated volume measurements. Volumes of a group of tumors (n = 10 were determined independently by two observers to assess inter-observer variation. Results Tumor volume measured by microCT, PET and caliper all correlated with reference volume. No significant bias of microCT measurements compared with the reference was found, whereas both PET and caliper had systematic bias compared to reference volume. Coefficients of variation for intra-observer variation were 7% and 14% for microCT and caliper measurements, respectively. Regression coefficients between observers were 0.97 for microCT and 0.91 for caliper measurements. Conclusion MicroCT was more accurate than both caliper and 18F-FDG-PET for in vivo volumetric measurements of subcutaneous tumors in mice.18F-FDG-PET was considered unsuitable for determination of tumor size. External caliper were inaccurate and encumbered with a significant and size dependent bias. MicroCT was also the most reproducible of the methods.

  11. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Jørgensen, Jesper Tranekjaer; Binderup, Tina;

    2008-01-01

    and reproducible measures of tumor size in mice compared with caliper measurements. Furthermore, we evaluated the accuracy of tumor volume determined from 18F-fluorodeoxyglucose (18F-FDG) PET. METHODS: Subcutaneously implanted human breast adenocarcinoma cells in NMRI nude mice served as tumor model. Tumor volume...... systematic bias compared to reference volume. Coefficients of variation for intra-observer variation were 7% and 14% for microCT and caliper measurements, respectively. Regression coefficients between observers were 0.97 for microCT and 0.91 for caliper measurements. CONCLUSION: MicroCT was more accurate...

  12. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  13. Micro-CT evaluation of the marginal fit of CAD/CAM all ceramic crowns

    Science.gov (United States)

    Brenes, Christian

    Objectives: Evaluate the marginal fit of CAD/CAM all ceramic crowns made from lithium disilicate and zirconia using two different fabrication protocols (model and model-less). METHODS: Forty anterior all ceramic restorations (20 lithium disilicate, 20 zirconia) were fabricated using a CEREC Bluecam scanner. Two different fabrication methods were used: a full digital approach and a printed model. Completed crowns were cemented and marginal gap was evaluated using Micro-CT. Each specimen was analyzed in sagittal and trans-axial orientations, allowing a 360° evaluation of the vertical and horizontal fit. RESULTS: Vertical measurements in the lingual, distal and mesial views had and estimated marginal gap from 101.9 to 133.9 microns for E-max crowns and 126.4 to 165.4 microns for zirconia. No significant differences were found between model and model-less techniques. CONCLUSION: Lithium disilicate restorations exhibited a more accurate and consistent marginal adaptation when compared to zirconia crowns. No statistically significant differences were observed when comparing model or model-less approaches.

  14. Direct composite fillings: an optical coherence tomography and microCT investigation

    Science.gov (United States)

    Negrutiu, Meda L.; Sinescu, Cosmin; Borlea, Mugurel V.; Manescu, Adrian; Duma, Virgil F.; Rominu, Mihai; Podoleanu, Adrian G.

    2015-03-01

    The treatment of carious lesions requires removal of affected dental tissue thus creating cavities that are to be filled with dedicated materials. There are several methods known which are used to assess the quality of direct dental restorations, but most of them are invasive. Optical tomographic techniques are of particular importance in the medical imaging field, because these techniques can provide non-invasive diagnostic images. Using an en-face version of OCT, we have recently demonstrated real time thorough evaluation of quality of dental fillings. The major aim of this study was to analyses the optical performance of adhesives modified with zirconia particles in different concentrations in order to improve the contrast of OCT imaging of the interface between the tooth structure, adhesive and composite resin. The OCT investigations were validated by micro CT using synchrotron radiation. The OCT Swept Source is a valuable investigation tool for the clinical evaluation of class II direct composite restorations. The unmodified adhesive layer shows poor contrast on regular OCT investigations. Adding zirconia particles to the adhesive layer provides a better scattering which allows a better characterization and quantification of direct restorations.

  15. Taxonomy and nomenclature of some mainland SE-Asian Coeliccia species (Odonata, Platycnemididae) using micro-CT analysis.

    Science.gov (United States)

    Steinhoff, Philip O M; Uhl, Gabriele

    2015-12-22

    The taxonomic status of some mainland Southeast Asian Coeliccia species is evaluated. The following synonymies are presented: C. acco is a junior synonym of C. pyriformis; C. tomokunii that of C. scutellum; C.onoi that of C. cyanomelas. C. scutellum hainanense is promoted to species level, C. hainanense. Redescriptions of the holotype of C. pyriformis and of the lectotypes of C. scutellum and C. hainanense are presented with illustrations. The male genital ligulae were examined by means of non-destructive X-ray micro-computed tomography (micro-CT) and subsequent 3D-reconstruction. The advantage of virtual types generated by micro-CT analysis, particularly for the examination of internal structures, is discussed.

  16. Micro-CT evaluation and histological analysis of screw-bone interface of expansive pedicle screw in osteoporotic sheep

    Institute of Scientific and Technical Information of China (English)

    WAN Shi-yong; LEI Wei; WU Zi-xiang; L(U) Rong; WANG Jun; FU Suo-chao; LI Bo; ZHAN Ce

    2008-01-01

    To investigate the properties of screwbone interface of expansive pedicle screw(EPS)in osteoporotic sheep by micro-CT and histological observation.Methods:Six female sheep with bilateral ovariectomyinduced osteoporosis were employed in this experiment.After EPS insertion in each femoral condvle, the sheep were randomly divided into two groups:3 sheep were bred for 3 months(Group A),while the other 3 were bred for 6 months(Group B). After the animals being killed,the femoral condyles with EPS were obtained,which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter.Results:The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section,especially within the spiral marking.In the nonexpansive section,however,there was no significant difference between the interface and the distant parts. The regions of interest(ROI)adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional(3-D)parameters,including tissue mineral density(TMD),bone volume fraction(BVF,BV/TV),bone surface/bone volume(BS/BV) ratio, trabecular thickness(Tb. Th),and trabecular separation(Tb. Sp),were significantly better in expansive sections than non-expansive sections(P<0.05).Histologically,newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones,as well as the bones at the bone-screw interface,closely contacted with the EPS and constructed four compartments.Conclusions:The findings of the current study,based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.

  17. Performance of the ATLAS Beam Diagnostic Systems

    CERN Document Server

    Macek, B; The ATLAS collaboration

    2010-01-01

    The beam diagnostic system of the ATLAS detector comprises two diamond sensor based devices. The innovative Beam Conditions Monitor (BCM) is aimed at resolving background from collision particles by sub-ns time-of-flight measurement. The Beam Loss Monitor (BLM) is a clone of the LHC machine BLM system, replacing ionization chambers with diamond sensors. BCM uses 16 1x1 cm2 0.5 mm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors arranged in 8 positions at a radius r ≈ 55 mm, ~1.9 m up- and down-stream the interaction point. Time measurements at 2.56 GHz sampling rate are performed to distinguish between collision and shower particles from beam incidents. A FPGA-based readout system performs real-time data analysis and interfaces the results to ATLAS and the LHC beam permit system. The diamond sensors, the detector modules and their readout system are described. Results of performance with LHC beams of increasing energy and intensity including timing separation of collisions from beam re...

  18. Application of microCT to the non-destructive testing of an additive manufactured titanium component

    Directory of Open Access Journals (Sweden)

    Anton du Plessis

    2015-11-01

    Full Text Available In this paper the application of X-ray microCT to the non-destructive testing of an additive manufactured titanium alloy component of complex geometry is demonstrated. Additive manufacturing of metal components is fast growing and shows great promise, yet these parts may contain defects which affect mechanical properties of the components. In this work a layered form of defect is found by microCT, which would have been very difficult or impossible to detect by other non-destructive testing methods due to the object complexity, defect size and shape and because the pores are entirely contained inside the object and not connected to the surface. Additionally, this test part was subjected to hot isostatic pressing (HIPPING and subsequently scanned. Comparing before and after scans by alignment of the volumes allows visualization and quantification of the pore size changes. The application of X-ray microCT to additive manufacturing is thus demonstrated in this example to be an ideal combination, especially for process improvements and for high value components.

  19. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    Science.gov (United States)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  20. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    Energy Technology Data Exchange (ETDEWEB)

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  1. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  2. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W. [Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Boston University Medical Center, Department of Radiology, Boston, MA (United States); Mohr, Andreas [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Sligo General Hospital, Department of Radiology, Sligo (Ireland); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Jiang, Yebin [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); University of Michigan Medical School, Osteoporosis and Arthritis Laboratory, Musculoskeletal Division, Department of Radiology, Ann Arbor, MI (United States); Schlechtweg, Philipp [University of Erlangen, Department of Radiology, Erlangen (Germany); Genant, Harry K. [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); CCBR-SYNARC, Inc., San Francisco, CA (United States); Sohaskey, Michael L. [University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Berkeley, CA (United States)

    2011-08-15

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  3. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector

    Directory of Open Access Journals (Sweden)

    Mohamed Elsayed Eldib

    2017-01-01

    Full Text Available We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT. In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs and a silicon-based photon-counting X-ray detector (PCXD. Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast.

  4. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector

    Science.gov (United States)

    Eldib, Mohamed Elsayed; Hegazy, Mohamed; Mun, Yang Ji; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2017-01-01

    We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs) and a silicon-based photon-counting X-ray detector (PCXD). Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast. PMID:28146088

  5. Dynamic elastic properties from micro-CT images: modeling and experimental validation

    Science.gov (United States)

    Lebedev, M.; Pervukhina, M.; de Paula, O.; Clennell, B.; Gurevich, B.

    2009-04-01

    Knowledge of the elastic properties of rocks is a key factor in seismic interpretation. Elastic properties of rock are determined by its microstructure and their prediction relies on the availability of accurate microstructural models. X-ray computer tomography (CT) as a unique non-destructive technique is becoming a powerful tool in geophysics research which reveals detailed 3D microstructure of rock with special resolution of 1 micron. Recent breakthrough in computational capabilities allows simulation of elastic properties directly using the micro-CT images. In this study we simulate acoustic velocities of sandstones, based on high resolution 3D images and compare simulation results with ultrasonic measurements. Synchrotron images of two sandstones are segmented to separate grain from pore space. The porosity obtained as a result of the segmentation process is compared with the measured porosity for the segmentation quality control. Parallel 3D finite difference (FD) code is used to simulate elastic wave propagation through the digitized two phase media where the total solid phase is supposed to have elastic properties of intact quartz and the pore space is either dry or saturated with water. Attenuation and dispersion of acoustic velocities are obtained at a range of frequencies. The numerical results noticeably overestimate velocities obtained at laboratory experiments at ultrasonic frequencies. The discrepancy can be explained with the fact that grain contacts have strong effect on elastic moduli and are the most speculative part of the simulations. To validate our FD code and calibrate the properties of grain contacts, we simulated elastic wave propagation in aluminum foam with porosity of 40%. All grain contacts in the foam are "solid" and its microstructure is similar to that of moldic carbonates. Preliminary results of FD modeling and comparison with experiment of carbonates are presented as well.

  6. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  7. The CERN Beam Interlock System: Principle and Operational Experience

    CERN Document Server

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  8. Beam trip diagnostic system at SSRF

    Institute of Scientific and Technical Information of China (English)

    HOU Hongtao; ZHAO Shenjie; LUO Chen; ZHAO Yubin; ZHANG Zhigang; FENG Ziqiang; MAO Dongqing; LIU Jianfei

    2009-01-01

    In this paper we report the design and realization of beam trip diagnostic system at Shanghai Synchrotron Radiation Facility (SSRF).The system can find out the first fault signal in the key operation signals related to the RF system by analyzing the time sequence,also it can decide which trips occurs first among the three superconducting RF stations.All the states of monitored signals in a time period ahead and behind beam trip are recorded.The results are compared with those from other diagnostic tools at SSRF.The work is of help in improving reliability of the superconducting RF system and stability of the storage ring operation.

  9. Osteoarthitis of Leptin-Deficient ob/ob Mice in Response to Biomechanical Loading in Micro-CT

    Directory of Open Access Journals (Sweden)

    Hansjoerg Heep, Gero Hilken, Sebastian Hofmeister, Christian Wedemeyer

    2009-01-01

    Full Text Available Objective: Mechanotransduction is the mechanism that due to reacting chondrocytes on biomechanical loading of body mass. Higher biomechanical loading lead to increased degeneration of chondrocytes, whereas moderate loading is protecting. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin and with or without osteoarthritis. Materials and methods: 40 C57BL/ 6J ob/ob-mice in the age of 20 weeks have been devided into two groups with an ad-libitum-diet and with reduced diet. The hip- and knee-joints have been examinated in micro-CT-scan and histomorphologically. Results: Animals with an ad-libitum-diet were found to increase body weight significantly at the age of six weeks in comparison with lean mice. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone in micro-CT revealed that the only statistically significant difference between the two groups was the trabecular number for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Correlation was found between trabecular number and bone mineral density on the one hand and body weight on the other hand. The correlation between body weight and osteoarthritis shows a significant increase in grade of osteoarthritis as body weight increases in hip-joint and knee-joint but not in osteoarthritis-positive (OP versus osteoarthritis-negative (ON mices. The correlation of the hip

  10. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  11. The Beam Inhibit System for TTF II

    CERN Document Server

    Nölle, D; Neumann, R; Pugachov, D; Wittenburg, K; Wendt, M; Werner, M; Schlarb, H; Staack, M

    2003-01-01

    The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF II and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This paper will give an overview over the different protection systems currently under construction for TTF II. The very fast systems, based on transmission measurements and distributed loss detection monitors, will be described in detail. This description will include the fast electronics to collect and to transmit the different interlock signals.

  12. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  13. Dynamic contrast-enhanced micro-CT on mice with mammary carcinoma for the assessment of antiangiogenic therapy response

    Energy Technology Data Exchange (ETDEWEB)

    Eisa, Fabian [University of Erlangen-Nuremberg, Institute of Medical Physics, Erlangen (Germany); University of Erlangen-Nuremberg, Graduate School in Advanced Optical Technologies (SAOT), Erlangen (Germany); Brauweiler, Robert; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A. [University of Erlangen-Nuremberg, Institute of Medical Physics, Erlangen (Germany); Lotz, Laura; Hoffmann, Inge; Dittrich, Ralf; Beckmann, Matthias W. [University of Erlangen-Nuremberg, OB/GYN, University Hospital Erlangen, Erlangen (Germany); Wachter, David [University Hospital Erlangen, Institute of Pathology, Erlangen (Germany); Jost, Gregor; Pietsch, Hubertus [Bayer Pharma AG, Berlin (Germany)

    2012-04-15

    To evaluate the potential of in vivo dynamic contrast-enhanced micro-computed tomography (DCE micro-CT) for the assessment of antiangiogenic drug therapy response of mice with mammary carcinoma. 20 female mice with implanted MCF7 tumours were split into control group and therapy group treated with a known effective antiangiogenic drug. All mice underwent DCE micro-CT for the 3D analysis of functional parameters (relative blood volume [rBV], vascular permeability [K], area under the time-enhancement curve [AUC]) and morphology. All parameters were determined for total, peripheral and central tumour volumes of interest (VOIs). Immunohistochemistry was performed to characterise tumour vascularisation. 3D dose distributions were determined. The mean AUCs were significantly lower in therapy with P values of 0.012, 0.007 and 0.023 for total, peripheral and central tumour VOIs. K and rBV showed significant differences for the peripheral (P{sub per}{sup K} = 0.032, P{sub per}{sup rBV} = 0.029), but not for the total and central tumour VOIs (P{sub total}{sup K} = 0.108, P{sub central}{sup K} = 0.246, P{sub total}{sup rBV} = 0.093, P{sub central}{sup rBV} = 0.136). Mean tumour volume was significantly smaller in therapy (P{sub in} {sub vivo} = 0.001, P{sub ex} {sub vivo} = 0.005). Histology revealed greater vascularisation in the controls and central tumour necrosis. Doses ranged from 150 to 300 mGy. This study indicates the great potential of DCE micro-CT for early in vivo assessment of antiangiogenic drug therapy response. (orig.)

  14. Serial CT Findings of Paragonimus Infested Dogs and the Micro-CT Findings of the Worm Cysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hyun; Im, Jung Gi; Goo, Jin Mo; Lee, Hyun Ju; Hong, Sung Tae; Shen, Cheng Hua; Chung, Doo Hyun; Son, Kyu Ri; Chang, Jung Min; Eo, Hong [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-10-15

    To investigate the serial CT findings of Paragonimus westermani infected dogs and the microscopic structures of the worm cysts using Micro-CT. This study was approved by the committee on animal research at our institution. Fifteen dogs infected with P. westermani underwent serial contrast-enhanced CT scans at pre-infection, after 10 days of infection, and monthly thereafter until six months for determining the radiologic-pathologic correlation. Three dogs (one dog each time) were sacrificed at 1, 3 and 6 months, respectively. After fixation of the lungs, both multi-detector CT and Micro-CT were performed for examining the worm cysts. The initial findings were pleural effusion and/or subpleural groundglass opacities or linear opacities at day 10. At day 30, subpleural and peribronchial nodules appeared with hydropneumothorax and abdominal or chest wall air bubbles. Cavitary change and bronchial dilatation began to be seen on CT scan at day 30 and this was mostly seen together with mediastinal lymphadenopathy at day 60. Thereafter, subpleural ground-glass opacities and nodules with or without cavitary changes were persistently observed until day 180. After cavitary change of the nodules, the migratory features of the subpleural or peribronchial nodules were seen on all the serial CT scans. Micro-CT showed that the cyst wall contained dilated interconnected tubular structures, which had communications with the cavity and the adjacent distal bronchus. The CT findings of paragonimiasis depend on the migratory stage of the worms. The worm cyst can have numerous interconnected tubular channels within its own wall and these channels have connections with the cavity and the adjacent distal bronchus.

  15. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  16. Apertures in the LHC Beam Dump System and Beam Losses During Beam Abort

    CERN Document Server

    Kramer, T; Gyr, M; Koschik, A; Uythoven, J; Weiler, T

    2008-01-01

    The LHC beam dumping system (LBDS) is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of $3 \\mu$s is foreseen to avoid sweeping particles through the LHC ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines. MAD-X tracking studies have been made to investigate the impact of particles swept through the aperture due to extraction kicker failures or the presence of particles within the abort gap. The issue of failures during beam abort is a major concern for machine protection as well as a critical factor for safe operation of the experiments and their detectors.

  17. Estimation of regional myocardial mass at risk based on distal arterial lumen volume and length using 3D micro-CT images.

    Science.gov (United States)

    Le, Huy; Wong, Jerry T; Molloi, Sabee

    2008-09-01

    The determination of regional myocardial mass at risk distal to a coronary occlusion provides valuable prognostic information for a patient with coronary artery disease. The coronary arterial system follows a design rule which allows for the use of arterial branch length and lumen volume to estimate regional myocardial mass at risk. Image processing techniques, such as segmentation, skeletonization and arterial network tracking, are presented for extracting anatomical details of the coronary arterial system using micro-computed tomography (micro-CT). Moreover, a method of assigning tissue voxels to their corresponding arterial branches is presented to determine the dependent myocardial region. The proposed micro-CT technique was utilized to investigate the relationship between the sum of the distal coronary arterial branch lengths and volumes to the dependent regional myocardial mass using a polymer cast of a porcine heart. The correlations of the logarithm of the total distal arterial lengths (L) to the logarithm of the regional myocardial mass (M) for the left anterior descending (LAD), left circumflex (LCX) and right coronary (RCA) arteries were log(L)=0.73log(M)+0.09 (R=0.78), log(L)=0.82log(M)+0.05 (R=0.77) and log(L)=0.85log(M)+0.05 (R=0.87), respectively. The correlation of the logarithm of the total distal arterial lumen volumes (V) to the logarithm of the regional myocardial mass for the LAD, LCX and RCA were log(V)=0.93log(M)-1.65 (R=0.81), log(V)=1.02log(M)-1.79 (R=0.78) and log(V)=1.17log(M)-2.10 (R=0.82), respectively. These morphological relations did not change appreciably for diameter truncations of 600-1400microm. The results indicate that the image processing procedures successfully extracted information from a large 3D dataset of the coronary arterial tree to provide prognostic indications in the form of arterial tree parameters and anatomical area at risk.

  18. Anatomy analysis of bone tissue subtle structure using MicroCT%应用MicroCT骨组织微细解剖学分析

    Institute of Scientific and Technical Information of China (English)

    张迪; 金东春; 周聪; 姜玲; 张晓燕; 黎卫星; 金熙真; 金光春

    2012-01-01

    取有效的解剖学信息,应用MicroCT测量骨微细解剖结构,探讨MicroCT测量的准确性.应用MicroCT(HMX-225 Actis 4,日本),成人牙列完整的颌骨标本40例,进行上下颌骨的解剖测量,所得数据进行统计学分析MicroCT与组织形态学结果之间的相关性.骨小梁、骨密度等几种MicroCT的观测指标,与骨形态学参数测量结果相似.MicroCT与组织形态学观测结果之间具有正相关性.%Through this research, 40 cases of jaw with teeth were chosen of the trabecular structure of the surrounding alveolar bone, and the surrounding cortical plate using the micro CT ( HMX-225 Actis 4, Japan ). Statistical analysis was carried out for the correlation between bone morphometry and micro-CT. The micro-CT parameters of Th, Tb. N were statistically significant correlated with BMD respectively. There are positively corelated with the results of morphometric parameters and micro-CT.

  19. Applying microCT and 3D Visualization to Jurassic Silicified Conifer Seed Cones: A Virtual Advantage Over Thin-Sectioning

    Directory of Open Access Journals (Sweden)

    Carole T. Gee

    2013-11-01

    Full Text Available Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT integrated with scientific visualization, three-dimensional (3D image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  20. Status of the CLIC Beam Delivery System

    CERN Document Server

    Tomás, R; Resta López, J; Rumolo, G; Schulte, D; Schuler, P; Bolzon, B; Brunetti, L; Brunetti, L; Geffroy, N; Jeremie, A; Seryi, A; Angal-Kalinin, D; Jackson, F

    2010-01-01

    The CLIC Beam Delivery System (BDS) is experiencing the careful revision from a large number of world wide experts. This was particularly enhanced by the successful CLIC’08 workshop held at CERN. Numerous new ideas, improvements and critical points are arising, establishing the path towards the Conceptual Design Report by 2010.

  1. Collisionless relaxation in beam-plasma systems

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Ekaterina Yu. [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show

  2. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  3. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2013-09-01

    Full Text Available INTRODUCTION: Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. AIM: The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. METHODS: Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a gray levels produced by the bone x-ray absorption, b the portions of the image occupied by air and c voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. RESULTS: The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.

  4. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    Science.gov (United States)

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  5. Volume of sealer in the apical region of teeth filled by different techniques: a micro-CT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanessa Lessa; Souza-Gabriel, Aline Evangelista; Cruz Filho, Antonio Miranda da; Pecora, Jesus Djalma; Silva, Ricardo Gariba, E-mail: vanessalessa@usp.br [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Escola de Odontologia. Departamento de Odontologia Restauradora

    2016-05-01

    The volume of sealer in the apical 1 mm of teeth filled using different techniques was evaluated by micro-commuted tomography (micro-CT). Sixty-four maxillary central incisors were prepared using NiTi rotary instruments. Teeth were randomly distributed into four groups according to root canal sealers (AH Plus, Endofill, Sealapex, and Sealer 26) and subdivided into two subgroups according to the filling techniques (active and passive lateral condensation; n = 8 each). Subsequently, teeth were examined using the 1174 SkyScan micro-CT device. Images were reconstructed using the NRecon software, and the sealer volume (mm{sup 3}) in the apical region was analyzed using the two-way ANOVA and post-hoc Student-Newman-Keuls test (α = 0.05). The lowest volume of sealer was observed in teeth filled with Sealapex (0.100 ± 0.009) and Endofill (0.103 ± 0.010). The highest volume was observed in teeth filled with AH Plus (0.112 ± 0.008) and Sealer 26 (0.109 ± 0.018) (p > 0.05). Regarding the filling technique, a lower sealer volume was observed using the active lateral condensation technique compared with that using the passive lateral condensation technique (0.100 ± 0.010 vs. 0.111 ± 0.012) (p < 0.05). Therefore, the lowest volume of sealer was observed in teeth filled with Sealapex and Endofill using the active lateral condensation technique. (author)

  6. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...

  7. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly Marie

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...

