WorldWideScience

Sample records for beam mass spectrometry

  1. Apparatus and methods for continuous beam fourier transform mass spectrometry

    Science.gov (United States)

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  2. Liquid Beam Ion Desorption Mass Spectrometry for Evaluating CASSINI Data

    Science.gov (United States)

    Stolz, Ferdinand; Reviol, Rene; Srama, Ralf; Trieloff, Mario; Postberg, Frank; Abel, Bernd

    2013-04-01

    Saturn's moon Enceladus emits plumes of ice particles from an area near its south pole which are detected and chemically analyzed by the Cosmic Dust Analyzer (CDA) on board the CASSINI spacecraft. Studying these ice particles provides unique insights into Enceladus geological properties. Technically the CDA is a time-of-flight mass spectrometer which delivers mass spectra of the particles and their fragments. Since interpretation of the available CDA data is particularly challenging we employ a laboratory experiment to imitate experimental conditions in space. Key part of our experimental setup is a micron-sized water beam in high vacuum. This beam is rapidly heated up by an infrared laser pulse, which is tuned to excite the OH-stretch vibration of water molecules. This causes the water beam to dissipate into small droplets, some of which carry a net charge even though the laser energy is well below the molecular ionisation energy. The charged droplets are then analyzed in a time-of-flight mass spectrometer. With this experimental setup we successfully simulated the space born ice particles measured at Enceladus. By varying the laser intensity in our experiments, we can vary the amount of energy deposited in the liquid beam, and thus model different particle velocities. Also, variation of solute concentration in the water beam provides valuable information about ice particle composition. Some examples for anorganic solutes studied so far are sodium chloride, ammonia and hydrogen sulfite. A special feature of our experimental technique is that desorption of particles from the liquid beam is particularly soft. This is explained by the fact that all laser energy is absorbed by the water molecules. In this way molecular bonds of solutes stay intact and molecular solutes are transferred into the droplet phase without getting destroyed. This is particularly interesting in the context of analyzing organic compounds - some of which have been detected at Enceladus. Using

  3. Using Pyrolysis Molecular Beam Mass Spectrometry to Characterize Soil Organic Carbon in Native Prairie Soils

    Science.gov (United States)

    The objective of this study was to characterize soil organic carbon (SOC) with pyrolysis molecular beam mass spectrometry (py-MBMS) and then to determine correlations between the mass spectra and associated soil characterization data. Both soil carbon chemistry and the organic forms in which SOC is...

  4. Mass spectrometry.

    Science.gov (United States)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  5. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    Science.gov (United States)

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  6. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel;

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained r...

  7. Application of simultaneous thermogravimetric modulated beam mass spectrometry to the study of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R. Jr. [Sandia National Labs., Livermore, CA (United States)

    1995-03-01

    Simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and time-of-flight velocity (TOF) spectra have been developed to study reactions that occur during the thermal decomposition of liquids and solids. The data obtained with these techniques are the identity of the reaction products and their rates of gas formation as a function of time. Over the past several years, these techniques have been applied to the study of energetic materials that are used in propellants and explosives. In this presentation, the details of the STMBMS and TOF velocity spectra techniques will be reviewed, the advantages of the techniques over more conventional thermal analysis and mass spectrometry measurements will be discussed, and the use of the techniques will be illustrated with results on the thermal decomposition of hexahydro-1,3,5-s-triazine (RDX).

  8. Combustion of butanol isomers - A detailed molecular beam mass spectrometry investigation of their flame chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Gueldenberg, Hanna; Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University (Germany); Yang, Bin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui (China); Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA (United States); Yuan, Tao; Qi, Fei [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui (China)

    2011-01-15

    The combustion chemistry of the four butanol isomers, 1-, 2-, iso- and tert-butanol was studied in flat, premixed, laminar low-pressure (40 mbar) flames of the respective alcohols. Fuel-rich ({phi} = 1.7) butanol-oxygen-(25%)argon flames were investigated using different molecular beam mass spectrometry (MBMS) techniques. Quantitative mole fraction profiles are reported as a function of burner distance. In total, 57 chemical compounds, including radical and isomeric species, have been unambiguously assigned and detected quantitatively in each flame using a combination of vacuum ultraviolet (VUV) photoionization (PI) and electron ionization (EI) MBMS. Synchrotron-based PI-MBMS allowed to separate isomeric combustion intermediates according to their different ionization thresholds. Complementary measurements in the same flames with a high mass-resolution EI-MBMS system provided the exact elementary composition of the involved species. Resulting mole fraction profiles from both instruments are generally in good quantitative agreement. In these flames of the four butanol isomers, temperature, measured by laser-induced fluorescence (LIF) of seeded nitric oxide, and major species profiles are strikingly similar, indicating seemingly analog global combustion behavior. However, significant variations in the intermediate species pool are observed between the fuels and discussed with respect to fuel-specific destruction pathways. As a consequence, different, fuel-specific pollutant emissions may be expected, by both their chemical nature and concentrations. The results reported here are the first of their kind from premixed isomeric butanol flames and are thought to be valuable for improving existing kinetic combustion models. (author)

  9. Role of cathode identity in liquid chromatography particle beam glow discharge mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, M.V. Balarama [Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-1905 (United States); Marcus, R.K. [Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-1905 (United States)], E-mail: marcusr@clemson.edu

    2008-06-15

    A detailed evaluation of the role of cathode identity on the analytical and spectral characteristics of various organic, organometallic and metal analytes using liquid chromatography-particle beam/glow discharge mass spectrometry (LC-PB/GDMS) has been carried out. A d.c. discharge, operating with argon as the support gas, was used throughout this work. In this study, Cu which has a relatively high sputtering rate, Ni which has moderate sputtering rate and Ta which has very low sputtering rate, are taken as cathode materials to study the ionization, fragmentation, and analytical characteristics of organic (caffeine, epigallocatechin gallate, peptide as representative compounds), organometallic (selenomethionine, triethyl lead chloride as representative compounds) and metal (Fe, La, Cs and Pb) species. A range of discharge gas pressures (26.6-106.4 Pa) and currents (0.2-1.5 mA) were investigated with the test cathodes to determine their influence on the spectral composition and overall analytical response for the various test species. Calibration plots were obtained for all of the species for each of the three cathodes to determine the respective limits of detection. Relative detection limits in the range of 0.02 to 15 ng mL{sup -1} (0.002-1.5 ng, absolute) for the test species were found to be in the order of Cu > Ni > Ta; which follows the order of the sputtering characteristics of the respective cathodes. These studies rendered information about the respective discharge parameters' role in choosing the most appropriate cathode identity in PB-GDMS for application in the areas of organic, organometallic and inorganic species analysis.

  10. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Czok, Ulrich; Geissel, Hans; Petrick, Martin; Reinheimer, Katrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2008-10-01

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 105 (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 μs. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  11. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Plass, Wolfgang R. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany)], E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de; Dickel, Timo [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Czok, Ulrich; Geissel, Hans [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Petrick, Martin; Reinheimer, Katrin [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Scheidenberger, Christoph [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Yavor, Mikhail I. [Institute of Analytical Instrument Making, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2008-10-15

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 10{sup 5} (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 {mu}s. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  12. Identification of Intermediates in Pyridine Pyrolysis with Molecular-beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization

    Institute of Scientific and Technical Information of China (English)

    Xin Hong; Taichang Zhang; Lidong Zhang; Fei Qi

    2009-01-01

    The pyrolysis of pyridine (5.26% pyridine in argon) was performed with tunable synchrotron vacuum ultraviolet photoionization and molecular-beam mass spectrometry technique at the temperature range of 1255-1765 K at 267 Pa. About 20 products and intermediates, containing major species H2, HCN, C2H2, C5H3N, C4H2, and C3H3N, were identified by near-threshold measurements of photoionization mass spectra and their mole fractions vs.temperatures were estimated. The major reaction pathways are analyzed based on the experimental observations.

  13. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-06-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  14. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  15. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (Te) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (ne) is in the range 108--1010-cm at the skimmer tip and drops abruptly to 106--108 cm-3 near the skimmer tip and drops abruptly to 106--108 cm-3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 104--105 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  16. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  17. Fourier transform mass spectrometry.

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  18. Measurement of free radical kinetics in pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam mass spectrometry

    International Nuclear Information System (INIS)

    This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge. (paper)

  19. Development of mass spectrometry by high energy focused heavy ion beam: MeV SIMS with 8 MeV Cl{sup 7+} beam

    Energy Technology Data Exchange (ETDEWEB)

    Jeromel, Luka [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Siketić, Zdravko [Ruđer Bošković Institute, P.O. Box 180, 10000 Zagreb (Croatia); Ogrinc Potočnik, Nina [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); LOTRIČ Metrology Ltd., Selca 163, SI-4227 Selca (Slovenia); Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2014-08-01

    Particle induced X-ray emission (PIXE) at microprobe of Jožef Stefan Institute is used to measure two-dimensional quantitative elemental maps of biological tissue. To improve chemical and biological understanding of the processes in vivo, supplementary information about chemical bonding and/or molecular distributions could be obtained by heavy-ion induced molecular desorption and a corresponding mass spectroscopy with Time-Of-Flight (TOF) mass spectrometer. As the method combines the use of heavy focused ions in MeV energy range and TOF Secondary Ion Mass Spectrometry, it is denoted as MeV SIMS. At Jožef Stefan Institute, we constructed a linear TOF spectrometer and mount it to our multipurpose nuclear microprobe. A beam of 8 MeV {sup 35}Cl{sup 7+} could be focused to a diameter of better than 3 μm × 3 μm and pulsed by electrostatic deflection at the high-energy side of accelerator. TOF mass spectrometer incorporates an 1 m long drift tube and a double stack microchannel plate (MCP) as a stop detector positioned at the end of the drift path. Secondary ions are focused at MCP using electrostatic cylindrical einzel lens. Time of flight spectra are currently acquired with a single-hit time-to-digital converter. Pulsed ion beam produces a shower of secondary ions that are ejected from positively biased target and accelerated towards MCP. We start our time measurement simultaneously with the start of the beam pulse. Signal of the first ion hitting MCP is used to stop the time measurement. Standard pulses proportional to the time of flight are produced with time to analog converter (TAC) and fed into analog-to-digital converter to obtain a time histogram. To enable efficient detection of desorbed fragments with higher molecular masses, which are of particular interest, we recently implemented a state-of art Field Programmable Gate Array (FPGA)-based multi-hit TOF acquisition. To test the system we used focused 8 MeV {sup 35}Cl{sup 7+} ion beam with pulse length of

  20. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  1. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  2. A comparison of the Maillard reactivity of proline to other amino acids using pyrolysis-molecular beam mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Luc Moens; Robert J. Evans; Michael J. Looker; Mark R. Nimlos [National Bioenergy Center, Golden, CO (United States). National Renewable Energy Laboratory

    2004-08-01

    Maillard chemistry, or the low temperature condensation of amino acids and carbohydrates, is shown to be relevant to the practical regime of biomass pyrolysis and leads to dramatic changes in low-temperature volatile products and residual solid structure. Mixtures of amino acids and glucose were subjected to a two-temperature heating sequence (5 min each at 170 and 325{sup o}C) and the volatile products analyzed by molecular beam mass spectrometry. Significant volatile yield was observed from the mixtures at 170{sup o}C where neither amino acids nor glucose generated volatile material in the time frame studied. Proline was the most active of the amino acids studied. Volatile products at low temperature included the diketopiperazine, which were generated in higher yields than from proline alone. Also generated were Maillard condensation such as 1-(1{prime}-pyrrolidinyl)-2-propanone. These products were also generated at 325{sup o}C, but in addition, the mass spectra included evidence for the direct formation of nitrogen-containing aromatics. These observations are discussed in relation to known Maillard chemistry. 37 refs., 8 figs., 1 tab.

  3. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  4. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  5. Optimizing production of Pb beams for 205,210Pb analysis by Accelerator Mass Spectrometry

    Science.gov (United States)

    Sookdeo, Adam; Cornett, Jack; Kieser, William E.

    2015-10-01

    The measurement of rare radioactive lead isotopes (205Pb or 210Pb) by AMS requires the production of strong Pb negative molecular anion beams from the ion source. This paper summarizes the results of tests of different target composition on the strength and stability of 208PbF3- currents and 210Pb counts. In an 834 SIMS-type Cs+ sputter source, the superhalogen, PbF3- had the largest current or ionization efficiency from a survey of Pb molecular anions. The target matrix that produced the largest current of PbF3- was composed of PbF2, AgF2 and CsF. The ratio of AgF2 and CsF does not affect the ionization efficiency of PbF3-. Chemically refluxed targets of PbF2, AgF2 and CsF increased the ionization efficiency of PbF3-. The count rate of the rare isotope, 210Pb, was increased with the addition of microgram quantities of stable PbF2 to the targets. In an SO-110 type Cs+ sputter source the ionization efficiency of PbF3- was increased with lower rather than higher Cs+ fluence.

  6. Hydrogen Exchange Mass Spectrometry.

    Science.gov (United States)

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  7. "Magic" Ionization Mass Spectrometry.

    Science.gov (United States)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  8. "Magic" Ionization Mass Spectrometry

    Science.gov (United States)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  9. Single event mass spectrometry

    Science.gov (United States)

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  10. Isotope dilution mass spectrometry

    Science.gov (United States)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  11. Nanopore Mass Spectrometry

    Science.gov (United States)

    Bush, Joseph; Mihovilovic, Mirna; Maulbetsch, William; Frenchette, Layne; Moon, Wooyoung; Pruitt, Cole; Bazemore-Walker, Carthene; Weber, Peter; Stein, Derek

    2013-03-01

    We report on the design, construction, and characterization of a nanopore-based ion source for mass spectrometry. Our goal is to field-extract ions directly from solution into the high vacuum to enable unit collection efficiency and temporal resolution of sequential ion emissions for DNA sequencing. The ion source features a capillary whose tip, measuring tens to hundreds of nanometers in inner diameter, is situated in the vacuum ~ 1.5 cm away from an extractor electrode. The capillary was filled with conductive solution and voltage-biased relative to the extractor. Applied voltages of hundreds of volts extracted tens to hundreds of nA of current from the tip. A mass analysis of the extracted ions showed primarily singly charged clusters comprising the cation or anion solvated by several solvent molecules. Our interpretation of these results, based on the works of Taylor and of de la Mora, is that the applied electric stresses distort the fluid meniscus into a Taylor cone, where electric fields reach ~ 1V/nm and induce significant ion evaporation. Accordingly, the abundances of extracted ionic clusters resemble a Boltzmann distribution. This work was supported by NIH grant NHGRI 1R21HG005100-01.

  12. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  13. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    Science.gov (United States)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  14. Mass Spectrometry of Halopyrazolium Salts

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Pande, U. C.;

    1983-01-01

    Eleven halogen substituted 1-methyl-2-phenylpyrazolium bromides or chlorides were investigated by field desorption, field ionization, and electron impact mass spectrometry. Dealkylation was found to be the predominant thermal decomposition. An exchange between covalent and ionic halogen prior...

  15. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    International Nuclear Information System (INIS)

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 1011 and 5.0 × 1011 molecule s−1 cm−3 of C2H5• (ethyl) and t-C4H9• (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K

  16. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source.

    Science.gov (United States)

    Leplat, N; Rossi, M J

    2013-11-01

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K. PMID:24289411

  17. Linear electric field mass spectrometry

    Science.gov (United States)

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  18. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  19. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  20. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  1. Symposium on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base

  2. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  3. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging

    NARCIS (Netherlands)

    Kiss, A.; Smith, D.F.; Jungmann, JH; Heeren, R.M.A.

    2013-01-01

    RATIONALE: Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyat

  4. A mass spectrometry primer for mass spectrometry imaging.

    Science.gov (United States)

    Rubakhin, Stanislav S; Sweedler, Jonathan V

    2010-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins, and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols.

  5. Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  6. Difraction spectrometry by laser beams

    Directory of Open Access Journals (Sweden)

    Frías, M.

    1988-12-01

    Full Text Available The advances in laser technology have permitted the development of numerous applications, in particular diffraction spectrometry by laser beams for the determination of the distribution curve of the particle sizes of different materials; this permits one to obtain the distribution of particle size in both wet and dry materials. In the present paper a brief description of the technique and its principles is offered. The results obtained with different materials-limestone clay, gypsum, Portland cement and siliceous materials are given.

    Los avances en la tecnología laser han permitido el desarrollo de múltiples aplicaciones, en concreto la espectrometría de difracción de rayos laser para la determinación de la curva de distribución del tamaño de partícula de diferentes materiales, y que permite la obtención de la misma tanto en seco como en húmedo. En este trabajo se hace una descripción breve de la técnica y de sus fundamentos. Se presentan resultados con diferentes materiales: caliza, arcilla, yeso, cemento Portland y materiales silíceos.

  7. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap, Orbi....... In terms of desired outcome, cost and time, combining and choosing between available instrumentation and methodologies is key to find the best analytical strategy suiting a particular proteomics experiment....

  8. Resonance ionisation mass spectrometry

    International Nuclear Information System (INIS)

    This report presents the results of an investigation of the technique resonance ionization mass spectroscopy. It offers the possibility of quick, accurate and highly sensitive analysis of samples which have undergone a minimum of chemical pretreatment. The technique can be applied to the detection of elements in trace amounts and for the detection of isotopes. Sample preparation, low-level counting and instrumentation are discussed. The proven capabilities and limitations of the technique and its commercial application and potential are presented. (U.K.)

  9. Mass Spectrometry in Polymer Chemistry

    CERN Document Server

    Barner-Kowollik, Christopher; Falkenhagen, Jana; Weidner, Steffen

    2011-01-01

    Combining an up-to-date insight into mass-spectrometric polymer analysis beyond MALDI with application details of the instrumentation, this is a balanced and thorough presentation of the most important and widely used mass-spectrometric methods.Written by the world's most proficient experts in the field, the book focuses on the latest developments, covering such technologies and applications as ionization protocols, tandem and liquid chromatography mass spectrometry, gas-phase ion-separation techniques and automated data processing. Chapters on sample preparation, polymer degradation and the u

  10. High resolution laser mass spectrometry bioimaging.

    Science.gov (United States)

    Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman

    2016-07-15

    Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. PMID:26972785

  11. Open Mass Spectrometry Search Algorithm

    CERN Document Server

    Geer, L Y; Kowalak, J A; Wagner, L; Xu, M; Maynard, D M; Yang, X; Shi, W; Bryant, S H; Geer, Lewis Y.; Markey, Sanford P.; Kowalak, Jeffrey A.; Wagner, Lukas; Xu, Ming; Maynard, Dawn M.; Yang, Xiaoyu; Shi, Wenyao; Bryant, Stephen H.

    2004-01-01

    Large numbers of MS/MS peptide spectra generated in proteomics experiments require efficient, sensitive and specific algorithms for peptide identification. In the Open Mass Spectrometry Search Algorithm [OMSSA], specificity is calculated by a classic probability score using an explicit model for matching experimental spectra to sequences. At default thresholds, OMSSA matches more spectra from a standard protein cocktail than a comparable algorithm. OMSSA is designed to be faster than published algorithms in searching large MS/MS datasets.

  12. New directions for accelerator mass spectrometry technology

    International Nuclear Information System (INIS)

    The influence on accelerator mass spectrometry (AMS) of developments in other fields is reviewed and three examples are discussed in detail. The appropriate use of electric and magnetic analysers with small AMS systems (129I, for nuclear fuel monitoring and ocean circulation tracer studies. The inclusion of gas chromatography technology extends the capability of AMS to applications which require large numbers of samples with rapid turn-around. The adaptation of chemical reaction cell technology to negative ion beams adds new isobar selection capability to AMS and will permit analyses of isotopes such as 36Cl on small AMS systems. (author)

  13. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  14. Quantitative mass spectrometry: an overview.

    Science.gov (United States)

    Urban, Pawel L

    2016-10-28

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements.This article is part of the themed issue 'Quantitative mass spectrometry'.

  15. Quantitative mass spectrometry: an overview.

    Science.gov (United States)

    Urban, Pawel L

    2016-10-28

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644965

  16. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed

  17. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    Science.gov (United States)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  18. Isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The potential of isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was evaluated for the determination of trace amounts of uranium and thorium in silicate rocks. Compared with conventional isotope dilution methods using thermal ionization mass spectrometers, the major benefit is a large increase in sample through-put without a significant decrease in precision and accuracy. This results from direct liquid sampling at atmospheric pressure and from the capability of measuring isotope ratios on raw solutions, without chemical separation of the analytes from the matrix elements. Isotope dilution ICP-MS alleviates the need for matrix-matched standards. Further, it is insensitive to possible causes of intensity drift (e.g., clogging of the plasma/mass spectrometer interface and defocusing of the ion beam) and to chemical effects (e.g. oxide formulation). Results obtained on some international rock standards are in good agreement with recommended values. (author). 26 refs.; 1 fig., tabs

  19. Electrophoresis-mass spectrometry probe

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  20. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN2+) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown. (paper)

  1. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  2. Neuroscience and Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  3. The life sciences mass spectrometry research unit.

    Science.gov (United States)

    Hopfgartner, Gérard; Varesio, Emmanuel

    2012-01-01

    The Life Sciences Mass Spectrometry (LSMS) research unit focuses on the development of novel analytical workflows based on innovative mass spectrometric and software tools for the analysis of low molecular weight compounds, peptides and proteins in complex biological matrices. The present article summarizes some of the recent work of the unit: i) the application of matrix-assisted laser desorption/ionization (MALDI) for mass spectrometry imaging (MSI) of drug of abuse in hair, ii) the use of high resolution mass spectrometry for simultaneous qualitative/quantitative analysis in drug metabolism and metabolomics, and iii) the absolute quantitation of proteins by mass spectrometry using the selected reaction monitoring mode. PMID:22867547

  4. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  5. Neutral particle Mass Spectrometry with Nanomechanical Systems

    CERN Document Server

    Sage, Eric; Alava, Thomas; Morel, Robert; Dupré, Cécilia; Hanay, Mehmet Selim; Duraffourg, Laurent; Masselon, Christophe; Hentz, Sébastien

    2014-01-01

    Current approaches to Mass Spectrometry (MS) necessarily rely on the ionization of the analytes of interest and subsequent spectrum interpretation is based on the mass-to-charge ratios of the ions. The resulting charge state distribution can be very complex for high-mass species which may hinder correct interpretation. A new form of MS analysis based on Nano-Electro-Mechanical Systems (NEMS) was recently demonstrated with high-mass ions. Thanks to a dedicated setup comprising both conventional time-of-flight MS (TOF-MS) and NEMS-MS in-situ, we show here for the first time that NEMS-MS analysis is insensitive to charge state: it provides one single peak regardless of the species charge state, highlighting effective clarification over existing MS analysis. All charged particles were thereafter removed from the beam electrostatically, and unlike TOF-MS, NEMS-MS retained its ability to perform mass measurements. This constitutes the first unequivocal measurement of mass spectra of neutral particles. This ability ...

  6. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  7. Proton transfer reaction - mass spectrometry

    International Nuclear Information System (INIS)

    Proton transfer reaction mass spectrometry (PTR-MS) provides on-line monitoring of volatile organic compounds (VOCs) with a low detection threshold and a fast response time. Commercially available set-ups are usually based on quadrupole analysers but recently new instruments based on time-of-flight (PTR-ToF-MS) analysers have been proposed and commercialized. PTR-MS has been successfully applied to a variety of fields including environmental science, food science and technology, plant physiology and medical science. Many new challenges arise from the newly available PTR-ToF-MS instruments, ranging from mass calibration and absolute VOC concentration determination to data mining and sample classification. This thesis addresses some of these problems in a coherent framework. Moreover, relevant applications in food science and technology are presented. It includes twelve papers published in peer reviewed journals. Some of them address methodological issues regarding PTR-ToF-MS; the others contain applicative studies of PTR-ToF-MS to food science and technology. Among them, there are the first two published applications of PTR-ToF-MS in this field. (author)

  8. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim;

    2007-01-01

    -phase chromatography they are analyzed by tandem mass spectrometry and the substrates identified by database searching. The proof of principle in this study is demonstrated by incubating immobilized human plasma proteins with thrombin and by identifying by tandem mass spectrometry the fibrinopeptides, released...

  9. Developments in ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  10. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, N. [Institute for Transuranium Elements, European Commission Joint Research Centre, Karlsruhe (Germany); Kratz, J.V.; Trautmann, N. [Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Passler, G. [Johannes Gutenberg-University Mainz, Institute of Physics, Mainz (Germany)

    2009-11-15

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., {sup 238}U/{sup 238}Pu, {sup 241}Am/{sup 241}Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. (orig.)

  11. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles

    International Nuclear Information System (INIS)

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., 238U/238Pu, 241Am/241Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. (orig.)

  12. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles.

    Science.gov (United States)

    Erdmann, N; Kratz, J-V; Trautmann, N; Passler, G

    2009-11-01

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., (238)U/(238)Pu, (241)Am/(241)Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. PMID:19557397

  13. Nonaqueous Capillary Electrophoresis Mass Spectrometry.

    Science.gov (United States)

    Klampfl, Christian W; Himmelsbach, Markus

    2016-01-01

    The term nonaqueous capillary electrophoresis (NACE) commonly refers to capillary electrophoresis with purely nonaqueous background electrolytes (BGE). Main advantages of NACE are the possibility to analyze substances with very low solubility in aqueous media as well as separation selectivity that can be quite different in organic solvents (compared to water)-a property that can be employed for manipulation of separation selectivities. Mass spectrometry (MS) has become more and more popular as a detector in CE a fact that applies also for NACE. In the present chapter, the development of NACE-MS since 2004 is reviewed. Relevant parameters like composition of BGE and its influence on separation and detection in NACE as well as sheath liquid for NACE-MS are discussed. Finally, an overview of the papers published in the field of NACE-MS between 2004 and 2014 is given. Applications are grouped according to the field (analysis of natural products, biomedical analysis, food analysis, analysis of industrial products, and fundamental investigations). PMID:27645734

  14. Absorption Mode FTICR Mass Spectrometry Imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kilgour, D.P.A.; Konijnenburg, M.; O'Connor, P.B.; Heeren, R.M.A.

    2013-01-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields

  15. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    OpenAIRE

    Xiao-Pan Liu; Hao-Yang Wang; Jun-Ting Zhang; Meng-Xi Wu; Wan-Shu Qi; Hui Zhu; Yin-Long Guo

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray g...

  16. Use of mass spectrometry to study signaling pathways

    DEFF Research Database (Denmark)

    Pandey, A; Andersen, Jens S.; Mann, M

    2000-01-01

    identification by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and nanoelectrospray tandem mass spectrometry. We discuss the special requirements for the identification of phosphorylation sites in proteins by mass spectrometry. We describe enrichment of phosphopeptides from unseparated...

  17. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet (VUV) synchrotron ionization quadrupole mass spectrometry: Application to low--temperature kinetics and product detection

    Energy Technology Data Exchange (ETDEWEB)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-10-12

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.

  18. Methods for recalibration of mass spectrometry data

    Science.gov (United States)

    Tolmachev, Aleksey V.; Smith, Richard D.

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  19. Plasma Desorption Mass Spectrometry: Coming of Age.

    Science.gov (United States)

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  20. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Bunkenborg, Jakob

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive information...... from an experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools can be applied to the many analytical challenges. This introductory chapter is intended as a basic introduction to mass spectrometry (MS)-based proteomics to set the scene...... for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different...

  1. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Saiz-Jimenez, C.; Gonzalez-Vila, F.J.

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  2. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  3. Miniaturization of Mass Spectrometry Analysis Systems

    OpenAIRE

    Xu, Wei; Manicke, Nicholas E.; Cooks, Graham R.; Ouyang, Zheng

    2010-01-01

    The key concepts and technologies developed in our laboratories in Purdue University for the miniaturization of mass spectrometry analysis systems are introduced. Mass analyzers of simple geometries with a novel atmospheric pressure interface were employed allowed reduction in the size of the ion trap mass spectrometer. Ambient ionization methods were developed and coupled to miniature mass spectrometers to allow direct MS analysis of complex samples without sample preparation and chemical se...

  4. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality da...

  5. Analytical aspects of hydrogen exchange mass spectrometry

    Science.gov (United States)

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  6. A REVIEW ON MASS SPECTROMETRY DETECTORS

    Directory of Open Access Journals (Sweden)

    Khatri Neetu

    2012-10-01

    Full Text Available Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z is a measurement of mass of an ion. Mass spectrometry research focuses on the formation of gas phase ions, and detection of ions. Detectors in mass spectrometer detect the separated ions according to m/z ratio. The main disadvantages of conventional detectors are very low sensitivity and poor detection efficiency. Detectors are of a great interest to a wide range of industrial, military, environmental and even biological applications. In recent developments, molecules of higher mass can also be detected and enhanced lifetime under the less than ideal environments typically encountered in mass spectrometers. This review deals in detail about the design, working and principle of mass spectrometric detectors and their recent developments.

  7. In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    A molecular beam mass spectrometer has been calibrated and used to measure the air entrainment, nitric oxide and ozone concentrations in the effluent of a cold atmospheric pressure argon RF driven plasma jet. The approaches for calibrating the mass spectrometer for different species are described in detail. Gas phase densities of ozone and nitric oxide up to 7.5 ppm and 4 ppm, respectively, have been measured in the far effluent of the argon plasma jet. The difference in air entrainment when the plasma is undisturbed or is close to a well, which is the case for e.g. in vitro plasma–cell interaction studies, is shown. In addition, an exponential decay of the positive ion flux as a function of distance in the effluent is obtained. Furthermore, the effect of plasma power, duty cycle and air and O2 admixtures introduced into the argon flow on the NO and O3 production is presented, including the possibility of independent control of the NO and O3 flux from the jet. (paper)

  8. Mass spectrometry in natural product chemistry.

    Science.gov (United States)

    Clayton, E; Hill, H C; Reed, R I

    1966-01-01

    Some mass spectrometric techniques are described which seem applicable to investigating problems in natural product chemistry. One example is of a sample of 5 mcg of a compound being identified by comparison with an authentic sample of prostaglandin derivative. Compared were mass, ion content, and structure. In the prostaglandin/unknown substance comparison, high-resolution mass spectrometry resolved a quandary: apparent additional ions present in the unknown substance were shown to be an impurity. PMID:12262324

  9. Linear electric field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  10. [Imaging Mass Spectrometry in Histopathologic Analysis].

    Science.gov (United States)

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development. PMID:26536781

  11. Capillary electrophoresis electrospray ionization mass spectrometry interface

    Science.gov (United States)

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  12. Development of Gas Chromatographic Mass Spectrometry.

    Science.gov (United States)

    Hites, Ronald A

    2016-07-19

    Gas chromatographic mass spectrometry is now widely used for the quantitation and identification of organic compounds in almost any imaginable sample. These applications include the measurement of chlorinated dioxins in soil samples, the identification of illicit drugs in human blood, and the quantitation of accelerants in arson investigations, to name just a few. How did GC/MS get so popular? It turns out that it required parallel developments in mass spectrometry, gas chromatography, and computing and that no one person "invented" the technique. This Perspective traces this history from the 1950s until today. PMID:27384908

  13. Recent developments in Penning-trap mass spectrometry

    Science.gov (United States)

    Block, M.

    2016-06-01

    Penning-trap mass spectrometry provides atomic masses with the highest precision. At accelerator-based on-line facilities it is applied to investigate exotic radionuclides in the context of tests of fundamental symmetries, nuclear structure studies, and nuclear astrophysics research. Recent progress in slowing down radioactive ion-beams in buffer-gas cells in combination with advanced ion-manipulation techniques has paved the way to reach nuclides ever-more far from stability. In this endeavor many efforts are underway to increase the sensitivity, the efficiency, and the precision of Penning-trap mass spectrometry. In this article some recent experimental developments are addressed with the focus on the phase-imaging ion-cyclotron-resonance technique and the Fourier transform ion-cyclotron-resonance technique.

  14. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  15. Studies in biogenic amine metabolism by mass spectrometry

    International Nuclear Information System (INIS)

    Two areas of mass spectral study related to biogenic amine metabolism are presented: The use of electron capture negative ion chemical ionization mass spectrometry for the quantitation of melatonin and other indole amines, and general synthetic procedures useful for the synthesis of deuterated diazomethane and deuteromethylated catechols. The factors determining instrumental sensitivity in negative ion chemical ionization are discussed, and the enhancement of the primary ion beam using magnetic fields is described. Quantitation of human plasma melatonin at the parts per trillion or pg/ml level has been demonstrated and is routinely performed as a selected ion monitoring assay. (Auth.)

  16. Characterization of individual particles in gaseous media by mass spectrometry

    Science.gov (United States)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  17. Four decades of joy in mass spectrometry

    NARCIS (Netherlands)

    Nibbering, Nico M.M.

    2006-01-01

    Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic path

  18. Nanostructure-initiator mass spectrometry biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  19. Nanostructure-initiator mass spectrometry biometrics

    Science.gov (United States)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  20. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an...

  1. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, R.; Bunkenborg, J.

    2013-01-01

    for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different...

  2. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  3. Application of mass spectrometry for metabolite identification.

    Science.gov (United States)

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS. PMID:16787159

  4. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  5. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  6. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  7. Mass spectrometry imaging and profiling of single cells

    OpenAIRE

    Lanni, Eric J.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies—secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI MS)—are most often used in micro-bioanalytical inves...

  8. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-01-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even viru

  9. Laser-cooling-assisted mass spectrometry

    CERN Document Server

    Schneider, Christian; Chen, Kuang; Sullivan, Scott T; Hudson, Eric R

    2014-01-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, co-trapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular dynamics simulations verify the technique and aid with evaluating its effectiveness. Our technique appears to be applicable to other types of mass spectrometers.

  10. Spatial neuroproteomics using imaging mass spectrometry.

    Science.gov (United States)

    Hanrieder, Jörg; Malmberg, Per; Ewing, Andrew G

    2015-07-01

    The nervous system constitutes arguably the most complicated and least understood cellular network in the human body. This consequently manifests itself in the fact that the molecular bases of neurodegenerative diseases remain unknown. The limited understanding of neurobiological mechanisms relates directly to the lack of appropriate bioanalytical technologies that allow highly resolved, sensitive, specific and comprehensive molecular imaging in complex biological matrices. Imaging mass spectrometry (IMS) is an emerging technique for molecular imaging. The technique is characterized by its high chemical specificity allowing comprehensive, spatial protein and peptide profiling in situ. Imaging MS represents therefore a powerful approach for investigation of spatio-temporal protein and peptide regulations in CNS derived tissue and cells. This review aims to provide a concise overview of major developments and applications concerning imaging mass spectrometry based protein and peptide profiling in neurobiological and biomedical research. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology. PMID:25582083

  11. Isotope ratio mass spectrometry in oceanic studies

    International Nuclear Information System (INIS)

    Isotope ratio mass spectrometry (IRMS) is an important and well established method in many scientific fields as analytical chemistry (isotope dilution MS), physical chemistry, nuclear sciences and technology, environmental, agricultural, geological isotope dating, archaeometric, cosmic, bioavailability and nutrition studies, food authentication and adulteration control, elucidation of chemical reaction mechanism, isotope effect studies on chemical reactions and isotope enrichment/separation processes. This paper is aimed to provide a brief summary of IRMS contribution to sea and oceanic studies

  12. Detection of Gunshot Residues Using Mass Spectrometry

    OpenAIRE

    Regina Verena Taudte; Alison Beavis; Lucas Blanes; Nerida Cole; Philip Doble; Claude Roux

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful t...

  13. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  14. Laser mass spectrometry for selective ultratrace determination

    CERN Document Server

    Wendt, K; Müller, P; Nörtershäuser, W; Schmitt, A; Trautmann, N; Bushaw, B A

    1999-01-01

    Resonance ionization mass spectrometry has been explored in respect to its capabilities for isobaric suppression, isotopic selectivity, and overall efficiency. Theoretical calculations within the density matrix formalism on coherent multi-step excitation processes predict high specifications, which have been confirmed by spectroscopic measurements in Ca and which make the technique attractive for ultratrace detection. Analytical applications are found in the determination of the ultratrace isotope sup 4 sup 1 Ca for cosmochemical, radiodating, and medical applications.

  15. Trends in mass spectrometry instrumentation for proteomics.

    Science.gov (United States)

    Smith, Richard D

    2002-12-01

    Mass spectrometry has become a primary tool for proteomics because of its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the need for increased capabilities for proteome measurements is immense and is now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements and promise more than order of magnitude improvements in sensitivity, dynamic range and throughput for proteomic analyses in the near future.

  16. Trends in mass spectrometry instrumentation for proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2002-12-01

    Mass spectrometry has become a primary tool for proteomics due to its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the needs for increased capabilities for proteome measurements are immense and are now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements, and promise more than order of magnitude improvements in sensitivity, dynamic range, and throughput for proteomic analyses in the near future.

  17. Combustion chemistry of energetic materials studied by probing mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Korobeinichev, O.P.; Kuibida, L.V.; Paletsky, A.A.; Shmakov, A.G. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Chemical Kinetics and Combustion

    1996-07-01

    The methods of probing mass spectrometry (PMS) for diagnostic of flames and for the study of kinetics and mechanism of the thermal decomposition products of energetic materials (EM) are described. Several types of instruments based on microprobe and molecular beam mass spectrometric sampling have been developed. Time of flight mass spectrometer has been used. Apparatuses for high (10 atm) and low (<1 atm) pressure have been developed for the study of combustion and decomposition of EM by PMS ``in situ.`` Several examples are presented to demonstrate application of PMS method for the study of EM flame structure, thermal decomposition and dynamic of ignition. Experimental data on decomposition of double base propellants ammonium dinitramide, ammonium perchlorate are presented.

  18. Accelerator Mass Spectrometry (AMS) 1977-1987

    Science.gov (United States)

    Gove, H. E.; Purser, K. H.; Litherland, A. E.

    2010-04-01

    The eleventh Accelerator Mass Spectrometry (AMS 11) Conference took place in September 2008, the Thirtieth Anniversary of the first Conference. That occurred in 1978 after discoveries with nuclear physics accelerators in 1977. Since the first Conference there have now been ten further conferences on the development and applications of what has become known as AMS. This is the accepted acronym for the use of accelerators, together with nuclear and atomic physics techniques, to enhance the performance of mass spectrometers for the detection and measurement of rare long-lived radioactive elements such as radiocarbon. This paper gives an outline of the events that led to the first conference together with a brief account of the first four conferences before the introduction of the second generation of accelerator mass spectrometers at AMS 5.

  19. Mass spectrometry of fluorocarbon-labeled glycosphingolipids

    DEFF Research Database (Denmark)

    Li, Yunsen; Arigi, Emma; Eichert, Heather;

    2010-01-01

    A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)-based methodologies for glycosphingolipidomics have been investigated. Sphingolipid...... with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application....... The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions....

  20. Electrospray Ionization Mass Spectrometry of hexanitrohexaazaisowurtzitane (CL-20)

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James A.; Szecsody, Jim E.; Devary, Brooks J.; Valenzuela, Blandina R.

    2007-09-03

    Hexanitrohexaazaisowurtzitane, (C6H6N12O12, MW 438) {CL-20}, is a high-energy propellent that has been recently developed and successfully tested (Nielsen et al. 1998). CL-20 releases more energy on ignition and is more stable to accidental detonation than currently used energetic materials. It is expected to replace many of the energetic materials currently being used by the Department of Defense (DoD). The EPA method 8330 (EPA 1997) for the analysis of explosives and metabolites in soils calls for the use of UV/Vis detection. High performance liquid chromatography has been used to quantify CL-20 and precursor concentration (Bazaki et al. 1998`) at relatively high concentrations. Fourier transform infrared (FTIR) spectroscopy has been used to identify different crystal forms of CL-20 (4 isomers; Kim et al. 1998). Campbell et al. (1997) utilized particle beam mass spectrometry for the analysis of enzymatic degradation of explosives. Introduction and recent improvements of ionization techniques such as electrospray (ES) have allowed the mass spectrometer to become more widely used in liquid chromatography. Schilling(1996) also examined explosive components and metabolites using electrospray (ES) and atmospheric pressure chemical ionization (APCI) liquid chromatography/mass spectrometry (LC/MS). Schilling’s results showed that compared to thermospray LC/MS, APCI and ES were more sensitive than thermospray by at least an order of magnitude. 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 10 nitroso-RDX metabolites, and other munitions in ground water have been analyzed using solid phase extraction and isotope dilution liquid chromatography-APCI mass spectrometry (Cassada et al. 1999). The method detection limits indicate that nitramine and nitroaromatic compounds can be routinely determined in ground water samples using electrospray LC/MS with concentration techniques utilizing solid-phase extraction. Miller et al. (1996) studied nitrated explosives with mobile phase

  1. Mass spectrometry imaging: applications to food science.

    Science.gov (United States)

    Taira, Shu; Uematsu, Kohei; Kaneko, Daisaku; Katano, Hajime

    2014-01-01

    Two-dimensional mass spectrometry (MS) analysis of biological samples by means of what is called MS imaging (MSI) is now being used to analyze analyte distribution because it facilitates determination of the existence (what is it?) and localization (where is it?) of biomolecules. Reconstruction of mass image by target signal is given after two-dimensional MS measurements on a sample section. From only one section, we can understand the existence and localization of many molecules without the need of an antibody or fluorescent reagent. In this review, we introduce the analysis of localization of functional constituents and nutrients in herbal medicine products via MSI. The ginsenosides were mainly distributed in the periderm and the tip region of the root of Panax ginseng. The capsaicin was found to be more dominantly localized in the placenta than the pericarp and seed in Capsicum fruits. We expect MSI will be a useful technique for optical quality assurance.

  2. Emerging Technologies in Mass Spectrometry Imaging

    CERN Document Server

    Jungmann, Julia H

    2013-01-01

    Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research targets, accurate compound localization and identification. In terms of dedicated instrumentation, this translates into the demand for more detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the same time, large area biological tissue samples require fast acquisition schemes, instrument automation and a robust data infrastructure. This review discusses the analytical capabilities of an "ideal" MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical attributes of such an ideal system are contrasted with technological and methodological challenges in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination with high sample throughput is discussed. Detector technology that targets various shortcomings of conventional imaging detector systems is hig...

  3. Damping effects in Penning trap mass spectrometry

    CERN Document Server

    George, S; Kowalska, M; Dworschak, M; Neidherr, D; Blaum, K; Schweikhard, L; Ramirez, E M; Breitenfeldt, M; Kretzschmar, M; Herfurth, F; Schwarz, S; Herlert, A

    2011-01-01

    Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ramsey excitation schemes. The results are in good agreement with predictions obtained by analytical continuation of the formulae for the undamped case.

  4. Proteome analysis of adenovirus using mass spectrometry.

    Science.gov (United States)

    Lind, Sara Bergström; Artemenko, Konstantin A; Pettersson, Ulf

    2014-01-01

    Analysis of proteins and their posttranslational modifications is important for understanding different biological events. For analysis of viral proteomes, an optimal protocol includes production of a highly purified virus that can be investigated with a high-resolving analytical method. In this Methods in Molecular Biology paper we describe a working strategy for how structural proteins in the Adenovirus particle can be studied using liquid chromatography-high-resolving mass spectrometry. This method provides information on the chemical composition of the virus particle. Further, knowledge about amino acids carrying modifications that could be essential for any part of the virus life cycle is collected. We describe in detail alternatives available for preparation of virus for proteome analysis as well as choice of mass spectrometric instrumentation suitable for this kind of analysis.

  5. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  6. [Application of mass spectrometry in mycobacteria].

    Science.gov (United States)

    Alcaide, Fernando; Palop-Borrás, Begoña; Domingo, Diego; Tudó, Griselda

    2016-06-01

    To date, more than 170 species of mycobacteria have been described, of which more than one third may be pathogenic to humans, representing a significant workload for microbiology laboratories. These species must be identified in clinical practice, which has long been a major problem due to the shortcomings of conventional (phenotypic) methods and the limitations and complexity of modern methods largely based on molecular biology techniques. The aim of this review was to briefly describe different aspects related to the use of MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) for the identification of mycobacteria. Several difficulties are encountered with the use of this methodology in these microorganisms mainly due to the high pathogenicity of some mycobacteria and the peculiar structure of their cell wall, requiring inactivation and special protein extraction protocols. We also analysed other relevant aspects such as culture media, the reference methods employed (gold standard) in the final identification of the different species, the cut-off used to accept data as valid, and the databases of the different mass spectrometry systems available. MS has revolutionized diagnosis in modern microbiology; however, specific improvements are needed to consolidate the use of this technology in mycobacteriology. PMID:27389290

  7. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    Science.gov (United States)

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-11-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source.

  8. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  9. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  10. Mass spectrometry for high-throughput metabolomics analysis of urine

    OpenAIRE

    Abdelrazig, Salah M.A.

    2015-01-01

    Direct electrospray ionisation-mass spectrometry (direct ESI-MS), by omitting the chromatographic step, has great potential for application as a high-throughput approach for untargeted urine metabolomics analysis compared to liquid chromatography-mass spectrometry (LC-MS). The rapid development and technical innovations revealed in the field of ambient ionisation MS such as nanoelectrospray ionisation (nanoESI) chip-based infusion and liquid extraction surface analysis mass spectrometry (LESA...

  11. Characterisation of DEFB107 by mass spectrometry

    Science.gov (United States)

    McCullough, Bryan J.; Eastwood, Hayden; Clark, Dave J.; Polfer, Nick C.; Campopiano, Dominic J.; Dorin, Julia A.; Maxwell, Alison; Langley, Ross J.; Govan, John R. W.; Bernstein, Summer L.; Bowers, Michael T.; Barran, Perdita E.

    2006-05-01

    Mammalian defensins are small endogenous cationic proteins which form a class of antimicrobial peptides that is part of the innate immune response of all mammalian species [R. Lehrer, Nat. Rev. Microbiol. 2 (9) (2004) 727; T. Ganz, R.I. Lehrer, Curr. Opin. Immunol. 6 (4) (1994) 584] [1] and [2]. We have developed mass spectrometry based strategies for characterising the structure-activity relationship of defensins [D.J. Campopiano, D.J. Clarke, N.C. Polfer, P.E. Barran, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, J. Biol. Chem. 279 (47) (2004) 48671; P.E. Barran, N.C. Polfer, D.J. Campopiano, D.J. Clarke, P.R.R. Langridge-Smith, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, R.P. Millar, M.T. Bowers, Int. J. Mass Spectrom. 240 (2005) 273] [3] and [4], and here we present data obtained from a five cysteine containing [beta]-defensin, DEFB107. The synthetic product of this human defensin exists with a glutathione capping group, its oxidation state and disulphide connectivity have been determined via accurate mass measurements and peptide mass mapping respectively, and despite possessing three disulphide bridges, it does not fit the [beta]-defensin canonical motif. With the use of molecular modelling, we have generated candidate geometries to discern the influence of disulphide bridging on the overall tertiary structure of DEFB107. These are compared with experimental results from ion mobility measurements. Defensins display activity against a wide variety of pathogens including both gram-negative and gram-positive bacteria. Their mechanism of mode of action is unknown, but is believed to involve defensin aggregation at cell surfaces, followed by cell permeabilisation and hence deathE To probe this mechanism, the localisation of DEFB107 in synthetic vesicles was studied using H/D exchange and mass spectrometry. The results obtained are used to analyse the antimicrobial activity of DEFB107.

  12. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. PMID:27389289

  13. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  14. Mass spectrometry and Web 2.0.

    Science.gov (United States)

    Murray, Kermit K

    2007-10-01

    The term Web 2.0 is a convenient shorthand for a new era in the Internet in which users themselves are both generating and modifying existing web content. Several types of tools can be used. With social bookmarking, users assign a keyword to a web resource and the collection of the keyword 'tags' from multiple users form the classification of these resources. Blogs are a form of diary or news report published on the web in reverse chronological order and are a popular form of information sharing. A wiki is a website that can be edited using a web browser and can be used for collaborative creation of information on the site. This article is a tutorial that describes how these new ways of creating, modifying, and sharing information on the Web are being used for on-line mass spectrometry resources.

  15. Electrostatic-spray ionization mass spectrometry.

    Science.gov (United States)

    Qiao, Liang; Sartor, Romain; Gasilova, Natalia; Lu, Yu; Tobolkina, Elena; Liu, Baohong; Girault, Hubert H

    2012-09-01

    An electrostatic-spray ionization (ESTASI) method has been used for mass spectrometry (MS) analysis of samples deposited in or on an insulating substrate. The ionization is induced by a capacitive coupling between an electrode and the sample. In practice, a metallic electrode is placed close to but not in direct contact with the sample. Upon application of a high voltage pulse to the electrode, an electrostatic charging of the sample occurs leading to a bipolar spray pulse. When the voltage is positive, the bipolar spray pulse consists first of cations and then of anions. This method has been applied to a wide range of geometries to emit ions from samples in a silica capillary, in a disposable pipet tip, in a polymer microchannel, or from samples deposited as droplets on a polymer plate. Fractions from capillary electrophoresis were collected on a polymer plate for ESTASI MS analysis. PMID:22876737

  16. Radiocarbon dating with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) has two great advantages over conventional dating: 1) much smaller samples can be handled and 2) counting time is significantly shorter. Three examples are given for Holocene-age material from east-central Ellesmere Island. The results demonstrate the potential use of this technique as a powerful research tool in studies of Quaternary chronology. Individual fragments of marine shells as small as 0.1 g have been dated successfully at the IsoTrace Laboratory, University of Toronto. In the case of an aquatic moss from a lake sediment core, an increment 0.5 cm thick could be used instead of a 5 cm-thick slice, thus allowing a much more precise estimate of the onset of organic sedimentation

  17. China's food safety regulation and mass spectrometry.

    Science.gov (United States)

    Chu, Xiaogang; Zhang, Feng; Nie, Xuemei; Wang, Wenzhi; Feng, Feng

    2011-01-01

    Food safety is essential to people's health and people's livelihood. To ensure that food safety is an important current strategy of the governments, both regulation and standardization are important support for implementing this strategic initiative effectively. The status and prospects of China's food laws, regulations, and standards system are introduced. China now has established a complete law regime providing a sound foundation and good environment for keeping the health of people, maintaining the order of social economy and promoting the international trade of food. At the same time, it is undoubtedly important to strengthen standardization and improve the food safety standards system. In the administration of food safety, mass spectrometry is becoming more and more important and many analytical methods developed in China are based on its application. PMID:21643903

  18. The dissociation of {sup 13}CH and {sup 12}CH{sub 2} molecules in He and N{sub 2} at beam energies of 80-250 keV and possible implications for radiocarbon mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Koenig, T., E-mail: schulze@phys.ethz.c [Laboratory of Ion Beam Physics, ETH Zurich (Switzerland); Seiler, M.; Suter, M.; Wacker, L.; Synal, H.-A. [Laboratory of Ion Beam Physics, ETH Zurich (Switzerland)

    2011-01-01

    Isotopic ratios of {sup 14}C at natural levels can be efficiently measured with accelerator mass spectrometry (AMS). In compact AMS systems, {sup 13}CH and {sup 12}CH{sub 2} molecular interferences are destroyed in collisions with the stripper gas, a process which can be described by dissociation cross sections. These dissociation cross sections determine the gas areal density required for sufficient attenuation of the interfering molecular beams, and are therefore key parameters in the effort to further reduce the terminal voltage and thus the size of the AMS system. We measured the dissociation cross sections of {sup 13}CH and {sup 12}CH{sub 2} in N{sub 2} and He in the energy range of 80-250 keV. In N{sub 2}, cross sections were constant for energies above 100 keV with average values per molecule of (8.1 {+-} 0.4) x 10{sup -16} cm{sup 2} for {sup 13}CH and (9.5 {+-} 0.5) x 10{sup -16} cm{sup 2} for {sup 12}CH{sub 2}. In He, cross sections were constant over the full measured range of 80-150 keV with average values of (4.2 {+-} 0.3) x 10{sup -16} cm{sup 2} and (4.8 {+-} 0.4) x 10{sup -16} cm{sup 2}, respectively. A considerable reduction of the terminal voltage from the currently used 200 kV while using N{sub 2} for {sup 13}CH and {sup 12}CH{sub 2} molecule dissociation is not possible: the required N{sub 2} areal densities of {approx}1.4 {mu}g/cm{sup 2}, consequential angular straggling and a decreasing 1+ charge state fraction would reduce the ion beam transmission too much. This is not the case for He: sufficient molecule dissociation can be obtained with gas densities of {approx}0.4 {mu}g/cm{sup 2}, for which angular straggling is relatively small. In addition, the 1+ charge state fraction still increases at lower stripping energies. Thus, the usage of He for stripping and molecule dissociation might allow the development of even smaller {sup 14}C-AMS systems than available today.

  19. Small system for tritium accelerator mass spectrometry

    Science.gov (United States)

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  20. High sensitivity quadrupole mass spectrometry of neutrals sputtered by UV-laser ablation of polymers

    Science.gov (United States)

    Lazare, Sylvain; Guan, Weiping; Drilhole, David

    1996-04-01

    Laser Ablation-Sputtered Neutrals Spectrometry is developed as a portable system which consists of a commercial gas analyser (quadrupole mass spectrometer with e-beam ionization) in ultrahigh vacuum. ArF and KrF ablation of 20 polymers yielded mass spectra (1-200), rich in information, and mass intensity versus etching time for depth profiling analysis. The sensitivity is very high (100 ng of polymer can be probed) and microablation can be recorded by LA-SNMS.