  8. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  9. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  10. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  11. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  12. Evaluation of occurring complications after flow diverter treatment of elastase-induced aneurysm in rabbits using micro-CT and MRI at 9.4 T

    Energy Technology Data Exchange (ETDEWEB)

    Simgen, Andreas; Ley, Desiree; Muehl-Benninghaus, Ruben; Koerner, Heiko; Reith, Wolfgang; Yilmaz, Umut [Saarland University Hospital, Department of Neuroradiology, Homburg, Saar (Germany); Roth, Christian [Clinic Bremen-Mitte, Department of Neuroradiology, Bremen (Germany); Cattaneo, Giorgio Franco Maria [Acandis GmbH, Pforzheim (Germany); Mueller, Andreas [Saarland University Hospital, Department of Experimental Surgery, Homburg, Saar (Germany); Kim, Yoo-Jin [Saarland University Hospital, Department of Pathology, Homburg, Saar (Germany); Scheller, Bruno [Saarland University Hospital, Department of Cardiology, Homburg, Saar (Germany)

    2016-10-15

    Flow diverters are increasingly being used to treat intracranial aneurysms. This study evaluates occurring complications of flow-diverting devices in the treatment of experimental aneurysms, involving the use of micro-CT and small animal MRI at 9.4 T, in correlation to angiographic and histological findings. We previously published two preclinical studies, in which we assessed two different flow diverters in the treatment of elastase-induced aneurysms. Devices have been implanted across the aneurysm neck as well as in the abdominal aorta. From these studies, a total of 65 devices (prototype FD (n = 30) and Derivo embolization device (n = 35)) additionally underwent micro-CT and MRI after angiographic follow-up and before being histologically examined. The different architectures of both devices were precisely comparable due to high-resolution micro-CT imaging. Micro-CT revealed wire fractures in nine cases (30 %) only with the prototype FD. In three cases (10 %), severe wire fractures correlated with an in-stent stenosis due to intimal hyperplasia. Other complications, like distal stent occlusions and post-stent stenosis, were seen in both groups and verified with both imaging techniques. Osseous metaplasia were correlated to calcifications seen with micro-CT. MRI enabled visualization of the position of the implanted devices relative to the aneurysm and revealed incomplete aneurysm neck coverage with the prototype FD in two cases (6.7 %). Micro-CT and 9.4-T MRI are valid to discover and understand occurring complications of flow diverters in the preclinical phase and can serve as evaluation tools to minimize complication rates of endovascular devices in the future. (orig.)

  13. Laser beam shaping and packaging system

    Science.gov (United States)

    Luo, Daxin; Zhao, Baiqin

    2012-10-01

    This paper presents a semiconductor laser beam shaping system, that can collimate the irradiance profile effectively and package the laser diode(LD) at the same time. Due to the semiconductor LD is a kind of line source, a particular ellipsoidal lens is designed after both the fast-axis and the slow-axis of the laser beam analyzed. Geometrical optics analysis based on the ray tracing method is done and the formulas to calculate the shape of the lens are given. Both the theoretical and experimental result show that the laser beam system works effectively; the divergence angle is reduced to less than 0.5 degree in the fast-axial direction and 1.8 degree in the slow-axial direction. In addition, it is the same process that makes the laser beam shaper and packages the LD by using epoxy resin, which simplifies the manufacturing process and reduces the LD volume greatly. Because of the advantages of small volume, low-cost, high rigidity and easy fabrication, the shaper is of great value in the field of semiconductor LD applications.

  14. X-Ray Diffraction Contrast Tomography in micro-CT Lab Source Systems

    Science.gov (United States)

    2014-05-16

    microstrucutre as determined from DCT. (e) Surface mesh representing the fracture surface, colour coded with respect to its crystallographic orientation. Grain...voltage and a 5µm thick tungsten transmission target. The images were recorded on a CCD detector (ESRF Frelon camera) featuring a 2048 × 2048 pixel array

  15. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  16. Indexing system for optical beam steering

    Science.gov (United States)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  17. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  18. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  19. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  20. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images

    Science.gov (United States)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2015-09-01

    We study capillary trapping in porous media using direct pore-scale simulation of two-phase flow on micro-CT images of a Berea sandstone and a sandpack. The trapped non-wetting phase saturations are predicted by solving the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework to simulate primary drainage followed by water injection. Using these simulations, we analyse the effects of initial non-wetting-phase saturation, capillary number and flow direction on the residual saturation. The predictions from our numerical method are in agreement with published experimental measurements of capillary trapping curves. This shows that our direct simulation method can be used to elucidate the effect of pore structure and flow pattern of capillary trapping and provides a platform to study the physics of multiphase flow at the pore scale.

  1. Nondestructive Analysis of Apollo Samples by Micro-CT and Micro-XRF Analysis: A PET Style Examination

    Science.gov (United States)

    Zeigler, Ryan A.

    2014-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.

  2. The LHC Beam Dumping System Trigger Synchronisation and Distribution System

    CERN Document Server

    Antoine, A; Voumard, N

    2005-01-01

    Two LHC beam dumping systems (LBDS) will fast-extract the counter-rotating beams safely from the LHC collider during setting-up of the accelerator, at the end of a physics run and in case of emergencies. They consist of 15 fast pulsed magnets per ring for beam extraction from the accelerator combined with 10 fast pulsed magnets for horizontal and vertical beam dilution. Dump requests will come from 3 different sources: the machine protection system for emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These spontaneously issued dump requests will be synchronised with the 3 µs beam abort gap within a fail-safe trigger synchronisation unit (TSU) based on a digital phase lock loop (DPLL) locked on the beam revolution frequency with a maximum phase error of 40 ns. Afterwards, the synchronised trigger pulse will be distributed to the fast pulsed magnet high voltage generators through a redundant fault tolerant trigger distribution system based on the...

  3. Switched steerable multiple beam antenna system

    Science.gov (United States)

    Iwasaki, Richard S. (Inventor)

    1988-01-01

    A steerable multibeam five element cross-feed cluster antenna system is described. The feed power is divided into five branches. Each branch includes a switching network comprised of a plurality of time delay elements each individually controlled by a respective electromagnetic latching switch. Frequency independent individual two-dimensional beam steering at intermediate (IF) scanning frequencies is thereby provided wherein discrete incremental time delays are introduced by the switching networks into each branch and the signals recombined thereafter to form each beam. The electromagnetic latched switching reduces power consumption and permits higher power switching and reciprocal coincident tranmsit and receive operation. Frequency independence due to incremental time delay switching permits coincident reciprocal operation and steering for transmit-receive signal paths carrying different transmit-receive frequencies. Diagonal quarter wave plates in the waveguides alter polarization from the circular to orthogonal linear to provide transmitter-receiver isolation.

  4. Analyzing the human liver vascular architecture by combining vascular corrosion casting and micro-CT scanning: a feasibility study.

    Science.gov (United States)

    Debbaut, Charlotte; Segers, Patrick; Cornillie, Pieter; Casteleyn, Christophe; Dierick, Manuel; Laleman, Wim; Monbaliu, Diethard

    2014-04-01

    Although a full understanding of the hepatic circulation is one of the keys to successfully perform liver surgery and to elucidate liver pathology, relatively little is known about the functional organization of the liver vasculature. Therefore, we materialized and visualized the human hepatic vasculature at different scales, and performed a morphological analysis by combining vascular corrosion casting with novel micro-computer tomography (CT) and image analysis techniques. A human liver vascular corrosion cast was obtained by simultaneous resin injection in the hepatic artery (HA) and portal vein (PV). A high resolution (110 μm) micro-CT scan of the total cast allowed gathering detailed macrovascular data. Subsequently, a mesocirculation sample (starting at generation 5; 88 × 68 × 80 mm³) and a microcirculation sample (terminal vessels including sinusoids; 2.0 × 1.5 × 1.7 mm³) were dissected and imaged at a 71-μm and 2.6-μm resolution, respectively. Segmentations and 3D reconstructions allowed quantifying the macro- and mesoscale branching topology, and geometrical features of HA, PV and hepatic venous trees up to 13 generations (radii ranging from 13.2 mm to 80 μm; lengths from 74.4 mm to 0.74 mm), as well as microvascular characteristics (mean sinusoidal radius of 6.63 μm). Combining corrosion casting and micro-CT imaging allows quantifying the branching topology and geometrical features of hepatic trees using a multiscale approach from the macro- down to the microcirculation. This may lead to novel insights into liver circulation, such as internal blood flow distributions and anatomical consequences of pathologies (e.g. cirrhosis).

  5. Three-dimensional characterization of the vascular bed in bone metastasis of the rat by microcomputed tomography (MicroCT.

    Directory of Open Access Journals (Sweden)

    Hervé Nyangoga

    Full Text Available BACKGROUND: Angiogenesis contributes to proliferation and metastatic dissemination of cancer cells. Anatomy of blood vessels in tumors has been characterized with 2D techniques (histology or angiography. They are not fully representative of the trajectories of vessels throughout the tissues and are not adapted to analyze changes occurring inside the bone marrow cavities. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the vasculature of bone metastases in 3D at different times of evolution of the disease. Metastases were induced in the femur of Wistar rats by a local injection of Walker 256/B cells. Microfil®, (a silicone-based polymer was injected at euthanasia in the aorta 12, 19 and 26 days after injection of tumor cells. Undecalcified bones (containing the radio opaque vascular casts were analyzed by microCT, and a first 3D model was reconstructed. Bones were then decalcified and reanalyzed by microCT; a second model (comprising only the vessels was obtained and overimposed on the former, thus providing a clear visualization of vessel trajectories in the invaded metaphysic allowing quantitative evaluation of the vascular volume and vessel diameter. Histological analysis of the marrow was possible on the decalcified specimens. Walker 256/B cells induced a marked osteolysis with cortical perforations. The metaphysis of invaded bones became progressively hypervascular. New vessels replaced the major central medullar artery coming from the diaphyseal shaft. They sprouted from the periosteum and extended into the metastatic area. The newly formed vessels were irregular in diameter, tortuous with a disorganized architecture. A quantitative analysis of vascular volume indicated that neoangiogenesis increased with the development of the tumor with the appearance of vessels with a larger diameter. CONCLUSION: This new method evidenced the tumor angiogenesis in 3D at different development times of the metastasis growth. Bone and the vascular

  6. Status of Beam Diagnostic Systems for the PEFP

    CERN Document Server

    Park Jang Ho; Choi Byung Ho; Ha Hwang Woon; Han, Sang-Hyo; Park, Sung-Ju; Woon Parc, Yong; Yun Huang Jung

    2005-01-01

    A proton linear accelerator is currently the construction at the KAERI (Korea Atomic Research Institute) to the PEFP (Proton Engineering Frontier Project) in Korea. We are accomplished the technique development of beam diagnostic system to be currently the construction. We treat beam diagnostics for the high power proton linear accelerator. Prototype beam position & phase monitor (BPPM) electronics was made and tested successfully in one of the beam diagnostic systems. The beam position monitor pickup electrode is a capacitive type (electrostatic type) which has a button form. Button form electrode, in common use around electron synchrotrons and storage rings, are a variant of the electrode with small button form (e.g., sub mm diameter). However, we are designed button form electrode to measure beam position of proton beam. The BCM (Beam Current Monitor) is developed Tuned CT (Current Transformer) for collaborate with Bergoz Instruments. This paper describes the status of beam diagnostic systems for the P...

  7. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    Science.gov (United States)

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-05-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.

  8. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  9. Protection and Diagnostic Systems for High Intensity Beams

    CERN Document Server

    Jensen, L; Vismara, Giuseppe

    2000-01-01

    This paper presents a summary of the facilities for beam interlocks and diagnostics to protect the CERN SPS machine. An overview of the existing systems is given, which are based on beam loss and beam current monitors and large beam position excursion in the horizontal plane. The later system mainly protects the system against a failure of the transverse damping system. The design for a new large excursion interlock for both transverse planes is also presented in some detail. For this system a digital approach is being taken to allow post-mortem analysis of the behaviour of the beam prior to the activation of the interlock.

  10. SU-E-I-84: Accuracy Comparison of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using In-Air Micro-CT Image Volume

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: Tumor volume is considered as a better predictor for therapy response monitoring and tumor staging over Response Evaluation Criteria In Solid Tumors (RECIST) or World Health Organization (WHO) criteria. In this study, the accuracy of subcutaneous rodent tumor volumes using preclinical magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and ultrasound (US) equipment and with an external caliper was compared using in-air micro-CT image volume of excised tumors determined as reference tumor volume in our prior study. Methods: MR, US and micro-CT images of subcutaneous SCC4 head and neck tumor xenografts were acquired 4, 6, 9, 11 and 13 days after tumor cell inoculation. Before MR and US scans, caliper measurements were made. After tumors were excised, in-air micro-CT imaging and ex vivo caliper measurements were performed. Tumor volumes were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three image modalities and caliper, and compared with reference tumor volume by linear regression analysis as well as Bland-Altman plots. A one-way Analysis of Variance (ANOVA) test was also performed to compare volumes among caliper measurements. Results: The correlation coefficients (R2) of the regression lines for tumor volumes measured by the three imaging modalities and caliper were 0.9939, 0.9669, 0.9806, 0.9274, 0.9619 and 0.9819 for MRI, US and micro-CT, caliperbeforeMRI, caliperbeforeUS and ex vivo caliper respectively. In Bland-Altman plots, the average of tumor volume difference from reference tumor volume (bias) was significant for caliper and micro- CT, but not for MRI and US. Comparison of caliper measurements showed a significant difference (p < 0.05). Conclusion: Using the in-air micro-CT image volume, tumor volume measured by MRI was the most accurate among the three imaging modalities. In vivo caliper volume measurements showed unreliability while ex

  11. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  12. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  13. The Beam Energy Tracking System of the LHC Beam Dumping System

    CERN Document Server

    Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R

    2005-01-01

    The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...

  14. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.

    Science.gov (United States)

    Alaei, Parham; Spezi, Emiliano

    2012-11-08

    The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance.

  15. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    Science.gov (United States)

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  16. Multi-transmission-line-beam interactive system

    Energy Technology Data Exchange (ETDEWEB)

    Figotin, Alexander; Reyes, Guillermo [Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875 (United States)

    2013-11-15

    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.

  17. Comparison of interfaces of different pedicle screws with micro-CT technique in lumbar vertebrae with osteoporosis of sheep

    Directory of Open Access Journals (Sweden)

    Da LIU

    2015-07-01

    Full Text Available Objective To compare the changes in interfaces of expandable pedicle screw (EPS and polymethylmethacrylateenhanced pedicle screw (PMMA-PS after being used in osteoporotic sheep lumbar vertebrae with micro-CT technique. Methods Six lumbar vertebrae (L1-L6 in each sheep were randomly divided into three different screw-insertion groups (two vertebrae with four pedicles in each group after reproduction of osteoporosis in sheep. After making the pilot hole using the same method, CPS was inserted through the pilot hole into vertebral body in CPS group, while PMMA (1.0ml was injected into the pilot hole prior to the insertion of CPS in PMMA-PS group, and EPS was inserted through pedicle into vertebral body in EPS group. All the sheep were sacrificed, and lumbar vertebrae (L1-L6 were harvested respectively at the 6- and 12-week postoperatively. The micro-CT three dimensional reconstruction and histomorphometric analysis were performed to evaluate the interfacial conditions. Results  It was clearly demonstrated that interface was formed where the bone trabeculae was directly in contact with the screw to form "screw-bone" interface in both CPS and EPS groups both 6 weeks and 12 weeks after the operation. The screw was fully surrounded by PMMA and formed "screw-PMMA-bone" interface in PMMA-PS group. The anterior part of EPS expanded in vertebral body to form a clawlike structure, pressing against the surrounding bone trabeculae, thus significantly improved the local bone quality (amount and density of bone trabeculae. From 6 weeks to 12 weeks after the operation, there was no visual difference in bone quality around the screw in both CPS and PMMA-PS groups. There was no degradation and absorption of PMMA, and it led to form the second non-biological interface in PMMA-PS group. Nevertheless, bone quality around expanding part of EPS at 12-week post-operation was significantly improved compared with that at 6-week post-operation, thus forming a good

  18. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    Directory of Open Access Journals (Sweden)

    Francesca Mangione

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.

  19. ITER neutral beam system US conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  20. Hardware and Initial Beam Commissioning of the LHC RF Systems

    CERN Document Server

    Linnecar, T; Arnaudon, L; Baudrenghien, P; Bohl, T; Brunner, O; Butterworth, A; Ciapala, Edmond; Dubouchet, F; Ferreira-Bento, J; Glenat, D; Hagmann, G; Höfle, Wolfgang; Julie, C; Killing, F; Kotzian, G; Landre, D; Louwerse, R; Maesen, P; Martinez-Yanez, P; Molendijk, J; Montesinos, E; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Rossi, V; Sanchez-Quesada, J; Schokker, M; Shaposhnikova, E; Sorokoletev, R; Stellfeld, D; Tückmantel, Joachim; Valuch, D; Wehrle, U; Weierud, F

    2008-01-01

    Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009.

  1. Laser Micro-beam Manipulation System for Cells

    Institute of Scientific and Technical Information of China (English)

    孟祥旺; 李岩; 张书练; 张志诚; 赵南明

    2002-01-01

    This paper introduces a laser micro-beam system for cells manipulation. The laser micro-beam system comprises a laser scissors and a laser tweezers, which are focused by a Nd∶YAG laser and a He-Ne laser through a microscope objective, respectively. Not only the overall design of the laser micro-beam system is discussed, but also the design and choice of the critical components. A laser micro-beam system was constructed and anticipated experiment results were gained. Yeast cells can be successfully manipulated with the laser tweezers. Chromosomes can be successfully incised with the laser scissors.

  2. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  3. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  4. 3D configuration of mandibles and controlling muscles in rove beetles based on micro-CT technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dee [Chinese Academy of Sciences, Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Beijing (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Zhang, Kai [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China); Wu, Ziyu [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei (China); Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China); Zhou, Hongzhang [Chinese Academy of Sciences, Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Beijing (China)

    2011-08-15

    X-ray micro-CT is a powerful tool to visualize without damage details of the inner structures of beetles, the largest order of insects with a hard external skeleton. This contribution shows the three-dimensional (3D) reconstruction of the head morphology of three rove beetle species (Insecta, Coleoptera, Staphylinidae) - Noddia sp., Creophilus maxillosus, and Hesperosoma sp. - using X-ray microtomography at a spatial resolution of 6 {mu}m. The details of skeletal muscle fiber insertions are described, giving a comprehensive overview of mandible mobility and organization. With the support of 3D rendering, we discuss the relationship among the mandible forms, the development of the muscles controlling the movement, and the head morphology. The well-developed posterior part of the head capsule is always accompanied by a well-developed mandible, a large adductor muscle, and a large apodeme for the wide areas of the muscle fiber attachment. In Noddia sp., muscles connected to the posterolateral angle of the head capsule are mainly short muscles, whereas in Creophilus maxillosus, the latter are mainly long muscles, and in Hesperosoma sp. no mandible adductor muscle fibers are present on the posterolateral angle of the head capsule. These results offer new invaluable information regarding the biting functions of beetle mandibles and the trend of their morphological change during their long-term evolution. (orig.)

  5. Impact of micronutrients supplementation on bone repair around implants: microCT and counter-torque analysis in rats

    Directory of Open Access Journals (Sweden)

    Suzana Peres Pimentel

    2016-02-01

    Full Text Available ABSTRACT The use of natural substances and micronutritional approaches has been suggested as a therapeutic alternative to benefit the bone healing associated with no side effects. Nevertheless, the influence of micronutritional interventions with therapeutic proprieties on the bone repair has yet to be intensely evaluated, and no evidence is available exploring the impact of micronutrient supplementation on the peri-implant bone healing. Objective This study investigated the effect of micronutrients supplementation on the bone repair around implants. Material and Methods One screw-shaped titanium implant was inserted in each tibia of each rat, which were assigned to: daily administration, for 30 d, of the placebo solution (Placebo group-n:18 or micronutrients supplementation (Micronutrients group-n:18, based on calcium, magnesium, zinc, and vitamin D3 intake. After, the animals were sacrificed. One of the implants was removed by applying a counter-torque force to evaluate the force to rupture the bone-implant interface. The other implant was evaluated by microcomputed tomography (CT examination to determine the bone-to-implant contact (BIC and the bone volume (BV/TV. Results No statistically significant differences were observed between the groups for both counter-torque values and microCT parameters (p>0.05. Conclusion Within the limits of this study, micronutrients supplementation did not provide additional benefits to the bone healing around dental implants.

  6. Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining.

    Science.gov (United States)

    Yamaki, Koichi; Kataoka, Yu; Ohtsuka, Fukunaga; Miyazaki, Takashi

    2012-01-01

    Titanium surfaces processed by wire-type electric discharge machining (EDM) are microfabricated surfaces with an irregular morphology, and they exhibited excellent in vitro bone biocompatibility. In this study, the efficiency of in vivo osteogenesis on EDM surfaces was investigated by surgically placing screw-shaped EDM-processed and machined-surface implants into the femurs of four Japanese white rabbits. The volume and process of new bone formation were evaluated by an X-ray micro-CT scanner, coupled with histopathological observations at 1, 2, and 4 weeks post-implantation. Before surgical implantation, the surface topography and contact angle of each implant surface were examined. Bone formation increased over time on both implant surfaces, with both implant types yielding statistically equivalent bone volume at 4 weeks post-implementation. However, at 1 week post-implantation, amount of new bone at EDM-processed implant was markedly greater than that at machined-surface implant. Moreover, new bone appeared to initiate directly from the EDM surfaces, while new bone appeared to generate from pre-existing host bone to the machined surfaces. Thus, EDM seemed to be a promising method for surface modification of titanium implants to support enhanced osteogenesis.

  7. Effect of low-intensity pulsed ultrasound (LIPUS) on mandibular condyle growth in rats analyzed with micro-CT.

    Science.gov (United States)

    Sasaki, Kyozo; Motoyoshi, Mitsuru; Horinuki, Eri; Arai, Yoshinori; Shimizu, Noriyoshi

    2016-01-01

    This study examined the effects of a bite-jumping appliance combined with low-intensity pulsed ultrasound (LIPUS) stimulation on the mandibular condyle of growing rats using micro CT (mCT) and histological examinations. Twelve Wistar rats were divided into three groups of four individuals each: Group 1 was an untreated control group, Group 2 received bite-jumping appliances, and Group 3 received bite-jumping appliances and LIPUS stimulation (15 min/day, 2 weeks) to the temporomandibular region. We measured the length and three-dimensional bone volume of each rat's mandibular condyle using mCT. The condylar cartilage was observed after the rats had been sacrificed. There was no significant difference in condylar sagittal width among the groups. The bite-jumping appliance combined with LIPUS stimulation increased the condylar major axis, mandibular sagittal length and condylar bone volume to a greater degree than use of the bite-jumping appliance alone. Histological examination demonstrated hypertrophy of the condylar cartilage layers, the fibrous layer and hypertrophic cell layer of the rats treated with bite-jumping appliances combined with LIPUS stimulation in comparison to rats treated with bite-jumping appliances alone. (J Oral Sci 58, 415-422, 2016).

  8. Impact of micronutrients supplementation on bone repair around implants: microCT and counter-torque analysis in rats

    Science.gov (United States)

    Pimentel, Suzana Peres; Casarin, Renato Correa; Ribeiro, Fernanda Vieira; Cirano, Fabiano Ribeiro; Rovaris, Karla; Haiter, Francisco; Casati, Marcio Zaffalon

    2016-01-01

    ABSTRACT The use of natural substances and micronutritional approaches has been suggested as a therapeutic alternative to benefit the bone healing associated with no side effects. Nevertheless, the influence of micronutritional interventions with therapeutic proprieties on the bone repair has yet to be intensely evaluated, and no evidence is available exploring the impact of micronutrient supplementation on the peri-implant bone healing. Objective This study investigated the effect of micronutrients supplementation on the bone repair around implants. Material and Methods One screw-shaped titanium implant was inserted in each tibia of each rat, which were assigned to: daily administration, for 30 d, of the placebo solution (Placebo group-n:18) or micronutrients supplementation (Micronutrients group-n:18), based on calcium, magnesium, zinc, and vitamin D3 intake. After, the animals were sacrificed. One of the implants was removed by applying a counter-torque force to evaluate the force to rupture the bone-implant interface. The other implant was evaluated by microcomputed tomography (CT) examination to determine the bone-to-implant contact (BIC) and the bone volume (BV/TV). Results No statistically significant differences were observed between the groups for both counter-torque values and microCT parameters (p>0.05). Conclusion Within the limits of this study, micronutrients supplementation did not provide additional benefits to the bone healing around dental implants. PMID:27008256

  9. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Lu, Hongbin, E-mail: hongbinlu@hotmail.com [Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  10. Tooth fracture risk analysis based on a new finite element dental structure models using micro-CT data.

    Science.gov (United States)

    Chen, G; Fan, W; Mishra, S; El-Atem, A; Schuetz, M A; Xiao, Y

    2012-10-01

    The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.

  11. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast.

    Directory of Open Access Journals (Sweden)

    Ryan Anderson

    Full Text Available High-resolution Magnetic Resonance Imaging (MRI has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT, especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.

  12. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats.

    Directory of Open Access Journals (Sweden)

    Zhongshuang Liu

    Full Text Available To evaluate the effect of trabecular thickness and trabecular separation on modulating the trabecular architecture of the mandibular bone in ovariectomized rats.Fourteen 12-week-old adult female Wistar rats were divided into an ovariectomy group (OVX and a sham-ovariectomy group (sham. Five months after the surgery, the mandibles from 14 rats (seven OVX and seven sham were analyzed by micro-CT. Images of inter-radicular alveolar bone of the mandibular first molars underwent three-dimensional reconstruction and were analyzed.Compared to the sham group, trabecular thickness in OVX alveolar bone decreased by 27% (P = 0.012, but trabecular separation in OVX alveolar bone increased by 59% (P = 0.005. A thickness and separation map showed that trabeculae of less than 100 μm increased by 46%, whereas trabeculae of more than 200 μm decreased by more than 40% in the OVX group compared to those in the sham group. Furthermore, the OVX separation of those trabecular of more than 200 μm was 65% higher compared to the sham group. Bone mineral density (P = 0.028 and bone volume fraction (p = 0.001 were also significantly decreased in the OVX group compared to the sham group.Ovariectomy-induced bone loss in mandibular bone may be related to the distributional variations in trabecular thickness and separation which profoundly impact the modulation of the trabecular architecture.

  13. Permeability estimation of porous media by using an improved capillary bundle model based on micro-CT derived pore geometries

    Science.gov (United States)

    Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen

    2017-01-01

    The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.

  14. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  15. Comparative study on measured variables and sensitivity to bone microstructural changes induced by weightlessness between in vivo and ex vivo micro-CT scans.

    Science.gov (United States)

    Sun, Lian Wen; Wang, Chao; Pu, Fang; Li, De Yu; Niu, Hai Jun; Fan, Yu Bo

    2011-01-01

    Depending on the experimental design, micro-CT can be used to examine bones either in vivo or ex vivo (excised fresh or formalin-fixed). In this study we investigated if differences exist in the variables measured by micro-CT between in vivo and ex vivo scans and which kind of scan is more sensitive to the changes of bone microstructure induced by simulated weightlessness. Rat tail suspension was used to simulate the weightless condition. The same bone from either normal or tail-suspended rats was scanned by micro-CT both in vivo and ex vivo (fresh and fixed by formalin). Then, bone mineral density (BMD) and microstructural characteristics were analyzed. The results showed that no significant differences existed in the microstructural parameters of trabecular bone among in vivo, fresh, and formalin-fixed bone scans from both femurs and tibias, although BMD exhibited differences. On the other hand, most parameters of the tail-suspended rats measured by micro-CT deteriorated compared with controls. Ex vivo scanning appeared to be more sensitive to bone microstructural changes induced by tail suspension than in vivo scanning. In general, the results indicate that values obtained in vivo and ex vivo (fresh and fixed) are comparable, thus allowing for meaningful comparison of experimental results from different studies irrespective of the type of scans. In addition, this study suggests that it is better to use ex vivo scanning when evaluating bone microstructure under weightlessness. However, researchers can select any type of scan depending upon the objective and the demands of the experiment.

  16. X-ray microCT imaging technique reveals corm microstructures of an arctic-boreal cotton-sedge, Eriophorum vaginatum.

    Science.gov (United States)

    Bogart, Sarah J; Spiers, Graeme; Cholewa, Ewa

    2010-09-01

    X-ray computed tomography (CT), a non-destructive imaging technique, has recently been effectively applied to botanical research. In this study an X-ray microCT technique was developed to allow for anatomical study of the overwintering corms of Eriophorum vaginatum, an ecologically important sedge species in arctic tussock-tundra and boreal peatlands. Using a GE Medical MS8X-130 X-ray microCT scanner, optimal imaging parameters included scanning isolated corms at 80 k Vp and 100 microA with a 3500 ms exposure time and an isotropic voxel size of 10 microm. A Gaussian blur image filter with a blur radius (sigma) of two pixels was applied to the optimal dataset to improve visual detection and contrast of tissues while removing 99.2% of image noise. Using the developed X-ray microCT technique several undocumented anatomical characteristics of the corm were identified including the vascular connection between a parent corm and branching cormel and the 3D shape of sclereid clusters. The 3D structure of sclereid clusters was determined whereby the perimeter of their lance shape is greatly reinforced by sclereids with thicker secondary cell walls as compared to those of the interior of the cluster. The structure of sclereid clusters and their association with leaf traces suggests they may be stabilizing the corm-leaf connection to protect vascular tissues from physical damage. The proposed X-ray microCT technique is an excellent tool for determination of the 3D structure of E. vaginatum corms and may be used to detect alterations in tissue structure and chemistry in response to environmental change in this and other Cyperaceous species.

  17. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  18. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    Science.gov (United States)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  19. Laser Beam Duct Pressure Controller System.

    Science.gov (United States)

    the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.

  20. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  1. Fast X-ray micro-CT for real-time 4D observation

    Energy Technology Data Exchange (ETDEWEB)

    Takano, H; Yoshida, K; Tsuji, T; Koyama, T; Tsusaka, Y; Kagoshima, Y, E-mail: htakano@sci.u-hyogo.ac.j [Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297 (Japan)

    2009-09-01

    Fast X-ray computed tomography (CT) system with sub-second order measurement for single CT acquisition has been developed. The system, consisting of a high-speed sample rotation stage and a high-speed X-ray camera, is constructed at synchrotron radiation beamline in order to utilize fully intense X-rays. A time-resolving CT movie (i.e. 4D CT) can be available by operating the fast CT system continuously. Real-time observation of water absorbing process of super-absorbent polymer (SAP) has been successfully performed with the 4D CT operation.

  2. Interpolating sliding mode observer for a ball and beam system

    Science.gov (United States)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  3. Fast ion beam-plasma interaction system.

    Science.gov (United States)

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  4. Three-Dimensional Quantification of Calcium Salt-Composite Resorption (CSC) In Vitro by Micro-computed Tomography (Micro-CT)

    Science.gov (United States)

    Winkler, T.; Dai, X. Y.; Mielke, G.; Vogt, S.; Buechner, H.; Schantz, J. T.; Harder, Y.; Machens, H. G.; Morlock, M. M.; Schilling, A. F.

    2014-04-01

    The commonly applied cell-based, two-dimensional (2D) in vitro resorption assays for biomaterials are limited in a variety of cases, including high initial roughness of material surface, uncontrollable solubilization (or resorption) of the entire material surface, or complex three-dimensional (3D) structure of the bioactive material itself. All these make the accurate assessment and successful selection of the optimal bone substitute material difficult. In vivo, micro-computed tomography (micro-CT) has been widely applied for the analysis of bone physiology and pathology, as well as for the 3D analysis of scaffolds for bone tissue engineering. In this study, we show that micro-CT can also be applied for the in vitro analysis of osteoclast-mediated resorption of biomaterials. For our experiments, we chose a calcium salt-composite (composite of calcium sulphate (CSC), calcium carbonate, glycerin-1,2,3-tripalmiate), which evades common 2D in vitro resorption analysis as a result of its high surface roughness and material composition. Human osteoclasts were differentiated from precursor cells on the surface of the material for 28 days. Cells were analyzed for expression of tartrate-resistant acid phosphatase 5b (TRAP5b), multinuclearity, and size. Volumetric analysis of resorption was performed by micro-CT. Multinucleated osteoclasts developed on the surface of the material. TRAP5b expression of the cells on CSC was comparable with TRAP5b expression of cells cultivated on dentin for the first 3 weeks of culture. At day 28, TRAP5b expression, cell number, and size of the TRAP+ cells were reduced on the CSC when compared with cells on dentin. Volumetric anaylsis by micro-CT showed a strong cellular effect on resorption of CSC. We consider micro-CT to be a promising technique for 3D quantification of cell-based resorption that will allow the study of cellular resorption of materials in vitro, which were up to now confined to animal experimental analysis.

  5. Optimization of beam transformation system for laser-diode bars.

    Science.gov (United States)

    Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong

    2016-08-22

    An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%.

  6. Collected abstracts on particle beam diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hickok, R.L.

    1979-01-01

    This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics.

  7. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.

    Science.gov (United States)

    Ho, Thach-Vu; Iwata, Junichi; Ho, Hoang Anh; Grimes, Weston C; Park, Shery; Sanchez-Lara, Pedro A; Chai, Yang

    2015-04-15

    Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.

  8. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  9. Performance Studies of the SPS Beam Dump System for HL-LHC Beams

    CERN Document Server

    Velotti, FM; Bracco, C; Carlier, E; Cerutti, F; Cornelis, K; Ducimetiere, L; Goddard, B; Kain, V; Losito, R; Maglioni, C; Meddahi, M; Pasdeloup, F; Senaj, V; Steele, GE

    2014-01-01

    The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention to the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described.

  10. Distributed CPU multi-core implementation of SIRT with vectorized matrix kernel for micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, Jens [Tennessee Univ., Knoxville, TN (United States)

    2011-07-01

    We describe an implementation of SIRT for execution using a cluster of multi-core PCs. Algorithmic techniques are presented for reducing the size and computational cost of a reconstruction including near-optimal relaxation, scalar preconditioning, orthogonalized ordered subsets, and data-driven focus of attention. Implementation wise, a scheme is outlined which provides each core mutex-free access to its local shared memory while also balancing the workload across the cluster, and the system matrix is computed on-the-fly using vectorized code. Experimental results show the efficacy of the approach. (orig.)

  11. Coupling micro-CT with computer simulations to analyze dispersion in porous media

    Science.gov (United States)

    Sobhani, Sadaf; Dunnmon, Jared; Werer, Michael

    2015-11-01

    In recent years, table-top X-ray Computed Tomography (XCT) systems have been utilized to analyze various samples with a resolution on the order of 1 μm -100 μm . In this study, we explore the use of these systems both in extracting high-resolution topologies of porous structures for use as inputs into computational simulations and in directly characterizing gas dispersion within such structures using fluoroscopic imaging of dense gaseous tracers. The opaque-solid environment and small pore-scale effects in porous media restrict the use of conventional imaging techniques, thereby making XCT a potentially useful diagnostic technique for understanding internal flows in porous and optically inaccessible structures. In the present work, we extract the topology of various reticulated porous foams from 3D XCT data and perform numerical simulations of the flow inside these structures. Permeability and tortuosity, which are key parameters in volume-averaged models are evaluated from the resulting flow fields and knowledge of the solid structure.

  12. Data acquisition system for KOMAC beam monitoring using EPICS middleware

    Science.gov (United States)

    Song, Young-Gi

    2015-10-01

    The beam diagnostics instrument used to measure the beam properties is one of the important devices for the 100-MeV proton linear accelerator of the KOrea Multi-purpose Accelerator Complex (KOMAC). A data acquisition system (DAQ) is required to collect the output beam signals conditioned in the analog front-end circuitry of a beam loss monitor (BLM) and a beam position monitor (BPM). The electrical beam signal must be digitized, and the sampling has to be synchronized to a global timing system that produces a pulse signal for the pulsed beam operation. The digitized data must be accessible by the experimental physics and industrial control system (EPICS)-based control system, which manages all accelerator control. An input output controller (IOC), which runs Linux on a central process unit (CPU) module with a peripheral component interconnect (PCI) express-based Analog-to-digital converter (ADC) card, has been adopted to satisfy the requirements. An associated Linux driver and EPICS device support module have also been developed. The IOC meets the requirements, and the development and maintenance of software for the IOC is very efficient. In this paper, the details of the DAQ system for the BLM and the BPM with the introduction of the KOMAC beam-diagnostics devices, along with the performance, are described.

  13. Monitoring system experiments on beam loss at SSRF injector

    Science.gov (United States)

    Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming

    2011-12-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  14. Monitoring system experiments on beam loss at SSRF injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  15. Effect of crosstalk on combined beam characteristics in spectral beam combining systems

    Science.gov (United States)

    Yang, Lei; Wu, Zhen; Zhong, Zheqiang; Zhang, Bin

    2017-02-01

    In a spectral beam combining (SBC) system, crosstalk always happens because stray lights are inevitable due to fabrication errors of optical components and 'smile' effect of laser arrays. Two kinds of crosstalk, including the crosstalk generated between two adjacent emitters of the laser array (ad-crosstalk) and that generated between two non-adjacent emitters (non-ad-crosstalk), have been analyzed. The equivalent light of the crosstalk model has been proposed, and the propagation model of the SBC system with the crosstalk has been built up. On this basis, influences of above two kinds of the crosstalk on the combined beam have been numerically simulated and discussed in detail. The results show that the wavelength composition of the combined beam varies evidently owing to the existence of the crosstalk. With the increasing of the crosstalk intensity, the beam quality of the combined beam degrades, and the side lobes of intensity distribution of the combined beam become more and more obvious. Furthermore, the influence of the non-ad-crosstalk on the beam quality is more serious than that of the ad-crosstalk.

  16. The Superconducting Magnets of the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; /Brookhaven; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  17. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  18. Status of ITER neutral beam cell remote handling system

    CERN Document Server

    Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

    2013-01-01

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  19. Status of ITER neutral beam cell remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  20. Computers and the design of ion beam optical systems

    Science.gov (United States)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  1. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  2. Micro-CT experimental of the thermal cracking of brown coal%褐煤热破裂的显微CT实验

    Institute of Scientific and Technical Information of China (English)

    孟巧荣; 赵阳升; 胡耀青; 冯增朝; 徐素国

    2011-01-01

    Using μCT225kVFCB high precision micro-CT system and a small moveable argon furnace, thermal cracking of brown coal from Pingzhuang mining in Inner Mongolia municipality was studied under different temperature.The results show that for brown coal,the big cracks( >800 μm) occupy leading position at about 100 ℃ ,the medium cracks ( 100 ~ 400 μm) are more important than others at about 200 ℃, the micro-cracks ( < 100 μm)become dominant above 300 ℃ ;threshold temperature of thermal cracking is 300 ℃, more or less;when temperature is lower than 300 ℃, the formation and evolution of crack and pore result mostly from thermal cracking, above 300 ℃, micro-cracks and pores produce mainly because coal pyrolysis produce and release oil gas, and turn coal skeleton into char gradually with temperature.%采用μCT25kVFCB型高精度显微CT试验系统并配以微型气氛炉,研究了内蒙古平庄褐煤热破裂随温度的变化关系.研究结果表明,褐煤在l00℃左右时,大裂隙(>800μm)占主导地位;200℃左右时,中等裂隙(100~400μm)占主导地位;300℃之后微裂隙(<100μm)占主导地位;热破裂的阈值为300℃左右;在300℃之前孔隙裂隙的产生发展主要是因为热破裂,300℃之后,微裂隙和孔隙的产生主要是因为煤体发生热解化学反应,油气逸出,固体骨架逐渐转变为半焦体.

  3. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  4. Beam Position and Phase Monitor - Wire Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  5. Lithium beam diagnostic system on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Anda, G.; Bencze, A. [Wigner – RCP, HAS, Budapest (Hungary); Berta, M., E-mail: bertam@sze.hu [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Hacek, P. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Réfy, D.; Krizsanóczi, T.; Bató, S.; Ilkei, T.; Kiss, I.G.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)

    2016-10-15

    Highlights: • Li-beam diagnostic system on the COMPASS tokamak is an improved and compact system to allow testing of Atomic Beam Probe. • The possibility to measure background corrected density profiles on the few microseconds time scale. • First Li-beam diagnostic system with recirculating neutralizer. • The system includes the redesigned ion source with longer lifetime. - Abstract: An improved lithium beam based beam emission spectroscopy system – installed on COMPASS tokamak – is described. The beam energy enhanced up to 120 keV for Atomic Beam Probe measurement. The size of the ion source is doubled, using a newly developed thermionic heater instead of the conventionally used heating (tungsten or molybdenum) filament. The neutralizer is also improved. It produces the same sodium vapor in a cell but minimize the loss condensing the vapor on a cold surface which is led back (in fluid state) into the sodium oven. This way we call it recirculating neutralizer. The observation system consists of a CCD camera and an avalanche photodiode array.

  6. Beam Current Measurement and Adjustment System on AMS

    Institute of Scientific and Technical Information of China (English)

    WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan

    2003-01-01

    The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.

  7. Micro-CT及三维打印机制备仿生化数字化组织工程指骨支架材料的研究%Preparation of biomimefic, digital Phalanx scaffold for tissue engineering using micro-CT and threedimensional primer

    Institute of Scientific and Technical Information of China (English)

    艾尔肯·热合木吐拉; 阿不都赛米·艾买提; 刘广鹏; 艾合买提江·玉素甫

    2012-01-01

    目的 采用Micro-Cr扫描采集人类拇指末节指骨三维微观数据并使用三维立体打印机,建立三维指骨支架材料模型,对仿生化、智能化组织工程支架材料的体外构建进行初步探讨.方法 对成年男性新鲜拇指末节标本进行Micro-CT扫描,所得的原始DICOM数据为基础,通过Mimics软件三维处理得到宏观及微观仿生的三维打印STL文件,并通过三维打印机打印出指骨支架三维模型.结果 采用Micro-CT扫描得到的数据用Mimics三维医学处理软件处理后,可直接用三维立体打印机快速成型构建仿生化、数字化组织工程指骨支架材料.结论 基于Micro- CT及三维打印机的仿生化、智能化组织工程骨建模技术对治疗指骨毁损伤有重要的临床意义,且有良好的应用前景.%Objective To prepare biomimetic,intelligent scaffold for tissue engineering of thumb distal phalanx using gathered three-dimensional (3D) data. Methods Distal phalanxes from fresh adult cadaver thumbs were subject to micro -CT scanning.The DICOM data from micro-CT scans were processed using Mimics software to form the macro and micro biomimetic 3D printing STL file.3D printer was then used to prim out a scaffold of a phalanx. Results The data acquired by micro-CT scanning can be rapidly prototyped after being edited with Mimics and directly used by 3D printing system to construet a biomimetic,intelligent scaffold.Conclusion Biomimetic,intelligent scaffold based on micro-CT and 3D printing has clinical significance in reconstruction of destructed thumbs.

  8. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  9. From histology to micro-CT:Measuring and modeling resorption cavities and their relation to bone competence

    Institute of Scientific and Technical Information of China (English)

    Jef; Vanderoost; G; Harry; van; Lenthe

    2014-01-01

    The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using

  10. From histology to micro-CT: Measuring and modeling resorption cavities and their relation to bone competence.

    Science.gov (United States)

    Vanderoost, Jef; van Lenthe, G Harry

    2014-09-28

    The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure. Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle. At the microstructural level, osteoclasts create bone deficits by eroding resorption cavities. Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging, but maybe even more so in quantifying their role in metabolic bone diseases. Metabolic bone diseases and their treatment are both known to affect the bone remodelling cycle; hence, the bone mechanical competence can and will be affected. However, the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited. This is not surprising considering the difficulties in deriving three-dimensional (3D) properties from two-dimensional (2D) histological sections. The measurement difficulties are reflected in the evaluation of how resorption cavities affect bone competence. Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities, the representation of the cavities themselves has basically been limited to simplified shapes and averaged cavity properties. Qualitatively, these models indicate that cavity size and location are important, and that the effect of cavities is larger than can be expected from simple bone loss. In summary, the dimensions of osteoclast resorption cavities were until recently estimated from 2D measures; hence, a careful interpretation of resorption cavity dimensions is necessary. More effort needs to go into correctly quantifying resorption cavities using modern 3D imaging techniques like micro-computed tomography (micro-CT) and synchrotron radiation CT. Osteoclast resorption cavities affect bone competence. The structure-function relationships

  11. New insights to ecology, ontogeny and teratology of Larger Benthic Foraminifera by biometrics based on microCT.

    Science.gov (United States)

    Briguglio, A.; Fabienke, W.; Wolfgring, E.; Ferrández Cañadell, C.; Hohenegger, J.

    2012-04-01

    The main function of tests in Larger Benthic Foraminifera (LBF) is to provide their endosymbiotic algae with enough light to obtain net photosynthetic rates and to create sufficient accommodation space. To study the relation between these two factors and to understand how the cell reacts to growth and to the environment, the newly developed technique of X-ray micro-Computer-Tomography (microCT) allows measurement of all characters of complex tests without destruction. Growth studies on 48 specimens of living and fossil species have been performed. The volumes of the lumina have been calculated as well as further 2-dimensional parameters related to volumes as chamber height, chamber width and septal distance. The volumes of chamber lumina represent cell growth in their sequence, thus demonstrating interruptions, increase/decrease or oscillations in growth rates caused by external factors affecting growth during life time (e.g. seasons). Correlations between volumes and the one-dimensional parameters have been calculated to check the form of relationship. According to our results, some parameters seem to oscillate exactly as the volume (therefore accommodating it), while others seem to oscillate constantly around a given growth function. Concerning the palaeobiology, beside the study of specimens with 'normal' growth, thus not drastically affected by external factors, some interesting morphologies have been investigated. Pluriembryonal apparati as well as secondary equatorial layers have been segmented, extracted and quantified in almost 15 specimens of Cycloclypeus carpenteri, 8 twin specimens of nummulitids tests have been also investigated to show where and how the fusion starts and volumetric quantifications of each single spiral in multispiral grown test of some large Eocene Nummulitids has also been calculated to show in which way and when (ontogenetically) a new spiral starts. The combination of all measurements allows interpretation of different biological

  12. Dielectric Collimators for Linear Collider Beam Delivery System

    CERN Document Server

    Kanareykin, A; Baturin, S; Tomás, R

    2011-01-01

    The current status of ILC and CLIC concepts require additional research on wakefield reduction in the collimator sections. New materials and new geometries have been considered recently*. Dielectric collimators for the CLIC Beam Delivery System have been discussed with a view to minimize the BDS collimation wakefields**. Dielectric collimator concepts for the linear collider are presented in this paper; cylindrical and planar collimators for the CLIC parameters have been considered, and simulations to minimize the beam impedance have been performed. The prototype collimator system is planned to be fabricated and experimentally tested at Facilities for Accelerator Science and Experimental Test Beams (FACET) at SLAC.

  13. CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2

    CERN Document Server

    Boogert, S T; Cullinan, F; Joshi, N; Lyapin, A; Aryshev, A; Honda, Y; Naito, T; Terunuma, N; Urakara, J; Heo, A; Kim, E-S; Kim, Y I; McCormick, D; Frisch, J; Nelson, J; Smith, T; White, G R

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitisers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.

  14. 微型CT建立数字化三维牙颌模型初探%Three-dimensional digital dental model based on micro-CT

    Institute of Scientific and Technical Information of China (English)

    李云霞; 白玉兴; 魏存峰

    2011-01-01

    Objective To establish a three-dimensional digital dental model through scanning dental impression directly with micro-CT. Methods The polyvinyl siloxane(PVS) impression of the plaster model was taken and scanned with micro-CT. VGStudio MAX and Imageware softwares were used to obtain the digital dental model. Results The three-dimensional digital model was established successfully. The scanning layer was 90 μm. Conclusions A new way of establishing the digital dental models could be achieved with micro-CT.%目的 利用微型CT对牙颌印模进行扫描,探索新的数字化三维牙颌模型的建立方法.方法 使用硅橡胶印模材料对石膏模型制取印模,利用微型CT对印模进行扫描,并通过VGStudioMAX和Imageware逆向工程软件对数据进行图像重建和处理.结果 通过微型CT系统扫描和逆向工程软件重建,得到了数字化三维牙颌模型,其层厚为90 μm.结论 利用微型CT直接扫描硅橡胶牙颌印模,可成功建立数字化三维牙颌模型,为今后的研究提供了一种新的数字化三维牙颌模型建立方法.

  15. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  16. Beam Transfer Systems for the LAGUNA-LBNO Long Baseline Neutrino Beam from the CERN SPS

    CERN Document Server

    Goddard, B; Efthymiopoulos, I; Papaphilippou, Y; Parfenova, A

    2013-01-01

    For the Long Baseline neutrino facility under study at CERN (LAGUNA-LBNO) it is initially planned to extract a 400 GeV beam from the second long straight section in the SPS into the existing transfer channel TT20 leading to the North Area experimental zone, to a new target aligned with a far detector at a distance of 2300 km [1]. In a second phase a new High-Power Proton Synchrotron (HPPS) accelerator is proposed, to give a 2 MW beam at about 50 GeV on the same target. In this paper the required beam transfer systems are outlined, including the new sections of transfer line between the Superconducting Proton Linac (SPL), HP-PS and SPS, and from the SPS to the target, and also the injection and extraction systems in the long straight section of the HPPS. The feasibility of a 4 GeV H- injection system is discussed.

  17. Beam Tracking in Switched-Beam Antenna System for V2V Communication

    Directory of Open Access Journals (Sweden)

    Settawit Poochaya

    2016-01-01

    Full Text Available This paper presents the proposed switched beam antenna system for V2V communication including optimum antenna half power beamwidth determination in urban road environments. SQP optimization method is selected for the computation of optimum antenna half power beamwidth. In addition, beam tracking algorithm is applied to guarantee the best beam selection with maximum RSSI. The results present the success of the proposed system with the increasing of V2V performance metrics. Also, V2V data dissemination via the proposed system introduces the enhancement of V2V link in terms of RSSI, PER, BER, Tsafe, and Rsafe. The results indicate the improvement of V2V link reliability. Consequently, the road safety is improved.

  18. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    Energy Technology Data Exchange (ETDEWEB)

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  19. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  20. Invited article: Digital beam-forming imaging riometer systems.

    Science.gov (United States)

    Honary, Farideh; Marple, Steve R; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling

    2011-03-01

    The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.

  1. Laser beam riding guided system principle and design research

    Science.gov (United States)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  2. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.

  3. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  4. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  5. Development of pulsed positron beam line with compact pulsing system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Masaki, E-mail: maekawa.masaki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, Atsuo [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-01-01

    We have developed a pulsed slow positron beam with a pulse width of less than 200 ps and a period of 25 ns. The beam apparatus is composed of a Munich-type pre-buncher, a chopper and a buncher. Instead of the conventional RF cavity, a simple double-cylinder electrode is used for the buncher. The beam will be used for positron lifetime measurements. The time resolution of the whole system including lifetime measurement circuits is 250 ps, which is adequate for studying semiconductors and metals.