  1. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption. PMID:18582090

  2. Compressed sensing in imaging mass spectrometry

    International Nuclear Information System (INIS)

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section. (paper)

  3. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36Cl and 129I. Cosmogenic radio isotope 36Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  4. Sample preparation for accelerator mass spectrometry at the University of Washington

    International Nuclear Information System (INIS)

    The adaptation of the University of Washington FN tandem Van de Graaff to accelerator mass spectrometry (AMS), as well as some of the results obtained, are described in another paper in this volume (Farwell et al., 1981). Here we discuss our experiences in preparing carbon and beryllium samples that give large and stable ion beams when used in our Extrion cesium sputter source with an inverted cesium beam geometry

  5. From structure to function : Protein assemblies dissected by mass spectrometry

    NARCIS (Netherlands)

    Lorenzen, K.

    2008-01-01

    This thesis demonstrates some of the possibilities mass spectrometry can provide to gain new insight into structure and function of protein complexes. While technologies in native mass spectrometry are still under development, it already allows research on complete proteins and protein complexes up

  6. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore...

  7. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  8. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.

    Science.gov (United States)

    Lathrop, Julia Tait; Jeffery, Douglas A; Shea, Yvonne R; Scholl, Peter F; Chan, Maria M

    2016-01-01

    Mass spectrometry-based in vitro diagnostic devices that measure proteins and peptides are underutilized in clinical practice, and none has been cleared or approved by the Food and Drug Administration (FDA) for marketing or for use in clinical trials. One way to increase their utilization is through enhanced interactions between the FDA and the clinical mass spectrometry community to improve the validation and regulatory review of these devices. As a reference point from which to develop these interactions, this article surveys the FDA's regulation of mass spectrometry-based devices, explains how the FDA uses guidance documents and standards in the review process, and describes the FDA's previous outreach to stakeholders. Here we also discuss how further communication and collaboration with the clinical mass spectrometry communities can identify opportunities for the FDA to provide help in the development of mass spectrometry-based devices and enhance their entry into the clinic. PMID:26553791

  9. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    Science.gov (United States)

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  10. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    Science.gov (United States)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  11. Detection of Gunshot Residues Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Regina Verena Taudte

    2014-01-01

    Full Text Available In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR- like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR, although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX. This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis.

  12. Secondary Ion Mass Spectrometry SIMS XI

    Science.gov (United States)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  13. Laser-induced electron capture mass spectrometry

    Science.gov (United States)

    Wang; Giese

    2000-02-15

    Two techniques are reported for detection of electrophorederivatized compounds by laser-induced electron capture time-of-flight mass spectrometry (LI-EC-TOF-MS). In both cases, a nitrogen laser is used to induce the electron capture. The analyte is deposited in a matrix consisting of a compound with a low ionization potential such as benzo[ghi]perylene in the first technique, where the electron for electron capture apparently comes from this matrix. In the second technique, the analyte is deposited on a silver surface in the absence of matrix. It seems that "monoenergetic" ions instantly desorb from the target surface in the latter case, since the peak width in the continuous extraction mode essentially matches the pulse width of the laser (4 ns). Ten picomoles of 3-O-(pentafluorobenzyl)-alpha-estradiol were detected at a S/N > or = 50, where the spot size of the laser was approximately 0.25% of the sample spot. It is attractive that simple conditions can enable sensitive detection of electrophores on routine TOF-MS equipment. The technique can be anticipated to broaden the range of analytes in both polarity and size that can be detected by EC-MS relative to the range for GC/EC-MS. PMID:10701262

  14. Isotopic Measurement of Uranium by Mass Spectrometry

    International Nuclear Information System (INIS)

    The growing application of atomic energy creates a wider need for precise and accurate knowledge of the isotopic composition of uranium. This information is particularly of great importance in the accountability and transfer of enriched uranium for reactor and research applications involving millions of dollars worth of fissionable materials. Reliable isotopic measurements are also necessary to ensure compliance of fuel element compositions with the reactor design specifications and to permit calculation of process and fuel burn-up losses. Mass spectrometry methods, which far surpass the capabilities of other methods, Were developed for very precise isotopic determinations. These methods, ''Single Standard'' and ''Double Standard'', involve the comparison of measurements of an unknown sample to similar measurements on known standards. Use of the ''Double Standard'' method eliminates the effects of instrument bias, thus permitting isotopic determinations with precisions (95% limit of error) of the order of ± 0.02% of the values. Accuracies are limited only by the knowledge of the standard values used, which are referenced to the series of uranium isotopic standards available from the US National Bureau of Standards. The mass spectrometers are also useful for the absolute determination of isotopic composition of uranium, especially in forms other than UF6. Thermal ionization techniques using high-resolution (approximately 12-in. radius) spectrometers permit the absolute isotopic characterization of the minor isotopes (i.e. those less than 10 wt.%) with an accuracy and precision of about 0.5% of the values per analysis. These analyses are particularly useful in calibrating highly enriched and highly depleted uranium for subsequent use as blending materials in an isotopic standards programme. Both relative and absolute isotopic measurement methods are described as well as their application in the accountability and operational analytical programmes. These applications

  15. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  16. Toward laser ablation Accelerator Mass Spectrometry of actinides

    Science.gov (United States)

    Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Paul, M.; Collon, P.; Deibel, C.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Fonnesbeck, J.; Imel, G.

    2013-01-01

    A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

  17. Quantitative depth profiling by laser-ionization sputtered neutral mass spectrometry

    Science.gov (United States)

    Higashi, Yasuhiro

    1999-01-01

    Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.

  18. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  19. A Review on Mass Spectrometry: Technique and Tools

    Directory of Open Access Journals (Sweden)

    Ms. Ashwini Yerlekar

    2014-04-01

    Full Text Available Protein structure prediction has gain important in area of life sciences, because of its complex structure. The protein-protein interaction is necessary to study the behavior of protein in a specific environment, and study molecular relationship in living systems. Therefore, large scale proteomics technologies are required to measure physical connection of proteins in living organisms. Mass Spectrometry uses the technique to measure mass-to-charge ratio of ion. It's an evolving technique for characterization of proteins. A Mass Spectrometer can be more sensitive and specific, also complement with other LC detectors. Liquid Chromatography, unlike gas chromatography is a separation technique which helps to separate wide range of organic compounds from small molecular metabolites to peptides and proteins. This paper addresses the study of data analysis using mass Spectrometry. It also includes the study of various methods of Mass Spectrometry data analysis, the tools and various applications of Mass Spectrometry.This review briefs on Mass Spectrometry technique, its application, usage, and tools used by Mass Spectrometry

  20. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectrometry Imaging

    OpenAIRE

    Smith, Donald F.; Kharchenko, Andriy; Konijnenburg, Marco; Klinkert, Ivo; Pasa-Tolic, Ljiljana; Ron M A Heeren

    2013-01-01

    Mass spectrometry imaging by Fourier transform ion cyclotron resonance yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for Fourier transform ion cyclotron resonance mass spectrometry imaging were investigated. Sub parts-per-million mass accuracy is demo...

  1. A novel isotope analysis of oxygen in uranium oxides: comparison of secondary ion mass spectrometry, glow discharge mass spectrometry and thermal ionization mass spectrometry

    Science.gov (United States)

    Pajo, L.; Tamborini, G.; Rasmussen, G.; Mayer, K.; Koch, L.

    2001-05-01

    The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n( 18O)/ n( 16O) measurements methods. Traditionally, n( 18O)/ n( 16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO +), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n( 18O)/ n( 16O) ratio in nuclear forensics science, the samples were solid, pure UO 2 or U 3O 8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n( 18O)/ n( 16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n( 18O)/ n( 16O) ratio of UO 2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.

  2. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass s...... in fundamental processes in protein synthesis as well as methylations that confer resistance to antibiotics. For several rRNA sites, MALDI-MS has served an essential role in the identification of the enzymes that catalyze the modifications....

  3. Ambient mass spectrometry imaging: plasma assisted laser desorption ionization mass spectrometry imaging and its applications.

    Science.gov (United States)

    Feng, Baosheng; Zhang, Jialing; Chang, Cuilan; Li, Liping; Li, Min; Xiong, Xingchuang; Guo, Chengan; Tang, Fei; Bai, Yu; Liu, Huwei

    2014-05-01

    Mass spectrometry imaging (MSI) has been widely used in many research areas for the advantages of providing informative molecular distribution with high specificity. Among the recent progress, ambient MSI has attracted increasing interests owing to its characteristics of ambient, in situ, and nonpretreatment analysis. Here, we are presenting the ambient MSI for traditional Chinese medicines (TCMs) and authentication of work of art and documents using plasma assisted laser desorption ionization mass spectrometry (PALDI-MS). Compared with current ambient MSI methods, an excellent average resolution of 60 μm × 60 μm pixel size was achieved using this system. The feasibility of PALDI-based MSI was confirmed by seal imaging, and its authentication applications were demonstrated by imaging of printed Chinese characters. Imaging of the Radix Scutellariae slice showed that the two active components, baicalein and wogonin, mainly were distributed in the epidermis of the root, which proposed an approach for distinguishing TCMs' origins and the distribution of active components of TCMs and exploring the environmental effects of plant growth. PALDI-MS imaging provides a strong complement for the MSI strategy with the enhanced spatial resolution, which is promising in many research fields, such as artwork identification, TCMs' and botanic research, pharmaceutical applications, etc. PMID:24670045

  4. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    Science.gov (United States)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  5. Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. M. Spencer

    2011-08-01

    Full Text Available Chemical ionization mass spectrometry (CIMS enables online, fast, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem mass spectrometry. Both methods are capable of the measurement of hydroxyacetone, an analyte with minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. Measurement of hydroxyacetone and glycolaldehyde by these methods was demonstrated during the ARCTAS-CARB 2008 campaign and the BEARPEX 2009 campaign. Enhancement ratios of these compounds in ambient biomass burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site.

  6. The use of elemental mass spectrometry in phosphoproteomic applications.

    Science.gov (United States)

    Maes, Evelyne; Tirez, Kristof; Baggerman, Geert; Valkenborg, Dirk; Schoofs, Liliane; Encinar, Jorge Ruiz; Mertens, Inge

    2016-01-01

    Reversible phosphorylation is one of the most important post-translational modifications in mammalian cells. Because this molecular switch is an important mechanism that diversifies and regulates proteins in cellular processes, knowledge about the extent and quantity of phosphorylation is very important to understand the complex cellular interplay. Although phosphoproteomics strategies are applied worldwide, they mainly include only molecular mass spectrometry (like MALDI or ESI)-based experiments. Although identification and relative quantification of phosphopeptides is straightforward with these techniques, absolute quantification is more complex and usually requires for specific isotopically phosphopeptide standards. However, the use of elemental mass spectrometry, and in particular inductively coupled plasma mass spectrometry (ICP-MS), in phosphoproteomics-based experiments, allow one to absolutely quantify phosphopeptides. Here, these phosphoproteomic applications with ICP-MS as elemental detector are reviewed. Pioneering work and recent developments in the field are both described. Additionally, the advantage of the parallel use of molecular and elemental mass spectrometry is stressed. PMID:25139451

  7. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    International Nuclear Information System (INIS)

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  8. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  9. 13th International Mass Spectrometry Conference. Book of Abstracts

    International Nuclear Information System (INIS)

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.)

  10. THE APPLICATION OF MASS SPECTROMETRY TO THE STUDY OF MICROORGANISMS

    Science.gov (United States)

    The purpose of this research project is to use state-of-the-art mass spectrometric techniques, such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS), to provide "protein mass fingerprinting" and protein sequencing i...

  11. Desorption electrospray ionization-mass spectrometry of proteins

    Science.gov (United States)

    Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the detection of proteins ranging in molecular mass from 12 to 66 kDa. Proteins were uniformly deposited on a solid surface without pretreatment and analyzed with a DESI source coupled to a quadrupole ion trap mass spec...

  12. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  13. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  14. Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry.

    Science.gov (United States)

    Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M

    2015-03-01

    An ultra-high performance liquid chromatography based method, coupled to high resolution mass spectrometry (UHPLC-HRMS), was developed to permit the detection and quantification of various nitrofuran and chloramphenicol residues in a number of animal based food products. This method is based on the hydrolysis of covalently bound metabolites and derivatization with 2-nitrobenzaldehyde. Clean-up is achieved by a liquid/liquid and a reversed phase/solid phase extraction. Not only are the four conventional nitrofurans (nitrofurantoin, furazolidone, nitrofurazone and furaltadone) detected, but also nifursol, nitrovin and nifuroxazide. Furthermore, an underivatizable nitrofuran (nifurpirinol) and another banned drug (chloramphenicol) can be quantified as well. The compounds are detected in the form of their precursor ions, [M+H](+) and [M-H](-), respectively. The mass resolving power of 70,000 FWHM, and the applied mass window ensure sufficient selectivity and sensitivity. Confirmation is obtained by monitoring the HRMS resolved product ions which were derived from the unit-mass resolved precursor ions. The multiplexing capability of the utilized Orbitrap instrument provides not only highly selective, but also sensitive confirmatory signals. This method has been validated according to the CD 2002/657/EC for the following matrices: muscle, liver, kidney, fish, honey, eggs and milk. PMID:25682427

  15. Aerosol mass spectrometry systems and methods

    Science.gov (United States)

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  16. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E;

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for......Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial...

  17. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    Energy Technology Data Exchange (ETDEWEB)

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  18. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2007-01-01

    Full Text Available Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.Abbreviations: 2DE: two-dimensional gel electrophoresis; ABPP: activity-based protein profiling; CEA: carcinoembryonic antigen; CI: confidence interval; ESI: electrospray ionization; FP: fluorophosphonate; HPLC: high performance liquid chromatography; ICAT: isotope coded affi nitytags; IEF: isoelectric focusing; iTRAQ: isobaric tags for relative and absolute quantification; LCMS: combined liquid chromatography-mass spectrometry; LCMSMS: liquid chromatography tandem mass spectrometry; LOD: limit of detection; m/z: mass to charge ratio; MALDI: matrix-assisted laser desorption ionization; MS: mass spectrometry; MUDPIT: multidimensional protein identification technology; NAF: nipple aspirate fluid; PMF: peptide mass fingerprinting; PSA: prostate specifi c antigen; PTMs: post-translational modifications; RPMA: reverse phase protein microarray; SELDI: surface enhanced laser desorption ionization; TOF: time-of-flight.

  19. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  20. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  1. Desorption electrospray ionization mass spectrometry of intact bacteria

    Science.gov (United States)

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used to differentiate 7 bacterial species based on their measured DESI-mass spectral profile. Both Gram positive and Gram negative bacteria were tested and included Escherichia coli, Staphyloccocus aureus, Enterococcus sp., Bordete...

  2. Electrospray ionization combined with ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, G.J.; Glish, G.L.; McLuckey, S.A. (Oak Ridge National Laboratory, TN (USA))

    1990-07-01

    Ions from a variety of molecules, formed via electrospray, have been injected into and analyzed with a quadrupole ion trap mass spectrometer. Examples are shown in which one or more stages of mass spectrometry (e.g., mass spectrometry/mass spectrometry) have been performed on both multiply charged anions and cations. Compounds for which data are described include the disodium salt of 2-hydroxynapthalene-3,6-disulfonic acid, Direct Red 81, bradykinin, melittin, cytochrome c, myoglobin, and bovine albumin. For some compounds, notable the sulfonates, evidence is presented for the injection of highly solvated ions that desolvate within the ion trap. The cations derived from the peptides, on the other hand, appear to be essentially desolvated prior to injection into the ion trap.

  3. Use of mass spectrometry for imaging metabolites in plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Jin; Perdian, David; Song, Zhihong; Yeung, Edward; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  4. Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Yinzhi Lang

    2014-06-01

    Full Text Available Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.

  5. Use of Mass spectrometry for imaging metabolites in plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Perdian, David C.; Song, Zhihong; Yeung, Edward S.; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  6. Nanowire dopant measurement using secondary ion mass spectrometry

    Science.gov (United States)

    Chia, A. C. E.; Dhindsa, N.; Boulanger, J. P.; Wood, B. A.; Saini, S. S.; LaPierre, R. R.

    2015-09-01

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be from the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.

  7. Radiocarbon accelerator mass spectrometry (AMS) sample preparation laboratory in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Kita D.; Gomes, Paulo R. S.; Anjos, Roberto M. dos; Linares, Roberto; Queiroz, Eduardo; Oliveira, Fabiana M. de; Cardozo, Laio [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Carvalho, Carla R.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: For decades Accelerator Mass Spectrometry has been widely used for radiocarbon measurements all over the world with application in several fields of science from archaeology to geosciences. This technique provides ultrasensitive analysis of reduced size samples or even specific compounds since sample atoms are accelerated to high energies and measured using nuclear particle detectors. Sample preparation is extremely important for accurate radiocarbon measurement and includes chemical pre-treatment to remove all possible contaminants. For beam extraction in the accelerator ion source, samples are usually converted to graphite. In this work we report a new radiocarbon sample preparation facility installed at the Physics Institute of Universidade Federal Fluminense (UFF), in Brazil. At the Nuclear Chronology Laboratory (LACRON) samples are chemically treated and converted to carbon dioxide by hydrolysis or combustion. A stainless steel based vacuum line was constructed for carbon dioxide separation and graphitization is performed in sealed quartz tubes in a muffle oven. Successful graphite production is important to provide stable beam currents and to minimize isotopic fractionation. Performance tests for graphite production are currently under way and isotopic analysis will soon be possible with the acquisition of a Single Stage AMS System by our group. The Single Stage Accelerator produced by National Electrostatic Corporation is a 250 kV air insulated accelerator especially constructed to measure the amount of {sup 14}C in small modern graphite samples to a precision of 0.3 % or better. With the installation of such equipment in the first half of 2012, UFF will be ready to perform the 14C -AMS technique. (author)

  8. Noise reduction in negative-ion quadrupole mass spectrometry

    Science.gov (United States)

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  9. Knudsen effusion mass spectrometry. Chapter 20

    International Nuclear Information System (INIS)

    The Knudsen effusion mass spectrometric method for the determination of vapour pressures and thermodynamic properties is described. The aim of the article is to give a general introduction to the method rather than to give a critical review of the technique. The latest developments in this area of research are reviewed by the peers in the field during the triennial international mass spectrometric conferences. The Knudsen effusion mass spectrometric method is being applied for thermodynamic measurements. In recent times, laser vaporisation mass spectrometric methods have emerged as a source of determination of vapour pressures at very high temperatures and beyond the pressure regime far exceeding Knudsen effusion range

  10. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  11. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectrometry Imaging

    CERN Document Server

    Smith, Donald F; Konijnenburg, Marco; Klinkert, Ivo; Pasa-Tolic, Ljiljana; Heeren, Ron M A

    2013-01-01

    Mass spectrometry imaging by Fourier transform ion cyclotron resonance yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for Fourier transform ion cyclotron resonance mass spectrometry imaging were investigated. Sub parts-per-million mass accuracy is demonstrated over an entire tissue section. Ion abundance fluctuations are corrected for by addition of total and relative ion abundances for a root-mean-square error of 0.158 ppm on 16,764 peaks. A new approach for visualization of Fourier transform ion cyclotron resonance mass spectrometry imaging data at high resolution is presented. The Mosaic Data-cube provides a flexible means to visualize the entire mass range at a mass spectral bin width of 0.001 Dalton. The high resolution Mosaic Data-cube resolves spectral features ...

  12. T cells recognizing a peptide contaminant undetectable by mass spectrometry

    DEFF Research Database (Denmark)

    Brezar, Vedran; Culina, Slobodan; Østerbye, Thomas;

    2011-01-01

    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility...... complex (MHC) Class I-restricted ß-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid...

  13. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[14C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  14. Plasma Desorption Mass Spectrometry using TANDEM accelerator in National Industrial Research Inst. of Nagoya

    Energy Technology Data Exchange (ETDEWEB)

    Mizota, Takeshi; Nakao, Setsuo; Niwa, Hiroaki; Saito, Kazuo [Particle Beam Sceince Laboratory, Multi-Function Material Science Department, National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    2001-02-01

    Plasma Desorption Mass Spectrometry (PDMS) analysis was studied using TANDEM accelerator. The heavy ions of MeV range emit the secondary ions of atoms, molecules, polymers and clusters from the irradiated samples without destruction. The analysis system of PDMS designed and set-up using a mass spectrometer of Time of Flight and the TANDEM accelerator. The system performance was tested for C-60 fullerene on the surface of the samples using 11.2 MeV {sup 28}Si beams produced by the TANDEM accelerator of 1.7MV. The result shows that the hydrogen and hydrocarbons can be analyzed in the range of 1amu unit. The resolution (M/{delta}M) of the Mass Spectrometry system is confirmed to be about 1000 from the separation of the 720 and 721amu peaks, which is attributed to the C-60 fullerene including {sup 13}C atoms. (H. Katsuta)

  15. Structure Determination of Natural Products by Mass Spectrometry

    Science.gov (United States)

    Biemann, Klaus

    2015-07-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  16. Hybrid ion mobility and mass spectrometry as a separation tool.

    Science.gov (United States)

    Ewing, Michael A; Glover, Matthew S; Clemmer, David E

    2016-03-25

    Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) has seen spectacular growth over the last two decades. Increasing IMS sensitivity and capacity with improvements in MS instrumentation have driven this growth. As a result, a diverse new set of techniques for separating ions by their mobility have arisen, each with characteristics that make them favorable for some experiments and some mass spectrometers. Ion mobility techniques can be broken down into dispersive and selective techniques based upon whether they pass through all mobilities for later analysis by mass spectrometry or select ions by mobility or a related characteristic. How ion mobility techniques fit within a more complicated separation including mass spectrometry and other techniques such as liquid chromatography is of fundamental interest to separations scientists. In this review we explore the multitude of ion mobility techniques hybridized to different mass spectrometers, detailing current challenges and opportunities for each ion mobility technique and for what experiments one technique might be chosen over another. The underlying principles of ion mobility separations, including: considerations regarding separation capabilities, ion transmission, signal intensity and sensitivity, and the impact that the separation has upon the ion structure (i.e., the possibility of configurational changes due to ion heating) are discussed.

  17. Analysis of proteins and proteomes by mass spectrometry.

    Science.gov (United States)

    Mann, M; Hendrickson, R C; Pandey, A

    2001-01-01

    A decade after the discovery of electrospray and matrix-assisted laser desorption ionization (MALDI), methods that finally allowed gentle ionization of large biomolecules, mass spectrometry has become a powerful tool in protein analysis and the key technology in the emerging field of proteomics. The success of mass spectrometry is driven both by innovative instrumentation designs, especially those operating on the time-of-flight or ion-trapping principles, and by large-scale biochemical strategies, which use mass spectrometry to detect the isolated proteins. Any human protein can now be identified directly from genome databases on the basis of minimal data derived by mass spectrometry. As has already happened in genomics, increased automation of sample handling, analysis, and the interpretation of results will generate an avalanche of qualitative and quantitative proteomic data. Protein-protein interactions can be analyzed directly by precipitation of a tagged bait followed by mass spectrometric identification of its binding partners. By these and similar strategies, entire protein complexes, signaling pathways, and whole organelles are being characterized. Posttranslational modifications remain difficult to analyze but are starting to yield to generic strategies.

  18. Principles of isotopic analysis by mass spectrometry

    International Nuclear Information System (INIS)

    The use of magnetic sector field mass spectrometers in isotopic analysis, especially for nitrogen gas, is outlined. Two measuring methods are pointed out: the scanning mode for significantly enriched samples and the double collector method for samples near the natural abundance of 15N. The calculation formulas are derived and advice is given for corrections. (author)

  19. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  20. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions. PMID:20530821

  1. Mass spectrometry instrumentation in TN (Novillo Tokamak)

    International Nuclear Information System (INIS)

    The mass spectrophotometry in the residual gases analysis in high vacuum systems, in particular in the Novillo Tokamak (TN), where pressures are required to be of the order 10-7 Torr, is carried out through an instrumental support with infrastructure configured in parallel to the experimental planning in this device. In the Novillo as well as other Tokamaks, it is necessary to condition the vacuum chamber for improving the main discharge parameters. At the present time, in this Tokamak the conditioning quality is presented determined by means of a mass spectrophotometer. A general instrumental description is presented associated with the Novillo conditioning, as well as the spectras obtained before and after operation. (Author)

  2. Calcium isotope analysis by mass spectrometry.

    Science.gov (United States)

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  3. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  4. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with sensiti

  5. Characterisation of cholera toxin by liquid chromatography - Electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Wils, E.R.J.

    1999-01-01

    Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were inve

  6. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  7. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle;

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of...

  8. Multiple parallel mass spectrometry for lipid and vitamin D analysis

    Science.gov (United States)

    Liquid chromatography (LC) coupled to mass spectrometry (MS) has become the method of choice for analysis of complex lipid samples. Two types of ionization sources have emerged as the most commonly used to couple LC to MS: atmospheric pressure chemical ionization (APCI) and electrospray ionization ...

  9. Analysis of essential oils by gas chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masada, Y.

    1976-01-01

    The book is in two parts: first part Essential Oil includes compositae; labiatae; verbenaceae; oleaceae; umbelliferae; myrtaceae; euphorbiaceae; rutaceae; geraniaceae; rosaceae; lauraceae; myristicaceae; anonaceae; santalaceae; moraceae; piperaceae; zingiberaceae; araceae; gramineae; and cupressaceae written in English and Japanese. Part two includes essential oil; gas chromatography, and mass spectrometry written in Japanese. (DP)

  10. Negative ion-atmospheric pressure photoionization-mass spectrometry

    NARCIS (Netherlands)

    Kauppila, T.J.; Kotiaho, T.; Kostiainen, R; Bruins, A.P.

    2004-01-01

    The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the sol

  11. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    Science.gov (United States)

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  12. May the Best Molecule Win: Competition ESI Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Sarah Laughlin

    2015-10-01

    Full Text Available Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences.

  13. Triple Bioaffinity Mass Spectrometry Concept for Thyroid Transporter Ligands

    NARCIS (Netherlands)

    Aqai, P.; Fryganas, C.; Mizuguchi, M.; Haasnoot, W.; Nielen, M.W.F.

    2012-01-01

    For the analysis of thyroid transporter ligands, a triple bioaffinity mass spectrometry (BioMS) concept was developed, with the aim at three different analytical objectives: rapid screening of any ligand, confirmation of known ligands in accordance with legislative requirements, and identification o

  14. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    OpenAIRE

    Duncan, Mark W.; Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed.

  15. Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry.

    NARCIS (Netherlands)

    Prasad, T.S.; Harsha, H.C.; Keerthikumar, S.; Sekhar, N.R.; Selvan, L.D.N.; Kumar, P.; Pinto, S.M.; Muthusamy, B.; Subbannayya, Y.; Renuse, S.; Chaerkady, R.; Mathur, P.P.; Ravikumar, R.; Pandey, A.