  6. Radiation Shielding Design for ISOL System Beam Line

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; QIN; Jiu-chang

    2013-01-01

    The beam line of the ISOL system passes through the shielding wall and connects the HI-13 tandem accelerator.Neutron produced by tandem accelerator will affect the area of BRIF through the beam line.To protect the staff in BRIF area from radiation a shielding design of the beam line is carried out.The neutron source in the vault of tandem accelerator is the H.E Faraday cup of HI-13 tandem accelerator as showed in Fig.1.The Faraday cup is consisted of 1 mm molybdenum sheet and 10 mm

  7. SPLinac Computer Simulations of SC Linac RF Systems with Beam

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    The beam in a proton linac is very sensitive to field perturbations in the cavities. Therefore a simulation program was written modeling longitudinal beam dynamics in a realistic composite linac RF system. Fast RF vector sum feedback loops control several cavities with b-dependent transit time factors driven by one transmitter. Modeling of feedback loops covers limited transmitter power and bandwidth and possible loop-delay. Vector sum calibration errors, power splitting errors and scatter in the coupling strength to the cavities are optional as well as beam loading of the pulsing beam. Different modes of mechanical cavity perturbations including Lorentz force detuning can be chosen. A multitude of phase-space representation of bunches as well as RF quantity plots are available, most of them can be assembled as a movie, showing the system dynamics in 'real time'.

  8. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl;

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...... in the microfluidic chip or with optical fibers mounted in the chip....

  9. Empirical beam hardening correction (EBHC) for CT

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, 91052 Erlangen (Germany)

    2010-10-15

    C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.

  10. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  11. Statistical Analysis of Yarn Feature Parameters in C/Epoxy Plain-Weave Composite Using Micro CT with High-Resolution Lens-Coupled Detector

    Science.gov (United States)

    Wang, Hao; Wang, Zhong-wei

    2016-08-01

    C/Epoxy plain-weave composite is difficult to clear imaging in Micro CT with flat panel detector due to the similar atomic numbers of component materials. To solve this problem, a new Micro CT equipment with high-resolution lens-coupled detector is used to reconstruct 3D images of C/Epoxy. Slice data correction with ellipse projection is used to acquire real yarn normal cross-section information. A reference period method suitable for plain-weave composite is then detailed to evaluate statistical properties of yarn feature parameters. In the process of determination of real extreme slices, dislocation phenomenon existed in the laminated composite is discovered. Several possible reasons caused this phenomenon are discussed. Systematic trends, standard deviations and correlation lengths of stochastic deviations with original and corrected data are evaluated respectively by the application of reference period method. The statistical results show that mean out-of-plane yarn waviness, semi-axes, cross-section area and aspect ratio exhibit periodic characteristics, and the maximum effect of slice data correction on all statistical properties of feature parameters is twist angle.

  12. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, S., E-mail: Simon.Vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300B, B-3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300C, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Kerckhofs, G., E-mail: Greet.Kerckhofs@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Moesen, M., E-mail: Maarten.Moesen@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Pyka, G., E-mail: Gregory.Pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Schrooten, J., E-mail: Jan.Schrooten@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); and others

    2011-09-15

    Highlights: {yields} Selective laser melting as a production tool for porous Ti6Al4V structures. {yields} Significant mismatch between designed and as-produced properties. {yields} Decreasing mismatch using a micro-CT-based protocol. {yields} Mismatch of pore size decreased from 45% to 5%. {yields} Increased morphological controllability increases mechanical controllability. - Abstract: Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.

  13. Reduced dental calcium expression and dental mass in chronic sleep deprived rats: Combined EDS, TOF-SIMS, and micro-CT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Yi-Jie [Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei [Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Mai, Fu-Der [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Chang, Hung-Ming, E-mail: taiwanzoo@gmail.com [Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-08-01

    Highlights: • The growth of teeth is closely regulated by the circadian rhythmicity. • Sleep deprivation significantly disrupts the circadian regulation. • Sleep deprivation reduces the dental calcium level and impairs dental intensity. • This study highlights for the first time that sleep is essential for dental structure. • Establishing satisfactory sleep behavior may be a helpful strategy to prevent dental disability. - Abstract: Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions.

  14. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction.

    Science.gov (United States)

    Xu, Jinyu; Deng, Benqiang; Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC 0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment.

  15. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces

    Science.gov (United States)

    Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko

    2014-12-01

    Pore-scale forces have a significant effect on the macroscopic behaviour of multiphase flow through porous media. This paper studies the effect of these forces using a new volume-of-fluid based finite volume method developed for simulating two-phase flow directly on micro-CT images of porous media. An analytical analysis of the relationship between the pore-scale forces and the Darcy-scale pressure drops is presented. We use this analysis to propose unambiguous definitions of Darcy-scale viscous pressure drops as the rate of energy dissipation per unit flow rate of each phase, and then use them to obtain the relative permeability curves. We show that this definition is consistent with conventional laboratory/field measurements by comparing our predictions with experimental relative permeability. We present single and two-phase flow simulations for primary oil injection followed by water injection on a sandpack and a Berea sandstone. The two-phase flow simulations are presented at different capillary numbers which cover the transition from capillary fingering at low capillary numbers to a more viscous fingering displacement pattern at higher capillary numbers, and the effect of capillary number on the relative permeability curves is investigated. Overall, this paper presents a new finite volume-based methodology for the detailed analysis of two-phase flow directly on micro-CT images of porous media and upscaling of the results to the Darcy scale.

  16. Three-dimensional imaging of the mouse heart and vasculature using micro-CT and whole-body perfusion of iodine or phosphotungstic acid.

    Science.gov (United States)

    Dunmore-Buyze, P Joy; Tate, Elsbeth; Xiang, Fu-li; Detombe, Sarah A; Nong, Zengxuan; Pickering, J Geoffrey; Drangova, Maria

    2014-01-01

    Recent studies have investigated histological staining compounds as micro-computed tomography (micro-CT) contrast agents, delivered by soaking tissue specimens in stain and relying on passive diffusion for agent uptake. This study describes a perfusion approach using iodine or phosphotungstic acid (PTA) stains, delivered to an intact mouse, to capitalize on the microvasculature as a delivery conduit for parenchymal staining and direct contact for staining artery walls. Twelve C57BL/6 mice, arterially perfused with either 25% Lugol's solution or 5% PTA solution were scanned intact and reconstructed with 26 µm isotropic voxels. The animals were fixed and the heart and surrounding vessels were excised, embedded and scanned; isolated heart images were reconstructed with 13 µm isotropic voxels. Myocardial enhancement and artery diameters were measured. Both stains successfully enhanced the myocardium and vessel walls. Interestingly, Lugol's solution provided a significantly higher enhancement of the myocardium than PTA [2502 ± 437 vs 656 ± 178 Hounsfield units (HU); p Lugol's, 1036 ± 635 HU; PTA, 738 ± 124 HU; p = 0.29), but coronary arteries were more effectively segmented from the PTA-stained hearts, enabling segmented imaging of fifth- order coronary artery branches. The combination of whole mouse perfusion delivery and use of heavy metal-containing stains affords high-resolution imaging of the mouse heart and vasculature by micro-CT. The differential imaging patterns of Lugol's- and PTA-stained tissues reveals new opportunities for micro-analyses of cardiac and vascular tissues.

  17. Assessing the three-dimensional collagen network in soft tissues using contrast agents and high resolution micro-CT: Application to porcine iliac veins.

    Science.gov (United States)

    Nierenberger, Mathieu; Rémond, Yves; Ahzi, Saïd; Choquet, Philippe

    2015-07-01

    The assessment of the three-dimensional architecture of collagen fibers inside vessel walls constitutes one of the bases for building structural models for the description of the mechanical behavior of these tissues. Multiphoton microscopy allows for such observations, but is limited to volumes of around a thousand of microns. In the present work, we propose to observe the collagenous network of vascular tissues using micro-CT. To get a contrast, three staining solutions (phosphotungstic acid, phosphomolybdic acid and iodine potassium iodide) were tested. Two of these stains were showed to lead to similar results and to a satisfactory contrast within the tissue. A detailed observation of a small porcine iliac vein sample allowed assessing the collagen fibers orientations within the medial and adventitial layers of the vein. The vasa vasorum network, which is present inside the adventitia of the vein, was also observed. Finally, the demonstrated micro-CT staining technique for the three-dimensional observation of thin soft tissues samples, like vein walls, contributes to the assessment of their structure at different scales while keeping a global overview of the tissue.

  18. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  19. Chevron beam dump for ITER edge Thomson scattering system

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  20. A new beam diagnostic system for the MASHA setup

    Science.gov (United States)

    Motycak, S.; Rodin, A. M.; Novoselov, A. S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yuchimchuk, S. A.; Komarov, A. B.; Kamas, D.

    2016-09-01

    A new beam diagnostic system based on the PXI standard was developed, tested, and used in the MASHA setup experiment. The beam energy and beam current measurements were carried out using several methods. The online time-of-flight energy measurements were carried out using three pick-up detectors. We used two electronic systems to measure the time between the pick-ups. The first system was based on fast Agilent digitizers (2-channel, 4-GHz sampling rate), and the second one was based on a constant fraction discriminator (CFD) connected to a time-to-digital converter (TDC, 5-ps resolution). A new graphical interface to monitor the electronic devices and to perform the online calculations of energy was developed using MFC C++. The second system based on microchannel plate (time-of-flight) and silicon detectors for the determination of beam energy and the type of accelerated particles was also used. The beam current measurements were carried out with two different sensors. The first sensor is a rotating Faraday cup placed in front of the target, and the second one is an emission detector installed at the rear of the target. This system is now used in experiments for the synthesis of superheavy elements at the U400M cyclotron of the Flerov Laboratory of Nuclear Reactions (FLNR).

  1. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  2. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  3. Beam Diagnostics Systems For The National Ignition Facility

    CERN Document Server

    Demaret, R D; Bliss, E S; Gates, A J; Severyn, J R

    2001-01-01

    The National Ignition Facility laser focuses 1.8 Mega-joules of ultraviolet light (wavelength 351 nano-meters) from 192 beams into a 600-micro-meter-diameter volume. Effective use of this output in target experiments requires that the power output from all the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beam line contains 110 major optical components distributed over a 510 meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the inter-beam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at 3 locations along each beamline using 335 photodiodes, 215 calorimeters and 36 digitizers. Successful operation of such a system requires a high level ...

  4. The LEP RF Trip and Beam Loss Diagnostics System

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R

    2002-01-01

    During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...

  5. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  6. Tutorial on beam-based feedback systems for linacs

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.

    1994-08-01

    A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine.

  7. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  8. Understanding Beam Alignment in a Coherent Lidar System

    Science.gov (United States)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  9. The control system for the LEP beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, E. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Aimar, A. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Bretin, J.L. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Marchand, A. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Mertens, V. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Verhagen, H. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland))

    1994-12-15

    A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit. ((orig.))

  10. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  11. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Sawall, Stefan; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen (Germany)

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  12. The Beam Position System of the CERN Neutrino to Gran Sasso Proton Beam Line

    CERN Document Server

    Bogey, T

    2008-01-01

    The CERN Neutrino to Gran Sasso (CNGS) experiment uses 400GeV protons extracted from the SPS, which travel along 825 meters of beam line before reaching the CNGS target. This beam line is equipped with 23 BPMs capable of measuring both the horizontal and vertical position of the beam. The final BPM is linked to the target station and due to radiation constraints has been designed to work in air. This contribution will give an overview of the BPMs used in the transfer line. It will also provide a detailed explanation of their logarithmic amplifier based acquisition electronics, which consists of an autotriggered sequencer controlling an integrator, the A/D conversion and the Manchester encoded transmission of the digital data to the surface. At the surface the digital data is acquired using the Digital Acquisition Board (DAB) developed by TRIUMF (Canada) for the LHC BPM system. Results from both laboratory measurements and beam measurements during the 2006 CNGS run will also be presented.

  13. Effect of finite beam width on current separation in beam plasma system: Particle-in-Cell simulations

    CERN Document Server

    Shukla, Chandrasekhar; Patel, Kartik

    2015-01-01

    The electron beam propagation in a plasma medium is susceptible to several instabilities. In the relativistic regime typically the weibel instability leading to the current separation dominates. The linear instability analysis is carried out for a system wherein the transverse extent of the beam is infinite. Even in simulations, infinite transverse extent of the beam has been chosen. In real situations, however, beam width will always be finite. keeping this in view the role of finite beam width on the evolution of the beam plasma system has been studied here using Particle - in - Cell simulations. It is observed that the current separation between the forward and return shielding current for a beam with finite beam occurs at the scale length of the beam width itself. Consequently the magnetic field structures that form have maximum power at the scale length of the beam width. This behaviour is distinct from what happens with a beam with having an infinite extent represented by simulations in a periodic box, ...

  14. Solar One Beam Characterization System design description and requirements document

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, J.B.

    1986-10-01

    A comprehensive description is provided for the Solar One Beam Characterization System. The principal uses of this system are to provide an automatic measurement of heliostat tracking errors and the optical quality of the reflected image. Measured tracking errors are used to determine bias values for the heliostat control system which compensates for the errors. Detailed descriptions are provided of the hardware, software, supporting analysis, operational sequences, and the fundamental principles involved.

  15. Leaky Wave Enhanced Feeds for Multi-Beam Reflector Systems

    NARCIS (Netherlands)

    Neto, A.; Gerini, G.; Llombart, N.; Ettorre, M.; Maagt, P. de

    2011-01-01

    Abstract—This paper discusses the use of dielectric superlayers to shape the radiation pattern of focal plane feeds of a multi-beam reflector system. The shaping of the pattern is obtained by exciting a pair (TE/TM) of leaky waves that radiate incrementally as they propagate between the ground plane

  16. Status of the ITER heating neutral beam system

    Science.gov (United States)

    Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; DeEsch, H. P. L.; Geli, F.; Milnes, J.; Inoue, T.; Marcuzzi, D.; Sonato, P.; Zaccaria, P.

    2009-04-01

    The ITER neutral beam (NB) injectors are the first injectors that will have to operate under conditions and constraints similar to those that will be encountered in a fusion reactor. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV D- beams for pulse lengths of up to 3600 s. Significant design changes have been made to the ITER heating NB (HNB) injector over the past 4 years. The main changes are: Modifications to allow installation and maintenance of the beamline components with an overhead crane. The beam source vessel shape has been changed and the beam source moved to allow more space for the connections between the 1 MV bushing and the beam source. The RF driven negative ion source has replaced the filamented ion source as the reference design. The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF6 insulated HV deck located above the injector. Introduction of an all metal absolute valve to prevent any tritium in the machine to escape into the NB cell during maintenance. This paper describes the status of the design as of December 2008 including the above mentioned changes. The very important power supply system of the neutral beam injectors is not described in any detail as that merits a paper beyond the competence of the present authors. The R&D required to realize the injectors described in this paper must be carried out on a dedicated neutral beam test facility, which is not described here.

  17. Daily check of the electron beams with a diode system

    Energy Technology Data Exchange (ETDEWEB)

    Pilette, P. [Hospital Civil de Charleroi (Belgium). Centre for Radiotherapy

    1995-12-01

    A fast systems to check all the accelerator beams on a daily basis has been developed. A cheap home-made detector, based on non-medical diodes (type 1N5408), has been used since July 1992 to verify all the electron beams every day. The relative energy and Top-cGy correspondence is verified with one single irradiation of less than 1 minute by 6 diodes fixed in a polystyrene phantom. The principle of construction, software implementation and results are presented.

  18. Steerable beam systems for electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, J.

    1985-08-31

    Several methods are discussed for steering a 200 kW pencil beam of electromagnetic waves in the 60 GHz to 200 GHz frequency range. These include methods incorporating swivelling mirrors, phased arrays, mode converters, and optical materials. It is found that for the near term, the mechanical systems are best, capable of steering times of 3 ms to 100 ms and losses of less than 5%. Optical methods, as yet virtually uninvestigated, appear to offer the only means of beam-steering in the 5..mu..s to 100..mu..s range necessary for MHD mode tracking.

  19. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  20. In vivo diagnostic imaging using micro-CT: sequential and comparative evaluation of rodent models for hepatic/brain ischemia and stroke.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available BACKGROUND: There is an increasing need for animal disease models for pathophysiological research and efficient drug screening. However, one of the technical barriers to the effective use of the models is the difficulty of non-invasive and sequential monitoring of the same animals. Micro-CT is a powerful tool for serial diagnostic imaging of animal models. However, soft tissue contrast resolution, particularly in the brain, is insufficient for detailed analysis, unlike the current applications of CT in the clinical arena. We address the soft tissue contrast resolution issue in this report. METHODOLOGY: We performed contrast-enhanced CT (CECT on mouse models of experimental cerebral infarction and hepatic ischemia. Pathological changes in each lesion were quantified for two weeks by measuring the lesion volume or the ratio of high attenuation area (%HAA, indicative of increased vascular permeability. We also compared brain images of stroke rats and ischemic mice acquired with micro-CT to those acquired with 11.7-T micro-MRI. Histopathological analysis was performed to confirm the diagnosis by CECT. PRINCIPAL FINDINGS: In the models of cerebral infarction, vascular permeability was increased from three days through one week after surgical initiation, which was also confirmed by Evans blue dye leakage. Measurement of volume and %HAA of the liver lesions demonstrated differences in the recovery process between mice with distinct genetic backgrounds. Comparison of CT and MR images acquired from the same stroke rats or ischemic mice indicated that accuracy of volumetric measurement, as well as spatial and contrast resolutions of CT images, was comparable to that obtained with MRI. The imaging results were also consistent with the histological data. CONCLUSIONS: This study demonstrates that the CECT scanning method is useful in rodents for both quantitative and qualitative evaluations of pathologic lesions in tissues/organs including the brain, and is

  1. Three-dimensional cellular distribution in polymeric scaffolds for bone regeneration: a microCT analysis compared to SEM, CLSM and DNA content.

    Science.gov (United States)

    Parrilli, A; Pagani, S; Maltarello, M C; Santi, S; Salerno, A; Netti, P A; Giardino, R; Rimondini, L; Fini, M

    2014-07-01

    In orthopaedic surgery the tissues damaged by injury or disease could be replaced using constructs based on biocompatible materials, cells and growth factors. Scaffold design, porosity and early colonization are key components for the implant success. From biological point of view, attention may be also given to the number, type and size of seeded cells, as well as the seeding technique and cell morphological and volumetric alterations. This paper describes the use of the microCT approach (to date used principally for mineralized matrix quantification) to observe construct colonization in terms of cell localization, and make a direct comparison of the microtomographic sections with scanning electron microscopy images and confocal laser scanning microscope analysis. Briefly, polycaprolactone scaffolds were seeded at different cell densities with MG63 osteoblastic-like cells. Two different endpoints, 1 and 2 weeks, were selected for the three-dimensional colonization and proliferation analysis of the cells. By observing all images obtained, in addition to a more extensive distribution of cells on scaffolds surfaces than in the deeper layers, cell volume increased at 2 weeks compared to 1 week after seeding. Combining the cell number quantification by deoxyribonucleic acid analysis and the single cell volume changes by confocal laser scanning microscope, we validated the microCT segmentation method by finding no statistical differences in the evaluation of the cell volume fraction of the scaffold. Furthermore, the morphological results of this study suggest that an effective scaffold colonization requires a precise balance between different factors, such as number, type and size of seeded cells in addition to scaffold porosity.

  2. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone.

    Directory of Open Access Journals (Sweden)

    Aymeric Larrue

    Full Text Available Bone quality is an important concept to explain bone fragility in addition to bone mass. Among bone quality factors, microdamage which appears in daily life is thought to have a marked impact on bone strength and plays a major role in the repair process. The starting point for all studies designed to further our understanding of how bone microdamage initiate or dissipate energy, or to investigate the impact of age, gender or disease, remains reliable observation and measurement of microdamage. In this study, 3D Synchrotron Radiation (SR micro-CT at the micrometric scale was coupled to image analysis for the three-dimensional characterization of bone microdamage in human trabecular bone specimens taken from femoral heads. Specimens were imaged by 3D SR micro-CT with a voxel size of 1.4 µm. A new tailored 3D image analysis technique was developed to segment and quantify microcracks. Microcracks from human trabecular bone were observed in different tomographic sections as well as from 3D renderings. New 3D quantitative measurements on the microcrack density and morphology are reported on five specimens. The 3D microcrack density was found between 3.1 and 9.4/mm3 corresponding to a 2D density between 0.55 and 0.76 /mm2. The microcrack length and width measured in 3D on five selected microcrack ranged respectively from 164 µm to 209 µm and 100 µm to 120 µm. This is the first time that various microcracks in unloaded human trabecular bone--from the simplest linear crack to more complex cross-hatch cracks--have been examined and quantified by 3D imaging at this scale. The suspected complex morphology of microcracks is here considerably more evident than in the 2D observations. In conclusion, this technique opens new perspective for the 3D investigation of microcracks and the impact of age, disease or treatment.

  3. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.

    Science.gov (United States)

    Sreenivasan, D; Tu, P T; Dickinson, M; Watson, M; Blais, A; Das, R; Cornish, J; Fernandez, J

    2016-01-01

    The primary aim of this study was to evaluate the influence of a whey protein diet on computationally predicted mechanical strength of murine bones in both trabecular and cortical regions of the femur. There was no significant influence on mechanical strength in cortical bone observed with increasing whey protein treatment, consistent with cortical tissue mineral density (TMD) and bone volume changes observed. Trabecular bone showed a significant decline in strength with increasing whey protein treatment when nanoindentation derived Young׳s moduli were used in the model. When microindentation, micro-CT phantom density or normalised Young׳s moduli were included in the model a non-significant decline in strength was exhibited. These results for trabecular bone were consistent with both trabecular bone mineral density (BMD) and micro-CT indices obtained independently. The secondary aim of this study was to characterise the influence of different sources of Young׳s moduli on computational prediction. This study aimed to quantify the predicted mechanical strength in 3D from these sources and evaluate if trends and conclusions remained consistent. For cortical bone, predicted mechanical strength behaviour was consistent across all sources of Young׳s moduli. There was no difference in treatment trend observed when Young׳s moduli were normalised. In contrast, trabecular strength due to whey protein treatment significantly reduced when material properties from nanoindentation were introduced. Other material property sources were not significant but emphasised the strength trend over normalised material properties. This shows strength at the trabecular level was attributed to both changes in bone architecture and material properties.

  4. The LHC RF System - Experience with beam operation

    CERN Document Server

    Baudrenghien, P; Argyropoulos, T; Arnaudon, L; Bohl, T; Brunner, O; Butterworth, A; Ciapala, E; Dubouchet, F; Esteban-Muller, J; Ferreira-Bento, J; Glenat, D; Hagmann, G; Hofle, W; Jacquet, D; Jaussi, M; Kouzue, S; Landre, D; Lollierou, J; Maesen, P; Martinez Yanez, P; Mastoridis, T; Molendijk, J; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Sanchez-Quesada, J; Shaposhnikova, E; Schokker, M; Stellfeld, D; Tuckmantel, J; Valuch, D; Wehrle, U; Weierud, F

    2011-01-01

    The LHC RF system commissioning with beam and physics operation for 2010 and 2011 are presented. It became clear in early 2010 that RF noise was not a lifetime limiting factor: the crossing of the much feared 50 Hz line for the synchrotron frequency did not affect the beam. The broadband LHC RF noise is reduced to a level that makes its contribution to beam diffusion in physics well below that of Intra Beam Scattering. Capture losses are also under control, at well below 0.5%. Longitudinal emittance blow-up, needed for ramping of the nominal intensity single bunch, was rapidly commissioned. In 2011, 3.5 TeV/beam physics has been conducted with 1380 bunches at 50 ns spacing, corresponding to 55% of the nominal current. The intensity per bunch (1.3 1011 p) is significantly above the nominal 1.15 1011. By August 2011 the LHC has accumulated more than 2 fb-1 integrated luminosity, well in excess of the 1 fb-1 target for 2011.

  5. Studies for the LHeC Beam Transfer System

    CERN Document Server

    Bracco, C

    2013-01-01

    The LHeC would allow for collisions between an electron beam from a new accelerator with the existing LHC hadron beam. Two possible configurations were studied: a separate linac (Linac-Ring) or a new electron ring superimposed on the LHC (Ring-Ring). The racetrack linac is now considered as the baseline for the LHeC design, with the Ring-Ring solution as a backup. The studies performed for the considered options are presented in this paper. For the Linac-Ring option the requirements for the post collision line and the beam dump design have been evaluated in the case of a 60 GeV and a 140 GeV electron beam. In the Ring-Ring option, studies have been performed on the optics design of the transfer line from a 10 GeV injector linac into the LHeC ring and of the injection system. The internal 60 GeV electron beam dump design has also been considered.

  6. Radiation protection system at the RIKEN RI beam factory.

    Science.gov (United States)

    Uwamino, Y; Fujita, S; Sakamoto, H; Ito, S; Fukunishi, N; Yabutani, T; Yamano, T; Fukumura, A

    2005-01-01

    The RIKEN RI (radioactive isotope) Beam Factory is scheduled to commence operations in 2006, and its maximum energy will be 400 MeV u(-1) for ions lighter than Ar and 350 MeV u(-1) for uranium. The beam intensity will be 1 pmicroA (6 x 10(12) particles s(-1)) for any element at the goal. For the hands-on-maintenance and the rational shield thickness of the building, the beam loss must be controlled with several kinds of monitors. Three types of radiation monitors will be installed. The first one consists of a neutron dose equivalent monitor and an ionisation chamber, which are commercially available area monitors. The second one is a conventional hand-held dose equivalent monitor wherein the logarithmic signal is read by a programmable logic controller based on the radiation safety interlock system (HIS). The third one is a simple plastic scintillator called a beam loss monitor. All the monitors have threshold levels for alarm and beam stop, and HIS reads all these signals.