    2012-01-01

    Candida glabrata is a common opportunistic human pathogen leading to significant mortality in immunosuppressed and immunodeficient individuals. We carried out proteomic analysis of C. glabrata using high resolution Fourier transform mass spectrometry with MS resolution of 60,000 and MS/MS resolution

  16. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, A.K.; Werf, M.J. van der; Bijlsma, S.; Werff-van der Vat, B.J.C. van der; Jellema, R.H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or biologi

  17. Mass Spectrometry Based Identifications of LMW Glutenin Subunits

    Science.gov (United States)

    Tandem mass spectrometry (MS/MS) is routinely used to identify wheat endosperm proteins. In this method, peptide fragmentation patterns generated by MS/MS are identified using a ‘search engine’ to compare the spectra to those generated in silico from protein sequence databases. Trypsin is a commonly...

  18. Exploring signal transduction networks using mass spectrometry-based proteomics

    NARCIS (Netherlands)

    Meijer, L.A.T.

    2012-01-01

    Mass spectrometry (MS)-based proteomics can be used to answer a diversity of biological questions. In this thesis, we describe the application of several MS-based proteomics approaches to get insight into several aspects of signal transduction. In Chapter 2, quantitative global phosphoproteomics are

  19. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    DEFF Research Database (Denmark)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias;

    2016-01-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid o......-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ....

  20. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  1. Miniaturized analytical systems for mass spectrometry-based protein studies

    OpenAIRE

    Abonnenc, Mélanie

    2009-01-01

    Current proteomic strategies depend strongly on the development of analytical methodologies and instrumentation. In parallel to the development of mass spectrometry (MS) - based proteomic workflows, microfluidic devices emerged in this field as a flexible tool for rapid and sensitive protein studies. In this context, the present work focuses on the development of miniaturized analytical systems for protein studies, especially by electrospray ionization mass spectrometric detection. Several ap...

  2. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  3. Structural Characterization of Carbohydrates by Fourier Transform Tandem Mass Spectrometry

    OpenAIRE

    Zhou, Wen; Håkansson, Kristina

    2011-01-01

    Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. T...

  4. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry

    NARCIS (Netherlands)

    Rosati, Sara; Yang, Yang; Barendregt, Arjan; Heck, Albert J R

    2014-01-01

    The molecular complexity of biopharmaceuticals puts severe demands on the bioanalytical techniques required for their comprehensive structural characterization. Mass spectrometry (MS) has gained importance in the analysis of biopharmaceuticals, taking different complementary approaches ranging from

  5. Critical comparison of mass analyzers for forensic hair analysis by ambient ionizations mass spectrometry

    NARCIS (Netherlands)

    Duvivier, W.F.; Beek, van T.A.; Nielen, M.W.F.

    2016-01-01

    Rationale
    Recently, several direct and/or ambient mass spectrometry (MS) approaches have been suggested for drugs of abuse imaging in hair. The use of mass spectrometers with insufficient selectivity could result in false-positive measurements due to isobaric interferences. Different mass analyz

  6. Mass spectrometry and mass spectrography with spark source

    International Nuclear Information System (INIS)

    The analysis of geological materials for traces of elements can be performed using mass-spectrometric isotopic dilution, as well as mass-spectrography with a spark source. The review contains the data on the application of above analyses in geochemical analysis

  7. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  8. Automatic Gain Control in Mass Spectrometry using a Jet Disrupter Electrode in an Electrodynamic Ion Funnel

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.; Bogdanov, Bogdan; Vilkov, Andrey N.; Prior, David C.; Buschbach, Michael A.; Tang, Keqi; Smith, Richard D.

    2005-02-01

    We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer. Ion beam regulation by an ion funnel is shown to provide an unbiased control to within a few percent of a targeted ion intensity or abundance. The utility of ion funnel AGC was evaluated using a protein tryptic digest analyzed with liquid chromatography Fourier transform ion cyclotron resonance (LC-FTICR) mass spectrometry. The ion population in the ICR cell was accurately controlled to a variety of different levels, which improved data quality and provided better mass measurement accuracy.

  9. Photoionization mass spectrometry of UF6

    International Nuclear Information System (INIS)

    The photoionization mass spectrum of 238UF6 was obtained. At 600 A = 20.66 eV, the relative ionic abundances were as follows: UF6+, 1.4; UF5+, 100; UF+, 17; UF3+, approx. 0.7; UF2+, very weak; UF+, very weak; U+, essentially zero. The adiabatic ionization potential for UF6 was 13.897 +- 0.005 eV. The production of UF5+ begins at approx. 887 A = 13.98 eV, at which energy the UF6+ partial cross section abruptly declines and then levels off. This behavior suggests the vague possibility of an isotope effect. The UF4+ signal begins at approx. 725 A = 17.10 eV, at which energy the UF5+ signal reaches a plateau value. The UF5+ photoionization yield curve displays some autoionization structure from its threshold to approx. 750 A

  10. Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics.

    Science.gov (United States)

    Helm, Dominic; Vissers, Johannes P C; Hughes, Christopher J; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I; Kuster, Bernhard

    2014-12-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A.

  11. Principle and analytical applications of resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Resonance ionization mass spectrometry (RIMS) is a very sensitive analytical technique for the detection of trace elements. This method is based on the excitation and ionization of atoms with resonant laser light followed by mass analysis. It allows element and, in some cases, isotope selective ionization and is applicable to most of the elements of the periodic table. A high selectivity can be achieved by applying three step photoionization of the elements under investigation and an additional mass separation for an unambiguous isotope assignment. An effective facility for resonance ionization mass spectrometry consists of three dye lasers which are pumped by two copper vapor lasers and of a linear time-of-flight spectrometer with a resolution better than 2500. Each copper vapor laser has a pulse repetition rate of 6,5 kHz and an average output power of 30 W. With such an apparatus measurements with lanthanide-, actinide-, and technetium-samples have been performed. By saturating the excitation steps and by using autoionizing states for ionization step a detection efficiency of 4 x 10-6 and 2,5 x 10-6 has been reached for plutonium and technetium, respectively, leading to a detection limit of less than 107 atoms in the sample. Measurements of isotope ratios of plutonium samples were in good agreement with mass-spectrometric data. The high elemental selectivity of the resonance ionization spectrometry could be demonstrated. (Authors)

  12. Data Processing for 3D Mass Spectrometry Imaging

    Science.gov (United States)

    Xiong, Xingchuang; Xu, Wei; Eberlin, Livia S.; Wiseman, Justin M.; Fang, Xiang; Jiang, You; Huang, Zejian; Zhang, Yukui; Cooks, R. Graham; Ouyang, Zheng

    2012-06-01

    Data processing for three dimensional mass spectrometry (3D-MS) imaging was investigated, starting with a consideration of the challenges in its practical implementation using a series of sections of a tissue volume. The technical issues related to data reduction, 2D imaging data alignment, 3D visualization, and statistical data analysis were identified. Software solutions for these tasks were developed using functions in MATLAB. Peak detection and peak alignment were applied to reduce the data size, while retaining the mass accuracy. The main morphologic features of tissue sections were extracted using a classification method for data alignment. Data insertion was performed to construct a 3D data set with spectral information that can be used for generating 3D views and for data analysis. The imaging data previously obtained for a mouse brain using desorption electrospray ionization mass spectrometry (DESI-MS) imaging have been used to test and demonstrate the new methodology.

  13. POTAMOS mass spectrometry calculator: computer aided mass spectrometry to the post-translational modifications of proteins. A focus on histones.

    Science.gov (United States)

    Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V

    2014-12-01

    Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies. PMID:25450216

  14. Trends in biochemical and biomedical applications of mass spectrometry

    Science.gov (United States)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However

  15. Microscale mass spectrometry systems, devices and related methods

    Science.gov (United States)

    Ramsey, John Michael

    2016-06-21

    Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.

  16. Ion source for high-precision mass spectrometry

    Science.gov (United States)

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  17. 吸头小柱微萃取-解吸电晕束电离质谱用于快速分析体液中的降压药物%Coupling Micropipette Tip-based Micro-extraction with Desorption Corona Beam Ionization Mass Spectrometry for Rapid Analysis of Antihypertensive Drugs in Body Fluid

    Institute of Scientific and Technical Information of China (English)

    游金清; 郝艳红; 黄云清; 程玉鹏; 孙文剑; 余琼卫; 袁必锋; 冯钰锜

    2013-01-01

    We developed a convenient method by coupling micropipette tip-based micro-extraction ( TBME) with desorption corona beam ionization mass spectrometry ( DCBI-MS) for rapid analysis of medicines in biological samples. The operation of TBME is easy and fast, and it can enrich the analyte concentration and eliminate background interference, which makes it suitable as a novel sample preparation method before ambient Ionization. We have systematically optimized the extraction conditions and the instrument parameters. The typical analysis procedure includes the steps of extraction, drying and DCBI-MS detection, and the all processes take less than three minutes. The method was successfully used for the analysis of antihypertensive drugs such as nifedipine, nitrendipine and nimodipine and illegal drugs in body fluid. The method is of considerable interest for broadening the application of ambient ionization mass spectrometry for body fluid analysis.%将C18ZipTip吸头小柱微萃取(Micropipette tip-based micro-extraction)与解吸电晕束电离质谱(Desorption corona beam ionization mass spectrometry,DCBI-MS)联用,用于快速分析复杂生物样品中的小分子药物.吸头小柱微萃取装置简单、操作快速,适合作为与常压直接离子化质谱技术联用的前处理技术,能实现分析物的富集和基质干扰的消除.优化了萃取条件和离子源的参数,最终选择20%(V/V)乙腈溶液作为上样溶液,4 μL乙腈作为解吸液.分析全过程包括萃取、自然挥干、电晕束解析电离等步骤,并可以在3 min内完成.此方法用于血浆中的地平类降血压药及尿液中氯胺酮的快速分析,结果满意.这种方法拓展了常压直接离子化质谱技术在体液分析中的应用.

  18. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  19. A resonance photoionization sputtered neutral mass spectrometry instrument for submicron microarea analysis of ULSI devices

    Science.gov (United States)

    Shichi, H.; Osabe, S.; Sugaya, M.; Ino, T.; Kakibayashi, H.; Kanehori, K.; Mitsui, Y.

    2003-01-01

    The lateral profile of boron in an actual microdevice was obtained by 3D analysis—using the newly developed resonance photoionization sputtered neutral mass spectrometry (SNMS) instrument—with a detection limit of 10 18 atoms/cm 3. The primary ion beam optical system of the instrument uses a Ga liquid metal ion source. The Ga beam diameter was about 30 nm and the ion beam current was about 60 pA. The analysis time to get the profile was about 40 min. Boron was excited by using one ultraviolet photon (249.7 nm) and by one visible photon (563 nm), and then it was ionized by an infrared photon (1064 nm): the so-called three-color resonance ionization. Lateral diffusion profile of boron in the device after chemical vapor deposition (CVD) including heating the wafer was also obtained. These results mean that this SNMS instrument will enable us to easily determine semiconductor processing conditions.

  20. Metabolism of halogenated compounds in the white rot fungus Bjerkandera adusta studied by membrane inlet mass spectrometry and tandem mass spectrometry

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Lauritsen, F.R.; Patrick, J.S.;

    1996-01-01

    Membrane inlet mass spectrometry has been used for the characterization of halogenated organic compounds produced by the fungus Bjerkandera adusta. Using this technique, electron impact-, chemical ionization-, electron capture negative chemical ionization-mass spectra and tandem mass spectra were...

  1. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  2. New Types of Ionization Sources for Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle (Contractor) and MDS Sciex (Participant) and ESA, Inc. (Participant) is to research, develop and apply new types of ionization sources and sampling/inlet systems for analytical mass spectrometry making use of the Participants state-of-the-art atmospheric sampling mass spectrometry electrochemical cell technology instrumentation and ancillary equipment. The two overriding goals of this research project are: to understand the relationship among the various instrumental components and operational parameters of the various ion sources and inlet systems under study, the chemical nature of the gases, solvents, and analytes in use, and the nature and abundances of the ions ultimately observed in the mass spectrometer; and to develop new and better analytical and fundamental applications of these ion sources and inlet systems or alternative sources and inlets coupled with mass spectrometry on the basis of the fundamental understanding obtained in Goal 1. The end results of this work are expected to be: (1) an expanded utility for the ion sources and inlet systems under study (such as the analysis of new types of analytes) and the control or alteration of the ionic species observed in the gas-phase; (2) enhanced instrument performance as judged by operational figures-of-merit such as dynamic range, detection limits, susceptibility to matrix signal suppression and sensitivity; and (3) novel applications (such as surface sampling with electrospray) in both applied and fundamental studies. The research projects outlined herein build upon work initiated under the previous CRADA between the Contractor and MDS Sciex on ion sources and inlet systems for mass spectrometry. Specific ion source and inlet systems for exploration of the fundamental properties and practical implementation of these principles are given.

  3. Application of Mass Spectrometry in the Synthesis and Characterization of Metal Nanoclusters.

    Science.gov (United States)

    Lu, Yizhong; Chen, Wei

    2015-11-01

    In recent years, mass spectrometry has been widely used in the characterization of metal nanoclusters. In this Feature, we first give an introductory tutorial on mass spectrometry and then highlight the versatile applications of mass spectrometry in accurately analyzing core size, atom-level composition, charge states, etc. of metal nanoclusters and size evolution during synthesis. Finally, some perspectives on the future applications of mass spectrometry in nanocluster research are given. PMID:26086315

  4. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  5. An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    CERN Document Server

    Shuai, P; Zhang, Y H; Xu, H S; Litvinov, Yu A; Wang, M; Tu, X L; Blaum, K; Zhou, X H; Yuan, Y J; Yan, X L; Chen, X C; Chen, R J; Fu, C Y; Ge, Z; Huang, W J; Xing, Y M; Zeng, Q

    2016-01-01

    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using the cocktail beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in the straight section of storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.

  6. A nested mixture model for protein identification using mass spectrometry

    CERN Document Server

    Li, Qunhua; Stephens, Matthew; 10.1214/09-AOAS316

    2010-01-01

    Mass spectrometry provides a high-throughput way to identify proteins in biological samples. In a typical experiment, proteins in a sample are first broken into their constituent peptides. The resulting mixture of peptides is then subjected to mass spectrometry, which generates thousands of spectra, each characteristic of its generating peptide. Here we consider the problem of inferring, from these spectra, which proteins and peptides are present in the sample. We develop a statistical approach to the problem, based on a nested mixture model. In contrast to commonly used two-stage approaches, this model provides a one-stage solution that simultaneously identifies which proteins are present, and which peptides are correctly identified. In this way our model incorporates the evidence feedback between proteins and their constituent peptides. Using simulated data and a yeast data set, we compare and contrast our method with existing widely used approaches (PeptideProphet/ProteinProphet) and with a recently publis...

  7. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  8. Quantitative aspects of inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  9. Analysis of tear glucose concentration with electrospray ionization mass spectrometry.

    Science.gov (United States)

    Taormina, Christopher R; Baca, Justin T; Asher, Sanford A; Grabowski, Joseph J; Finegold, David N

    2007-02-01

    We have developed a mass spectrometry-based method that allows one to accurately determine the glucose concentration of tear fluid. We used a 1 microL micro-capillary to collect tear fluid from the tear meniscus with minimal irritation of the eye. We analyzed the 1 muL volume of collected tear fluid with liquid-chromatography electrospray ionization mass spectrometry with the use of D-glucose-6,6-d2 as an internal standard. Repeated measurements and a recovery experiment on pooled, onion-induced tears showed that the analysis of the glucose in tears was precise (4% relative standard deviation) and provided 100% recovery. We found the tear glucose concentration of one fasting nondiabetic subject to be 13 to 51 microM while the onion-induced tear glucose concentration of a different nondiabetic subject to be 211 to 256 microM. PMID:17084090

  10. Mass spectrometry as a quantitative tool in plant metabolomics.

    Science.gov (United States)

    Jorge, Tiago F; Mata, Ana T; António, Carla

    2016-10-28

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644967

  11. Decoding signalling networks by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Mann, Matthias

    2010-01-01

    Signalling networks regulate essentially all of the biology of cells and organisms in normal and disease states. Signalling is often studied using antibody-based techniques such as western blots. Large-scale 'precision proteomics' based on mass spectrometry now enables the system-wide characteriz......Signalling networks regulate essentially all of the biology of cells and organisms in normal and disease states. Signalling is often studied using antibody-based techniques such as western blots. Large-scale 'precision proteomics' based on mass spectrometry now enables the system...... perturbation. Current studies focus on phosphorylation, but acetylation, methylation, glycosylation and ubiquitylation are also becoming amenable to investigation. Large-scale proteomics-based signalling research will fundamentally change our understanding of signalling networks....

  12. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  13. Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Knapman, Tom W; Morton, Victoria L; Stonehouse, Nicola J; Stockley, Peter G; Ashcroft, Alison E

    2010-10-30

    We have combined ion mobility spectrometry-mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways.

  14. Standards for uranium hexafluoride (UF6) mass spectrometry

    OpenAIRE

    Richter, Stephan; Kühn, H.; TRUYENS Jan; MIALLE SÉBASTIEN; Aregbe, Yetunde

    2013-01-01

    For UF6 mass spectrometry two types of "standards" are equally important: firstly "documentary standards" which describe specific measurement techniques and associated calculations, and secondly "material standards" which are preferentially SItraceable certified isotopic reference materials, as e.g. provided by the European Commission's Institute for Reference Materials and Measurements (IRMM). Recently the IRMM has upgraded its facilities for uranium isotopic measurements using uranium he...

  15. Quantitative Proteomics Using Ultralow Flow Capillary Electrophoresis–Mass Spectrometry

    OpenAIRE

    Faserl, Klaus; Kremser, Leopold; Müller, Martin; Teis, David; Lindner, Herbert H.

    2015-01-01

    In this work, we evaluate the incorporation of an ultralow flow interface for coupling capillary electrophoresis (CE) and mass spectrometry (MS), in combination with reversed-phase high-pressure liquid chromatography (HPLC) fractionation as an alternate workflow for quantitative proteomics. Proteins, extracted from a SILAC (stable isotope labeling by amino acids in cell culture) labeled and an unlabeled yeast strain were mixed and digested enzymatically in solution. The resulting peptides wer...

  16. Proteomics and Mass Spectrometry Applications in Biomedical Research

    OpenAIRE

    Chow, M; Zheng, R; Silva-Sanchez, C.; Koh, J; Chen, S.; Diaz, C.

    2011-01-01

    Proteomics and mass spectrometry have provided unprecedented tools for fast, accurate, high throughput biomolecular separation and characterization, which are indispensable towards understanding the biological and medical systems. Studying at the protein level allows researchers to investigate how proteins, their dynamics and modifications affect cellular processes and how cellular processes and the environment affect proteins. The mission of our facility is to provide excellent service and t...

  17. Resonance ionization mass spectrometry at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Two approaches to Resonance Ionization Mass Spectrometry (RIMS) at Los Alamos National Laboratory are discussed. The first is the use of continuous-wave dye lasers as the ionization source, and the use of pulse counting detection; and results are presented for lutetium and technetium. The second approach is the use of multiphoton resonances in the pulsed laser excitation of atoms. Experiments with 2 + 1 [photons to resonance plus photons to ionize] RIMS schemes for several elements are discussed. (author)

  18. Extractive Electrospray Ionization Mass Spectrometry for Uranium Chemistry Studies

    OpenAIRE

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; OUYANG Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pre...

  19. Accelerator mass spectrometry for quantitative in vivo tracing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  20. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  1. Evaluation of Physiological Amino Acids Profiling by Tandem Mass Spectrometry

    OpenAIRE

    Filee, Romain; Schoos, Roland; Boemer, François

    2013-01-01

    Background: Nowadays, the most conventional method to quantify physiological amino acids consists in ion exchange chromatography (IEC) followed by post-column ninhydrin derivatization and UV detection at two wavelengths. Unfortunately, the technique presents some drawbacks such as long run time, large sample volume, and specific costs associated to the maintenance of a dedicated instrument. Therefore, we aimed to switch towards a mass spectrometry approach.

  2. Report of the consultants' meeting on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. Its use within the IAEA is recommended by the consultants in this meeting. The IAEA programs in which the technology would be useful and beneficial are: safeguards, physical and chemical sciences, human health, food and agriculture, radioactive waste management, radiation safety, industry and earth sciences

  3. Quality management in clinical application of mass spectrometry measurement systems.

    Science.gov (United States)

    Vogeser, Michael; Seger, Christoph

    2016-09-01

    Thanks to highly specific analyte detection and potentially complete compensation for matrix variables based on the principle of stable isotope derivative internal standardisation, mass spectrometry methods allow the development of diagnostic tests of outstanding analytical quality. However, these features per se do not guarantee reliability of tests. A wide range of factors can introduce analytical errors and inaccuracy due to the extreme complexity of the methods involved. Furthermore, it can be expected that the application patterns of MS methods in diagnostic laboratories will change substantially during the coming years - with presumably less specialised laboratories implementing mass spectrometry. Introduction of highly automated test solutions by manufacturers will require some trade-off between operation convenience, sample throughput and analytical performance. Structured and careful quality and risk management is therefore crucial to translate the analytical power of mass spectrometry into actionable and reliable results for individual patients' care and to maintain the degree of reliability that is expected from MS methods in clinical pathology. This reflection review discusses whether particular quality assurance tools have to be applied for MS-based diagnostic tests and whether these tools are different from those applied for optical- and affinity-based standard tests. Both pre-implementation strategies and surveillance of assays with assessment of metadata in routine testing are addressed. The release of the CLSI guideline C62-A in 2014 was a substantial achievement in this context because it addresses a wide spectrum of relevant issues in quality assurance of mass spectrometry-based clinical tests. However, the translation of this best practice document into individual laboratory settings is likely to be heterogeneous.

  4. Characterization of Enterobacteria using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Pribil, Patrick; Fenselau, Catherine

    2005-09-15

    A method is proposed for the rapid classification of Gram-negative Enterobacteria using on-slide solubilization and trypsin digestion of proteins, followed by MALDI-TOF MS analysis. Peptides were identified from tryptic digests using microsequencing by tandem mass spectrometry and database searches. Proteins from the outer membrane family (OMP) were consistently identified in the Enterobacteria Escherichia coli, Enterobacter cloacae, Erwinia herbicola, and Salmonella typhimurium. Database searches indicate that these OMP peptides observed are unique to the Enterobacteria order. PMID:16159146

  5. Cholesterol efflux analyses using stable isotopes and mass spectrometry

    OpenAIRE

    Robert J Brown; Shao, Fei; Baldán, Ángel; Albert, Carolyn J.; Ford, David A.

    2012-01-01

    Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and media content of [d7]-cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple quadrupole ESI-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning and ...

  6. Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Heath, Brandi S.; Roach, Patrick J.; Cazares, Lisa H.; Semmes, O. John

    2012-01-03

    We present the first results showing the ambient imaging of biological samples in their native environment using nanospray desorption ionization (nanoDESI) mass spectrometry. NanoDESI is an ambient pressure ionization technique that enables precise control of ionization of molecules from substrates. We demonstrate highly sensitive and robust analysis of tissue samples with high spatial resolution (<12 {mu}m) without sample preparation, which will be essential for applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.

  7. Economics of tandem mass spectrometry screening of neonatal inherited disorders

    OpenAIRE

    Pandor, A; Eastham, J.; Chilcott, J.; Paisley, S; Beverley, C.

    2006-01-01

    Objectives: The aim of this study was to evaluate the cost-effectiveness of neonatal screening for phenylketonuria (PKU) and medium-chain acyl-coA dehydrogenase (MCAD) deficiency using tandem mass spectrometry (tandem MS). Methods: A systematic review of clinical efficacy evidence and cost-effectiveness modeling of screening in newborn infants within a UK National Health Service perspective was performed. Marginal costs, life-years gained, and cost-effectiveness acceptability curves are p...

  8. Filament power regulator for thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    A device has been developed that will control the filament temperature in a thermal ionization mass spectrometer. The arrangement is superior to past methods to control this critical parameter. The operating principle lies in the feature of filament power control as contrasted with the formerly used voltage or current controls. Reproducibility and stability of ion beams showed great improvement. The mass spectrometer was developed to analyze for parts-per-billion concentrations of uranium in water samples

  9. Significant advancement of mass spectrometry imaging for food chemistry.

    Science.gov (United States)

    Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro

    2016-11-01

    Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields. PMID:27211639

  10. Significant advancement of mass spectrometry imaging for food chemistry.

    Science.gov (United States)

    Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro

    2016-11-01

    Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields.

  11. History of mass spectrometry at the Olympic Games.

    Science.gov (United States)

    Hemmersbach, Peter

    2008-07-01

    Mass spectrometry has played a decisive role in doping analysis and doping control in human sport for almost 40 years. The standard of qualitative and quantitative determinations in body fluids has always attracted maximum attention from scientists. With its unique sensitivity and selectivity properties, mass spectrometry provides state-of-the-art technology in analytical chemistry. Both anti-doping organizations and the athletes concerned expect the utmost endeavours to prevent false-positive and false-negative results of the analytical evidence. The Olympic Games play an important role in international sport today and are milestones for technical development in doping analysis. This review of the part played by mass spectrometry in doping control from Munich 1972 to Beijing 2008 Olympics gives an overview of how doping analysis has developed and where we are today. In recognizing the achievements made towards effective doping control, it is of the utmost importance to applaud the joint endeavours of the World Anti-Doping Agency, the International Olympic Committee, the international federations and national anti-doping agencies to combat doping. Advances against the misuse of prohibited substances and methods, which are performance-enhancing, dangerous to health and violate the spirit of sport, can be achieved only if all the stakeholders work together.

  12. SVSCf plasma desorption mass spectrometry: recent advances and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamensky, I.; Craig, A.G.

    1987-01-01

    SVSCf plasma desorption mass spectrometry (PDMS) as utilized in the BIO-ION instruments is described. The sensitivity of the technique is investigated for varying amounts of bovine insulin. The results show accurate mass assignment for pmole amounts of sample. Several methods, currently used for sample preparation in PDMS, are described. Spectra of the antibiotic nisin using two different sample preparation techniques show significant variation. The fragmentation pattern of reduced acetylated maltoheptaose is also presented. The initial results obtained using a new PDMS instrument equipped with variable flight path are shown. The increased resolution is illustrated using the extended flight path to measure the molecular ion region of the maltoheptaose.

  13. Tissue MALDI Mass Spectrometry Imaging (MALDI MSI) of Peptides.

    Science.gov (United States)

    Beine, Birte; Diehl, Hanna C; Meyer, Helmut E; Henkel, Corinna

    2016-01-01

    Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique to visualize molecular features of tissues based on mass detection. This chapter focuses on MALDI MSI of peptides and provides detailed operational instructions for sample preparation of cryoconserved and formalin-fixed paraffin-embedded (FFPE) tissue. Besides sample preparation we provide protocols for the MALDI measurement, tissue staining, and data analysis. On-tissue digestion and matrix application are described for two different commercially available and commonly used spraying devices: the SunCollect (SunChrom) and the ImagePrep (Bruker Daltonik GmbH).

  14. Synchrotron radiation, neutron, and mass spectrometry techniques at user facilities

    OpenAIRE

    Sutton, S. R.; Caffee, M. W.; Dove, M. T.

    2006-01-01

    User research facilities around the world offer tremendous opportunities for scientific experimentation by members of the Earth science community. Synchrotron radiation sources, neutron sources, mass spectrometers, and others represent a powerful force in tackling complex scientific problems. In these techniques, Earth materials are bombarded with beams of ions, subatomic particles and/or photons to learn the secr...

  15. Simulations of the isochronous mass spectrometry at the HIRFL-CSR

    Science.gov (United States)

    Chen, R. J.; Yuan, Y. J.; Wang, M.; Xu, X.; Shuai, P.; Zhang, Y. H.; Yan, X. L.; Xing, Y. M.; Xu, H. S.; Zhou, X. H.; Livinov, Y. A.; Litvinov, S.; Chen, X. C.; Fu, C. Y.; Ge, W. W.; Ge, Z.; Hu, X. J.; Huang, W. J.; Liu, D. W.; Zeng, Q.; Zhang, W.

    2015-11-01

    A Monte-Carlo simulation code, named as SimCSR, has been developed for the isochronous mass spectrometry experiments in the experimental storage ring (CSRe). The revolution times of the fragments ions stored in the CSRe, which were produced in the fragmentation of {}58{Ni} primary beam are reproduced very well by the SimCSR, although only linear components are considered. The standard deviation of the revolution time is found to be strongly affected by the phase slip factor, the width of the relative momentum difference and the instability of magnetic field. Based on the simulations, we outline and discuss the methods to reduce the standard deviation of the revolution time.

  16. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Redshaw, M., E-mail: redshaw@nscl.msu.edu [Michigan State University, NSCL (United States); Barquest, B. R.; Bollen, G.; Bustabad, S. E. [Michigan State University, NSCL and Department of Physics and Astronomy (United States); Campbell, C. M. [LBNL (United States); Ferrer, R. [University of Leuven, Department of Physics and Astronomy (Belgium); Gehring, A. [Michigan State University, NSCL and Department of Chemistry (United States); Kwiatkowski, A. A. [Michigan State University, NSCL and Department of Physics and Astronomy (United States); Lincoln, D. L. [Michigan State University, NSCL (United States); Morrissey, D. J.; Pang, G. K. [Michigan State University, NSCL and Department of Chemistry (United States); Ringle, R.; Schwarz, S. [Michigan State University, NSCL (United States)

    2011-07-15

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  17. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    Science.gov (United States)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  18. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    Science.gov (United States)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  19. Analysis of aromatic hydrocarbons in petroleum fractions using gas chromatography, mass spectrometry and mass fragmentrography

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka, V.

    1980-01-01

    Mass spectrometry in combination with gas chrom. used to analyze hydrocarbon mixtures results in qualit. and semi-quant. data regarding composition of the analyzed mixture. Use of mass fragmentrography during chromatographic separation will allow simultaneous recording of changes in intensity of characteristic ions and thus determine the retention index, for this substance. Combining mass spectre and retention index, it is possible to identify the given subst. or limit the number of possible combinations.

  20. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    Science.gov (United States)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  1. Radioactive beam experiments using the Fragment Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.

    1994-04-01

    The Fragment Mass Analyzer (FMA) is a recoil mass spectrometer that has many potential applications in experiments with radioactive beams. The FMA can be used for spectroscopic studies of nuclei produced in reactions with radioactive beams. The FMA is also an ideal tool for studying radiative capture reactions of astrophysical interest, using inverse kinematics. The FMA has both mass and energy dispersion, which can be used to efficiently separate the reaction recoils from the primary beam. When used with radioactive beams, the FMA allows the recoils from radiative capture reactions to be detected in a low-background environment.

  2. Estimation of the Beam Width in Magnetic Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    O.N. Peregudov

    2010-01-01

    Full Text Available A method for estimation of the beam width in magnetic sector mass spectrometers is proposed. This method consists in the restoration of the initial ion density distribution function in a beam cross-section before the receiving collector slit and can be used for the qualitative estimation of the mass spectrometer ion-optical scheme.

  3. Geometrical beaming of stellar mass ULXs

    Science.gov (United States)

    Middleton, Matthew J.; King, Andrew

    2016-10-01

    The presence or lack of eclipses in the X-ray light curves of ultraluminous X-ray sources (ULXs) can be directly linked to the accreting system geometry. In the case where the compact object is stellar mass and radiates isotropically, we should expect eclipses by a main-sequence to sub-giant secondary star on the recurrence time-scale of hours to days. X-ray light curves are now available for large numbers of ULXs as a result of the latest XMM-Newton catalogue. We determine the amount of fractional variability that should be injected into an otherwise featureless light curve for a given set of system parameters as a result of eclipses and compare this to the available data. We find that the vast majority of sources for which the variability has been measured to be non-zero and for which available observations meet the criteria for eclipse searches, have fractional variabilities which are too low to derive from eclipses and so must be viewed such that θ ≤ cos- 1(R*/a). This would require that the disc subtends a larger angle than that of the secondary star and is therefore consistent with a conical outflow formed from super-critical accretion rates and implies some level of geometrical beaming in ULXs.

  4. Ion beam analysis and spectrometry techniques for Cultural Heritage studies

    International Nuclear Information System (INIS)

    The implementation of experimental techniques for the characterisation of Cultural heritage materials has to take into account some requirements. The complexity of these past materials requires the development of new techniques of examination and analysis, or the transfer of technologies developed for the study of advanced materials. In addition, due to precious aspect of artwork it is also necessary to use the non-destructive methods, respecting the integrity of objects. It is for this reason that the methods using radiations and/or particles play a important role in the scientific study of art history and archaeology since their discovery. X-ray and γ-ray spectrometry as well as ion beam analysis (IBA) are analytical tools at the service of Cultural heritage. This report mainly presents experimental developments for IBA: PIXE, RBS/EBS and NRA. These developments were applied to the study of archaeological composite materials: layered materials or mixtures composed of organic and non-organic phases. Three examples are shown: evolution of silvering techniques for the production of counterfeit coinage during the Roman Empire and in the 16. century, the characterization of composites or mixed mineral/organic compounds such as bone and paint. In these last two cases, the combination of techniques gave original results on the proportion of both phases: apatite/collagen in bone, pigment/binder in paintings. Another part of this report is then dedicated to the non-invasive/non-destructive characterization of prehistoric pigments, in situ, for rock art studies in caves and in the laboratory. Finally, the perspectives of this work are presented. (author)

  5. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  6. Lipidomic mass spectrometry and its application in neuroscience

    Institute of Scientific and Technical Information of China (English)

    Mabel; Enriquez-Algeciras; Sanjoy; K; Bhattacharya

    2013-01-01

    Central and peripheral nervous systems are lipid rich tissues. Lipids, in the context of lipid-protein complexes, surround neurons and provide electrical insulation for transmission of signals allowing neurons to remain embedded within a conducting environment. Lipids play a key role in vesicle formation and fusion in synapses. They provide means of rapid signaling, cell motility and migration for astrocytes and other cell types that surround and play supporting roles neurons. Unlike many other signaling molecules, lipids are capable of multiple signaling events based on the different fragments generated from a single precursor during each event. Lipidomics, until recently suffered from two major disadvantages:(1) level of expertise required an overwhelming amount of chemical detail to correctly identify a vast number of different lipids which could be close in their chemical reactivity; and(2) high amount of purified compounds needed by analytical techniques to determine their structures. Advances in mass spectrometry have enabled overcoming these two limitations. Mass spectrometry offers a great degree of simplicity in identification and quantification of lipids directly extracted from complex biological mixtures. Mass spectrometers can be regarded to as mass analyzers. There are those that separate and analyze the product ion fragments in space(spatial) and those which separate product ions in time in the same space(temporal). Databases and standardized instrument parameters have further aided the capabilities of the spatial instruments while recent advances in bioinformatics have made the identification and quantification possible using temporal instruments.

  7. Study of coal structure using secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Lytle, J.M.; Baer, D.R.; Thomas, M.T.

    1980-12-01

    Secondary-ion Mass Spectrometry (SIMS) is examined as a tool for studying the chemical structure of coal. SIMS has potential for analysis of coal because of the following characteristics: sensitivity to chemical structure; high sensitivity to all masses; application to solids; excellent depth resolution; and reasonable spatial resolution. SIMS spectra of solid coals show differences with respect to coal rank, the spectra of high rank coal being similar to that of graphite, and the spectra of low rank coal being similar to that of wood. Some functional group analysis is also possible using SIMS. Low rank coals show a larger peak at 15 amu indicating more methyl groups than found in the higher rank coals. Fragments with two and three carbon atoms have also been examined; much larger fragments are undoubtedly present but were not evaluated in this study. Examination of these groups, which are expected to contain valuable information on coal structure, is planned for future work. It has been observed that mineral atoms present in the coal have large secondary ion yields which complicate the interpretation of the spectra. Studies on mineral-free coals and model compounds are therefore recommended to facilitate determination of organic coal structure. In addition, mass spectrometry with much greater mass resolution will aid in distinguishing between various ion species.

  8. Exploring the high-mass components of humic acid by laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Chilom, Gabriela; Chilom, Ovidiu; Rice, James A

    2008-05-01

    Leonardite and Elliot soil humic acids have been analyzed by laser desorption ionization mass spectrometry (LDI MS) in the m/z 4000-200,000 range. Positive ion mass spectra for each humic acid obtained under optimum conditions showed a broad high-mass distribution between m/z 20,000 and 80,000. The dependence of the mass distribution on instrumental parameters and solution conditions was used to investigate the nature of the high-mass peaks from humic acid spectra. Our data suggests that macromolecular ions and humic acid aggregates have the same probability of occurrence while cluster ion formation has a low probability of occurrence. PMID:18421699

  9. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  10. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... spectrometry. The determined molecular masses are often sufficient for identification. If not, the proteins are subjected to mass spectrometric peptide mapping followed by database searches. Apart from protein identification, the protocol also yields information on posttranslational modifications. The protocol...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  11. Fourier transform ion cyclotron resonance mass spectrometry: a primer.

    Science.gov (United States)

    Marshall, A G; Hendrickson, C L; Jackson, G S

    1998-01-01

    This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.

  12. Two-Dimensional Aperture Coding for Magnetic Sector Mass Spectrometry

    Science.gov (United States)

    Russell, Zachary E.; Chen, Evan X.; Amsden, Jason J.; Wolter, Scott D.; Danell, Ryan M.; Parker, Charles B.; Stoner, Brian R.; Gehm, Michael E.; Brady, David J.; Glass, Jeffrey T.

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code.

  13. Two-dimensional aperture coding for magnetic sector mass spectrometry.

    Science.gov (United States)

    Russell, Zachary E; Chen, Evan X; Amsden, Jason J; Wolter, Scott D; Danell, Ryan M; Parker, Charles B; Stoner, Brian R; Gehm, Michael E; Brady, David J; Glass, Jeffrey T

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code. PMID:25510933

  14. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form (powder/

  15. Atmospheric-Pressure Chemical Ionization Tandem Mass Spectrometry (APGC/MS/MS) an Alternative to High-Resolution Mass Spectrometry (HRGC/HRMS) for the Determination of Dioxins

    NARCIS (Netherlands)

    Bavel, Van Bert; Geng, Dawei; Cherta, Laura; Nácher-Mestre, Jaime; Portolés, Tania; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernández, Félix

    2015-01-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of usin

  16. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  17. Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs.

    Science.gov (United States)

    Wu, C; Siems, W F; Hill, H H

    2000-01-15

    A secondary electrospray ionization (SESI) method was developed as a nonradioactive ionization source for ion mobility spectrometry (IMS). This SESI method relied on the gas-phase interaction between charged particles created by electrospray ionization (ESI) and neutral gaseous sample molecules. Mass spectrometry (MS) was used as the detection method after ion mobility separation for ion identification. Preliminary investigations focussed on understanding the ionization process of SESI. The performance of ESI-IMS and SESI-IMS for illicit drug detection was evaluated by determining the analytical figures of merit. In general, SESI had a higher ionization efficiency for small volatile molecules compared with the electrospray method. The potential of developing a universal interface for both GC- and LC-MS with an addition stage of mobility separation was demonstrated.

  18. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  19. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Directory of Open Access Journals (Sweden)

    Harald C. Köfeler

    2012-01-01

    Full Text Available One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows.

  20. Rapid analysis of trace pollutants using laser mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Organic pollution has been gaining more and more attention.Yet,at present the determination of virtually all of them,including polycyclic aromatic carbons (PAHs),the largest single class of chemical carcinogens known today,is made via pre-purification and pre-concentration.The major problems are complexity and time-consuming,thus,no ideal real-time on-line monitoring can be done.Laser mass spectrometry combines UV spectroscopy and time-of-flight mass spectrometry (TOF-MS) through resonance-enhanced multiphoton ionization (REMPI).It is characteristic of high sensitivity,high selectivity and rapidity.In this paper,after its principles,a small mobile laser mass spectrometer,in which a mini-excimer (KrF,248 nm) laser was used,is introduced.Real-time analysis of vehicle exhaust gas was made using this instrument,and the results showed some advantages over traditional methods:multicomponent detection,including benzene,toluene,xylene,C3-benzene,naphthalene,and methyl-naphthalene; high sensitivity (100 ppb);high time-resolution (0.1 s);and no need for pre-purification or pre-concentration of samples.

  1. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  2. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  3. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  4. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories.

    Science.gov (United States)

    van Belkum, Alex; Welker, Martin; Erhard, Marcel; Chatellier, Sonia

    2012-05-01

    Clinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been introduced, embraced, and broadly accepted by clinical microbiology laboratories throughout the world as an innovative tool for definitive bacterial species identification. Herein, we review the current state of the art with respect to this exciting new technology and discuss potential future applications. PMID:22357505

  5. Web Resources for Mass Spectrometry-based Proteomics

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Jie Zhao; Jie Ma; Yunping Zhu

    2015-01-01

    With the development of high-resolution and high-throughput mass spectrometry (MS) technology, a large quantum of proteomic data is continually being generated. Collecting and shar-ing these data are a challenge that requires immense and sustained human effort. In this report, we provide a classification of important web resources for MS-based proteomics and present rating of these web resources, based on whether raw data are stored, whether data submission is supported, and whether data analysis pipelines are provided. These web resources are important for biologists involved in proteomics research.

  6. Monitoring of wine aging process by electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Christine Helena Frankland Sawaya

    2011-09-01

    Full Text Available The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS, without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.

  7. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  8. Identification of Associated Proteins by Immunoprecipitation and Mass Spectrometry Analysis.

    Science.gov (United States)

    Cao, Xiumei; Yan, Jianshe

    2016-01-01

    Protein-protein interactions play central roles in intercellular and intracellular signal transduction. Impairment of protein-protein interactions causes many diseases such as cancer, cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders. Immunoprecipitation is a technique in which a target protein of interest bound by an antibody is used to pull down the protein complex out of cell lysates, which can be identified by mass spectrometry. Here, we describe the protocol to immunoprecipitate and identify the components of the protein complexes of ElmoE in Dictyostelium discoideum cells. PMID:27271899

  9. Triplex and quadruplex DNA structures studied by electrospray mass spectrometry

    OpenAIRE

    Rosu, Frédéric; Gabelica, Valérie; Houssier, Claude; Colson, Pierre; De Pauw, Edwin

    2002-01-01

    DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The a...

  10. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  11. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  12. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    Science.gov (United States)

    Dennis, Elise A.; Gundlach-Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-11-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge ( m/ z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/ z, DOFMS can provide both wider dynamic range and increased throughput for m/ z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/ z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS.

  13. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    Science.gov (United States)

    Dennis, Elise A.; Gundlach-Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-08-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge (m/z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/z, DOFMS can provide both wider dynamic range and increased throughput for m/z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS.

  14. MassNet: a functional annotation service for protein mass spectrometry data

    OpenAIRE

    Park, Daeui; Kim, Byoung-Chul; Cho, Seong-Woong; Park, Seong-Jin; Choi, Jong-Soon; Kim, Seung Il; Bhak, Jong; Lee, Sunghoon

    2008-01-01

    Although mass spectrometry has been frequently used to identify proteins, there are no web servers that provide comprehensive functional annotation of those identified proteins. It is necessary to provide such web service due to a rapid increase in the data. We, therefore, introduce MassNet, which provides (i) physico-chemical analysis information, (ii) KEGG pathway assignment (iii) Gene Ontology mapping and (iv) protein–protein interaction (PPI) prediction for the data from MASCOT, Prospecto...

  15. Accessing natural product biosynthetic processes by mass spectrometry.

    Science.gov (United States)

    Bumpus, Stefanie B; Kelleher, Neil L

    2008-10-01

    Two important classes of natural products are made by nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). With most biosynthetic intermediates covalently tethered during biogenesis, protein mass spectrometry (MS) has proven invaluable for their interrogation. New mass spectrometric assay formats (such as selective cofactor ejection and proteomics style LC-MS) are showcased here in the context of functional insights into new breeds of NRPS/PKS enzymes, including the first characterization of an 'iterative' PKS, the biosynthesis of the enediyne antitumor antibiotics, the study of a new strategy for PKS initiation via a GNAT-like mechanism, and the analysis of branching strategies in the so-called 'AT-less' NRPS/PKS hybrid systems. The future of MS analysis of NRPS and PKS biosynthetic pathways lies in adoption and development of methods that continue bridging enzymology with proteomics as both fields continue their post-genomic acceleration. PMID:18706516

  16. Testing and Validation of Computational Methods for Mass Spectrometry.

    Science.gov (United States)

    Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas

    2016-03-01

    High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods. PMID:26549429

  17. Deblurring molecular images using desorption electrospray ionization mass spectrometry

    Science.gov (United States)

    Parry, R. Mitchell; Galhena, Asiri S.; Fernandez, Facundo M.; Wang, May D.

    2016-01-01

    Traditional imaging techniques for studying the spatial distribution of biological molecules such as proteins, metabolites, and lipids, require the a priori selection of a handful of target molecules. Imaging mass spectrometry provides a means to analyze thousands of molecules at a time within a tissue sample, adding spatial detail to proteomic, metabolomic, and lipidomic studies. Compared to traditional microscopic images, mass spectrometric images have reduced spatial resolution and require a destructive acquisition process. In order to increase spatial detail, we propose a constrained acquisition path and signal degradation model enabling the use of a general image deblurring algorithm. Our analysis shows the potential of this approach and supports prior observations that the effect of the sprayer focuses on a central region much smaller than the extent of the spray. PMID:19963935

  18. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    Science.gov (United States)

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  19. Origin of the chemical noise in ambient mass spectrometry

    International Nuclear Information System (INIS)

    The instrumental background of ambient mass spectrometry, (API-MS) is analyzed and the possible potential origins of the background noise is identified. According to the mass spectra obtained using the API-MS instruments by different manufacturers, the characteristic fragment ions all indicated that the background noise are resulted from the phthalates such as diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), and silicones such as decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). These chemicals are probably released from the polymeric materials used in the ionization sources, such as O-type sealing ring etc. In addition, the instrumental background has to be considered especially during the analysis of phthalate and peptide compounds. (authors)

  20. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    Science.gov (United States)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  1. Laser resonant-ionization mass spectrometry of actinides

    International Nuclear Information System (INIS)

    Laser resonant-ionization mass spectrometry has been used to determine small amounts of actinides. The high sensitivity and selectivity of this method has been achieved by three-step photoionization of actinide atoms followed by time-of-flight measurement. The laser system for photoionization consists of a pulsed copper vapour laser of 30 W average power at a pulse repetition rate of 6.5 kHz which is coupled to three dye lasers. The time-of-flight spectrometer has a mass resolution of about 2500. Resonance signals with count rates of several kilohertz were obtained with actinide samples of 1010-1012 atoms yielding a detection limit of 108 atoms in the sample. With some improvements a detection sensitivity of about 106 atoms of plutonium, americium and curium should be reached. (orig.)

  2. In-situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction

    OpenAIRE

    Fernández-Garrido, Sergio; Koblmüller, Gregor; Calleja Pardo, Enrique; Speck, James S.

    2008-01-01

    Thermal decomposition of wurtzite (0001)-oriented GaN was analyzed: in vacuum, under active N exposure, and during growth by rf plasma-assisted molecular beam epitaxy. The GaN decomposition rate was determined by measurements of the Ga desorption using in situ quadrupole mass spectrometry, which showed Arrhenius behavior with an apparent activation energy of 3.1 eV. Clear signatures of intensity oscillations during reflection high-energy electron diffraction measurements facilitated complemen...

  3. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  4. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    Science.gov (United States)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  5. An ion-to-photon conversion detector for mass spectrometry

    Science.gov (United States)

    Dubois, F.; Knochenmuss, R.; Zenobi, R.

    1997-12-01

    An ion-to-photon conversion detector (IPD) for time-of-flight mass spectrometry was studied and tested with ions produced by matrix-assisted laser desorption-ionization. The detector consisted of a conversion surface located at the end of the drift tube of a time-of-flight mass spectrometer and, behind it, a head-on photomultiplier tube. Fluorescent organic scintillator materials like Bu-PBD [2-(4-t-buthylphenyl)-5-(4-biphenylyl)-1,3,4-oxidiazole] were found to be the most efficient converters of those materials tested. Similar mass resolutions were found with the ion-to-photo detector and standard microchannel plates in a linear time-of-flight instrument. The background noise of the IPD was more intense than with microchannel plates. Slow unfocused ions are suspected to contribute to this noise. Test analytes as large as 70 000 Da could be measured with the IPD. Even with no secondary particle conversion surface in front of the IPD, masses up to approximately 20 000 Da may be more efficiently detected with the IPD than the MCP. For higher masses, a conversion dynode should be considered for increased signal.

  6. Bead Separation and MALDI-TOF Mass Spectrometry Analysis

    Directory of Open Access Journals (Sweden)

    Nai-Jun Fan

    2012-01-01

    Full Text Available Background. Colorectal cancer (CRC is one of the most common cancers in the world, identification of biomarkers for early detection of CRC represents a relevant target. The present study aims to determine serum peptidome patterns for CRC diagnosis. Methods. The present work focused on serum proteomic analysis of 32 health volunteers and 38 CRC by ClinProt Kit combined with mass spectrometry. This approach allowed the construction of a peptide patterns able to differentiate the studied populations. An independent group of serum (including 33 health volunteers, 34 CRC, 16 colorectal adenoma, 36 esophageal carcinoma, and 31 gastric carcinoma samples was used to verify the diagnostic and differential diagnostic capability of the peptidome patterns blindly. An immunoassay method was used to determine serum CEA of CRC and controls. Results. A quick classifier algorithm was used to construct the peptidome patterns for identification of CRC from controls. Two of the identified peaks at m/z 741 and 7772 were used to construct peptidome patterns, achieving an accuracy close to 100% (>CEA, P<0.05. Furthermore, the peptidome patterns could differentiate validation group with high accuracy. Conclusions. These results suggest that the ClinProt Kit combined with mass spectrometry yields significantly higher accuracy for the diagnosis and differential diagnosis of CRC.

  7. Rapid Detection of Irreversible Acetylcholineasterase Inhibitor by Mass Spectrometry Assay

    Institute of Scientific and Technical Information of China (English)

    蔡婷婷; 张立; 汪蓉; 梁晨; 赵武生; 傅得锋; 张玉荣; 郭寅龙

    2012-01-01

    Here we developed a rapid method to detect acetylcholinesterase (ACHE) activity by matrix-assisted laser de- sorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) for screening irreversible AChE inhibi- tors. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS could facilitate rapid detection, especially detection in real application. AChE activity was determined through calculating abundance of substrate and product in mass spectrometry. By this approach, we investigated the relation of organophosphorous (OP) con- centrations and AChE inhibition. Shown in different inhibition curves from different OP pesticides, enzyme inhibi- tions still kept good correlation with concentration of OPs. Finally, this AChE-inhibited method was applied to screen whole bloods of four decedents and discuss their death reason. In contrast to healthy persons, three of dece- dents showed low AChE activity, and probably died for irreversible AChE inhibitors. Through the following de- tecting in GC-MS/MS, the possible death reason of these three decedents was confirmed, and another decedent actually died for sumicidin, a non-AChE inhibitor. It demonstrated that screening irreversible AChE inhibitors by detecting enzyme activity in MALDI-FTMS provided fast and accurate analysis results and excluded another toxicants not functioning on ACHE. This method offered alternative choices for indicating the existence of enzyme inhibitors.

  8. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Laura D. [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  9. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, L D

    2004-03-05

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  10. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  11. Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2015-08-01

    In order to suppress the fragmentation and improve the sensitivity for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs), the mechanism of multiphoton ionization was studied for the following representative NPAHs, 9-nitroanthracene, 3-nitrofluoranthene, and 1-nitropyrene. The analytes were extracted from the PM2.5 on the sampling filter ultrasonically, and were measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry with a femtosecond tunable laser in the range from 267 to 405 nm. As a result, a molecular ion was observed as the major ion and fragmentation was suppressed at wavelengths longer than 345 nm. Furthermore, the detection limit measured at 345 nm was measured to be the subpicogram level. The organic compounds were extracted from a 2.19 mg sample of particulate matter 2.5 (PM2.5), and the extract was subjected to multiphoton ionization mass spectrometry after gas chromatograph separation. The background signals were drastically suppressed at 345 nm, and the target NPAHs, including 9-nitroanthracene and 1-nitropyrene, were detected, and their concentrations were determined to be 5 and 3 pg/m(3), respectively. PMID:26048831

  12. Extractive electrospray ionization mass spectrometry for uranium chemistry studies.

    Science.gov (United States)

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; Ouyang, Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pretreatment. EESI-MS shows excellent performance for monitoring uranium species in various samples at trace levels since it tolerates extremely complex matrices. Therefore, EESI-MS is an alternative choice for studying uranium chemistry, especially when it combines ion trap mass spectrometry. In this presentation, three examples of EESI-MS for uranium chemistry studies will be given, illustrating the potential applications of EESI-MS in synthesis chemistry, physical chemistry, and analytical chemistry of uranium. More specifically, case studies on EESI-MS for synthesis and characterization of novel uranium species, and for rapid detection of uranium and its isotope ratios in various samples will be presented. Novel methods based on EESI-MS for screening uranium ores and radioactive iodine-129 will be presented. PMID:24349940

  13. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  14. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  15. Expanded newborn screening by mass spectrometry: New tests, future perspectives.

    Science.gov (United States)

    Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo

    2016-01-01

    Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs.