  7. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Nami; Bert, Christoph; Chaudhri, Naved; Gemmel, Alexander; Schardt, Dieter; Durante, Marco; Rietzel, Eike [GSI Helmholtz Centre for Heavy Ion Research GmbH, Planckstrasse 1, 64291 Darmstadt (Germany)], E-mail: n.saito@gsi.de

    2009-08-21

    The technical performance of an integrated three-dimensional carbon ion pencil beam tracking system that was developed at GSI was investigated in phantom studies. Aim of the beam tracking system is to accurately treat tumours that are subject to respiratory motion with scanned ion beams. The current system provides real-time control of ion pencil beams to track a moving target laterally using the scanning magnets and longitudinally with a dedicated range shifter. The system response time was deduced to be approximately 1 ms for lateral beam tracking. The range shifter response time has been measured for various range shift amounts. A value of 16 {+-} 2 ms was achieved for a water equivalent shift of 5 mm. An additional communication delay of 11 {+-} 2 ms was taken into account in the beam tracking process via motion prediction. Accuracy of the lateral beam tracking was measured with a multi-wire position detector to {<=}0.16 mm standard deviation. Longitudinal beam tracking accuracy was parameterized based on measured responses of the range shifter and required time durations to maintain a specific particle range. For example, 5 mm water equivalence (WE) longitudinal beam tracking results in accuracy of 1.08 and 0.48 mm WE in root mean square for time windows of 10 and 50 ms, respectively.

  8. The LHC beam loss monitoring system's data acquisition card

    CERN Document Server

    Effinger, E; Emery, J; Ferioli, G; Gauglio, G; Zamantzas, C

    2007-01-01

    The beam loss monitoring (BLM) system [1] of the LHC is one of the most critical elements for the protection of the LHC. It must prevent the super conducting magnets from quenches and the machine components from damages, caused by beam losses. Ionization chambers and secondary emission based beam loss detectors are used on several locations around the ring. The sensors are producing a signal current, which is related to the losses. This current will be measured by a tunnel electronic, which acquires, digitizes and transmits the data via an optical link to the surface electronic. The so called threshold comparator (TC) [2] collects, analyzes and compares the data with threshold table. It also gives a dump signal through the combiner card to the beam inter lock system (BIC). The usage of the system, for protection and tuning of the LHC and the scale of the LHC, imposed exceptional specification of the dynamic range and radiation tolerance. The input current dynamic range should allow measurements between 10pA a...

  9. Development of an advanced 3D cone beam tomographic system

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  10. Beam Measurement Systems for the CERN Antiproton Decelerator (AD)

    CERN Document Server

    Angoletta, Maria Elena; Ludwig, M; Marqversen, O; Odier, P; Pedersen, F; Raich, U; Søby, L; Tranquille, G; Spickermann, T

    2001-01-01

    The new, low-energy antiproton physics facility at CERN has been successfully commissioned and has been delivering decelerated antiprotons at 100 MeV/c since July 2000. The AD consists of one ring where the 3.5 GeV/c antiprotons produced from a production target are injected, rf manipulated, stochastically cooled, decelerated (with further stages involving additional stochastic and electron cooling and rf manipulation) and extracted at 100 MeV/c. While proton test beams of sufficient intensity could be used for certain procedures in AD commissioning, this was not possible for setting-up and routine operation. Hence, special diagnostics systems had to be developed to obtain the beam and accelerator characteristics using the weak antiproton beams of a few 10E7 particles at all momenta from 3.5 GeV/c down to 100 MeV/c. These include systems for position measurement, intensity, beam size measurements using transverse aperture limiters and scintillators and Schottky-based tools. This paper gives an overall view of...

  11. Interference-aware random beam selection for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.

    2012-09-01

    Spectrum sharing systems have been introduced to alleviate the problem of spectrum scarcity by allowing secondary unlicensed networks to share the spectrum with primary licensed networks under acceptable interference levels to the primary users. In this paper, we develop interference-aware random beam selection schemes that provide enhanced throughput for the secondary link under the condition that the interference observed at the primary link is within a predetermined acceptable value. For a secondary transmitter equipped with multiple antennas, our schemes select a random beam, among a set of power- optimized orthogonal random beams, that maximizes the capacity of the secondary link while satisfying the interference constraint at the primary receiver for different levels of feedback information describing the interference level at the primary receiver. For the proposed schemes, we develop a statistical analysis for the signal-to-noise and interference ratio (SINR) statistics as well as the capacity of the secondary link. Finally, we present numerical results that study the effect of system parameters including number of beams and the maximum transmission power on the capacity of the secondary link attained using the proposed schemes. © 2012 IEEE.

  12. The beam transport system in the SRS-1200

    CERN Document Server

    Ivashchenko, V E

    2002-01-01

    In NSC KIPT the synchrotron radiation source SRS-1200 for the Ukrainian national synchrotron center (Kiev) is developed. An injector for a storage ring is the electron linear accelerator with energy 180 MeV. For compactness of a complex LUE-180 dispose under a storage ring. The transport system provides transport of electron beam from linear accelerator without losses and injection him in the storage ring. The calculations of the performances of transport systems with five-lens and three-lens variants of translation line, and also with use 42 and 45-th of degree rectangular and sector bending magnets were carried out. As a result of the comparative analysis the five-lens symmetric variant of translation line with 42-th degree sector bending magnets was chosen. In the report the basic results of calculations, parameters and performances of transport system of electron beam are submitted.

  13. Beam Loss Ion Chamber System Upgrade for Experimental Halls

    CERN Document Server

    Dotson, Danny W

    2005-01-01

    The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic "burn through." Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an "off the shelf" Programmable Logic Controller located in a single controll box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage "Brick" at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.

  14. A computational procedure for multibody systems including flexible beam dynamics

    Science.gov (United States)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.

  15. ULtrathin vacuum valve and ion beam focusing system

    CERN Document Server

    Shen Guan Ren; Qin Jiu Chang; Su Sheng Yong; Wu Long Cheng

    2001-01-01

    Design and fabrication of the ultrathin vacuum valve and ion beam focusing system are introduced for application on CIAE 600 kV ns Pulse Neutron Generator. The valve is integrated with first electrode of focusing system. The electric dizzy and striking sparks on focusing system disappeared after using these devices. The ion source can be replaced easily and quickly because the ultrathin vacuum valve was used, and the vacuum system of generator is protected; especially, safe action of the accelerating tube is maintained; and using live is extended

  16. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  17. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  18. A microbeam slit system for high beam currents

    Science.gov (United States)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  19. HIGH POWER FAST KICKER SYSTEM FOR SNS BEAM EXTRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; SANDBERG,J.; TSOUPAS,N.; MI,J.; LAMBIASE,R.; LOCKEY,R.; PAI,C.; TUOZZOLO,J.; NEHRING,T.; WARBURTON,D.

    2002-06-30

    A Blumlein topology based high peak power, high repetition rate, and low beam impedance fast extraction kicker system for ORNL Spallation Neutron Source (SNS) is being developed at Brookhaven National Laboratory. The large magnet window size, large deflecting angle, low beam impedance termination and fast deflecting field rise time demand a very strong pulsed power source to drive the SNS extraction fast kicker magnet. This system consists of fourteen high voltage modulators and fourteen lumped kicker magnet sections. All modulators will be located in a service building outside the beam tunnel, which is a revised design requirement adopted in the mid 2000. The high current pulses generated by the high power modulators will be delivered through high voltage pulsed transmission cables to each kicker magnet sections. The designed output capacity of this system, is in multiple GVA. Its first article modulator has been constructed and is being tested. In this paper, we present the system overview, project status and the advantages of this new conceptual design.

  20. 3D strain measurement in soft tissue: demonstration of a novel inverse finite element model algorithm on MicroCT images of a tissue phantom exposed to negative pressure wound therapy.

    Science.gov (United States)

    Wilkes, R; Zhao, Y; Cunningham, K; Kieswetter, K; Haridas, B

    2009-07-01

    This study describes a novel system for acquiring the 3D strain field in soft tissue at sub-millimeter spatial resolution during negative pressure wound therapy (NPWT). Recent research in advanced wound treatment modalities theorizes that microdeformations induced by the application of sub-atmospheric (negative) pressure through V.A.C. GranuFoam Dressing, a reticulated open-cell polyurethane foam (ROCF), is instrumental in regulating the mechanobiology of granulation tissue formation [Saxena, V., Hwang, C.W., Huang, S., Eichbaum, Q., Ingber, D., Orgill, D.P., 2004. Vacuum-assisted closure: Microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114, 1086-1096]. While the clinical response is unequivocal, measurement of deformations at the wound-dressing interface has not been possible due to the inaccessibility of the wound tissue beneath the sealed dressing. Here we describe the development of a bench-test wound model for microcomputed tomography (microCT) imaging of deformation induced by NPWT and an algorithm set for quantifying the 3D strain field at sub-millimeter resolution. Microdeformations induced in the tissue phantom revealed average tensile strains of 18%-23% at sub-atmospheric pressures of -50 to -200 mmHg (-6.7 to -26.7 kPa). The compressive strains (22%-24%) and shear strains (20%-23%) correlate with 2D FEM studies of microdeformational wound therapy in the reference cited above. We anticipate that strain signals quantified using this system can then be used in future research aimed at correlating the effects of mechanical loading on the phenotypic expression of dermal fibroblasts in acute and chronic ulcer models. Furthermore, the method developed here can be applied to continuum deformation analysis in other contexts, such as 3D cell culture via confocal microscopy, full scale CT and MRI imaging, and in machine vision.

  1. Successful synchronization of the LHC's clockwise beam transfer system

    CERN Multimedia

    2008-01-01

    LHC synchronization test successful The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.

  2. Conceptual design for the ZEPHYR neutral-beam injection system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  3. The system of RF beam control for electron gun

    Science.gov (United States)

    Barnyakov, A. M.; Chernousov, Yu. D.; Ivannikov, V. I.; Levichev, A. E.; Shebolaev, I. V.

    2015-06-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described.

  4. Optical two-beam traps in microfluidic systems

    Science.gov (United States)

    Berg-Sørensen, Kirstine

    2016-08-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast in a rapid prototyping manner, to hard polymers that could even be produced by injection moulding, or to silica in which waveguides may either be written directly, or with grooves for optical fibers. Here, we review different solutions to the system and also show results obtained in a polymer chip with DUV written waveguides and in an injection molded polymer chip with grooves for optical fibers.

  5. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... in a rapid prototyping manner, to hard polymers that could even be produced by injection moulding, or to silica in which waveguides may either be written directly, or with grooves for optical fibers. Here, we review different solutions to the system and also show results obtained in a polymer chip with DUV...

  6. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  7. Electron beam final focus system for Thomson scattering at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)

    2016-09-11

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  8. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolo

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the CMS cavern for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing.The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of light to monitor the efficiency of the sys...

  9. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  10. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  11. Electron beam final focus system for Thomson scattering at ELBE

    Science.gov (United States)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  12. Upgrade of the beam transport lines and the beam-abort system and development of a tune compensator in KEKB

    Science.gov (United States)

    Iida, Naoko; Kikuchi, Mitsuo; Mimashi, Toshihiro; Nakayama, Hisayoshi; Sakamoto, Yutaka; Satoh, Kotaro; Takasaki, Seiji; Tawada, Masafumi

    2013-03-01

    The KEKB collider achieved a maximum peak luminosity of 2.1×1034 cm-2 s-1 and an integrated luminosity of 1 ab-1 in its ten-year operation. Behind these glorious records there have been uncountable improvements in every subsystem. This paper describes the improvements in the beam transport line, injection kickers, septum magnets, the beam-abort system, and a newly developed pulsed-quadrupole system in detail.

  13. Propagation Effect of Hollow Gaussian Beams Passing through a Misaligned Optical System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cheng-Liang; WANG Li-Gang; LU Xuan-Hui; WANG Yu-Zhu

    2006-01-01

    @@ A generalized formula of hollow Gaussian beams through the first-order misaligned ABCD systems is derived by using the generalized diffraction integral formula. It is shown that the hollow Gaussian beam passing through the misaligned system becomes a decentred hollow Gaussian beam. The propagation properties of the output beam are investigated when it propagates through a simple misaligned lens system. These results provide a powerful theoretical tool for applications of optical traps.

  14. Condition monitoring for a neutral beam injector cryopumping system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, N., E-mail: n.wright@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Dixon, R., E-mail: r.dixon@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Verhoeven, R., E-mail: roel.verhoeven@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► The development of a cryopumping condition monitoring scheme is presented. ► A residual generation scheme is used to detect two faults. ► Kalman filtering is used to generate the residuals. ► A filtering and voting arrangement is used to evaluate the residuals. ► A non-linear simulation model is used to verify the scheme. -- Abstract: For neutral beam injection systems, the maintenance of a vacuum inside the injector box is essential for normal operation. Cryogenic pumping systems are often used to create and maintain this vacuum. Cryogenic pumping systems have been deployed on the neutral beam heating systems supporting the Joint European Torus. With these as a target application, the development of a condition monitoring scheme is presented. The scheme uses a residual generation approach. A bank of Kalman filters is used to estimate measured process variables. A residual evaluator is used to map residual signals onto a set of faults. Two example faults are simulated to demonstrate the response of the scheme. This paper contributes to the wider fusion development programme by demonstrating how a contemporary condition monitoring technique can be applied to a fusion support system, in order to improve its availability.

  15. Dual-beam laser autofocusing system based on liquid lens

    Science.gov (United States)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme "Time-sharing focus, fast conversion" is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  16. Dynamic simulation and efficiency analysis of beam pumping system

    Institute of Scientific and Technical Information of China (English)

    邢明明; 董世民; 童志雄; 田然凤; 陈慧玲

    2015-01-01

    An improved whole model of beam pumping system was built. In the detail, for surface transmission system (STS), a new mathematical model was established considering the influence of some factors on the STS’s torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string (SRS), an improved mathematical model was built considering the influence of some parameters on the SRS’s longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system.

  17. Beam Switching Cylindrical Array Antenna System for Communication

    Directory of Open Access Journals (Sweden)

    V. C. Misra

    1998-10-01

    Full Text Available The beam switching cylindrical array, which is a unique system, has been designed and developed to cover 360° in azimuth plane by generating 16 beams with specified elevation coverage.In this design, the concept of fast aperture selection (4 x 4 in microseconds from the total cylindrical array has been realised successfully to meet the requirement of point-to-multipoint communication. The components of the array, viz., radiating elements, powder dividers, switches, etc., are designed in printed circuit type, and hence, objectives of lightweight and ease of reproducibility are achieved. The lightweight of the array makes it accessible for easy mounting at a specified height for achieving longer communication range. Finally, a low-loss radome is incorporated to protect the array from environmental conditions. The various parameters, viz., return loss, gain, and switched-beam radiation patterns were measured over a bandwidth of 300 MHz in L- band and typical measured results are presented in this paper.

  18. Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Neubauer, Michael

    2014-10-29

    This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

  19. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  20. Programmable Beam Spatial Shaping System for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

    2011-01-21

    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

  1. Medium and high energy electron beam processing system

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Masayuki [Nissin-High Voltage Co., Ltd., Kyoto (Japan)

    2003-02-01

    Electron Beam Processing System (EPS) is a useful and powerful tool for industrial irradiation process. The specification of EPS is decided by consideration to irradiate what material with how thick and wide, how much dose, how to handle, in what atmosphere. In designing an EPS, it is necessary to consider safety measure such as x-ray shielding, ozone control and interlock system. The initial costs to install typical EPS are estimated for acceleration voltages from 500 kV to 5 MV, including following items; those are electron beam machine, x-ray shielding, auxiliary equipment, material handling, survey for installation, ozone exhaust duct, cooling water system, wiring and piping. These prices are reference only because the price should be changed for each case. The price of x-ray shielding should be changed by construction cost. Auxiliary equipment includes window, cooling blower, ozone exhaust blower and SF6 gas handling equipment. In installation work at site, actual workers of 3 - 4 persons for 2 months are necessary. Material handling system is considered only rolls provided in the shielding room as reference. In addition to the initial installation, operators and workers may be required to wear a personal radiation monitor. An x-ray monitor of suitable design should be installed outside the shield room to monitor x-ray level in the working area. (Y. Tanaka)

  2. Automatic classification of squamosal abnormality in micro-CT images for the evaluation of rabbit fetal skull defects using active shape models

    Science.gov (United States)

    Chen, Antong; Dogdas, Belma; Mehta, Saurin; Bagchi, Ansuman; Wise, L. David; Winkelmann, Christopher

    2014-03-01

    High-throughput micro-CT imaging has been used in our laboratory to evaluate fetal skeletal morphology in developmental toxicology studies. Currently, the volume-rendered skeletal images are visually inspected and observed abnormalities are reported for compounds in development. To improve the efficiency and reduce human error of the evaluation, we implemented a framework to automate the evaluation process. The framework starts by dividing the skull into regions of interest and then measuring various geometrical characteristics. Normal/abnormal classification on the bone segments is performed based on identifying statistical outliers. In pilot experiments using rabbit fetal skulls, the majority of the skeletal abnormalities can be detected successfully in this manner. However, there are shape-based abnormalities that are relatively subtle and thereby difficult to identify using the geometrical features. To address this problem, we introduced a model-based approach and applied this strategy on the squamosal bone. We will provide details on this active shape model (ASM) strategy for the identification of squamosal abnormalities and show that this method improved the sensitivity of detecting squamosal-related abnormalities from 0.48 to 0.92.

  3. Micro-CT observations of the 3D distribution of calcium oxalate crystals in cotyledons during maturation and germination in Lotus miyakojimae seeds.

    Science.gov (United States)

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Takeuchi, Miyuki; Karahara, Ichirou; Sato, Mayuko; Toyooka, Kiminori; Nishioka, Hiroshi; Terada, Yasuko; Uesugi, Kentaro; Takano, Hidekazu; Kagoshima, Yasushi; Mineyuki, Yoshinobu

    2013-06-01

    The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds. In this study, micro-computed tomography (micro-CT) was employed at the SPring-8 facility to examine the three-dimensional distribution of crystals inside cotyledons during seed maturation and germination of Lotus miyakojimae (previously Lotus japonicus accession Miyakojima MG-20). Using this technique, we could detect the outline of the embryo, void spaces in seeds and the cotyledon venation pattern. We found several sites that strongly inhibited X-ray transmission within the cotyledons. Light and polarizing microscopy confirmed that these areas corresponded to CaOx crystals. Three-dimensional observations of dry seeds indicated that the CaOx crystals in the L. miyakojimae cotyledons were distributed along lateral veins; however, their distribution was limited to the abaxial side of the procambium. The CaOx crystals appeared at stage II (seed-filling stage) of seed development, and their number increased in dry seeds. The number of crystals in cotyledons was high during germination, suggesting that CaOx crystals are not degraded for their calcium supply. Evidence for the conservation of CaOx crystals in cotyledons during the L. miyakojimae germination process was also supported by the biochemical measurement of oxalic acid levels.

  4. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  5. The LHC beam loss monitoring system commissioning for 2010

    CERN Document Server

    Zamantzas, C; Chery, C; Effinger, E; Emery, J; Grishin, S; Hajdu, C F; Holzer, E B; Jackson, S; Kurfuerst, C; Marsili, A; Nordt, A; Sapinski, M; Tissier, R; Venturini, G G

    2010-01-01

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from approximately 4’000 monitors, and has nearly 3 million configurable parameters. This paper will discuss its performance and ability to provide the expected measurements, the problems encountered and necessary improvements, the adequacy of related software and databases, and in general its readiness and suitability for 3.5 TeV operation.

  6. Preliminary estimates of the calcium/phosphorus ratio at different cortical bone sites using synchrotron microCT

    Science.gov (United States)

    Tzaphlidou, M.; Speller, R.; Royle, G.; Griffiths, J.

    2006-04-01

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of female rats (1.5 years of age), using synchrotron radiation microtomography. The use of a monoenergetic x-ray beam, as provided by the synchrotron facility, generates accurate 3D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data sets were taken at 20 keV for each bone sample and calibration phantoms. From the 3D data sets, multiple 2D slices were reconstructed with a slice thickness of ~28 µm and converted to Ca/P ratios using the calibration phantom results. Mean values (M ± SD) for cortical femoral, front and rear tibias are 2.12 ± 0.08, 1.75 ± 0.06 and 1.94 ± 0.07 respectively. These values were compared with those derived from different animals. Differences between the same bone sites from different animals are not significant (0.1 life style and bone use.

  7. A metrology system for a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  8. Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical systems

    Institute of Scientific and Technical Information of China (English)

    戈迪; 蔡阳健; 林强

    2005-01-01

    By use of a tensor method, the transform formulae for the beam coherence-polarization matrix of the partially polarized Gaussian Schell-model (GSM) beams through aligned and misaligned optical systems are derived. As an example, the propagation properties of the partially polarized GSM beam passing through a misaligned thin lens are illustrated numerically and discussed in detail. The derived formulae provide a convenient way to study the propagation properties of the partially polarized GSM beams through aligned and misaligned optical systems.

  9. Tuning of the Compact Linear Collider Beam Delivery System

    CERN Document Server

    Garcia, H; Inntjore Levinsen, Y; Latina, A; Tomas, R; Snuverink, J

    2014-01-01

    Tuning the Compact Linear Collider (CLIC) BeamDelivery System (BDS), and in particular the Final Focus (FF), is a challenging task. In simulations without misalignments, the goal is to reach 120%o f the nominal luminosity target, in order to allow for 10% loss due to static imperfections, and another 10% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, Dispersion Free Steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reaches the required luminosity target.

  10. Control System of Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Hu Chundong; Liu Zhimin; Liu Sheng; Song Shihua; Yang Daoye

    2005-01-01

    Neutral Beam Injection control system (NBICS) is constructed to measure the plasma current, Magnet current, vacuum pressure, cryopump temperature, control water cooling, filament voltage, and power supply, etc. The NBICS, consisting mainly of a Programmable Logic Controller (PLC) subsystem, data acquisition and processing subsystem and cryopump and vacuum pressure monitoring subsystem, has successfully been used on a NBI device. In this article, the design of NBICS on HT-7 is discussed and each subsystem is described in particular.In addition, some experimental results are reported which are very important data for further research related to the HT-7 tokamak.

  11. The effect of object shape and laser beam shape on lidar system resolution

    Science.gov (United States)

    Cheng, Hongchang; Wang, Jingyi; Ke, Jun

    2016-06-01

    In a LIDAR system, a pulsed laser beam is propagated to a scene, and then reflected back by objects. Ideally if the beam diameter and the pulse width are close to zero, then the reflected beam in time domain is similar to a delta function, which can accurately locate an object's position. However, in a practical system, the beam has finite size. Therefore, even if the pulse width is small, an object shape will make the reflected beam stretched along the time axis, then affect system resolution. In this paper, we assume the beam with Gaussian shape. The beam can be formulated as a delta function convolved with a shape function, such as a rectangular function, in time domain. Then the reflected beam can be defined as a system response function convolved with the shape function. We use symmetric objects to analyze the reflected beam. Corn, sphere, and cylinder objects are used to find a LIDAR system's response function. The case for large beam size is discussed. We assume the beam shape is similar to a plane wave. With this assumption, we get the simplified LIDAR system response functions for the three kinds of objects. Then we use tiny spheres to emulate an arbitrary object, and study its effect to the returned beam.

  12. Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems

    Indian Academy of Sciences (India)

    Yusuf Yesilce; Oktay Demirdag; Seval Catal

    2008-08-01

    Structural elements supporting motors or engines are frequently seen in technological applications. The operation of a machine may introduce additional dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. The literature regarding the free vibration analysis of Bernoulli–Euler single-span beams carrying a number of spring-mass system and Bernoulli–Euler multi-span beams carrying multiple spring-mass systems are plenty, but on Timoshenko multi-span beams carrying multiple spring-mass systems is fewer. This paper aims at determining the natural frequencies and mode shapes of a Timoshenko multi-span beam. The model allows to analyse the influence of the shear effect and spring-mass systems on the dynamic behaviour of the beams by using Timoshenko Beam Theory (TBT). The effects of attached spring-mass systems on the free vibration characteristics of the 1–4 span beams are studied. The natural frequencies of Timoshenko multi-span beam calculated by using secant method for non-trivial solution are compared with the natural frequencies of multi-span beam calculated by using Bernoulli–Euler Beam Theory (EBT) in literature; the mode shapes are presented in graphs.

  13. A Radio System for Avoiding Illuminating Aircraft with a Laser Beam

    CERN Document Server

    Coles, W A; Melser, J F; Tu, J K; White, G A; Kassabian, K H; Bales, K; Baumgartner, B B

    2009-01-01

    When scientific experiments require transmission of powerful laser or radio beams through the atmosphere the Federal Aviation Administration (FAA) requires that precautions be taken to avoid inadvertent illumination of aircraft. Here we describe a highly reliable system for detecting aircraft entering the vicinity of a laser beam by making use of the Air Traffic Control (ATC) transponders required on most aircraft. This system uses two antennas, both aligned with the laser beam. One antenna has a broad beam and the other has a narrow beam. The ratio of the transponder power received in the narrow beam to that received in the broad beam gives a measure of the angular distance of the aircraft from the axis that is independent of the range or the transmitter power. This ratio is easily measured and can be used to shutter the laser when the aircraft is too close to the beam. Prototype systems operating on astronomical telescopes have produced good results.