  16. Data-Independent Microbial Metabolomics with Ambient Ionization Mass Spectrometry

    Science.gov (United States)

    Rath, Christopher M.; Yang, Jane Y.; Alexandrov, Theodore; Dorrestein, Pieter C.

    2013-08-01

    Atmospheric ionization methods are ideally suited for prolonged MS/MS analysis. Data-independent MS/MS is a complementary technique for analysis of biological samples as compared to data-dependent analysis. Here, we pair data-independent MS/MS with the ambient ionization method nanospray desorption electrospray ionization (nanoDESI) for untargeted analysis of bacterial metabolites. Proof-of-principle data and analysis are illustrated by sampling Bacillus subtilis and Pseudomonas aeruginosa directly from Petri dishes. We found that this technique enables facile comparisons between strains via MS and MS/MS plots which can be translated to chemically informative molecular maps through MS/MS networking. The development of novel techniques to characterize microbial metabolites allows rapid and efficient analysis of metabolic exchange factors. This is motivated by our desire to develop novel techniques to explore the role of interspecies interactions in the environment, health, and disease. This is a contribution to honor Professor Catherine C. Fenselau in receiving the prestigious ASMS Award for a Distinguished Contribution in Mass Spectrometry for her pioneering work on microbial mass spectrometry.

  17. A first attempt to measure 92Nb/93Nb ratios with Accelerator Mass Spectrometry

    Science.gov (United States)

    Guozhu, He; Ming, He; Zuying, Zhou; Zhenyu, Li; Kejun, Dong; Shaoyong, Wu; Shilong, Liu; Xiongjun, Chen; Qiwen, Fan; Chaoli, Li; Xianwen, He; Heng, Li; Shan, Jiang

    2013-01-01

    An Accelerator Mass Spectrometry (AMS) method for the measurement of the long-lived radionuclide 92Nb has been established at the HI-13 Tandem Accelerator of the China Institute of Atomic Energy (CIAE). Niobium powder mixed with PbF2 by a ratio of 1:2 (in mass) was used as the cathode material. Atomic anions of Nb- were extracted from a Cs-beam sputter source. The terminal voltage of the tandem accelerator was 8.5 MV. Nb13+ ions were selected after terminal foil stripping. A multi-anode gas ionization chamber was used for the particle detection. The total suppression factor of the two major interfering isobars, 92Zr and 92Mo, was about 103. A detection limit of about 10-11 was achieved for 92Nb/93Nb ratio measurements on a blank sample.

  18. The advantages of orthogonal acceleration in ICP time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    The OptiMass 8000 incorporates an orthogonal acceleration time-of-flight mass spectrometer. A general schematic of the instrument is given. The continuous ion beam is chopped by an orthogonal accelerator. A push out pulse supply is coupled to the accelerator for providing repetitive push-out voltages at a frequency of 30 kHz. The ion packets that are sliced out of the beam then travel within the field free space towards the SMARTGATE ion blanker. Orthogonal accelerator parameters are set to enable temporal-spatial focusing at the SMARTGATE ion blanker, so that iso-mass ion packets are resolved in time. Any ion packets of unwanted specie are ejected from the direction of travel by supplying pulsed voltages onto the deflection plates of the SMARTGATE. The ions to be measured are let through SMARTGATE and travel further down the field free space, to enter the ion reflectron. The ion reflectron increases the resolution of the mass spectrometer by means of temporal-energy focussing. After reflection, the ions travel within the field free space towards the discrete-dynode detector. In comparison to other acceleration geometries used in elemental time-of-flight mass spectrometry the OptiMass 8000 orthogonal acceleration geometry ultimately leads to superior resolution. As the energy spread is about 3 orders of magnitude lower in the time-of-flight direction for an oaTOFMS in comparison to an on-axis system, aberration acquired in the initial stages of acceleration are much lower. As a result the orthogonal acceleration scheme provides superior resolution at the first spatial focus point and the detector. The orthogonal acceleration time-of-flight analyzer of the OptiMass 8000 is able to provide resolution of at least 1800 at mass 238. (author)

  19. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry.

    Science.gov (United States)

    Cahill, Michael G; Caprioli, Giovanni; Vittori, Sauro; James, Kevin J

    2010-09-01

    The mass fragmentation of potato glycoalkaloids, α-solanine and α-chaconine, and the aglycons, demissidine and solasodine were studied using the Orbitrap Fourier transform (FT) mass spectrometer. Using the linear ion trap (LIT) mass spectrometry, multistage collisional-induced dissociation (CID) experiments (MS(n)) on the [M + H](+) precursor ions were performed to aid the elucidation of the mass fragmentation pathways. In addition, higher energy collisional-induced dissociation (HCD) mass spectra were generated for these toxins at a high resolution setting [100,000 FWHM (full width at half maximum)] using the Orbitrap. This hybrid mass spectrometry instrumentation was exploited to produce MS(3) spectra by selecting MS(2) product ions, generated using LIT MS, and fragmentation using HCD. The accurate mass data in the MS(3) spectra aided the confirmation of proposed product ion formulae. The precursor and product ions from glycoalkaloids lost up to four sugars from different regions during MS(n) experiments. Mass fragmentation of the six-ring aglycons were similar, generating major product ions that resulted from cleavages at the B-rings and E-rings.

  20. Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass

    Science.gov (United States)

    Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan

    2013-05-01

    Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.

  1. Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules

    Science.gov (United States)

    Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus

    2016-06-01

    Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.

  2. Laser desorption lamp ionization source for ion trap mass spectrometry.

    Science.gov (United States)

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  3. Method for predicting peptide detection in mass spectrometry

    Science.gov (United States)

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  4. The role of mass spectrometry in medicinal plant research.

    Science.gov (United States)

    Héthelyi, E; Tétényi, P; Dabi, E; Dános, B

    1987-11-01

    In phytochemical and chemotaxonomic research work mass spectrometry plays an outstandingly important role. Using gas chromatography/mass spectrometry (GC/MS) we established the chemotaxa of Tanacetum vulgare L. Chemotypes with essential oils containing 60-90% of artemisia ketone, carveol, dihydrocarvone, myrtenol, umbellulone, terpinen-4-ol, davanone, and Tagetes species containing various essential oils can be clearly distinguished by their spectra; we examined many variations of Tagetes erecta, T. lucida, T. minuta, T. patula and T. tenuifolia. We have identified alpha-beta-pinene-, 1,8-cineol-, linalool-, camphor-, nerol-, geraniol- and gamma-gurjonene as components of Achillea distans L. Injecting the essential oil direct from the oil-secreting organs of T. minuta plants we identified using GC/MS 6-10 and 16% eugenol from the involucral bract and hypsophyll, respectively, as well as beta-ocimene, dihydrotagetone, tagetone, Z- and E-ocimenones. In the course of studies on essential fatty acids Borago officinalis and Lappula squarrosa were selected from 70 species of the family Boraginaceae to obtain seed oil as a source of gamma-linolenic acid, and for the PG synthesis we isolated several grams of gamma-linolenic acid, as well as C18:4, i.e. octadecatetraenic acid, from L. squarrosa on the basis of the mass spectra. From the seed oil of Aquilegia vulgaris C18:3 (5) from the oil of Limnanthes dougloasii C20:1 (5) and from the seed oils of Delphinium consolida and of Tropaeolum species (T. majus, T. minus, T. peregrinum) C20:1 (11) fatty acids were identified on the basis of spectra. PMID:2962668

  5. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    Science.gov (United States)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-08-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  6. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries

    Directory of Open Access Journals (Sweden)

    Changqing Duan

    2007-03-01

    Full Text Available Liquid chromatography/ultraviolet (LC/UV and mass spectrometry/mass spectrometry (MS/MS libraries containing 39 phenolic compounds were established by coupling a LC and an ion trap MS with an electrospray ionization (ESI source, operated in negative ion mode. As a result, the deprotonated [M-H]- molecule was observed for all the analyzed compounds. Using MS/MS hydroxybenzoic acid and hydroxycinnamic acids showed a loss of CO2 and production of a [M-H-44] - fragment and as expected, the UV spectra of these two compounds were affected by their chemical structures. For flavonol and flavonol glycosides, the spectra of their glycosides and aglycones produced deprotonated [M-H]- and [A-H]- species, respectively, and their UV spectra each presented two major absorption peaks. The UV spectra and MS/MS data of flavan-3-ols and stilbenes were also investigated. Using the optimized LC/MS/MS analytical conditions, the phenolic extracts from six representative wine samples were analyzed and 31 phenolic compounds were detected, 26 of which were identified by searching the LC/UV and MS/MS libraries. Finally, the presence of phenolic compounds was confirmed in different wine samples using the LC/UV and LC/MS/MS libraries.

  7. Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 studies.

    Science.gov (United States)

    Zhang, Z Y; King, B M; Wong, Y N

    2001-11-01

    A sensitive assay using high-performance liquid chromatography tandem mass spectrometry (MS/MS) has been established for the quantitative analysis of cytochrome P450 form-specific activities using warfarin as a probe substrate. Four metabolites, 6-, 7-, 8-, and 10-hydroxywarfarin, were chromatographically resolved within 10 min using gradient mobile phases. The mass spectrometry was operated under negative ionization mode. The MS/MS product ion spectra of warfarin and the metabolites were generated using collision-activated dissociation and interpreted. The abundant product ions of the metabolites were selected for quantification applying multiple reaction monitoring. Quantification was based on a quadratic or power curve of the peak area ratio of the metabolite over the internal standard against the respective concentration of the metabolite. This assay has been validated from 2 to 1000 nM for 10-hydroxywarfarin and from 2 to 5000 nM for 6-, 7-, and 8-hydroxywarfarin and successfully applied to evaluate cytochrome P450-mediated drug-drug interactions in vitro using human hepatocytes and liver microsomal preparations. PMID:11673893

  8. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Matthew George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adamic, Mary Louise [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, John Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baeck, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, R. V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hahn, P. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jenson, D. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lister, T. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  9. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Matthew George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adamic, Mary Louise [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, John Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baeck, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, R. V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hahn, P. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jenson, D. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lister, T. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS. All with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  10. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kiss, A.; Leach, F.E.; Robinson, E.W.; Paša-Tolić, L.; Heeren, R.M.A.

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performe

  11. The use of mass spectrometry to analyze dried blood spots.

    Science.gov (United States)

    Wagner, Michel; Tonoli, David; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to

  12. Evaluation of correction method for mass discrimination effect in multiple collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer (MC-ICP-MS) and presents results of new experiments aimed at further evaluating the instrumental capability as well as the correction technique for the mass discrimination effects. The ability to correct for the mass discrimination effect using a second element of similar mass and very high sensitivity for elements that are otherwise difficult to ionize gives this instrument major advantages over other conventional techniques for isotopic measurements. The isotopic data obtained by MC-ICP-MS clearly demonstrate potential as a new technique to produce precise and reproducible isotopic data for the elements that are difficult to measure by thermal ionization mass spectrometry (TIMS). (author)

  13. Studies of Al metabolism in animal by accelerator mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    WangNa-Xiu; ZhuHan-Min; 等

    1997-01-01

    The correlation between Al metabolism and senile dementia in animal has been studied by AMS(accelerator mass spectrometry).Three groups of laboratory rats were fed with normal food.food with high Al content,and with enriched Ca and Mg together with high Al,respectively for six to eight months.Mapping test was made to recored th degree of wisdom degeneration.Half of the rats were sacrificed and Al contents in various organs were measured by atomic absorption spectroscopy.The rest were injected with 26Al,killed after 5,10,15,25,and 35d and 26Al contents measured by AMS.The distribution of Al as well as the correlation among the accumulation of 26Al,and the existed Al content and dementia was studied.

  14. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    Science.gov (United States)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  15. Attomole quantitation of protein separations with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  16. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  17. Mass Spectrometry-Based Label-Free Quantitative Proteomics

    Directory of Open Access Journals (Sweden)

    Wenhong Zhu

    2010-01-01

    Full Text Available In order to study the differential protein expression in complex biological samples, strategies for rapid, highly reproducible and accurate quantification are necessary. Isotope labeling and fluorescent labeling techniques have been widely used in quantitative proteomics research. However, researchers are increasingly turning to label-free shotgun proteomics techniques for faster, cleaner, and simpler results. Mass spectrometry-based label-free quantitative proteomics falls into two general categories. In the first are the measurements of changes in chromatographic ion intensity such as peptide peak areas or peak heights. The second is based on the spectral counting of identified proteins. In this paper, we will discuss the technologies of these label-free quantitative methods, statistics, available computational software, and their applications in complex proteomics studies.

  18. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... on the strength of the interaction between the individual compound and the adsorbent. The helium stream carries the desorbed compounds to a membrane inlet (90 degrees C) equipped with a thin (25 pm) silicone membrane. The thin membrane and the high temperature of the membrane inlet allows most volatile compounds...... prior to the detection by MIMS. The gaseous sample is simply adsorbed on the adsorbent, which is then rapidly heated from 30 degrees C to 250 degrees C at a rate of 50 degrees C/min, Trapped organic compounds are released from the adsorbent into a helium stream at different temperatures depending...

  19. Mass spectrometry study of the sublimation of aliphatic dipeptides

    Science.gov (United States)

    Badelin, V. G.; Tyunina, E. Yu.; Krasnov, A. V.; Tyunina, V. V.; Giricheva, N. I.; Girichev, A. V.

    2012-03-01

    The sublimation of glycyl-L-α-alanine (Gly-Ala), L-α-alanyl-L-α-alanine (Ala-Ala), and DL-α-alanyl-DL-α-valine (Ala-Val) aliphatic dipeptides is studied by electron ionization mass spectrometry in combination with Knudsen effusion. The temperature range in which substances sublime as monomer molecular forms is determined. Enthalpies of sublimation Δs H°( T) are determined for Gly-Ala, Ala-Ala, and Ala-Val. It is shown that the enthalpy of sublimation of dipeptides increases with an increase in the side hydrocarbon radical. The unknown Δs H°(298) values for 17 amino acids and nine dipeptides are estimated using the proposed "structure-property" correlation model, in which the geometry and electron characteristics of molecules are used as structural descriptors.

  20. Polymer architectures via mass spectrometry and hyphenated techniques: A review.

    Science.gov (United States)

    Crotty, Sarah; Gerişlioğlu, Selim; Endres, Kevin J; Wesdemiotis, Chrys; Schubert, Ulrich S

    2016-08-17

    This review covers the application of mass spectrometry (MS) and its hyphenated techniques to synthetic polymers of varying architectural complexities. The synthetic polymers are discussed as according to their architectural complexity from linear homopolymers and copolymers to stars, dendrimers, cyclic copolymers and other polymers. MS and tandem MS (MS/MS) has been extensively used for the analysis of synthetic polymers. However, the increase in structural or architectural complexity can result in analytical challenges that MS or MS/MS cannot overcome alone. Hyphenation to MS with different chromatographic techniques (2D × LC, SEC, HPLC etc.), utilization of other ionization methods (APCI, DESI etc.) and various mass analyzers (FT-ICR, quadrupole, time-of-flight, ion trap etc.) are applied to overcome these challenges and achieve more detailed structural characterizations of complex polymeric systems. In addition, computational methods (software: MassChrom2D, COCONUT, 2D maps etc.) have also reached polymer science to facilitate and accelerate data interpretation. Developments in technology and the comprehension of different polymer classes with diverse architectures have significantly improved, which allow for smart polymer designs to be examined and advanced. We present specific examples covering diverse analytical aspects as well as forthcoming prospects in polymer science. PMID:27286765

  1. Cloud parallel processing of tandem mass spectrometry based proteomics data.

    Science.gov (United States)

    Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus

    2012-10-01

    Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.

  2. Electrospray ionisation mass spectrometry: principles and clinical applications.

    Science.gov (United States)

    Ho, C S; Lam, C W K; Chan, M H M; Cheung, R C K; Law, L K; Lit, L C W; Ng, K F; Suen, M W M; Tai, H L

    2003-01-01

    This mini-review provides a general understanding of electrospray ionisation mass spectrometry (ESI-MS) which has become an increasingly important technique in the clinical laboratory for structural study or quantitative measurement of metabolites in a complex biological sample. The first part of the review explains the electrospray ionisation process, design of mass spectrometers with separation capability, characteristics of the mass spectrum, and practical considerations in quantitative analysis. The second part then focuses on some clinical applications. The capability of ESI-tandem-MS in measuring bio-molecules sharing similar molecular structures makes it particularly useful in screening for inborn errors of amino acid, fatty acid, purine, pyrimidine metabolism and diagnosis of galactosaemia and peroxisomal disorders. Electrospray ionisation is also efficient in generating cluster ions for structural elucidation of macromolecules. This has fostered a new and improved approach (vs electrophoresis) for identification and quantification of haemoglobin variants. With the understanding of glycohaemoglobin structure, an IFCC reference method for glycohaemoglobin assay has been established using ESI-MS. It represents a significant advancement for the standardisation of HbA1c in diabetic monitoring. With its other applications such as in therapeutic drug monitoring, ESI-MS will continue to exert an important influence in the future development and organisation of the clinical laboratory service.

  3. U-series dating using thermal ionisation mass spectrometry (TIMS)

    International Nuclear Information System (INIS)

    U-series dating is based on the decay of the two long-lived isotopes238U(τ1/2=4.47 x 109 years) and 235U (τ1/2 0.7 x 109 years). 238U and its intermediate daughter isotopes 234U (τ1/2 = 245.4 ka) and 230Th (τ1/2 = 75.4 ka) have been the main focus of recently developed mass spectrometric techniques (Edwards et al., 1987) while the other less frequently used decay chain is based on the decay 235U to 231Pa (τ1/2 = 32.8 ka). Both the 238U and 235U decay chains terminate at the stable isotopes 206Pb and 207Pb respectively. Thermal ionization mass spectrometry (TIMS) has a number of inherent advantages, mainly the ability to measure isotopic ratios at high precision on relatively small samples. In spite of these now obvious advantages, it is only since the mid-1980's when Chen et al., (1986) made the first precise measurements of 234U and 232Th in seawater followed by Edwards et al., (1987) who made combined 234U-230Th measurements, was the full potential of mass spectrometric methods first realised. Several examples are given to illustrate various aspects of TIMS U-series

  4. Dynamically multiplexed ion mobility time-of-flight mass spectrometry.

    Science.gov (United States)

    Belov, Mikhail E; Clowers, Brian H; Prior, David C; Danielson, William F; Liyu, Andrei V; Petritis, Brianne O; Smith, Richard D

    2008-08-01

    Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach. PMID:18582088

  5. Human folate metabolism using 14C-accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arjomand, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duecker, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zulim, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogel, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  6. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry

    Science.gov (United States)

    Liu, Yao-Min; Perry, Richard H.

    2015-08-01

    On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique.

  7. Tissue proteomics using chemical immobilization and mass spectrometry.

    Science.gov (United States)

    Shah, Punit; Zhang, Bai; Choi, Caitlin; Yang, Shuang; Zhou, Jianying; Harlan, Robert; Tian, Yuan; Zhang, Zhen; Chan, Daniel W; Zhang, Hui

    2015-01-15

    Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples. PMID:25283129

  8. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry.

    Science.gov (United States)

    Liu, Yao-Min; Perry, Richard H

    2015-10-01

    On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique. PMID:26311335

  9. Tissue proteomics using chemical immobilization and mass spectrometry.

    Science.gov (United States)

    Shah, Punit; Zhang, Bai; Choi, Caitlin; Yang, Shuang; Zhou, Jianying; Harlan, Robert; Tian, Yuan; Zhang, Zhen; Chan, Daniel W; Zhang, Hui

    2015-01-15

    Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.

  10. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    International Nuclear Information System (INIS)

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 1350 from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D0(E):D0(E/2):D0(E/3)=53:32:15. The corresponding neutral power fractions were P0(E):P0(E/2):P0(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D1+(E):D2+(E):D3+(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed

  11. Advanced capabilities for in situ planetary mass spectrometry

    Science.gov (United States)

    Arevalo, R. D., Jr.; Mahaffy, P. R.; Brinckerhoff, W. B.; Getty, S.; Benna, M.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Cornish, T.; Hovmand, L.

    2015-12-01

    NASA GSFC has delivered highly capable quadrupole mass spectrometers (QMS) for missions to Venus (Pioneer Venus), Jupiter (Galileo), Saturn/Titan (Cassini-Huygens), Mars (MSL and MAVEN), and the Moon (LADEE). Our understanding of the Solar System has been expanded significantly by these exceedingly versatile yet low risk and cost efficient instruments. GSFC has developed more recently a suite of advanced instrument technologies promising enhanced science return while selectively leveraging heritage designs. Relying on a traditional precision QMS, the Analysis of Gas Evolved from Samples (AGES) instrument measures organic inventory, determines exposure age and establishes the absolute timing of deposition/petrogenesis of interrogated samples. The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars 2018 rover employs a two-dimensional ion trap, built analogously to heritage QMS rod assemblies, which can support dual ionization sources, selective ion enrichment and tandem mass spectrometry (MS/MS). The same miniaturized analyzer serves as the core of the Linear Ion Trap Mass Spectrometer (LITMS) instrument, which offers negative ion detection (switchable polarity) and an extended mass range (>2000 Da). Time-of-flight mass spectrometers (TOF-MS) have been interfaced to a range of laser sources to progress high-sensitivity laser ablation and desorption methods for analysis of inorganic and non-volatile organic compounds, respectively. The L2MS (two-step laser mass spectrometer) enables the desorption of neutrals and/or prompt ionization at IR (1.0 up to 3.1 µm, with an option for tunability) or UV wavelengths (commonly 266 or 355 nm). For the selective ionization of specific classes of organics, such as aromatic hydrocarbons, a second UV laser may be employed to decouple the desorption and ionization steps and limit molecular fragmentation. Mass analyzers with substantially higher resolving powers (up to m/Δm > 100,000), such as the Advanced Resolution Organic

  12. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry.

    Science.gov (United States)

    Glover, Matthew S; Dilger, Jonathan M; Acton, Matthew D; Arnold, Randy J; Radivojac, Predrag; Clemmer, David E

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences. Graphical Abstract ᅟ. PMID:26860087

  13. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon

    2014-03-01

    Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection). PMID:24468343

  14. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    Science.gov (United States)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  15. Measuring Thermodynamic Properties of Metals and Alloys With Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2010-01-01

    This report reviews Knudsen effusion mass spectrometry (KEMS) as it relates to thermodynamic measurements of metals and alloys. First, general aspects are reviewed, with emphasis on the Knudsen-cell vapor source and molecular beam formation, and mass spectrometry issues germane to this type of instrument are discussed briefly. The relationship between the vapor pressure inside the effusion cell and the measured ion intensity is the key to KEMS and is derived in detail. Then common methods used to determine thermodynamic quantities with KEMS are discussed. Enthalpies of vaporization, the fundamental measurement, are determined from the variation of relative partial pressure with temperature using the second-law method or by calculating a free energy of formation and subtracting the entropy contribution using the third-law method. For single-cell KEMS instruments, measurements can be used to determine the partial Gibbs free energy if the sensitivity factor remains constant over multiple experiments. The ion-current ratio method and dimer-monomer method are also viable in some systems. For a multiple-cell KEMS instrument, activities are obtained by direct comparison with a suitable component reference state or a secondary standard. Internal checks for correct instrument operation and general procedural guidelines also are discussed. Finally, general comments are made about future directions in measuring alloy thermodynamics with KEMS.

  16. Focus on Advancing High Performance Mass Spectrometry, Honoring Dr. Richard D. Smith, Recipient of the 2013 Award for a Distinguished Contribution in Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Muddiman, David C. [North Carolina State Univ., Raleigh, NC (United States); Loo, Joseph [Univ. of California, Los Angeles, CA (United States)

    2014-10-18

    This special focus issue of the Journal of the American Society for Mass Spectrometry celebrates the accomplishments of Dr. Richard D. Smith, the recipient of the 2013ASMS Award for a Distinguished Contribution in Mass Spectrometry, and who serves as a Battelle Fellow, Chief Scientist in the Biological Sciences Division, and Director of Proteomics Research at Pacific Northwest National Laboratory (PNNL) in Richland, WA. The award is for his development of the electrodynamic ion funnel.

  17. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    Science.gov (United States)

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  18. The 50th ASMS Conference on Mass Spectrometry and Allied Topics

    OpenAIRE

    Brancia, Francesco L.

    2002-01-01

    Development of new mass spectrometers and implementation of new analytical methods were the central themes of the conference. The majority of oral presentations and posters were concerned with the application of mass spectrometry to pharmaceutical and biotechnological research.

  19. Effect of blocking mass on characteristics of beam lateral vibration

    International Nuclear Information System (INIS)

    The lateral vibration equation is established by setting up two separate co-coordinate systems of the mass-beam system, and the non-dimensional coefficients implying the position and mass radio of the mass in the system are presented in the paper. The effect on the vibration frequencies of changing the position and the mass radio in the system is numerically discussed, and the modes of the system with different mass radio and position are considered. The result shows that the frequencies decrease as increasing the mass radio, but the frequencies fluctuate with position changing, and there exists some positions that the frequencies do not vary after the mass radio increases except the first frequency, also that the effects on the vibration characteristic as increasing the mass radio can be decreased by modulating the position of the mass. (authors)

  20. Understanding Ligand Effects in Gold Clusters using Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2016-06-16

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  1. Capillary Zone Electrophoresis-Mass Spectrometry of Intact Proteins.