  14. CERN Vacuum-System Activities during the Long Shutdown 1: The LHC Beam Vacuum

    CERN Document Server

    Baglin, V; Chiggiato, P; Jimenez, JM; Lanza, G

    2014-01-01

    After the Long Shutdown 1 (LS1) and the consolidation of the magnet bus bars, the CERN Large Hadron Collider (LHC) will operate with nominal beam parameters. Larger beam energy, beam intensities and luminosity are expected. Despite the very good performance of the beam vacuum system during the 2010-12 physics run (Run 1), some particular areas require attention for repair, consolidation and upgrade. Among the main activities, a large campaign aiming at the repair of the RF bridges of some vacuum modules is conducted. Moreover, consolidation of the cryogenic beam vacuum systems with burst disk for safety reasons is implemented. In addition, NEG cartridges, NEG coated inserts and new instruments for the vacuum system upgrade are installed. Besides these activities, repair, consolidation and upgrades of other beam equipment such as collimators, kickers and beam instrumentations are carried out. In this paper, the motivation and the description for such activities, together with the expected beam vacuum performa...

  15. Surface area and volume measurements of volcanic ash particles using micro-computed tomography (micro-CT): A comparison with scanning electron microscope (SEM) stereoscopic imaging and geometric considerations

    Science.gov (United States)

    Ersoy, Orkun; Şen, Erdal; Aydar, Erkan; Tatar, İlkan; Çelik, H. Hamdi

    2010-10-01

    Volcanic ash particles are important components of explosive eruptions, and their surface textures are the subject of intense research. Characterization of ash surfaces is crucial for understanding the physics of volcanic plumes, remote sensing measurements of ash and aerosols, interfacial processes, modelling transportation and deposition of tephra and characterizing eruptive styles. A number of different methods have been used over the years to arrive at surface area estimates. The more common methods include estimates based on geometric considerations (geometric surface area) and physisorption of gas molecules on the surface of interest (physical surface area). In this study, micro computed tomography (micro-CT), which is a non-destructive method providing three-dimensional data, enabled the measurement of surface area and volume of individual ash particles. Results were compared with the values obtained from SEM stereoscopic imaging and geometric considerations. Surface area estimates of micro-CT and SEM stereoscopic imaging are similar, with surface area/volume ratios (SA/V) of 0.0368 and 0.0467, respectively. Ash particle surface textures show a large deviation from that of simple geometric forms, and an approximation both to spheres and ellipsoids do not seem adequate for the representation of ash surface. SEM stereoscopic and/or micro-CT imaging are here suggested as good candidate techniques for the characterization of textures on macro-pore regions of ash particles.

  16. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  17. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  18. Beam manipulation and compression using broadband rf systems in the Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    G William Foster et al.

    2004-07-09

    A novel method for beam manipulation, compression, and stacking using a broad band RF system in circular accelerators is described. The method uses a series of linear voltage ramps in combination with moving barrier pulses to azimuthally compress, expand, or cog the beam. Beam manipulations can be accomplished rapidly and, in principle, without emittance growth. The general principle of the method is discussed using beam dynamics simulations. Beam experiments in the Fermilab Recycler Ring convincingly validate the concept. Preliminary experiments in the Fermilab Main Injector to investigate its potential for merging two ''booster batches'' to produce high intensity proton beams for neutrino and antiproton production are described.

  19. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    Science.gov (United States)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  20. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    Science.gov (United States)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  1. Experimental analysis of the steady-state behaviour of beam systems with discontinuous support

    NARCIS (Netherlands)

    Vorst, E.L.B. van de; Campen, D.H. van; Kraker, A. de; Fey, R.H.B.

    1996-01-01

    This paper deals with the experimental analysis of the long-term behaviour of periodically excited linear beams supported by a one-sided spring or an elastic stop. Numerical analysis of the beams showed subharmonic, quasi-periodic and chaotic behaviour. Furthermore, in the beam system with the one-s

  2. The analysis of optical wave beams propagation in lens systems

    Science.gov (United States)

    Kazakov, I.; Mosentsov, S.; Moskaletz, O.

    2016-08-01

    In this paper some aspects of the formation and propagation of optical wave beams in lens systems were considered. As an example, the two-lens optical information processing system was considered. Analysis of the two-lens optical circuit has been made with a systems approach perspective. As part of the radio-optical analogies had been applied certain provisions of the theory of dynamical systems to the spatial optical system. The lens system is represented as a simple series-connected optical elements with known spatial impulse response. General impulse response of such a system has been received, as well as consider some special cases of the impulse response. The question of the relationship between the parameters and the size of the input aperture lenses for undistorted transmission of the optical signal has been considered. Analysis of the energy loss resulting from the finite aperture of the lens. It's based on an assessment of the fraction of radiation that propagates beyond the lens. Analysis showed that the energy losses depend explicitly on the following parameters: radiation wavelength, distance between input aperture and lens, and ratio of the input aperture and lens aperture. With the computer help simulation the dependence of losses was shown on the above parameters

  3. Quasi-optical ECRH beam system for MFTF-B

    Energy Technology Data Exchange (ETDEWEB)

    Yugo, J.J.; Shearer, J.W.; Ziolkowski, R.W.; Krause, K.H.; Berkey, J.H.; Fong, C.G.

    1983-01-01

    Multiple frequency electron cyclotron resonance heating (ECRH) is required in the anchor regions of MFTF-B. The requirement for a high transmission efficiency as well as some aspects of the operating environment make a quasi-optical transmission system attractive (neutron activation and damage of materials, x-rays, rf window coolant leaks, cryogenic temperatures, etc.). A quasi-optical transmission system increases the transmission efficiency and reduces the complexity of the hardware in the vacuum vessel. A beam transmission efficiency of 94 percent through the off-axis, fundamental electron cyclotron resonance position is achieved if the plasma density is limited to n/sub p/ less than 4 x 10/sup 8/ cm/sup -3/. For MFTF-B parameters and ECRH at 28 GHz the electron mean free path for an ionizing collision is 5 x 10/sup 6/ cm so that most electrons will reach the wall prior to producing additional ionization of the background gas.

  4. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  5. Experimental analysis of beam pointing system based on liquid crystal optical phase array

    Science.gov (United States)

    Shi, Yubin; Zhang, Jianmin; Zhang, Zhen

    2016-12-01

    In this paper, we propose and demonstrate an elementary non-mechanical beam aiming and steering system with a single liquid crystal optical phase array (LC-OPA) and charge-coupled device (CCD). With the conventional method of beam steering control, the LC-OPA device can realize one dimensional beam steering continuously. An improved beam steering strategy is applied to realize two dimensional beam steering with a single LC-OPA. The whole beam aiming and steering system, including an LC-OPA and a retroreflective target, is controlled by the monitor. We test the feasibility of beam steering strategy both in one dimension and in two dimension at first, then the whole system is build up based on the improved strategy. The experimental results show that the max experimental pointing error is 56 μrad, and the average pointing error of the system is 19 μrad.

  6. 应用显微CT观测Ⅴ类洞修复体边缘渗漏初探%Detection of marginal leakage of Class Ⅴ restorations in vitro by micro-CT

    Institute of Scientific and Technical Information of China (English)

    古林娟; 赵信义; 李石保

    2012-01-01

    目的 评价显微CT测定V类洞复合树脂充填修复体边缘渗漏的可靠性和优势.方法 离体人磨牙制备V类洞,用粘接剂及复合树脂充填修复.将样本牙浸入氨化硝酸银溶液12 h及显影液8h.显微CT扫描后测定充填物(猞)壁及龈壁的银渗漏深度,重建洞壁银渗漏三维图像.正中纵向切开充填物及样本牙,光学显微镜下测量剖面窝洞牙熙(猞)壁及龈壁的银渗漏深度,采用配对秩和检验比较显微CT与光学显微镜测定的渗漏深度差异.结果 显微CT和光学显微镜测量的龈壁渗漏深度(中位数分别为0.78和0.74 mm)差异无统计学意义(P>0.05),显微CT测量的(猞)壁渗漏深度(中位数0.40 mm)显著小于光学显微镜(0.72 mm) (P <0.01);洞壁渗漏的形态呈多样性,部分渗漏存在明显的渗漏通道.结论 显微CT能精确测定窝洞龈壁部位的银渗漏程度,并能建立银渗漏三维形态,(猞)壁部位显微CT测定的渗漏深度不能反映实际渗漏深度.%Objective To evaluate the reliability and superiority of micro-CT in marginal leakage assessment of Class V restorations. Methods Class V preparations with gingival margins in dentin and occlusal in enamel were made in sixteen extracted non-carious human molars and restored with dental bonding agents and composite resin.All teeth were then immersed in 50% ammonia-silver nitrate solution for 12 hours,followed by developing solution for 8 hours. Each restoration was scanned by a micro-CT and silver leakage was measured and three-dimensional image of the silver leakage alone cavity wall were reconstructed. Afterward, all restorations were sectioned and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by micro-CT and microscope were compared for equivalency. Results The silver leakage depths in gingival wall obtained with micro-CT (0.78 mm) and microscope (0.74 mm) showed no significant difference (P > 0.05 ),while

  7. Parametric instabilities in an electron beam plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R.; Cuperman, S.; Gell, Y.; Levush, B.

    1981-08-01

    The excitation of low-frequency parametric instabilities by a finite wavelength pump in a system consisting of a warm electron plasma traversed by a warm electron beam is investigated in a fluid dissipationless model. The dispersion relation for the three-dimensional problem in a magnetized plasma with arbitrary directions for the waves is derived, and the one-dimensional case is analyzed numerically. For the one-dimensional back-scattering decay process, it is found that when the plasma-electron Debye length (lambda/sub D//sup p/) is larger than the beam-electron Debye length (lambda/sub D//sup b/), two low-frequency electrostatic instability branches with different growth rates may exist simultaneously. When lambda/sub D//sup p/approx. =lambda/sub D//sup b/, the large growth rate instability found in the analysis depends strongly on the amplitude of the pump field. For the case lambda/sub D//sup p/

  8. An Energy Saving System for a Beam Pumping Unit

    Directory of Open Access Journals (Sweden)

    Hongqiang Lv

    2016-05-01

    Full Text Available Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU based on the Internet of Things (IoT was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  9. An Energy Saving System for a Beam Pumping Unit.

    Science.gov (United States)

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-05-13

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  10. LogAmp electronics and optical transmission for the new SPS beam position measurement system

    Science.gov (United States)

    Bogey, T.; Deplano, C.; Gonzalez, J. L.; Savioz, J. J.

    2013-12-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  11. LogAmp electronics and Optical Transmission for the new SPS Beam Position Measurement System

    CERN Document Server

    Deplano, C; Gonzalez, J L; Savioz, J J

    2013-01-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  12. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics.

    Science.gov (United States)

    Palci, Alessandro; Lee, Michael S Y; Hutchinson, Mark N

    2016-12-01

    We compared the head skeleton (skull and lower jaw) of juvenile and adult specimens of five snake species [Anilios (=Ramphotyphlops) bicolor, Cylindrophis ruffus, Aspidites melanocephalus, Acrochordus arafurae, and Notechis scutatus] and two lizard outgroups (Ctenophorus decresii, Varanus gilleni). All major ontogenetic changes observed were documented both qualitatively and quantitatively. Qualitative comparisons were based on high-resolution micro-CT scanning of the specimens, and detailed quantitative analyses were performed using three-dimensional geometric morphometrics. Two sets of landmarks were used, one for accurate representation of the intraspecific transformations of each skull and jaw configuration, and the other for comparison between taxa. Our results document the ontogenetic elaboration of crests and processes for muscle attachment (especially for cervical and adductor muscles); negative allometry in the braincase of all taxa; approximately isometric growth of the snout of all taxa except Varanus and Anilios (positively allometric); and positive allometry in the quadrates of the macrostomatan snakes Aspidites, Acrochordus and Notechis, but also, surprisingly, in the iguanian lizard Ctenophorus. Ontogenetic trajectories from principal component analysis provide evidence for paedomorphosis in Anilios and peramorphosis in Acrochordus. Some primitive (lizard-like) features are described for the first time in the juvenile Cylindrophis. Two distinct developmental trajectories for the achievement of the macrostomatan (large-gaped) condition in adult snakes are documented, driven either by positive allometry of supratemporal and quadrate (in pythons), or of quadrate alone (in sampled caenophidians); this is consistent with hypothesised homoplasy in this adaptive complex. Certain traits (e.g. shape of coronoid process, marginal tooth counts) are more stable throughout postnatal ontogeny than others (e.g. basisphenoid keel), with implications for their

  13. Using a method based on Potts Model to segment a micro-CT image stack of trabecular bones of femoral region

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Pedro H.A. de; Cabral, Manuela O.M., E-mail: andrade.pha@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Engenharia Nuclear; Vieira, Jose W.; Correia, Filipe L. de B., E-mail: jose.wilson59@uol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Lima, Fernando R. De A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (brazil)

    2015-07-01

    Exposure Computational Models are composed basically of an anthropomorphic phantom, a Monte Carlo (MC) code, and an algorithm simulator of the radioactive source. Tomographic phantoms are developed from medical images and must be pre-processed and segmented before being coupled to a MC code (which simulates the interaction of radiation with matter). This work presents a methodology used for treatment of micro-CT images stack of a femur, obtained from a 30 year old female skeleton provided by the Imaging Laboratory for Anthropology of the University of Bristol, UK. These images contain resolution of 60 micrometers and from these a block containing only 160 x 60 x 160 pixels of trabecular tissues and bone marrow was cut and saved as ⁎.sgi file (header + ⁎.raw file). The Grupo de Dosimetria Numerica (Recife-PE, Brazil) developed a software named Digital Image Processing (DIP), in which a method for segmentation based on a physical model for particle interaction known as Potts Model (or q-Ising) was implemented. This model analyzes the statistical dependence between sites in a network. In Potts Model, when the values of spin variables at neighboring sites are identical, it is assigned an 'energy of interaction' between them. Otherwise, it is said that the sites do not interact. Making an analogy between network sites and the pixels of a digital image and, moreover, between the spins variables and the intensity of the gray scale, it was possible to apply this model to obtain texture descriptors and segment the image. (author)

  14. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    Science.gov (United States)

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species.

  15. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study.

    Science.gov (United States)

    Chappard, Daniel; Terranova, Lisa; Mallet, Romain; Mercier, Philippe

    2015-01-01

    The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture.

  16. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates.

    Science.gov (United States)

    Gignac, Paul M; Kley, Nathan J

    2014-05-01

    The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CT (µCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy.

  17. ITER neutral beam system US conceptual design. Final vesion

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  18. Micro-CT观测豚鼠听骨链解剖结构的基础研究%Micro-CT Imaging Research of Ossicular Chain in Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    赵暕; 徐先发; 陈振玲; 孙海勇; 刘永锁; 黄万霞; 李盼云

    2014-01-01

    Objective The aim of this study was to observe the structure of the ossicular chain of a guinea pig, to obtain a clear 3D image and detect component sizes of the ossicular chain using Micro-CT technology. Methods Behead a guinea pig, cut the head along the median line. Took out the auditory capsule, and removed its postero and inner wall. After fixed it using picroformal solution, we shot it with Micro-CT to gain image. Employed Avizo software to obtain a three-dimensional model, separate the ossicular chain structure, and detect component sizes of the ossicular chain. Results Three-dimensional model was clearly visible and able to rotate around any axis. The structure was partially clear. Inner and outside structure can be observed separately at will. Length of incus, long limb of incus, short limb of incus, stapes footplate, stapes,manubrium mallei were separately 3960±222μm, 1180±36μm, 909±11μm;2111±58μm, 2496±104μm, 3417±58μm, width of incus, sta⁃pes footplate and height of stapes, manubrium mallei were separately 1089±71μm, 902±13μm, 1760±74μm. Angle between incus and stapes, angle between incus and manubrium mallei:108.58° ± 1.26° , 122.46° ± 4.04° . Conclusion The thesis ac⁃quired a three-dimensional image of auditory capsule of a guinea pig using Micro-CT, and by employing Avizo software, we precisely separated out the ossicular structure and accurately detected component sizes of the ossicular chain. That offered a direct observation method for the visualized research on the ossicular chain of a guinea pig and a new way for audiology study on guinea pigs.%目的:利用计算机断层扫描显微成像(Micro-Computed Tomography,Micro-CT)技术拍摄豚鼠听骨链,获得完整清晰的3D图像,精确测量听骨链各组成部分尺寸,探讨豚鼠听骨链解剖结构。方法断头处死豚鼠,沿颅中线剪开头部,取出听泡剥除后内侧壁,苦味酸甲醛溶液固定后,利用Micro-CT技术获取

  19. Secondary particle acquisition system for the CERN beam wire scanners upgrade

    CERN Document Server

    Sirvent, J L; Emery, J; Diéguez, A

    2015-01-01

    The increasing requirements of CERN experiments make essential the upgrade of beam instrumentation in general, and high accuracy beam profile monitors in particular. The CERN Beam Instrumentation Group has been working during the last years on the Wire Scanners upgrade. These systems cross a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected to reconstruct the beam profile. For the new secondary shower acquisition system, it is necessary to perform very low noise measurements with high dynamic range coverage. The aim is to design a system without tuneable parameters and compatible for any beam wire scanner location at the CERN complex. Polycrystalline chemical vapour deposition diamond detectors (pCVD) are proposed as new detectors for this application because of their radiation hardness, fast response and linearity over a high dynamic range. For the detector readout, the acquisition electronics must be designed to exploit the detector capa...

  20. Datapath system for multiple electron beam lithography systems using image compression

    Science.gov (United States)

    Yang, Jeehong; Savari, Serap A.; Harris, H. Rusty

    2013-07-01

    The datapath throughput of electron beam lithography systems can be improved by applying lossless image compression to the layout images and using an electron beam writer that contains a decoding circuit packed in single silicon to decode the compressed image on-the-fly. In our past research, we had introduced Corner2, a lossless layout image compression algorithm that achieved significantly better performance in compression ratio, encoding/decoding speed, and decoder memory requirement than Block C4. However, it assumed a somewhat different writing strategy from those currently suggested by multiple electron beam (MEB) system designers. The Corner2 algorithm is modified so that it can support the writing strategy of an MEB system.

  1. Comparing cone beam laminographic system trajectories for composite NDT

    Directory of Open Access Journals (Sweden)

    Neil O'Brien

    2016-11-01

    Full Text Available We compare the quality of reconstruction obtainable using various laminographic system trajectories that have been described in the literature, with reference to detecting defects in composite materials in engineering. We start by describing a laminar phantom representing a simplified model of composite panel, which models certain defects that may arise in such materials, such as voids, resin rich areas, and delamination, and additionally features both blind and through holes along multiple axes. We simulate ideal cone-beam projections of this phantom with the different laminographic trajectories, applying both Simultaneous Iterative Reconstruction Technique (SIRT and Conjugate Gradient Least Squares (CGLS reconstruction algorithms. We compare the quality of the reconstructions with a view towards optimising the scan parameters for defect detectability in composite NDT applications.

  2. Iron free permanent magnet systems for charged particle beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  3. Taking geoscience to the IMAX: 3D and 4D insight into geological processes using micro-CT

    Science.gov (United States)

    Dobson, Katherine; Dingwell, Don; Hess, Kai-Uwe; Withers, Philip; Lee, Peter; Pistone, Mattia; Fife, Julie; Atwood, Robert

    2015-04-01

    Geology is inherently dynamic, and full understanding of any geological system can only be achieved by considering the processes by which change occurs. Analytical limitations mean understanding has largely developed from ex situ analyses of the products of geological change, rather than of the processes themselves. Most methods essentially utilise "snap shot" sampling: and from thin section petrography to high resolution crystal chemical stratigraphy and field volcanology, we capture an incomplete view of a spatially and temporally variable system. Even with detailed experimental work, we can usually only analyse samples before and after we perform an experiment, as routine analysis methods are destructive. Serial sectioning and quenched experiments stopped at different stages can give some insight into the third and fourth dimension, but the true scaling of the processes from the laboratory to the 4D (3D + time) geosphere is still poorly understood. Micro computed tomography (XMT) can visualise the internal structures and spatial associations within geological samples non-destructively. With image resolutions of between 200 microns and 50 nanometres, tomography has the ability to provide a detailed sample assessment in 3D, and quantification of mineral associations, porosity, grain orientations, fracture alignments and many other features. This allows better understanding of the role of the complex geometries and associations within the samples, but the challenge of capturing the processes that generate and modify these structures remains. To capture processes, recent work has focused on developing experimental capability for in situ experiments on geological materials. Data presented will showcase examples from recent experiments where high speed synchrotron x-ray tomography has been used to acquire each 3D image in under 2 seconds. We present a suite of studies that showcase how it is now possible to take quantification of many geological processed into 3D and

  4. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H., E-mail: kashiwagi.hirotsugu@jaea.go.jp; Miyawaki, N.; Kurashima, S.; Okumura, S. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  5. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  6. Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: A combined texture mapping and streamline approach.

    Science.gov (United States)

    Kupczik, Kornelius; Stark, Heiko; Mundry, Roger; Neininger, Fabian T; Heidlauf, Thomas; Röhrle, Oliver

    2015-10-07

    Skeletal muscle models are used to investigate motion and force generation in both biological and bioengineering research. Yet, they often lack a realistic representation of the muscle's internal architecture which is primarily composed of muscle fibre bundles, known as fascicles. Recently, it has been shown that fascicles can be resolved with micro-computed tomography (µCT) following staining of the muscle tissue with iodine potassium iodide (I2KI). Here, we present the reconstruction of the fascicular spatial arrangement and geometry of the superficial masseter muscle of a dog based on a combination of pattern recognition and streamline computation. A cadaveric head of a dog was incubated in I2KI and µCT-scanned. Following segmentation of the masseter muscle a statistical pattern recognition algorithm was applied to create a vector field of fascicle directions. Streamlines were then used to transform the vector field into a realistic muscle fascicle representation. The lengths of the reconstructed fascicles and the pennation angles in two planes (frontal and sagittal) were extracted and compared against a tracked fascicle field obtained through cadaver dissection. Both fascicle lengths and angles were found to vary substantially within the muscle confirming the complex and heterogeneous nature of skeletal muscle described by previous studies. While there were significant differences in the pennation angle between the experimentally derived and µCT-reconstructed data, there was congruence in the fascicle lengths. We conclude that the presented approach allows for embedding realistic fascicle information into finite element models of skeletal muscles to better understand the functioning of the musculoskeletal system.

  7. Shipborne Laser Beam Weapon System for Defence against Cruise Missiles

    Directory of Open Access Journals (Sweden)

    J.P. Dudeja

    2000-04-01

    Full Text Available Sea-skim~ing cruise missiles pose the greatest threat to a surface ship in the present-day war scenario. The convenitional close-in-weapon-systems (CIWSs are becoming less reliable against these new challenges requiring extremely fast reaction time. Naval Forces see a high energy laser as a feasible andjeffective directed energy weapon against sea-skimming antiship cruise missiles becauseof its .ability to deliver destructive energy at the speed of light on to a distant target. The paper comparesthe technology and capability of deuterium fluoride (DF and chemical-oxygen-iodine laser (COIL in effectively performing the role of a shipborne CIWS altainst sea-skimming missiles. Out of these twolasers, it is argued that DF laser wo.uld be more effective a,s a shipborne weapon for defence against sea-skimmin,g cruise missiles. Besides the high energy laser as the primary (killing laser, othersub-systems required in the complete weapon system would be: A beacon laser to sense phase distor'ions in the primary laser, adaptive optics to compensate the atmospheric distortions, beam-directing optics, illuminating lasers, IRST sensors, surveillance and tracking radars, interfacing system, etc.

  8. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    Science.gov (United States)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  9. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer.

    Science.gov (United States)

    Abd El-Maksoud, Rania H

    2016-02-20

    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.

  10. Alignment of optical system components using an ADM beam through a null assembly

    Science.gov (United States)

    Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)

    2010-01-01

    A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.

  11. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2016-01-01

    To perform proton irradiation experiments, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron accelerator. At this facility, named IR-RAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  12. Recent improvements to the ITER neutral beam system design

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R., E-mail: lgrisham@pppl.gov [Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Barrera, G. [EURATOM-CIEMAT Association, Avda. Complutense 40, 28040 Madrid (Spain); Blatchford, P. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Boilson, D.; Chareyre, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Chitarin, G. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Esch, H.P.L. de [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France); De Lorenzi, A. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Gagliardi, M. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Hemsworth, R.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kashiwagi, M. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); King, D. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Krylov, A. [Russian Research Centre, Kurchatov Institute, Moscow (Russian Federation); Kuriyama, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Marconato, N.; Marcuzzi, D. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Roccella, M. [L.T. Calcoli SaS, Via C. Baslini 13, 23807 Merate (Italy); and others

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Improvements to ITER accelerator voltage holding. Black-Right-Pointing-Pointer Improvements to ITER negative ion source design. Black-Right-Pointing-Pointer Improvements to ITER megavolt bushing. Black-Right-Pointing-Pointer Improvements to beamline components. Black-Right-Pointing-Pointer Accelerator design improvements. - Abstract: The ITER [1] fusion device is expected to demonstrate the feasibility of magnetically confined deuterium-tritium plasma as an energy source which might one day lead to practical power plants. Injection of energetic beams of neutral atoms (up to 1 MeV D{sup 0} or up to 870 keV H{sup 0}) will be one of the primary methods used for heating the plasma, and for driving toroidal electrical current within it, the latter being essential in producing the required magnetic confinement field configuration. The design calls for each beamline to inject up to 16.5 MW of power through the duct into the tokamak, with an initial complement of two beamlines injecting parallel to the direction of the current arising from the tokamak transformer effect, and with the possibility of eventually adding a third beamline, also in the co-current direction. The general design of the beamlines has taken shape over the past 17 years [2], and is now predicated upon an RF-driven negative ion source based upon the line of sources developed by the Institute for Plasma Physics (IPP) at Garching during recent decades [3-5], and a multiple-aperture multiple-grid electrostatic accelerator derived from negative ion accelerators developed by the Japan Atomic Energy Agency (JAEA) across a similar span of time [6-8]. During the past years, the basic concept of the beam system has been further refined and developed, and assessment of suitable fabrication techniques has begun. While many design details which will be important to the installation and implementation of the ITER beams have been worked out during this time, this paper focuses

  13. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    CERN Document Server

    AUTHOR|(CDS)2083575; Dabrowski, A.E.; Hempel, M.; Henschel, H.M.; Karacheban, O.; Przyborowski, D.; Leonard, J.L.; Penno, M.; Pozniak, K.T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F - one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns sub-bunch structure.

  14. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    Science.gov (United States)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  15. Annular beam shaping system for advanced 3D laser brazing

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  16. New magnet transport system for the LHC beam transfer lines

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system (pictured here in one of the tunnels) is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The lead vehicle is powered by an electric rail set into the roof of the tunnel. The system is backed up by electrical batteries that enable it to operate in the absence of an outside power source or in the event of power failure. Last but not least, for the long-distance transport of magnets, it can be optically guided by a line traced on the tunnel floor. The convoy moves through the particularly narr...

  17. A sub nrad beam pointing monitoring and stabilization system for controlling input beam jitter in GW interferometers

    CERN Document Server

    Canuel, Benjamin; Mantovani, Maddalena; Marque, Julien; Ruggi, Paolo; Tacca, Matteo

    2014-01-01

    In this paper a simple and very effective control system to monitor and suppress the beam jitter noise at the input of an optical system, called Beam Pointing Control (BPC) system, will be described showing the theoretical principle and an experimental demonstration for the application of large scale gravitational wave interferometers, in particular for the Advanced Virgo detector. For this purpose the requirements for the control accuracy and the sensing noise will be computed by taking into account the Advanced Virgo optical configuration and the outcomes will be compared with the experimental measurement obtained in the laboratory. The system has shown unprecedented performance in terms of control accuracy and sensing noise. The BPC system has achieved a control accuracy of ~ $10^{-8}$ rad for the tilt and ~ $10^{-7}$ m for the shift and a sensing noise of less than 1 nrad/$\\sqrt{Hz}$ resulting compliant with the Advance Virgo gravitational wave interferometer requirements.

  18. Status of the OPAL microvertex detector and new radiation monitoring and beam dump system

    Science.gov (United States)

    Jong, Sijbrand de

    1998-11-01

    The status of the OPAL Phase III microvertex detector is discussed briefly. This is followed by a more detailed description of the OPAL microvertex detector radiation monitoring and beam dump system. This system measures AC currents induced by radiation on each passing of the beams in silicon diodes mounted close to the microvertex detector front-end electronics. Examples are shown for incidents leading to a beam dump trigger. The integrated radiation dose is also discussed.

  19. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Taguchi, Mitsumasa [Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-07-15

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  20. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  1. Analytical and simulation studies for diode and triode ion beam extraction systems

    Institute of Scientific and Technical Information of China (English)

    M. M. Abdelrahman1; N. I. Basal; S. G. Zakhary

    2012-01-01

    This work is concerned with ion beam dynamics and compares the emittance to aberration ratios of two-and three-electrode extraction systems.The study is conducted with the aid of Version 7 of SIMION 3D ray-tracing software.The beam dependence on various parameters of the extraction systems is studied and the numerical results lead to qualitative conclusions.Ion beam characteristics using diode and triode extraction systems are investigated with the aid of the computer code SIMION 3 D,Version 7.0. The diode (two electrode extraction system) and triode (threeelectrode extraction,acceleration-deceleration system) extraction systems are designed and optimized with different geometric parameters of the electrode system,voltage applied to the extraction electrode,and plasma parameters inside the ion source chamber,as well as by the ion beam space charge.This work attempts to describe the importance of the acceleration-deceleration extraction system.It shows that besides an increase of the beam energy,the ion beam has lower emittance than the two-electrode extraction system.Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum for which the perveance current intensity and the extraction gap have optimum value.Knowing the electron temperature of the plasma is necessary to determine plasma potential and the exact beam energy.

  2. System effects influencing the bending strength of timber beams

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Källsner, B.

    1998-01-01

    measurements of the strengths of a large number of shorttest pieces cut from the beams such that judgementally each test piece contains only a single defect cluster. The testpiece is spliced to stronger wood beam shafts in both ends. Due to the occurrence of a substantial number of splicefailures in the total...

  3. Reliability Analysis of the LHC Beam Dumping System Taking into Account the Operational Experience during LHC Run 1

    CERN Document Server

    Filippini, R; Magnin, N; Uythoven, J A

    2014-01-01

    The LHC beam dumping system operated reliably during the Run 1 period of the LHC (2009 2013). A number of internal failures of the beam dumping system occurred that, because of built-in safety features, resulted in a safe removal of the particle beams from the machine, so called “internal beam

  4. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  5. Studying Ion Beam Mixing of Te/In Bilayer System .

    CERN Document Server

    Abdullah, A; Saleh, N

    2002-01-01

    Ion beam mixing at room temperature of Te/In bialayer system induced by 400 keV Ar sup + Ions from Jordan Van De Graff Accelerator (JOVAC) with fluences ranging from 1.11*10 sup 1 sup 4 to 7*10 sup 1 sup 5 ions is studied means of AC electrical resistivity measurements and 2 MeV sup 4 He sup + back scattering spectrometry. Changes in electrical resistivity (rho) were correlated with the growth of an intermixed layer at interface. Data is explained in terms of Riviere et al. Model showing that mixing is due to collisional cascade processes. It was found that primary collisions and collisional cascade mechanism contribute to ion mixing. Demixing is noticed which is attributed to the mechanism of primary collisions with the target atoms . FORTRAN (77) was written to calculate the thickness of upper and lower layers of the Te/In system before and after irradiation and the thickness and composition of intermixed layer at interface with the aid of (RBS) data. Also, a solid solution In sub 6 sub 7 Te sub 3 sub 3 was...

  6. Modelling and Testing of the Piezoelectric Beam as Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Koszewnik Andrzej

    2016-12-01

    Full Text Available The paper describes modelling and testing of the piezoelectric beam as energy harvesting system. The cantilever beam with two piezo-elements glued onto its surface is considered in the paper. As result of carried out modal analysis of the beam the natural frequencies and modes shapes are determined. The obtained results in the way mentioned above allow to estimate such location of the piezo-actuator on the beam where the piezo generates maximal values of modal control forces. Experimental investigations carried out in the laboratory allow to verify results of natural frequencies obtained during simulation and also testing of the beam in order to obtain voltage from vibration with help of the piezo-harvester. The obtained values of voltage stored on the capacitor C0 shown that the best results are achieved for the beam excited to vibration with third natural frequency, but the worst results for the beam oscillating with the first natural frequency.

  7. Rare isotope beams at ISAC—target & ion source systems

    Science.gov (United States)

    Bricault, Pierre G.; Ames, Friedhelm; Dombsky, Marik; Kunz, Peter; Lassen, Jens

    2014-01-01

    The present status of the ISAC facility for rare isotopes beams after its first 10 years of operation is presented. Planning for the ISAC facility started in 1985 with the Parksville workshop on radioactive ion beams (Buchmann and D'Auria 1985). It was put on halt by the KAON proposal and planning was only resumed in 1993 after the cancellation of KAON. The ISAC facility was built to satisfy the scientific need for accelerated beams of rare isotopes for use in applications such as nuclear physics, nuclear astrophysics, atomic and condensed matter physics as well as medicine. At the time of the ISAC proposal submission, a number of facilities were either planned or under construction. In order to have an impact in the field, the requirements and specifications for the driver beam intensity on target was set to 100 μA, 500 MeV protons, which for ISAC results in a driver beam power of 50 kW.

  8. 3D porous architecture of stacks of β-TCP granules compared with that of trabecular bone: a microCT, vector analysis and compression study

    Directory of Open Access Journals (Sweden)

    Daniel eCHAPPARD

    2015-10-01

    Full Text Available The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of β-TCP were prepared with either 12.5 or 25g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP or low porosity (LP, respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high density (HD blocks. Low density (LD blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector projection algorithm was used to image porosity employing a frontal plane image which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4% and fractal lacunarity (0.043 ± 0.007 intermediate between that of HD (resp. 69.1 ± 6.4%, p<0.05 and 0.087 ± 0.045, p<0.05 and LD bones (resp. 88.8 ± 1.57% and 0.037 ± 0.014 but exhibited a higher surface density (5.56 ± 0.11 mm2/mm3 vs. 2.06 ± 0.26 for LD, p<0.05. LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabeculae. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture.

  9. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Daniel [Sapienza University of Rome, Department of Radiological, Oncological and Pathological Sciences, Rome (Italy); Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B. [University of California-San Diego, Department of Radiology, San Diego, CA (United States)

    2014-01-15

    Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. The purpose of this study was to determine the accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Nine TMJ condyle specimens were harvested from cadavers (2 M, 3 F; age 85 ± 10 years, mean ± SD). 3D-UTE MRI (TR = 50 ms, TE = 0.05 ms, 104-μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18-μm isotropic-voxel) was also performed. MR datasets were spatially registered with a μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on the MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions, and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature, and segmented volume of the bone were determined using intraclass correlation coefficient (ICC) analysis. Between MRI and μCT, the average deviation of surface coordinates was 0.19 ± 0.15 mm, slightly higher than the spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7 ± 6.5 % and 6.6 ± 6.2 %, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature, and segmented volumes were 0.892, 0.893, and 0.972, respectively. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999, and 0.997, respectively. Fibrocartilage thickness was 0.55 ± 0.11 mm, as previously described in the literature for grossly normal TMJ samples. 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature, and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows

  10. Development of the charge exchange type beam scraper system at the J-PARC

    Science.gov (United States)

    Okabe, K.; Yamamoto, K.; Kinsho, M.

    2016-03-01

    Improvement in injection beam quality at the Japan Proton Accelerator Research Complex 3-GeV rapid cycle synchrotron is to mitigate beam loss at the injection section. We developed a charge-exchange type scraper system with a thin carbon foil to collimate the beam halo in the injection beam line of the synchrotron. The key issue to realize the scraper is a reduction of the beam loss induced by the multiple-scattering effect of charge-exchange foil placed at the scraper head. In order to determine the adequate foil thickness, a charge-exchange efficiency of a carbon foil and particle-tracking simulation study of the collimated beam have been performed assuming a realistic halo at the scraper section. Using the results of this study, we chose the thickness of a 520 μg /cm2 as the scraper foils to mitigate radiation dose around the L3BT scraper section. A charge-exchange scraper system that prevents the emission of radioactive fragments of the carbon foil was build. The system was put into operation to prove its effectiveness in eliminating the beam halo. From the result of a preliminary beam experiments, we confirmed that the installed scrapers eliminate a transverse beam tail or halo. After two days of operation with beam collimation, the radiation dose level around the scraper section was a tolerable one for the hands-on maintenance.

  11. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  12. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    Science.gov (United States)

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  13. Surface area and volume measurements of volcanic ash particles using micro-computed tomography (micro-CT): A comparison with scanning electron microscope (SEM) stereoscopic imaging and Brunauer-Emmett-Teller (BET) model

    Science.gov (United States)

    Ersoy, Orkun; Şen, Erdal; Aydar, Erkan; Tatar, Ä.°Lkan; Ćelik, H. Hamdi

    2010-05-01

    Volcanic ash particles are important components of explosive eruptions and their surface texture is the subject of intense research. Characterization of ash surfaces is crucial for understanding the physics of the volcanic plumes, remote sensing measurements of ash and aerosols, interfacial processes, modelling transportation and deposition of tephra and characterizing eruptive styles. A number of different methods have been used over the years to arrive at surface area estimates. The more common methods include estimates based on the geometric considerations (geometric surface area) and the physisorption of gas molecules on the surface of interest (physical surface area). In this study, micro computed tomography (micro-CT), a non-destructive method providing three-dimensional data enabled the measurement of surface areas and volumes of individual ash particles. Specific surface area estimates for ash particles were also obtained using nitrogen as gas adsorbent and the BET (Brunauer-Emmett-Teller) model. Results were compared with the values obtained from SEM stereoscopic imaging and geometric considerations. Surface area estimates of micro-CT and SEM stereoscopic imaging overlaps with mean specific surface area results of 0.0167 and 0.0214 m2/g, respectively. However, ash particle surface textures present quite a deviation from that of their geometric forms and approximation to sphere and ellipsoid both seemed to be inadequate for representation of real ash surfaces. The higher surface area estimate (> 0.4 m2/g) obtained from the technique based on physical sorption of gases (BET model here) was attributed to its capability for surface areas associated even with angstrom-sized pores. SEM stereoscopic and/or micro-CT imaging were suggested for characterization of textures on macro-pore regions of ash particles.

  14. Radiation protection systems for the final focus test beam at SLAC.

    Science.gov (United States)

    Rokni, S H; Benson, E C; Burke, D L; Jenkins, T M; Liu, J C; Nelson, G; Nelson, W R; Smith, H E; Tenenbaum, P; Vylet, V; Walz, D R

    1996-11-01

    The Final Focus Test Beam (FFTB) is a new beam line at the Stanford Linear Accelerator Center designed to test new beam optics concepts, hardware, and techniques necessary to achieve and measure the small spot sizes required for future generations of high-energy e+e- linear colliders. The FFTB takes a 47 GeVc-1, 1 kW electron beam at the end of the Stanford Linear Accelerator Center linear accelerator and transports it to the FFTB beam dump. A radiation protection system was designed and installed for the FFTB with the primary goal that the integrated dose equivalent outside the shielding resulting from beam loss would not exceed 10 mSv y-1. This system is comprised of shielding, a beam containment system and a personnel protection system. This paper presents various aspects of radiation safety at Stanford Linear Accelerator Center that were considered in the design of the FFTB radiation protection system. Beam tests were conducted in which the performance of various beam containment devices and the shielding effectiveness were evaluated. Preliminary results from these tests are presented.

  15. A fast beam loss monitor system for the KEK proton synchrotron complex

    Science.gov (United States)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  16. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, Guoyu; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, P.P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  17. The 40 kA dumping system for the ISR beams

    CERN Document Server

    Schnuriger, J C

    1975-01-01

    It has been necessary to build a fast and reliable system which can dump the beam whenever safety monitors indicate a hardware fault or a beam loss. The beam in each ISR is dumped by means of four fast pulsed magnets deflecting the particles vertically onto an absorber block situated in the same long straight section. The 0.75 Omega , 40 kA pulse generator now energizing the four fast pulsed magnets is described with special attention to the principles and technological solutions which were adopted in order to achieve the necessary reliability of the system for each type of operation, and particularly during long colliding beam experiments. (7 refs).

  18. Micro-CT辅助结肠造影在小鼠炎性肠病中的应用%Monitoring Colitis Development in Mice by Micro-CT Colonography

    Institute of Scientific and Technical Information of China (English)

    王维刚; 刘震泽; 严惠敏

    2011-01-01

    To evaluate colon wall thickness noninvasively in the dextran sodium sulfate (DSS) induced mouse model of colitis, we performed micro-CT colonography. Mice were scanned by micro-CT at day 0, day 8 and day 13 after induction of colitis and calculated the colon wall thickness. Iopamidol was used by oral and intraperitoneal injection to show the colon wall. The value of the descending colon wall thickness were 0.4586±0.04 mm (day 8) and 0.40325±0.03 mm (day 13) significantly (P<0.001) higher than the control group (0.28±0.02 mm). The related body weight loss, clinical score, histological section and score were consistent with the result of micro-CT. Thus, the results suggested that micro-CT can be used directly, consecutively and noninvasively in monitoring of the inflammatory response in mouse colitis in future studies.%用DSS喂饲小鼠建立小鼠IBD模型,在建模的第0、8、13天分别用碘帕醇灌胃加腹腔注射的方法造影并micro-CT扫描降结肠壁厚度,结果第8天和第13天分别为0.4586±0.04 mm和0.40325±0.03 mm,显著(P<0.001)大于对照组((0.28±0.02 mm).同时检测小鼠体重变化、临床评分、结肠病理切片并评分,发现结肠壁厚度变化趋势和常规指标一致.应用micro-CT辅助小鼠结肠造影方法,可以直观、动态、无创地对小鼠肠道进行影像学分析.

  19. Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.

    Science.gov (United States)

    Chu, Xiuxiang

    2007-12-24

    The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.

  20. Performance of a fast acquisition system for in-beam PET monitoring tested with clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piliero, M.A., E-mail: piliero@pi.infn.it [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Bisogni, M.G. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Cerello, P. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Del Guerra, A. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Fiorina, E. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Liu, B.; Morrocchi, M. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Pennazio, F. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Pirrone, G. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Wheadon, R. [INFN, sezione di Torino (Italy)

    2015-12-21

    In this work we present the performance of a fast acquisition system for in-beam PET monitoring during the irradiation of a PMMA phantom with a clinical proton beam. The experimental set-up was based on 4 independent detection modules. Two detection modules were placed at one side of a PMMA phantom and the other two modules were placed at the opposite side of the phantom. One detection module was composed of a Silicon Photon Multiplier produced by AdvanSiD coupled to a single scintillating LYSO crystal. The read-out system was based on the TOFPET ASIC managed by a Xilinx ML605 FPGA Evaluation Board (Virtex 6). The irradiation of the PMMA phantom was performed at the CNAO hadrontherapy facility (Pavia, Italy) with a 95 MeV pulsed proton beam. The pulsed time structure of the proton beam was reconstructed by each detection module. The β{sup +} annihilation peak was successfully measured and the production of β{sup +} isotopes emitters was observed as increasing number of 511 keV events detected during irradiation. Finally, after the irradiation, the half lives of the {sup 11}C and {sup 15}O radioactive isotopes were estimated.

  1. Performance of a fast acquisition system for in-beam PET monitoring tested with clinical proton beams

    Science.gov (United States)

    Piliero, M. A.; Bisogni, M. G.; Cerello, P.; Del Guerra, A.; Fiorina, E.; Liu, B.; Morrocchi, M.; Pennazio, F.; Pirrone, G.; Wheadon, R.

    2015-12-01

    In this work we present the performance of a fast acquisition system for in-beam PET monitoring during the irradiation of a PMMA phantom with a clinical proton beam. The experimental set-up was based on 4 independent detection modules. Two detection modules were placed at one side of a PMMA phantom and the other two modules were placed at the opposite side of the phantom. One detection module was composed of a Silicon Photon Multiplier produced by AdvanSiD coupled to a single scintillating LYSO crystal. The read-out system was based on the TOFPET ASIC managed by a Xilinx ML605 FPGA Evaluation Board (Virtex 6). The irradiation of the PMMA phantom was performed at the CNAO hadrontherapy facility (Pavia, Italy) with a 95 MeV pulsed proton beam. The pulsed time structure of the proton beam was reconstructed by each detection module. The β+ annihilation peak was successfully measured and the production of β+ isotopes emitters was observed as increasing number of 511 keV events detected during irradiation. Finally, after the irradiation, the half lives of the 11C and 15O radioactive isotopes were estimated.

  2. Boundary control of a Timoshenko beam system with input dead-zone

    Science.gov (United States)

    He, Wei; Meng, Tingting; Liu, Jin-Kun; Qin, Hui

    2015-06-01

    In this paper, boundary control is designed for a Timoshenko beam system with the input dead-zone. By the Hamilton's principle, the dynamics of the Timoshenko beam system is represented by a distributed parameter model with two partial differential equations and four ordinary differential equations. The bounded part is separated from the input dead-zone and then forms the disturbance-like term together with the boundary disturbance, which finally acts on the Timoshenko beam system. Boundary control, based on the Lyapunov's direct method, is proposed to ensure the Timoshenko beam converge into a small neighbourhood of zero, where stability of the system is also analysed. Besides, the existence and uniqueness of the solution of the Timoshenko beam system are proved. Simulations are provided to reveal the applicability and effectiveness of the proposed control scheme.

  3. Development of the beam extraction synchronization system at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K.; Chaurize, S.; Drennan, C.C.; Pellico, W.; Sullivan, T.; Triplett, A.K.; Waller, A.M.

    2015-11-01

    The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×10{sup 17} protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.

  4. Design of Main Control Console Software in EAST Neutral Beam Injector's Control System for the First Beam Line

    Science.gov (United States)

    Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long

    2013-10-01

    Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.

  5. The application of multilayer elastic beam in MEMS safe and arming system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guozhong, E-mail: liguozhong-bit@bit.edu.cn; Shi, Gengchen; Sui, Li [National Lab of Mechatronic Engineering and Control, Beijing Institute of Technology, Beijing 100081, P.R.CHINA (China); Yi, Futing; Wang, Bo [Institute of High Energy Physics Chinese Academy of Sciences, Beijing 100049, P.R.CHINA (China)

    2015-07-15

    In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of the multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.

  6. The beam diagnostic system, serving the Serpukhov fast ejection

    CERN Document Server

    Cupérus, J; Kamber, I; Nuttall, J

    1973-01-01

    A set of beam transformers measures the intensity of each bunch, circulating or ejected. Five electrostatic pick-ups measure the radial position of one selected bunch. Secondary emission grids and luminescent screens give the profile and position of the beam at relevant points. Gated radiation detectors monitor beam loss in the ejection area. All signals are digitalized and fed to a minicomputer on line. Readout is via nixies, CRT analogue displays, pen recorders and a teletype. Statistics can be made over a chosen number of acceleration cycles. (5 refs).

  7. Beam interlock system and safe machine parameters system 2010 and beyond

    CERN Document Server

    Todd, B

    2010-01-01

    The Beam Interlock System (BIS) and Safe Machine Parameters (SMP) system are central to the protection of the Large Hadron Collider (LHC) machine. The BIS has been critical for the safe operation of LHC from the first day of operation. It has been installed and commissioned, only minor enhancements are required in order to accommodate all future LHC machine protection requirements. At reduced intensity, the SMP system is less critical for LHC operation. As such, the current system satisfies the 2010 operational requirements. Further developments are required, both at the SMP Controller level, and at the system level, in order to accommodate the requirements of the LHC beyond 2010.

  8. Ion beam system for implanting industrial products of various shapes

    Science.gov (United States)

    Denholm, A. S.; Wittkower, A. B.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 × 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm × 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15° steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop.

  9. Commissioning and Initial Performance of the LHC Beam-Based Feedback Systems

    CERN Document Server

    Boccardi, A; Calvo Giraldo, E; Denz, R; Gasior, M; Gonzalez, JL; Jackson, S; Jensen, LK; Jones, OR; King, Q; Kruk, G; Lamont, M; Page, S; Steinhagen, RJ; Wenninger, J

    2010-01-01

    The LHC deploys a comprehensive suite of beam-based feedbacks for safe and reliable machine operation. This contribution summarises the commissioning and early results of the LHC feedback control systems on orbit, tune, chromaticity, and energy. Their performance – strongly linked to the associated beam instrumentation, external beam perturbation sources and optics uncertainties – is evaluated and compared with the initial feedback design assumptions

  10. Setup of a beam control system for high power laser system at DLR

    Science.gov (United States)

    Buske, Ivo; Walther, Andreas

    2016-10-01

    Different types of high power or high energy lasers in the multi kW class are currently available or are under development with promising progress reports. A major challenge is to deliver as much as possible of the available power onto a small and fast moving target over a long distance through a disturbing atmosphere. High resolution imaging is a common way to identify the category of targets dedication and to determine the spatial position relative to the observer. By illuminating the target with a laser the imaging system becomes more resilient towards ambient light and the exposure time can be reduced drastically. Fast and deterministic control loops are demanding for the moving parts in order to maintain a high accuracy for the pointing of the turret and aiming of the laser countermeasure system. Here, we report on the progress of such a beam control system developed at the Institute of Technical Physics of DLR. In an overview we present the beam control system and explain different sub-systems. Performance tests were taken at our test. At a distance we simulated various scenarios for probing the limits of the tracking and pointing accuracy with a target on a fast moving linear stage. We present first results of the beam control system performance.