    Science.gov (United States)

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W

    2016-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS detection. This chapter focuses on important practical considerations when applying CE-MS for the analysis of intact proteins. Technological aspects with respect to the use of CE-MS interfaces and application of noncovalent capillary coatings preventing protein adsorption are treated. Critical factors for successful protein analysis are discussed and four typical CE-MS systems are described demonstrating the characterization of different types of intact proteins by CE-MS. These methodologies comprise the use of sheath-liquid and sheathless CE-MS interfaces, and various types of noncovalent capillary coatings allowing efficient and reproducible protein separations. The discussion includes the analysis of lysozyme-drug conjugates and the therapeutic proteins human growth hormone, human interferon-β-1a, and human erythropoietin. PMID:27473479

  2. Honey protein extraction and determination by mass spectrometry.

    Science.gov (United States)

    Chua, Lee Suan; Lee, Jun You; Chan, Giek Far

    2013-04-01

    There are relatively limited studies on the protein of honey samples mainly because of the low amount of protein in honey (0.1-0.5 %), the difficulty in extracting honey protein from the sugar-rich environment, and the hindrance of protein characterization by conventional approaches. Several protein extraction methods such as mechanical (ultrafiltration and ultracentrifugation) and chemical (precipitation) techniques have been applied to different types of honey samples. Most of these studies reported the quantity and molecular size of honey protein from gel electrophoresis, but were unable to identify and characterize the protein. This limitation might be due to the low capacity of analytical equipment in those days. Although different precipitants have also been used, not all them are compatible with mass spectrometric methods during downstream analysis. As a result, the sample preparation step is essential in order to confidently characterize the low and varied amount of honey protein. Nowadays, honey protein is getting attention from researchers because of its potential activity in pharmacological applications. Therefore, honey protein extraction and determination by mass spectrometry are critically reviewed in order to stimulate further honey protein research. PMID:23292042

  3. Determination of hydrogen in steel by thermal desorption mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bergers, K.; Thomas, I.; Flock, J. [ThyssenKrupp Steel Europe AG, Duisburg (Germany); Camisao de Souza, E. [Physical Chemistry and Radiochemistry, University of Applied Sciences Mannheim (Germany); Mabho, N. [Instrumental Analytical Chemistry, University of Duisburg-Essen, Duisburg (Germany)

    2010-07-15

    Hydrogen embrittlement has been observed since high-strength steels have been produced in the nineteen thirties 1,2. Several different analytical methods have been developed to quantify the total and diffusible hydrogen in steel, but many aspects of hydrogen determination are still to be explored. Purely quantitative determination of hydrogen is not sufficient to fully characterize the steel regarding its resistance against embrittlement. Thermal Desorption Mass Spectrometry (TDMS) allows the investigation of hydrogen absorption and desorption mechanisms to characterize hydrogen traps in different kinds of steel microstructures. This provides valuable information for the development of new materials with a higher resistance against hydrogen embrittlement. Additionally, TDMS allows the quantitative determination of very small concentrations of hydrogen (<0.1 {mu}g/g). Such low detection limits cannot be reached with other methods. Due to time-consuming analysis and a rather complex construction, TDMS is usually not applied for hydrogen determination in German steel mills. The present work describes the development of a thermal desorption spectrometer at ThyssenKrupp Steel Europe AG by adapting a compact quadrupole mass spectrometer to a commercially available hot solid extraction analyzer, which has proven to be a simple and efficient solution for the determination of diffusible hydrogen in steel. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Various complexity results for computational mass spectrometry problems

    CERN Document Server

    Böcker, Francois Nicolas Sebastian

    2011-01-01

    Define Minimum \\pbsul{} (MinSU) as the following optimization problem: given a $k$-tuple $(X_1, X_2,..., X_k)$ of finite integer sets, find a $k$-tuple $(t_1, t_2,..., t_k)$ of integers that minimizes the cardinality of $(X_1 + t_1) \\cup (X_2 + t_2) \\cup...\\cup (X_n + t_k)$. We show that MinSU is NP-complete, APX-hard, and polynomial for fixed $k$. MinSU appears naturally in the context of protein shotgun sequencing: Here, the protein is cleaved into short and overlapping peptides, which are then analyzed by tandem mass spectrometry. To improve the quality of such spectra, one then asks for the mass of the unknown prefix (the shift) of the spectrum, such that the resulting shifted spectra show a maximum agreement. For real-world data the problem is even more complicated than our definition of MinSU; but our intractability results clearly indicate that it is unlikely to find a polynomial time algorithm for shotgun protein sequencing.

  5. Issues and Applications in Label-Free Quantitative Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xianyin Lai

    2013-01-01

    Full Text Available To address the challenges associated with differential expression proteomics, label-free mass spectrometric protein quantification methods have been developed as alternatives to array-based, gel-based, and stable isotope tag or label-based approaches. In this paper, we focus on the issues associated with label-free methods that rely on quantitation based on peptide ion peak area measurement. These issues include chromatographic alignment, peptide qualification for quantitation, and normalization. In addressing these issues, we present various approaches, assembled in a recently developed label-free quantitative mass spectrometry platform, that overcome these difficulties and enable comprehensive, accurate, and reproducible protein quantitation in highly complex protein mixtures from experiments with many sample groups. As examples of the utility of this approach, we present a variety of cases where the platform was applied successfully to assess differential protein expression or abundance in body fluids, in vitro nanotoxicology models, tissue proteomics in genetic knock-in mice, and cell membrane proteomics.

  6. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology

    Science.gov (United States)

    Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-06-01

    Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states.

  7. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.;

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new su...... summarizes ways in which Surface-MALDI-MS methods have been applied to the study of a range of issues in biomaterials surfaces research. (C) 2004 Elsevier Ltd. All rights reserved....... surface analysis method with unique capabilities that complement established biomaterial surface analysis methods such as XPS and ToF-SSIMS. These new MALDI variant methods, which we shall collectively summarize as Surface-MALDI-MS, are capable of desorbing adsorbed macromolecules from biomaterial...... biochemical techniques such as SDS-PAGE, and can in some circumstances be used for the quantitative analysis of adsorbed protein amounts. At this early stage of development, however, limitations exist: in some cases proteins are not detectable, which appears to be related to tight surface binding. This review...

  8. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  9. Coupling of Ultrafast LC with Mass Spectrometry by DESI

    Science.gov (United States)

    Cai, Yi; Liu, Yong; Helmy, Roy; Chen, Hao

    2014-10-01

    Recently we reported a desorption electrospray ionization (DESI) interface to combine liquid chromatography (LC) with mass spectrometry (MS) using a new LC eluent splitting strategy through a tiny orifice on LC capillary tube [ J. Am. Soc. Mass Spectrom. 25, 286 (2014)]. The interface introduces negligible dead volume and back pressure, thereby allowing "near real-time" MS detection, fast LC elution, and online MS-directed purification. This study further evaluates the LC/DESI-MS performance with focus of using ultra-fast LC. Using a monolithic C18 column, metabolites in urine can be separated within 1.6 min and can be online collected for subsequent structure elucidation (e.g., by NMR, UV, IR) in a recovery yield up to 99%. Using a spray solvent with alkaline pH, negative ions could be directly generated for acidic analytes (e.g., ibuprofen) in acidic LC eluent by DESI, offering a novel protocol to realize "wrong-way around" ionization for LC/MS analysis. In addition, DESI-MS is found to be compatible with ultra-performance liquid chromatography (UPLC) for the first time.

  10. 36Chlorine accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator. RSP-12

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 UD Pelletron Accelerator is an ideal machine to carry out AMS studies with heavy isotopes like 36Cl and 129I. Cosmogenic radio isotope 36Cl is widely being detected using AMS as it has got applications in ground water research, radioactive waste management, atmospheric 36Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing AMS programme at 14UD Pelletron Accelerator Facility, Mumbai, a segmented gas detector developed for identification of 36Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. 36Cl measurements carried out to detect and measure the ratio of 36Cl to 35Cl in an irradiated sample and dated sample are reported in this paper

  11. Application of secondary neutral mass spectrometry in low-energy sputtering yield measurements

    Science.gov (United States)

    Bhattacharjee, S.; Zhang, J.; Shutthanandan, V.; Ray, P. K.; Shivaparan, N. R.; Smith, R. J.

    1997-06-01

    An experimental study was initiated to measure low-energy (150 to 600 eV) sputtering yields of molybdenum with xenon ions using a Secondary Neutral Mass Spectrometer (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 μA/cm 2. The SNMS spectra obtained at 50° incident angle were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-empirical formulations agree reasonably well with the measured data.

  12. Thermodynamic Studies of High Temperature Materials Via Knudsen Cell Mass Spectrometry

    Science.gov (United States)

    Jacobson, Nathan S.; Brady, Michael P.

    1997-01-01

    The Knudsen Cell technique is a classic technique from high temperature chemistry for studying condensed phase/vapor equilibria. It is based on a small enclosure, usually about 1 cm in diameter by 1 cm high, with an orifice of well-defined geometry. This forms a molecular beam which is analyzed with mass spectrometry. There are many applications to both fundamental and applied problems with high temperature materials. Specific measurements include vapor pressures and vapor compositions above solids, activities of alloy components, and fundamental gas/solid reactions. The basic system is shown. Our system can accommodate a wide range of samples, temperatures, and attachments, such as gas inlets. It is one of only about ten such systems world-wide.

  13. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    Science.gov (United States)

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  14. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    S. Muramoto; T.P. Forbes; A.C. van Asten; G. Gillen

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal i

  15. Following the Biochemical and Morphological Changes of Bacillus atrophaeus during Sporulation using Bioaerosol Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, H J; Pitesky, M E; Fergenson, D P; Horn, J; Frank, M; Gard, E E

    2006-05-03

    The overall objective of this report is to develop a real-time single-particle mass spectrometry technique called Bio-Aerosol Mass Spectrometry (BAMS) in order to efficiently screen and identify bioaerosols and single cells of national security and public health concern.

  16. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the com

  17. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

    NARCIS (Netherlands)

    Horvatovich, Peter; Hoekman, Berend; Govorukhina, Natalia; Bischoff, Rainer

    2010-01-01

    Multidimensional chromatography coupled to mass spectrometry (LC(n)-MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an o

  18. A MASSive laboratory tour. An interactive mass spectrometry outreach activity for children

    NARCIS (Netherlands)

    Jungmann, JH; Mascini, N.E.; Kiss, A.; Smith, D.F.; Klinkert, I.; Eijkel, G.B.; Duursma, M.C.; Cillero-Pastor, B.; Chughtai, K; Chughtai, S.; Heeren, R.M.A.

    2013-01-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as

  19. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  20. Equilibria and vibration of a buckled beam with attached masses or spring-mass systems

    Science.gov (United States)

    Plaut, Raymond H.; Virgin, Lawrence N.

    2016-09-01

    A buckled beam with immovable pinned ends is considered. Attached to the beam are either one concentrated mass, two concentrated masses, a spring-mass system (that could model a human, robot, or passive vibration absorber), or a horizontal rigid bar with two vertical end springs (a "bounce-pitch" system that could model an animal or a vehicle). In the theoretical analysis, the beam is modeled as an inextensible elastica. Equilibrium configurations are determined first. Then small free vibrations about equilibrium are examined, and the lowest frequencies and corresponding modes are computed. The effects of various parameters are investigated, such as the ratio of the span to the total arc length of the beam, the locations and weights of the attached masses and systems, and the stiffnesses of the springs. For the case of a single attached mass, experiments are conducted and the results are compared to the theoretical ones.

  1. Standard Reticle Slide To Objectively Evaluate Spatial Resolution and Instrument Performance in Imaging Mass Spectrometry.

    Science.gov (United States)

    Zubair, Faizan; Prentice, Boone M; Norris, Jeremy L; Laibinis, Paul E; Caprioli, Richard M

    2016-07-19

    Spatial resolution is a key parameter in imaging mass spectrometry (IMS). Aside from being a primary determinant in overall image quality, spatial resolution has important consequences on the acquisition time of the IMS experiment and the resulting file size. Hardware and software modifications during instrumentation development can dramatically affect the spatial resolution achievable using a given imaging mass spectrometer. As such, an accurate and objective method to determine the working spatial resolution is needed to guide instrument development and ensure quality IMS results. We have used lithographic and self-assembly techniques to fabricate a pattern of crystal violet as a standard reticle slide for assessing spatial resolution in matrix-assisted laser desorption/ionization (MALDI) IMS experiments. The reticle is used to evaluate spatial resolution under user-defined instrumental conditions. Edgespread analysis measures the beam diameter for a Gaussian profile and line scans measure an "effective" spatial resolution that is a convolution of beam optics and sampling frequency. The patterned crystal violet reticle was also used to diagnose issues with IMS instrumentation such as intermittent losses of pixel data. PMID:27299987

  2. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  3. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of molecules in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease

  4. Molecular mass ranges of coal tar pitch fractions by mass spectrometry and size-exclusion chromatography.

    Science.gov (United States)

    Karaca, F; Morgan, T J; George, A; Bull, I D; Herod, A A; Millan, M; Kandiyoti, R

    2009-07-01

    A coal tar pitch was fractionated by solvent solubility into heptane-solubles, heptane-insoluble/toluene-solubles (asphaltenes), and toluene-insolubles (preasphaltenes). The aim of the work was to compare the mass ranges of the different fractions by several different techniques. Thermogravimetric analysis, size-exclusion chromatography (SEC) and UV-fluorescence spectroscopy showed distinct differences between the three fractions in terms of volatility, molecular size ranges and the aromatic chromophore sizes present. The mass spectrometric methods used were gas chromatography/mass spectrometry (GC/MS), pyrolysis/GC/MS, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) and laser desorption time-of-flight mass spectrometry (LD-TOFMS). The first three techniques gave good mass spectra only for the heptane-soluble fraction. Only LDMS gave signals from the toluene-insolubles, indicating that the molecules were too involatile for GC and too complex to pyrolyze into small molecules during pyrolysis/GC/MS. ESI-FTICRMS gave no signal for toluene-insolubles probably because the fraction was insoluble in the methanol or acetonitrile, water and formic acid mixture used as solvent to the ESI source. LDMS was able to generate ions from each of the fractions. Fractionation of complex samples is necessary to separate smaller molecules to allow the use of higher laser fluences for the larger molecules and suppress the formation of ionized molecular clusters. The upper mass limit of the pitch was determined as between 5000 and 10,000 u. The pitch asphaltenes showed a peak of maximum intensity in the LDMS spectra at around m/z 400, in broad agreement with the estimate from SEC. The mass ranges of the toluene-insoluble fraction found by LDMS and SEC (400-10,000 u with maximum intensity around 2000 u by LDMS and 100-9320 u with maximum intensity around 740 u by SEC) are higher than those for the asphaltene fraction (200-4000 u with

  5. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  6. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism.

    Science.gov (United States)

    Chace, Donald H; Kalas, Theodore A; Naylor, Edwin W

    2002-01-01

    This review is intended to serve as a practical guide for geneticists to current applications of tandem mass spectrometry to newborn screening. By making dried-blood spot analysis more sensitive, specific, reliable, and inclusive, tandem mass spectrometry has improved the newborn detection of inborn errors of metabolism. Its innate ability to detect and quantify multiple analytes from one prepared blood specimen in a single analysis permits broad recognition of amino acid, fatty acid, and organic acid disorders. An increasing number of newborn screening programs are either utilizing or conducting pilot studies with tandem mass spectrometry. It is therefore imperative that the genetics community be familiar with tandem mass spectrometric newborn screening.

  7. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  8. Microfabrication of low thermal mass heated nebulizer chips for mass spectrometry

    International Nuclear Information System (INIS)

    A low thermal mass Si–glass heated nebulizer chip for mass spectrometry is presented. The chips are used to mix a liquid sample (about 10 µL min−1) with a nebulizer gas (N2 at about 100 mL min−1) and to vaporize the mixture. They are suited to work with multiple atmospheric pressure ionization methods. Miniaturization of heated nebulizer chips increases sensitivity, performance and flexibility for mass spectrometry. The microsystem includes a sample channel with an in-plane converging exit nozzle and a resistive copper heater, located on the channel roof, enabling operation temperatures above 450 °C; needed for the complete vaporization of the sample. Excessive Si is etched away for the reduction of heat losses due to conduction and improvement of the heater efficiency. The chip is designed to ensure low temperatures at the side of fluidic inlet, allowing an easy connection of a nebulizer gas with a polymeric sealant. The jets are characterized by scanning with a miniature thermocouple perpendicularly to the stream direction. Jet temperatures and shape can be evaluated with the acquired cross-sectional two-dimensional temperature maps. Jets are found to stream without spreading, creating small spot sizes depending on nozzle dimensions. (paper)

  9. Distance-of-Flight Mass Spectrometry: A New Paradigm for Mass Separation and Detection

    Energy Technology Data Exchange (ETDEWEB)

    Enke, Chris; Ray, Steven J.; Graham, Alexander W.; Dennis, Elise; Hieftje, Gary M.; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.

    2012-07-01

    Distance-of-flight mass spectrometry (DOFMS) offers the advantages of physical separation of ions, array-detection of ions, focusing of initial ion energy, great simplicity, and truly unlimited mass range. DOFMS instrumentation is similar to that of time-of-flight mass spectrometry (TOFMS) and shares its ion source versatility, batch analysis, and rapid spectral generation rate. With constant-momentum ion acceleration and an ion mirror, there is a time at which ions of all m/z values are energy-focused at their particular distance along the flight path. A pulsed field orthogonal to the flight path drives the ions to reach the detector array at this specific time. Results from a 0.31-m proof-of-principle instrument verify the theoretically predicted energy focus and demonstrate how the range of m/z values impinging on the detector array can be readily changed. DOFMS can potentially be combined sequentially with TOFMS to enable simultaneous scanless MS/MS.

  10. Positron ionization mass spectrometry: An organic mass spectrometrist's view

    Energy Technology Data Exchange (ETDEWEB)

    Glish, G.L.; Donohue, D.L.; McLuckey, S.A.; Eckenrode, B.A.; Hulett, L.D. Jr.

    1990-01-01

    We are currently engaged in a research program to study the ionization of polyatomic molecules by positrons. We refer to the technique herein as positron ionization mass spectrometry which includes all of the possible ionization mechanisms. In the course of this work we will attempt to characterize each of the important ionization mechanisms. Our ultimate objective is to explore the use of positron ionization mass spectrometry for chemical analysis. Several other groups have also begun to pursue aspects of positron ionization in parallel with our efforts although with somewhat different approaches and, perhaps with slightly different emphases. Recently, for example, Passner et al. have acquired mass spectra in a Penning trap resulting from the ionization of several different polyatomic molecules by near thermal kinetics energy positrons. Our research involves studying the different types of ionizing interactions of positrons with organic molecules, as a function of positron kinetic energy. For ionization of polyatomic molecules by positrons, several possible mechanisms are apparent from lifetime and scattering cross-section data. These mechanisms are discussed.

  11. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Maria Françoise Bayer

    2013-01-01

    Full Text Available In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma plays pivotal roles in the orchestration of development, defence responses and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialised domains of the endoplasmic reticulum and the plasma membrane. PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalisation or screening of random cDNAs, only few PD proteins had been conclusively identified and characterised. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on free PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD associated proteins.

  12. An evaluation of tandem mass spectrometry in drug metabolism studies.

    Science.gov (United States)

    Naylor, S; Kajbaf, M; Lamb, J H; Jahanshahi, M; Gorrod, J W

    1993-07-01

    The use of precursor ion and constant neutral loss scanning as a means of rapidly detecting drug metabolites is evaluated. Four clinically useful drugs, namely (i) cyclophosphamide, (ii) mifentidine, (iii) cimetropium bromide and (iv) haloperidol, were subjected to microsomal incubations to afford phase I metabolites. Aside from a minor clean-up procedure involving zinc sulfate precipitation of microsomal proteins and solid-phase extraction of metabolites using a Sep-pak C-18 cartridge, the mixtures were analysed directly by fast atom bombardment tandem mass spectrometry. It is demonstrated that such screening strategies are important in detecting novel metabolites. However, there are some problems associated with only using such methods, including (i) the possibility of not detecting metabolites that undergo unusual collision-induced dissociation fragmentation pathways, (ii) the non-detection of metabolites that have undergone metabolic change at unusual sites of reactivity, and (iii) production of artifacts derived from the parent drug by the primary ionization process. Examples are discussed that highlight both the strengths and weaknesses of such an approach.

  13. Isotopic bias effects in resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Resonance ionization mass spectrometry (RIMS) is developing into a useful method for isotope ratio measurements with high selectivity and sensitivity of the technique for a large number of elements. The sensitivity of the technique relies on a number of experimental factors. Of primary importance is the proper coupling of the tunable laser output with the atomization source, which is most often a thermal filament. Use of pulsed thermal atomization can also improve efficiency. An increase in temporal efficiency can be achieved by using a continuous wave (CW) laser coupled to a continuous atomization source. CW lasers, in general, therefore must be tightly focused to saturate the ionization step in a resonance ionization process. However, this results in a lowered efficiency due to geometrical factors. The accuracy of isotope ratio measurements is also influenced by the choice of laser system for RIMS. The combination of isotope shifts and the analyte element with the spectral output of the laser will result in wavelength-dependant bias effects which must be controlled to obtain optimum analytical results. This problem has been studied and the results for both pulsed and CW lasers are given. (author)

  14. Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection

    Institute of Scientific and Technical Information of China (English)

    Yan-jun HONG; Xiao-dan WANG; David SHEN; Su ZENG

    2008-01-01

    Aim:A discrimination analysis has been explored for the probabilistic classifica-tion of healthy versus ovarian cancer serum samples using proteomics data from mass spectrometry (MS).Methods:The method employs data normalization,clustering,and a linear discriminant analysis on surface-enhanced laser desorp-tion ionization (SELDI) time-of-flight MS data.The probabilistic classification method computes the optimal linear discriminant using the complex human blood serum SELDI spectra.Cross-validation and training/testing data-split experi-ments are conducted to verify the optimal discriminant and demonstrate the accu-racy and robustness of the method.Results:The cluster discrimination method achieves excellent performance.The sensitivity,specificity,and positive predic-tive values are above 97% on ovarian cancer.The protein fraction peaks,which significantly contribute to the classification,can be available from the analysis process.Conclusion:The discrimination analysis helps the molecular identities of differentially expressed proteins and peptides between the healthy and ovarian patients.

  15. Ion source memory in {sup 36}Cl accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Merchel, Silke; Rugel, Georg [HZDR, Dresden (Germany); Arnold, Maurice; Aumaitre, Georges; Bourles, Didier; Martschini, Martin [ASTER, Aix-en-Provence (France); Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Steier, Peter [VERA, Vienna (Austria)

    2013-07-01

    Since the DREAMS (Dresden Accelerator Mass Spectrometry) facility went operational in 2011, constant effort was put into enabling routine measurements of long-lived radionuclides as {sup 10}Be, {sup 26}Al and {sup 41}Ca. For precise AMS-measurements of the volatile element Cl the key issue is the minimization of the long term memory effect. For this purpose one of the two original HVE sources was mechanically modified, allowing the usage of bigger cathodes with individual target apertures. Additionally a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, a small inter-laboratory comparison had been initiated. The long-term memory effect in the Cs sputter ion sources of the AMS facilities VERA, ASTER and DREAMS had been investigated by running samples of natural {sup 35}Cl/{sup 37}Cl-ratio and samples containing highly enriched {sup 35}Cl({sup 35}Cl/{sup 37}Cl > 500). Primary goals of the research are the time constants of the recovery from the contaminated sample ratio to the initial ratio of the sample and the level of the long-term memory effect in the sources.

  16. Identifying Metabolic Subpopulations from Population Level Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Christine M DeGennaro

    Full Text Available Metabolism underlies many important cellular decisions, such as the decisions to proliferate and differentiate, and defects in metabolic signaling can lead to disease and aging. In addition, metabolic heterogeneity can have biological consequences, such as differences in outcomes and drug susceptibilities in cancer and antibiotic treatments. Many approaches exist for characterizing the metabolic state of a population of cells, but technologies for measuring metabolism at the single cell level are in the preliminary stages and are limited. Here, we describe novel analysis methodologies that can be applied to established experimental methods to measure metabolic variability within a population. We use mass spectrometry to analyze amino acid composition in cells grown in a mixture of (12C- and (13C-labeled sugars; these measurements allow us to quantify the variability in sugar usage and thereby infer information about the behavior of cells within the population. The methodologies described here can be applied to a large range of metabolites and macromolecules and therefore have the potential for broad applications.

  17. Integrated liquid chromatography-heated nebulizer microchip for mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Saarela, Ville; Pól, Jaroslav; Kolari, Kai; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2010-03-10

    A new integrated microchip for liquid chromatography-mass spectrometry (LC-MS) is presented. The chip is made from bonded silicon and glass wafers with structures for a packed LC column channel, a micropillar frit, a channel for optional optical detection, and a heated vaporizer section etched in silicon and platinum heater elements on the glass cover. LC eluent is vaporized and mixed with nebulizer gas in the vaporizer section and the vapor is sprayed out from the chip. Nonpolar and polar analytes can be efficiently ionized in the gas phase by atmospheric pressure photoionization (APPI) as demonstrated with polycyclic aromatic hydrocarbons (PAHs) and selective androgen receptor modulators (SARMs). This is not achievable with present LC-MS chips, since they are based on electrospray ionization, which is not able to ionize nonpolar compounds efficiently. The preliminary quantitative performance of the new chip was evaluated in terms of limit of detection (down to 5 ng mL(-1)), linearity (r>0.999), and repeatability of signal response (RSD=2.6-4.0%) and retention time (RSD=0.3-0.5%) using APPI for ionization and PAHs as standard compounds. Determination of fluorescent compounds is demonstrated by using laser-induced fluorescence (LIF) for detection in the optical detection channel before the vaporizer section. PMID:20171315

  18. {sup 1}4C Accelerator mass spectrometry in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Macario, K.D.; Gomes, P.R.S.; Anjos, Roberto M.; Linares, R.; Queiroz, E.A.; Oliveira, F.M.; Cardozo, L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Carvalho, C.R.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Radiocarbon Accelerator Mass Spectrometry is an ultra-sensitive technique that enables the direct measurement of carbon isotopes in samples as small as a few milligrams. The possibility of dating or tracing rare or even compound specific carbon samples has application in many fields of science such as Archaeology, Geosciences and Biomedicine. Several kinds of material such as wood, charcoal, carbonate and bone can be chemically treated and converted to graphite to be measured in the accelerator system. The Physics Institute of Universidade Federal Fluminense (UFF), in Brazil will soon be able to perform the complete {sup 14}C-AMS measurement of samples. At the Nuclear Chronology Laboratory (LACRON) samples are prepared and converted to carbon dioxide. A stainless steel vacuum system was constructed for carbon dioxide purification and graphitization is performed in sealed tubes in a muffle oven. Graphite samples will be analyzed in a 250 kV Single Stage Accelerator produced by National Electrostatic Corporation which will be installed in the beginning of 2012. With the sample preparation laboratory at LACRON and the SSAMS system, the Physics Institute of UFF will be the first {sup 14}C-AMS facility in Latin America. (author)

  19. Role of accelerator mass spectrometry in nuclear physics

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) was developed in nuclear physics laboratories and up to now all experiments were performed at these places. However, AMS is being applied to a variety of fields which have very little to do with nuclear physics. The implications are for its original field can be divided in two domains. First, there are clearly instrumental implications. The overall demand of AMS for high efficiency ion sources, great stability, flexibility, and control of the entire accelerator system is certainly beneficial for the performance of any nuclear physics program. Second, AMS can be conveniently used to determine nuclear quantities of interest when the measurements involves very low radioisotope concentrations. Examples are the half-life measurement of 32Si and the cross section measurement of the 26Mg(p,n)26Al reaction. As the overall detection efficiency will improve there are some interesting problems in nuclear physics and elementary particle physics which are tempting to try. Although most of these experiments are beyond the present capability of AMS, some general aspects are discussed in section 5

  20. Near edge X-ray absorption mass spectrometry on coronene

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands); Boschman, L. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Hoekstra, S. [Van Swinderen Institute, University of Groningen, Groningen (Netherlands)

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  1. Application of Black Silicon for Nanostructure-Initiator Mass Spectrometry.