  11. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    Science.gov (United States)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  12. Development of a bent Laue beam-expanding double-crystal monochromator for biomedical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Mercedes, E-mail: mercedes.m@usask.ca [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); Samadi, Nazanin [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Belev, George [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan (Canada); Bassey, Bassey [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); Lewis, Rob [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Monash University, Clayton, Victoria 3800 (Australia); Aulakh, Gurpreet [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Chapman, Dean [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada)

    2014-03-13

    A bent Laue beam-expanding double-crystal monochromator was developed and tested at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The expander will reduce scanning time for micro-computed tomography and allow dynamic imaging that has not previously been possible at this beamline. The Biomedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source has produced some excellent biological imaging data. However, the disadvantage of a small vertical beam limits its usability in some applications. Micro-computed tomography (micro-CT) imaging requires multiple scans to produce a full projection, and certain dynamic imaging experiments are not possible. A larger vertical beam is desirable. It was cost-prohibitive to build a longer beamline that would have produced a large vertical beam. Instead, it was proposed to develop a beam expander that would create a beam appearing to originate at a source much farther away. This was accomplished using a bent Laue double-crystal monochromator in a non-dispersive divergent geometry. The design and implementation of this beam expander is presented along with results from the micro-CT and dynamic imaging tests conducted with this beam. Flux (photons per unit area per unit time) has been measured and found to be comparable with the existing flat Bragg double-crystal monochromator in use at BMIT. This increase in overall photon count is due to the enhanced bandwidth of the bent Laue configuration. Whilst the expanded beam quality is suitable for dynamic imaging and micro-CT, further work is required to improve its phase and coherence properties.

  13. Beam loss detection system in the arcs of the LHC

    Science.gov (United States)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  14. Beam Loss Detection System in the Arcs of the LHC

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet

  15. Electron Optic Design of Arrayed E-Beam Microcolumns Based Systems for Wafer Defects Inspection

    CERN Document Server

    Kazmiruk, V V

    2008-01-01

    In this paper is considered a matter of the system for wafer defect inspection (WDIS) practical realization. Such systems are on the agenda as the next generation and substitution for light optics and single $e$-beam based WDISs.

  16. Development of a robotic patient positioning system with a wide beam-angle range for fixed-beam particle therapy

    Science.gov (United States)

    Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk

    2016-10-01

    This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.

  17. An Innovative Beam Halo Monitor system for the CMS experiment at the LHC: Design, Commissioning and First Beam Results

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00344917; Dabrowski, Anne

    The Compact Muon Solenoid (CMS) is a multi-purpose experiment situated at the Large Hadron Collider (LHC). The CMS has the mandate of searching new physics and making precise measurements of the already known mechanisms by using data produced by collisions of high-energy particles. To ensure high quality physics data taking, it is important to monitor and ensure the quality of the colliding particle beams. This thesis presents the research and design, the integration and the first commissioning results of a novel Beam Halo Monitor (BHM) that was designed and built for the CMS experiment. The BHM provides an online, bunch-by-bunch measurement of background particles created by interactions of the proton beam with residual gas molecules in the vacuum chamber or with collimator material upstream of the CMS, separately for each beam. The system consists of two arrays of twenty direction-sensitive detectors that are distributed azimuthally around the outer forward shielding of the CMS experiment. Each detector is ...

  18. Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project

    CERN Document Server

    Uythoven, Jan; Goddard, Brennan; Hrivnak, Jan; Lechner, Anton; Maciariello, Fausto; Mereghetti, Alessio; Perillo Marcone, Antonio; Vittal Shetty, N; Shetty, Nikhil Vittal; Steele, Genevieve

    2014-01-01

    The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfil the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.

  19. System Architecture for measuring and monitoring Beam Losses in the Injector Complex at CERN

    CERN Document Server

    Zamantzas, C; Dehning, B; Jackson, S; Kwiatkowski, M; Vigano, W

    2012-01-01

    The strategy for beam setup and machine protection of the accelerators at the European Organisation for Nuclear Research (CERN) is mainly based on its Beam Loss Monitoring (BLM) systems. For their upgrade to higher beam energies and intensities, a new BLM system is under development with the aim of providing faster measurement updates with higher dynamic range and the ability to accept more types of detectors as input compared to its predecessors. In this paper, the architecture of the complete system is explored giving an insight to the design choices made to provide a highly reconfigurable system that is able to fulfil the different requirements of each accelerator using reprogrammable devices.

  20. Terahertz imaging system based on bessel beams via 3D printed axicons at 100GHz

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Zhang, Zhongqi; Wang, Kejia; Yang, Zhenggang; Liu, Jinsong

    2014-11-01

    Terahertz (THz) imaging technology shows great advantage in nondestructive detection (NDT), since many optical opaque materials are transparent to THz waves. In this paper, we design and fabricate dielectric axicons to generate zeroth order-Bessel beams by 3D printing technology. We further present an all-electric THz imaging system using the generated Bessel beams in 100GHz. Resolution targets made of printed circuit board are imaged, and the results clearly show the extended depth of focus of Bessel beam, indicating the promise of Bessel beam for the THz NDT.

  1. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures. (LEW)

  2. Design of the multiplexing communication system with non-coherent vortex beams

    Science.gov (United States)

    Zhao, Hongdong; Peng, Xiaocan; Ma, Li; Sun, Mei

    2016-11-01

    In order to enlarge the communication capability, a model of the multiplexing communication system with non-coherent vortex beams is established. One detector for measurement the signal of the vortex beam with topological charge of 0, which is a Gaussian beam, is located in the center of the cross sectional plane of vortex beam. The other three detectors are set around the first detector in the same plane to receive the power of the vortex beam with topological charge of 1. The principle of determining the emitting power of vortex beams, the radii and the positions of the detectors are suggested to increase the signals and reduce the interchannel crosstalk noise at the detectors. The signal powers as well as the interchannel crosstalk noise in a receiver channel are identical to that in another channel, respectively. This research may have applications in free space optical communications.

  3. Development of the Beam Diagnostics System for the J-PARC Rapid-Cycling Synchrotron

    CERN Document Server

    Hayashi, Naoki; Hiroki, Seiji; Kishiro, Junichi; Lee, Seishu; Miura, Takako; Teruyama, Yuzou; Toyama, Takeshi; Toyokawa, Ryoji

    2005-01-01

    Development of the beam diagnostics system for the J-PARC (Japan Proton Accelerator Research Complex) Rapid-Cycling Synchrotron is described. The system consists of Beam Position Monitor (BPM), Beam Loss Monitor (BLM), Current monitors (DCCT, SCT, MCT, FCT, WCM), Tune meter system, 324MHz-BPM, Profile monitor, and Halo monitor. BPM electrode is electro-static type and its electronics is designed for both COD and turn-by-turn measurements. Five current monitors have different time constants in order to cover wide frequency range. The tune meter is consisted of RFKO and the beam pick-up electrode. For the continuous injected beam monitoring, 324MHz-BPM detects Linac frequency. Two types of profile monitor are multi-wire for low intensity tuning and the residual gas monitor for non-destructive measurement.

  4. A MATLAB-based interface for the beam-transport system of an AMS facility

    Science.gov (United States)

    Gómez-Guzmán, J. M.; Gómez-Morilla, I.; Enamorado-Báez, S. M.; Moreno-Suárez, A. I.; Pinto-Gómez, A. R.

    2013-12-01

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system.

  5. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Patcas, Raphael; Signorelli, Luca; Mueller, Lukas [University of Zurich, Clinic for Orthodontics and Pediatric Dentistry, Center of Dental Medicine, Zurich (Switzerland); Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Ullrich, Oliver [University of Zurich, Institute of Anatomy, Faculty of Medicine, Zurich (Switzerland); Luder, Hans-Ulrich [University of Zurich, Section of Orofacial Structures and Development, Center of Dental Medicine, Zurich (Switzerland)

    2012-07-15

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective ({kappa} = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  6. Periodic solutions of a multi-DOF beam system with impact

    NARCIS (Netherlands)

    Vorst, E.L.B. van de; Campen, D.H. van; Kraker, A. de; Fey, R.H.B

    1996-01-01

    The steady state behaviour is analyzed of a periodically driven multi-DOF beam system which has an elastic stop at its middle. The elastic stop is modelled in a continuous way by using the contact law of Hertz. The beam is modelled by using finite elements and subsequently reduced by using a compone

  7. Neutral Beam Injection System for the C-2W Field Reversed Configuration Experiment

    Science.gov (United States)

    Dunaevsky, Alexander; Ivanov, Alexander; Kolmogorov, Vyacheslav; Smirnov, Artem; Korepanov, Sergey; Binderbauer, Michl; TAE Team; BINP Team

    2016-10-01

    C-2U Field-Reversed Configuration (FRC) experiment proved substantial reduction in turbulence-driven losses via tangential neutral beam injection (NBI) coupled with electrically biased plasma guns at the plasma ends. Under such conditions, highly reproducible, advanced beam-driven FRCs were produced and sustained for times significantly longer (more than 5 ms) than all characteristic plasma decay times without beams. To further improve FRC sustainment and demonstrate the FRC ramp-up, the C-2U experimental device is undergoing a major upgrade. The upgrade, C-2W, will have a new NBI system producing a record total hydrogen beam power of 20 + MW in a 30ms pulse. The NBI system consists of eight positive-ion based injectors featuring flexible, modular design. Four out of eight NBI injectors have a capability to switch the beam energy during a shot from the initial 15 keV to 40 keV at a constant beam current. This feature allows to increase the beam energy and thereby optimize the beam-plasma coupling during the magnetic field ramp up. This presentation provides an overview of the C-2W NBI system, including the design of the switchable energy injectors, layout of the power supply system, and results of the prototype testing.

  8. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  9. Performance requirements of the MedAustron beam delivery system

    CERN Document Server

    AUTHOR|(CDS)2073034

    The Austrian hadron therapy center MedAustron is currently under construction with patient treatment planned to commence in 2015. Tumors will be irradiated using proton and carbon ions, for which the steeply rising Bragg curve and finite range offer a better conformity of the dose to the geometrical shape of the tumor compared to conventional photon irradiation. The current trend is to move from passive scattering toward active scanning using a narrow pencil beam in order to reach an even better dose conformation and limit the need of patient specific hardware. The quality of the deposited dose will ultimately depend on the performance of the beam delivery chain: beam profile and extraction stability of the extracted beam, accuracy and ramp rate of the scanning magnet power supplies, and precision of the beam monitors used for verifying the delivered dose. With a sharp lateral penumbra, the transverse dose fall-off can be minimized. This is of particular importance in situations where the lesion is adjace...

  10. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    Energy Technology Data Exchange (ETDEWEB)

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware

  11. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  12. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    CERN Document Server

    Baumbaugh, A; Brown, B C; Capista, D; Drennan, C; Fellenz, B; Knickerbocker, K; Lewis, J D; Marchionni, A; Needles, C; Olson, M; Pordes, S; Shi, Z; Still, D; Thurman-Keup, R; Utes, M; Wu, J

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and...

  13. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  14. Performance of a High Resolution Cavity Beam Position Monitor System

    Energy Technology Data Exchange (ETDEWEB)

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  15. Performance of a High Resolution Cavity Beam Position Monitor System

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC,

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  16. A data acquisition system for longitudinal beam properties in a rapid cycling synchrotron

    CERN Document Server

    Steimel, J

    2012-01-01

    A longitudinal beam properties, data acquisition system has been commissioned to operate in the Fermilab booster ring. This system captures real time information including beam synchronous phase, bunch length, and coupled bunch instability amplitudes as the beam is accelerated from 400 MeV to 8 GeV in 33 ms. The system uses an off-the-shelf Tektronix oscilloscope running Labview software and a synchronous pulse generator. This paper describes the hardware configuration and the software configuration used to optimize the data processing rate.

  17. HOT SPOT RELIEF WITH EMBEDDED BEAM FOR CDMA SYSTEMS IN HAPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.

  18. Design aspects related to the reliability of the control architecture of the LHC beam dump kicker systems

    CERN Document Server

    Carlier, E; Bobbio, P; Gräwer, G; Marchand, A; Uythoven, J; Verhagen, H

    2003-01-01

    The LHC beam dump extraction kicker system consists per ring of 15 magnets and their pulse generators. Their task is to extract the beams on request, over the whole operational beam energy range and synchronously with the beam abort gap. This operation must be fail-safe to avoid damage to accelerator equipment by undesired beam losses. The control system of the LHC beam dump kickers will be based on a modular architecture composed of different subsystems, each with a specific function like slow control, beam energy tracking, beam abort gap synchronisation, fast pulse signal monitoring and post-mortem data acquisition. Depending on the required functionality, the subsystems will be based either on passive fault-tolerant redundant hardware solutions or on active fail-safe hardware and software solutions. In addition, for the most critical subsystems like the beam energy tracking and the beam abort gap synchronisation, two redundant solutions based on different technologies will be implemented in order to preven...

  19. E-beam exposure system using multi column cell (MCC) with CP for mask writing

    Science.gov (United States)

    Yamada, Akio; Yasuda, Hiroshi; Yamabe, Masaki

    2008-10-01

    In the Mask D2I project at ASET, the authors designed a novel electron beam exposure system using the concepts of MCC (multi column cell), CP (character projection), and VSB (variable shaped beam) to improve the throughput of electron beam exposure systems. They presented outlines of a proof-of-concept system of MCC, and have shown the performances of VSB and CP in the system. They evaluated the impacts on beam position in one column cell caused by deflections in another column cell. The impacts were found to be less than 0.1nm in presence of major deflections in the neighboring column cell. Hence it was concluded that there was no noticeable impact on deflections cause by the neighboring column cells in the MCC system.

  20. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    Energy Technology Data Exchange (ETDEWEB)

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-06-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.

  1. Failure Studies at the Compact Linear Collider: Main Linac and Beam Delivery System

    CERN Document Server

    Maidana, C O; Jonker, M

    2012-01-01

    The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy of two high-intensity, low-energy drive beams is extracted and transferred to two low-intensity, high-energy main beams. The CERN Technology Department - Machine protection and electrical integrity group has the mission to develop and maintain the systems to protect machine components from damage caused by ill controlled conditions. Various failure scenarios were studied and the potential damage these failures could cause to the machine structures was estimated. In this paper, first results of the beam response to kick induced failures in the main LINAC and in the beam delivery system (BDS) sections are presented together with possible collimator damage scenarios.

  2. Design of an EBIS charge breeder system for rare-isotope beams

    Science.gov (United States)

    Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon

    2016-09-01

    Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.

  3. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B. A. Soliman; M. M. Abdelrahman; A. G. Helal; F. W. Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7. This has been used to evaluate the extraction characteristics (accel-decel system) to generate an

  4. Sub-nanoradiant beam pointing monitoring and stabilization system for controlling input beam jitter in gravitational wave interferometers.

    Science.gov (United States)

    Canuel, B; Genin, E; Mantovani, M; Marque, J; Ruggi, P; Tacca, M

    2014-05-01

    In this paper, a simple and effective control system to monitor and suppress the beam jitter noise at the input of an optical system, called a beam pointing control (BPC) system, will be described, showing the theoretical principle and an experimental demonstration for the application of large-scale gravitational wave (GW) interferometers (ITFs), in particular for the Advanced Virgo detector. For this purpose, the requirements for the control accuracy and the sensing noise will be computed by taking into account the Advanced Virgo optical configuration, and the outcomes will be compared with the experimental measurement obtained in the laboratory. The system has shown unprecedented performance in terms of control accuracy and sensing noise. The BPC system has achieved a control accuracy of ~10⁻⁸ rad for the tilt and ~10⁻⁷ m for the shift and a sensing noise of less than 1 n  rad/√Hz, which is compliant with the Advanced Virgo GW ITF requirements.

  5. Active Stabilization of the Beam Pointing of a High- Power KrF Laser System

    Directory of Open Access Journals (Sweden)

    Barna1 A.

    2015-03-01

    Full Text Available An active beam-pointing stabilization system has been developed for a high-power KrF laser system to eliminate the long-term drift of the directional change of the beam in order to have a stable focusing to a high intensity. The control of the beam direction was achieved by a motor-driven mirror activated by an electric signal obtained by monitoring the position of the focus of the output beam. Instead of large sized UV-sensitive position sensitive detectors a simple arrangement with scatter plates and photodiodes are used to measure the directionality of the beam. After the beam stabilization the long-term residual deviation of the laser shots is ~14 μrad, which is comparable to the shot-to-shot variation of the beam (~12 μrad. This deviation is small enough to keep the focal spot size in a micrometer range when tightly focusing the beam using off-axis parabolic mirrors.

  6. A tracking system for a secondary pion beam at the HADES spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Joana; Fabbietti, Laura; Lalik, Rafal [Physik Deparment of the TUM (E12), Garching (Germany); Exellence Cluster Universe, TUM, Garching (Germany); Maier, Ludwig [Physik Deparment of the TUM (E12), Garching (Germany); Collaboration: HADES-Collaboration

    2015-07-01

    For the secondary pion beam campaign with the HADES spectrometer at GSI, Darmstadt, a beam tracking system has been developed, in order to achieve the momentum measurement of each individual pion with a momentum resolution below 0.5%. A primary Nitrogen beam impacting on a Beryllium production target produces a secondary pion beam strongly defocused in position and momentum, which is transported along the chicane to the experimental area. The overall spread in momentum is only limited by the beamline acceptance, leading to momentum offsets up to 8% of the central beam momentum. The system is based on two tracking stations consisting each of a double-sided silicon strip detector read out by the self-triggered n-XYTER ASCI chip, completed by the TRB3 board on which the trigger logic is implemented. In this talk we are showing the performance of our beam detectors during the proton test beam of 1.9 GeV in the terms of the momentum reconstruction of known momentum, set by the accelerator, as well as the recent result accomplished throughout the pion beam campaign.

  7. Vacuum system of the 3MeV industrial electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, D; Mishra, R L; Ghodke, S R; Kumar, M; Kumar, M; Nanu, K; Mittal, Dr K C [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India)], E-mail: jaypee@barc.gov.in

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF{sub 6} gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1x10{sup -7}mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm x 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50{mu}m thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  8. Vacuum system of the 3MeV industrial electron beam accelerator

    Science.gov (United States)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  9. Test and control computer user's guide for a digital beam former test system

    Science.gov (United States)

    Alexovich, Robert E.; Mallasch, Paul G.

    1992-01-01

    A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.

  10. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  11. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    Science.gov (United States)

    Liu, H. K.

    1976-01-01

    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  12. Propagation of Coherent Gaussian Schell-Model Beam Array in a Misaligned Optical System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Pu; WANG Xiao-Lin; MA Yan-Xing; MA Hao-Tong; XU Xiao-Jun; LIU Ze-Jin

    2011-01-01

    @@ Based on a generalized Collins formula,the analytical formula for the propagation property of coherent Gaussian Schell-rnodel(GSM) beam array through a misaligned optical system is derived.As numerical examples,the propagation of a coherent GSM beam array in a typical misaligned optical system with a thin lens is evaluated.The influence of different misalignment parameters is calculated and the normalized-intensity distribution is graphically illustrated.%Based on a generalized Collins formula, the analytical formula for the propagation property of coherent Gaussian Schell-model (GSM) beam array through a misaligned optical system is derived. As numerical examples, the propagation of a coherent GSM beam array in a typical misaligned optical system with a thin lens is evaluated.The influence of different misalignment parameters is calculated and the normalized-intensity distribution is graphically illustrated.

  13. Development of a raster electronics system for expanding the APT proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Chapelle, S.; Hubbard, E.L.; Smith, T.L. [General Atomics, San Diego, CA (United States); Schulze, M.E.; Shafer, R.E. [General Atomics, Los Alamos, NM (United States)

    1998-12-31

    A 1700 MeV, 100 mA proton linear accelerator is being designed for Accelerator Production of Tritium (APT). A beam expansion system is required to uniformly irradiate a 19 x 190 cm tritium production target. This paper describes a beam expansion system consisting of eight ferrite dipole magnets to raster the beam in the x- and y-planes and also describes the salient features of the design of the electronics that are unique to the expander. Eight Insulated Gate Bipolar Transistor (IGBT)-based modulators drive the raster magnets with triangular current waveforms that are synchronized using phase-locked loops (PLLs) and voltage controlled crystal oscillators (VCXOs). Fault detection circuitry shuts down the beam before the target can be damaged by a failure of the raster system. Test data are presented for the prototype system.

  14. Multi column cell (MCC) e-beam exposure system for mask writing

    Science.gov (United States)

    Yasuda, Hiroshi; Yamada, Akio; Yamabe, Masaki

    2008-05-01

    Association of Super-Advanced Electronics Technologies (ASET) Mask Design, Drawing, and Inspection Technology Research Department (Mask D2I) started a 4-year development program for the total optimization of mask design, drawing, and inspection technologies to reduce photomask manufacturing costs in 2006. At the Mask Writing Equipment Technology Research Laboratory, we are developing an e-beam exposure system introducing concepts of MCC (multi column cell), CP (character projection), and VSB (variable shaped beam), which has several times higher throughput than currently commercially available e-beam writing systems.

  15. System for transporting an electron beam to the atmosphere for a gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.

    2016-06-01

    We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10-3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.

  16. An Ion Beam Tracking System based on a Parallel Plate Avalanche Counter

    Directory of Open Access Journals (Sweden)

    Carter I. P.

    2013-12-01

    Full Text Available A pair of twin position-sensitive parallel plate avalanche counters have been developed at the Australian National University as a tracking system to aid in the further rejection of unwanted beam particles from a 6.5 T super conducting solenoid separator named SOLEROO. Their function is to track and identify each beam particle passing through the detectors on an event-by-event basis. In-beam studies have been completed and the detectors are in successful operation, demonstrating the tracking capability. A high efficiency 512-pixelwide-angle silicon detector array will then be integrated with the tracking system for nuclear reactions studies of radioactive ions.

  17. A Monitor and Control System for the Synchrotron Radiation Beam Lines at DAΦNE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three synchrotron radiation beam lines have been built on DAΦNE,the Frascati electron-positron accelerator.It is Possible to monitor and control all the elements on the beam lines using a modular network distributed I/O system by National Instrunments (FieldPoint) with Bridge VIEW/Lab VIEW programs,Two of these beam lines have radiation safety problems solved by two independent and redundant systems,using mechanical switches ,and S7-200 PLC's by Siemens.In this article our solution will be described in details.

  18. TOPOLOGY FOR A DSP BASED BEAM CONTROL SYSTEM IN THE AGS BOOSTER.

    Energy Technology Data Exchange (ETDEWEB)

    DELONG,J.BRENNAN,J.M.HAYES,T.LE,T.N.SMITH,K.

    2003-05-12

    The AGS Booster supports beams of ions and protons with a wide range of energies on a pulse-by-pulse modulation basis. This requires an agile beam control system highly integrated with its controls. To implement this system digital techniques in the form of Digital Signal Processors, Direct Digital Synthesizers, digital receivers and high speed Analog to Digital Converters are used. Signals from the beam and cavity pick-ups, as well as measurements of magnetic field strength in the ring dipoles are processed in real time. To facilitate this a multi-processor topology with high bandwidth data links is being designed.

  19. Resonance-like structure for soliton characteristics in an electron beam-plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1978-08-01

    The characteristics of ion acoustic solitons in an electron beam-plasma system are considered. The dependence of the amplitude of the soliton on the density of the beam electrons is found to exhibit a pronounced resonance-like structure. A numerical analysis of the analytic expressions for the soliton characteristics (amplitude and width) is performed for different values of the relevant parameters of the system. The existence and origin of the resonance structure is discussed.

  20. Design of a System for Auto-patrolling Power Supplies and Displaying Beam Status In HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A practical application for patrolling the device’s status and displalying beam status of HIRFL has been described.With regard to the kinds of the controlled devices,the system consists of two parts:First,the alarm system is applied to monitor all power supplies,which are decomposed into six groups in accordance with their positions for the convenience of user’s operation.The amount of magnet lens and power supplies of pre-beam

  1. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    Science.gov (United States)

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  2. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    Science.gov (United States)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  3. A New Dynamic Model for a Flexible Hub-Beam System

    Institute of Scientific and Technical Information of China (English)

    LIU Zhu-yong; HONG Jia-zhen; CAI Guo-ping

    2009-01-01

    In this paper, a new dynamic model for the flexible hub-beam system is proposed by using the principle of continuum medium mechanics and the finite element discretization method. In the proposed model, the coupling deformation of any element of the beam is only related with the nodal coordinates of this element. So this model is suitable to the rotating beam in an arbitrary shape. Numerical examples of slender beams in straight and irregular shapes are carried out to demonstrate the validation of the proposed model. Simulation results indicate that the proposed model can be used valid for dynamic description of flexible rotating beam in irregular shape, and for both low and high rotation speeds.

  4. Area X-ray or UV camera system for high-intensity beams

    Science.gov (United States)

    Chapman, Henry N.; Bajt, Sasa; Spiller, Eberhard A.; Hau-Riege, Stefan , Marchesini, Stefano

    2010-03-02

    A system in one embodiment includes a source for directing a beam of radiation at a sample; a multilayer mirror having a face oriented at an angle of less than 90 degrees from an axis of the beam from the source, the mirror reflecting at least a portion of the radiation after the beam encounters a sample; and a pixellated detector for detecting radiation reflected by the mirror. A method in a further embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample; not reflecting at least a majority of the radiation that is not diffracted by the sample; and detecting at least some of the reflected radiation. A method in yet another embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample using a multilayer mirror; and detecting at least some of the reflected radiation.

  5. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    Science.gov (United States)

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.

  6. The beam energy feedback system for Beijing electron positron collide