    Science.gov (United States)

    Gao, Jian; de Raad, Markus; Bowen, Benjamin P; Zuckermann, Ronald N; Northen, Trent R

    2016-02-01

    Nanostructure-initiator mass spectrometry (NIMS) is a matrix-free desorption/ionization technique with high sensitivity for small molecules. Surface preparation has relied on hydrofluoric acid (HF) electrochemical etching which is undesirable given the significant safety controls required in this specialized process. In this study, we examine a conventional and widely used process for producing black silicon based on sulfur hexafluoride/oxygen (SF6/O2) inductively coupled plasma (ICP) etching at cryogenic temperatures and we find it to be suitable for NIMS. A systematic study varying parameters in the plasma etching process was performed to understand the relationship of black silicon morphology and its sensitivity as a NIMS substrate. The results suggest that a combination of higher silicon temperature and oxygen flow rate gives rise to the formation of black silicon with fine pillar structures, whose aspect ratio are ∼ 8.7 and depth are surface restructuring caused by their low melting point upon laser irradiation. Interestingly, we find selectivity of these black silicon substrates to different analytes depending on the etching parameters. Though, the sensitivity of the dry etching process is lower than the traditional "wet" electrochemical etching process, it is suitable for many applications and is prepared using conventional equipment without the use of HF. PMID:26741735

  2. Fast multi-blind modification search through tandem mass spectrometry.

    Science.gov (United States)

    Na, Seungjin; Bandeira, Nuno; Paek, Eunok

    2012-04-01

    With great biological interest in post-translational modifications (PTMs), various approaches have been introduced to identify PTMs using MS/MS. Recent developments for PTM identification have focused on an unrestrictive approach that searches MS/MS spectra for all known and possibly even unknown types of PTMs at once. However, the resulting expanded search space requires much longer search time and also increases the number of false positives (incorrect identifications) and false negatives (missed true identifications), thus creating a bottleneck in high throughput analysis. Here we introduce MODa, a novel "multi-blind" spectral alignment algorithm that allows for fast unrestrictive PTM searches with no limitation on the number of modifications per peptide while featuring over an order of magnitude speedup in relation to existing approaches. We demonstrate the sensitivity of MODa on human shotgun proteomics data where it reveals multiple mutations, a wide range of modifications (including glycosylation), and evidence for several putative novel modifications. Based on the reported findings, we argue that the efficiency and sensitivity of MODa make it the first unrestrictive search tool with the potential to fully replace conventional restrictive identification of proteomics mass spectrometry data. PMID:22186716

  3. Fast multi-blind modification search through tandem mass spectrometry.

    Science.gov (United States)

    Na, Seungjin; Bandeira, Nuno; Paek, Eunok

    2012-04-01

    With great biological interest in post-translational modifications (PTMs), various approaches have been introduced to identify PTMs using MS/MS. Recent developments for PTM identification have focused on an unrestrictive approach that searches MS/MS spectra for all known and possibly even unknown types of PTMs at once. However, the resulting expanded search space requires much longer search time and also increases the number of false positives (incorrect identifications) and false negatives (missed true identifications), thus creating a bottleneck in high throughput analysis. Here we introduce MODa, a novel "multi-blind" spectral alignment algorithm that allows for fast unrestrictive PTM searches with no limitation on the number of modifications per peptide while featuring over an order of magnitude speedup in relation to existing approaches. We demonstrate the sensitivity of MODa on human shotgun proteomics data where it reveals multiple mutations, a wide range of modifications (including glycosylation), and evidence for several putative novel modifications. Based on the reported findings, we argue that the efficiency and sensitivity of MODa make it the first unrestrictive search tool with the potential to fully replace conventional restrictive identification of proteomics mass spectrometry data.

  4. Mass spectrometry in clinical chemistry: the case of newborn screening.

    Science.gov (United States)

    la Marca, Giancarlo

    2014-12-01

    Newborn screening (NBS) program is a complex and organized system consisting of family and personnel education, biochemical tests, confirmatory biochemical and genetic tests, diagnosis, therapy, and patient follow up. The program identifies treatable metabolic disorders possibly when asymptomatic by using dried blood spot (DBS). During the last 20 years tandem mass spectrometry (TMS) has become the leading technology in NBS programs demonstrating to be versatile, sensitive and specific. There is consistent evidence of benefits from NBS for many disorders detected by TMS as well as for congenital hypothyroidism, cystic fibrosis, congenital adrenal hyperplasia by immune-enzymatic methods. Real time PCR tests have more recently been proposed for the detection of some severe combined immunodeficiences (SCID) along with the use of TMS for ADA and PNP SCID; a first evaluation of their cost-benefit ratio is still ongoing. Avoiding false negative results by using specific biomarkers and reducing the false positive rate by using second tier tests, is fundamental for a successful NBS program. The fully integration of NBS and diagnostic laboratories with clinical service is crucial to have the best effectiveness in a comprehensive NBS system.

  5. Biomass carbon-14 ratio measured by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Measurement methods of a biomass carbon ratio in biomass products based on 14C-radiocarbon concentration have been reviewed. Determination of the biomass carbon ratio in biomass products is important to secure the reliance in the commercial market, because the 'biomass products' could contain products from petroleum. The biomass carbon ratio can be determined from percent Modern Carbon (pMC) using ASTM D6866 methods. The pMC value is calculated from the comparison between the 14C in sample and 14C in reference material. The 14C concentration in chemical products can be measured by liquid scintillation counter (LSC) and accelerator mass spectrometry (AMS). LSC can be applicable to determine the biomass carbon ratio for liquid samples such as gasoline with bioethanol (E5 or E10). On the other hand, AMS can be used to determine the biomass carbon ratio for almost all kinds of organic and inorganic compounds such as starch, cellulose, ethanol, gasoline, or polymer composite with inorganic fillers. AMS can accept the gaseous and solid samples. The graphite derived from samples included in solid phase is measured by AMS. The biomass carbon of samples derived from wood were higher than 100% due to the effect of atomic bomb test in the atmosphere around 1950 which caused the artificial 14C injection. Exact calculation methods of the biomass carbon ratio from pMC will be required for the international standard (ISO standard). (author)

  6. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Yang, Menglin; Hoeppner, Morgan; Rey, Martial; Kadek, Alan; Man, Petr; Schriemer, David C

    2015-07-01

    The pitcher secretions of the Nepenthes genus of carnivorous plants contain a proteolytic activity that is very useful for hydrogen/deuterium exchange mass spectrometry (HX-MS). Our efforts to reconstitute pitcher fluid activity using recombinant nepenthesin I (one of two known aspartic proteases in the fluid) revealed a partial cleavage profile and reduced enzymatic stability in certain HX-MS applications. We produced and characterized recombinant nepenthesin II to determine if it complemented nepenthesin I in HX-MS applications. Nepenthesin II shares many properties with nepenthesin I, such as fast digestion at reduced temperature and pH, and broad cleavage specificity, but in addition, it cleaves C-terminal to tryptophan. Neither enzyme reproduces the C-terminal proline cleavage we observed in the natural extract. Nepenthesin II is considerably more resistant to chemical denaturants and reducing agents than nepenthesin I, and it possesses a stability profile that is similar to that of pepsin. Higher stability combined with the slightly broader cleavage specificity makes nepenthesin II a useful alternative to pepsin and a more complete replacement for pitcher fluid in HX-MS applications. PMID:25993527

  7. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  8. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper. PMID:25715054

  9. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    Science.gov (United States)

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.

  10. Mass-spectrometry-based draft of the human proteome.

    Science.gov (United States)

    Wilhelm, Mathias; Schlegl, Judith; Hahne, Hannes; Moghaddas Gholami, Amin; Lieberenz, Marcus; Savitski, Mikhail M; Ziegler, Emanuel; Butzmann, Lars; Gessulat, Siegfried; Marx, Harald; Mathieson, Toby; Lemeer, Simone; Schnatbaum, Karsten; Reimer, Ulf; Wenschuh, Holger; Mollenhauer, Martin; Slotta-Huspenina, Julia; Boese, Joos-Hendrik; Bantscheff, Marcus; Gerstmair, Anja; Faerber, Franz; Kuster, Bernhard

    2014-05-29

    Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology. PMID:24870543

  11. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    Science.gov (United States)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  12. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    Science.gov (United States)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  13. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Stevens, Susan; Stenzel-Poore, Mary; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we introduce an experimental approach that efficiently compensates for matrix effects in nanospray desorption electrospray ionization (nano-DESI) MSI without introducing any complexity into the experimental protocol. We demonstrate compensation for matrix effects in nano-DESI MSI of phosphatidylcholine (PC) in normal and ischemic mouse brain tissue by doping the nano-DESI solvent with PC standards. Specifically, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model with an ischemic region localized to one hemisphere of the brain. Due to similar suppression in ionization of endogenous PC molecules extracted from the tissue and PC standards added to the solvent, matrix effects are eliminated by normalizing the intensity of the sodium and potassium adducts of endogenous PC to the intensity of the corresponding adduct of the PC standard. This approach efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  14. Rapid species diagnosis for invasive candidiasis using mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Carine Marinach-Patrice

    Full Text Available BACKGROUND: Matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF-MS allows the identification of most bacteria and an increasing number of fungi. The potential for the highest clinical benefit of such methods would be in severe acute infections that require prompt treatment adapted to the infecting species. Our objective was to determine whether yeasts could be identified directly from a positive blood culture, avoiding the 1-3 days subculture step currently required before any therapeutic adjustments can be made. METHODOLOGY/PRINCIPAL FINDINGS: Using human blood spiked with Candida albicans to simulate blood cultures, we optimized protocols to obtain MALDI TOF-MS fingerprints where signals from blood proteins are reduced. Simulated cultures elaborated using a set of 12 strains belonging to 6 different species were then tested. Quantifiable spectral differences in the 5000-7400 Da mass range allowed to discriminate between these species and to build a reference database. The validation of the method and the statistical approach to spectral analysis were conducted using individual simulated blood cultures of 36 additional strains (six for each species. Correct identification of the species of these strains was obtained. CONCLUSIONS/SIGNIFICANCE: Direct MALDI TOF-MS analysis of aliquots from positive blood cultures allowed rapid and accurate identification of the main Candida species, thus obviating the need for sub-culturing on specific media. Subsequent to this proof-of-principle demonstration, the method can be extended to other clinically relevant yeast species, and applied to an adequate number of clinical samples in order to establish its potential to improve antimicrobial management of patients with fungemia.

  15. Scanning mass spectrometry with integrated constant distance positioning

    International Nuclear Information System (INIS)

    Scanning mass spectrometry is of growing importance for the characterization of catalytically active surfaces. The instrument presented here is capable of measuring catalytic activity spatially resolved by means of two concentric capillaries. The outer one is used for cofeeding reactants such as ethene and hydrogen to the sample surface, whereas the inner one is pumping off the product mixture as inlet to a quadrupole mass spectrometer. Three-dimensional measurements under stagnant-point flow conditions become possible based on a home-built capillary positioning unit. Step-motor driven positioning stages exhibiting a minimum step width of 2.5 μmehalf step are used for the x, y positioning, and the step motor in z direction has a resolution of 1 μmehalf step. The system is additionally equipped with a feedback loop for following the topography of the sample throughout scanning. Hence, the obtained catalytic data are unimpaired by signal changes caused by the morphology of the investigated structure. For distance control the argon ion current is used originating from externally fed argon diffusing into the confined space between the accurately positioned capillaries and the sample surface. A well-defined microchannel flow field with 400 μm wide channels and 200 μm wide mounds was chosen to evaluate the developed method. The catalytic activity of a Pt catalyst deposited on glassy carbon was successfully visualized in constant probe to sample distance. Simultaneously, the topography of the sample was recorded derived from the z positioning of the capillaries

  16. Limitations of Mass Spectrometry-Based Peptidomic Approaches

    Science.gov (United States)

    Fricker, Lloyd D.

    2015-12-01

    Mass spectrometry-based peptidomic approaches are powerful techniques to detect and identify the peptide content of biological samples. The present study investigated the limitations of peptidomic approaches using trimethylammonium butyrate isotopic tags to quantify relative peptide levels and Mascot searches to identify peptides. Data were combined from previous studies on human cell lines or mouse tissues. The combined databases contain 2155 unique peptides ranging in mass from 444 to 8765 Da, with the vast majority between 1 and 3 kDa. The amino acid composition of the identified peptides generally reflected the frequency in the Eukaryotic proteome with the exception of Cys, which was not present in any of the identified peptides in the free-SH form but was detected at low frequency as a disulfide with Cys residues, a disulfide with glutathione, or as S-cyanocysteine. To test if the low detection rate of peptides smaller than 500 Da, larger than 3 kDa, or containing Cys was a limitation of the peptidomics procedure, tryptic peptides of known proteins were processed for peptidomics using the same approach used for human cell lines and mouse tissues. The identified tryptic peptides ranged from 516 to 2418 Da, whereas the theoretical digest ranged from 217 to 7559 Da. Peptides with Cys were rarely detected and, if present, the Cys was usually modified S-cyanocysteine. Additionally, peptides with mono- and di-iodo Tyr and His were identified. Taken together, there are limitations of peptidomic techniques, and awareness of these limitations is important to properly use and interpret results.

  17. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors

    NARCIS (Netherlands)

    Jungmann, JH; Heeren, R.M.A.

    2013-01-01

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and highmass detectors for mass spectrometry (imaging) are treated.

  18. Application of MALDI-triple quadrupole mass spectrometry for the quantification of small molecules in biomedical research

    NARCIS (Netherlands)

    R.J.W. Meesters (Roland)

    2011-01-01

    textabstractA century after its introduction, mass spectrometry is still an innovative technology, which, due to continuous instrumental developments and improvements, has provided important scientific insights in biochemistry, molecular biology and medicine. Now, in 2011, mass spectrometry is used

  19. Determination of percentage 235U in depleted uranium by combination of gamma spectrometry and potentiometry and comparison with thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    A gamma ray spectrometric method has been developed for the determination of percentage 235U in the depleted uranium samples. The concentration of 235U was determined by gamma spectrometry while that of total uranium by potentiometry. The values compared well with those obtained by thermal ionisation mass spectrometry. A value of 0.614± 0.006 and 0.617 ± 005 were obtained by gamma spectrometry and thermal ionisation mass spectrometry respectively for a set of ten measurements. (author)

  20. Mass spectrometry data from proteomic analysis of human skin keratins after exposure to UV radiation

    OpenAIRE

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-01-01

    A mass spectrometry (MS)-based proteomic methodology was employed to monitor oxidative modifications in keratins, the main constituents of human skin (“Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry” [1], “UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis” [2]). Human skin proteins were obtained non-invasively by tape stripping and solubilized i...

  1. Development of rapid methodologies for the isolation and quantitation of drug metabolites by differential mobility spectrometry - mass spectrometry.

    Science.gov (United States)

    Hall, Adam B; Coy, Stephen L; Nazarov, Erkinjon; Vouros, Paul

    2012-09-01

    Clinical and forensic toxicology laboratories are inundated with thousands of samples requiring lengthy chromatographic separations prior to mass spectrometry. Here, we employ differential mobility spectrometry (DMS) interfaced to nano-electrospray ionization-mass spectrometry to provide a rapid ion filtration technique for the separation of ions in gas phase media prior to mass spectral analysis on a DMS-integrated AB SCIEX API 3000 triple-quadrupole mass spectrometer. DMS is efficient at the rapid separation of ions under ambient conditions and provides many advantages when used as an ion filtration technique in tandem with mass spectrometry (MS) and MS/MS. Our studies evaluated DMS-MS/MS as a rapid, quantitative platform for the analysis of drug metabolites isolated from urine samples. In targeted applications, five metabolites of common drugs of abuse were effectively and rapidly separated using isopropanol and ethyl acetate as transport gas modifiers, eliminating the gas chromatography or liquid chromatography-based separations commonly employed in clinical and forensic toxicology laboratories. Calibration curves were prepared for the selected drug metabolites utilizing deuterated internal standards for quantitative purposes. The feasibility of separating and quantitating drug metabolites in a rapid fashion was evaluated by compensation voltage stepping followed by multiple reaction monitoring (MRM) detection. Rapid profiling of clinical and forensic toxicology samples could help to address an urgent need within the scientific community by developing high-throughput analytical methodologies, which could reduce significant case backlogs present within these laboratories.

  2. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Essassi, El Mokhtar; Massoui, Mohamed; Banoub, Joseph

    Mass spectrometry is an important tool for the identification and structural elucidation of natural and synthesized compounds. Its high sensitivity and the possibility of coupling liquid chromatography with mass spectrometry detection make it a technique of choice for the investigation of complex mixtures like raw natural extracts. The mass spectrometer is a universal detector that can achieve very high sensitivity and provide information on the molecular mass. More detailed information can be subsequently obtained by resorting to collision-induced dissociation tandem mass spectrometry (CID-MS/MS). In this review, the application of mass spectrometric techniques for the identification of natural and synthetic compounds is presented. The gas-phase fragmentation patterns of a series of four natural flavonoid glycosides, three synthesized benzodiazepines and two synthesized quinoxalinone derivatives were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry techniques. Exact accurate masses were measured using a modorate resolution quadrupole orthogonal time-of-flight QqTOF-MS/MS hybrid mass spectrometer instrument. Confirmation of the molecular masses and the chemical structures of the studied compounds were achieved by exploring the gas-phase breakdown routes of the ionized molecules. This was rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole hexapole-quadrupole (QhQ) tandem mass spectrometer.

  3. Geometrical beaming of stellar mass ULXs

    CERN Document Server

    Middleton, Matthew

    2016-01-01

    The presence or lack of eclipses in the X-ray lightcurves of ultraluminous X-ray sources (ULXs) can be directly linked to the accreting system geometry. In the case where the compact object is stellar mass and radiates isotropically, we should expect eclipses by a main-sequence to sub-giant secondary star on the recurrence timescale of hours to days. X-ray lightcurves are now available for large numbers of ULXs as a result of the latest XMM-Newton catalogue. We determine the amount of fractional variability that should be injected into an otherwise featureless lightcurve for a given set of system parameters as a result of eclipses and compare this to the available data. We find that the vast majority of sources for which the variability has been measured to be non-zero and for which available observations meet the criteria for eclipse searches, have fractional variabilities which are too low to derive from eclipses and so must be viewed such that theta =< acos(R*/a). This would require that the disc subten...

  4. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    Science.gov (United States)

    Kieser, W. E.; Zhao, X.-L.; Eliades, J.; Litherland, A. E.

    2012-04-01

    Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS), and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2), which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.

  5. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    Directory of Open Access Journals (Sweden)

    Eliades J.

    2012-04-01

    Full Text Available Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS, and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2, which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.

  6. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  7. Mass spectrometry based proteomics in cell biology and signaling research

    International Nuclear Information System (INIS)

    novel signaling molecules and to determine sites of phosphorylation. Proteomics can also be used to help in the annotation of genomes. Stage specific preparations of the human Malaria parasite Plasmodium falciparum were analyzed by liquid chromatography coupled to tandem mass spectrometry and resulted in the identification of more than 1300 proteins. Interestingly, a proportion of the sequenced peptides mapped to the genome but not to the set of predicted proteins of the parasite

  8. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry

    Science.gov (United States)

    Jertz, Roland; Friedrich, Jochen; Kriete, Claudia; Nikolaev, Evgeny N.; Baykut, Gökhan

    2015-08-01

    In Fourier transform ion cyclotron resonance spectrometry (FT-ICR MS) the ion magnetron motion is not usually directly measured, yet its contribution to the performance of the FT-ICR cell is important. Its presence is manifested primarily by the appearance of even-numbered harmonics in the spectra. In this work, the relationship between the ion magnetron motion in the ICR cell and the intensities of the second harmonic signal and its sideband peak in the FT-ICR spectrum is studied. Ion motion simulations show that during a cyclotron motion excitation of ions which are offset to the cell axis, a position-dependent radial drift of the cyclotron center takes place. This radial drift can be directed outwards if the ion is initially offset towards one of the detection electrodes, or it can be directed inwards if the ion is initially offset towards one of the excitation electrodes. Consequently, a magnetron orbit diameter can increase or decrease during a resonant cyclotron excitation. A method has been developed to study this behavior of the magnetron motion by acquiring a series of FT-ICR spectra using varied post-capture delay (PCD) time intervals. PCD is the delay time after the capture of the ions in the cell before the cyclotron excitation of the ion is started. Plotting the relative intensity of the second harmonic sideband peak versus the PCD in each mass spectrum leads to an oscillating "PCD curve". The position and height of minima and maxima of this curve can be used to interpret the size and the position of the magnetron orbit. Ion motion simulations show that an off-axis magnetron orbit generates even-numbered harmonic peaks with sidebands at a distance of one magnetron frequency and multiples of it. This magnetron offset is due to a radial offset of the electric field axis versus the geometric cell axis. In this work, we also show how this offset of the radial electric field center can be corrected by applying appropriate DC correction voltages to the

  9. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  10. Structural Characterization of Anticancer Drug Paclitaxel and Its Metabolites Using Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry

    Science.gov (United States)

    Lee, Hong Hee; Hong, Areum; Cho, Yunju; Kim, Sunghwan; Kim, Won Jong; Kim, Hugh I.

    2016-02-01

    Paclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3'- p-hydroxypaclitaxel (3 p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3 p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance. In this study, electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) and collision induced dissociation (CID) are utilized for the identification and characterization of PTX and its metabolites. Ion mobility distributions of 3 p-OHP and 6α-OHP indicate that hydroxylation of PTX at different sites yields distinct gas phase structures. Addition of monovalent alkali metal and silver metal cations enhances the distinct dissociation patterns of these structural isomers. The differences observed in the CID patterns of metalated PTX and its two metabolites are investigated further by evaluating their gas-phase structures. Density functional theory calculations suggest that the observed structural changes and dissociation pathways are the result of the interactions between the metal cation and the hydroxyl substituents in PTX metabolites.

  11. Tandem Mass Spectrometry for the Detection of Plant Pathogenic Fungi and the Effects of Database Composition on Protein Inferences

    Science.gov (United States)

    Mass spectrometry has shown potential for identifying and detecting plant pathogens. Unlike antibody-based assays like ELISA, mass spectrometry does not require the use of pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the mass spectrometry appro...

  12. The future of the accelerator mass spectrometry of rare long-lived radioactive isotopes

    International Nuclear Information System (INIS)

    Accelerators, originally designed for nuclear physics, can be added to mass spectrometric apparatus to increase the sensitivity so that isotope ratios in the range 10-12 to 10-15 can be measured routinely. This significant improvement of high-sensitivity mass spectrometry has been called Accelerator Mass Spectrometry. The present article addresses the basic principles of accelerator mass spectrometry and some recent applications which show its versatility. In particular, it is noted that accelerator mass spectrometry could play an increasing role in the measurement of the levels of long lived radioactivities in the environment, including the actinides, which result from human activities such as the use of nuclear power. To fulfill this promise, continued research and development is necessary to provide ion sources, various types of heavy ion accelerators and peripheral magnetic and electric analysers. (N.K.)

  13. A NEW GENERATION OF INSTRUMENTATION AND CAPABILITIES FOR ATOMIC MASS SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ Atomic mass spectrometry,embodied usually as inductively coupled plasma mass spectrometry (ICPMS) or glow-discharge mass spectrometry (GDMS),has become a widely accepted tool for trace and ultra-trace elemental analysis.ICPMS offers detection limits below 1 ppt in solution,a dynamic concentration levels,isotope-analysis and isotope-dilution capabilities,modest matrix interferences,understandable spectral interferences (isobaric overlaps),precision in range of 2—5%,and rapid measurements (typically 10 seconds per isotope).

  14. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  15. Characterization of linear and branched polyacrylates by tandem mass spectrometry.

    Science.gov (United States)

    Chaicharoen, Kittisak; Polce, Michael J; Singh, Anirudha; Pugh, Coleen; Wesdemiotis, Chrys

    2008-10-01

    The unimolecular degradation of alkali-metal cationized polyacrylates with the repeat unit CH(2)CH(COOR) and a variety of ester pendants has been examined by tandem mass spectrometry. The fragmentation patterns resulting from collisionally activated dissociation depend sensitively on the size of the ester alkyl substituent (R). With small alkyl groups, as in poly(methyl acrylate), lithiated or sodiated oligomers (M) decompose via free-radical chemistry, initiated by random homolytic C-C bond cleavages along the polymer chain. The radical ions formed this way dissociate further by backbiting rearrangements and beta scissions to yield a distribution of terminal fragments with one of the original end groups and internal fragments with 2-3 repeat units. If the ester alkyl group bears three or more carbon atoms, cleavages within the ester moieties become the predominant decomposition channel. This distinct reactivity is observed if R = t-butyl, n-butyl, or the mesogenic group (CH(2))(11)-O-C(6)H(4)-C(6)H(4)-CN. The [M+alkali metal](+) ions of the latter polyacrylates dissociate largely by charge-remote 1,5-H rearrangements that convert COOR to COOH groups by expulsion of 1-alkenes. The acid groups may displace an alcohol unit from a neighboring ester pendant to form a cyclic anhydride, unless hindered by steric effects. Using atom transfer radical polymerization, hyperbranched polyacrylates were prepared carrying ester groups both within and between the branches. Unique alkenes and alcohols are cleaved from ester groups at the branching points, enabling determination of the branching architecture. PMID:18373231

  16. Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buchholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Enright, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCartt, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Malfatti, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ognibene, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loots, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-08

    The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integrated HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory

  17. Multiple breath nitrogen washout: a feasible alternative to mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Renee Jensen

    Full Text Available BACKGROUND: The lung clearance index (LCI, measured by multiple breath washout (MBW, reflects global ventilation inhomogeneity and is a sensitive marker of early cystic fibrosis (CF lung disease. Current evidence is based on a customized mass spectrometry system that uses sulfur hexafluoride (SF6 as a tracer gas, which is not widely available. Nitrogen (N2 washout may be better suited for clinical use and multi-center trials. OBJECTIVE: To compare the results obtained from a N2 washout system to those generated by the SF6 based system in healthy children and children with CF. METHODS: Children with CF were recruited from outpatient clinics; healthy children were recruited from the Research4Kids online portal. Participants performed MBWSF6 (Amis 2000, Innovision, Denmark and MBWN2 (ExhalyzerD, EcoMedics, Switzerland in triplicate, in random order on the same day. Agreement between systems was assessed by Bland-Altman plot. RESULTS: Sixty-two healthy and 61 children with CF completed measurements on both systems. In health there was good agreement between systems (limits of agreement -0.7 to 1.9; on average N2 produced higher values of LCI (mean difference 0.58 (95% CI 0.42 to 0.74. In CF the difference between systems was double that in health with a clear bias towards disproportionately higher LCIN2 compared to LCISF6 at higher mean values of LCI. CONCLUSION: LCIN2 and LCISF6 have similar discriminative power and intra-session repeatability but are not interchangeable. MBWN2 offers a valid new tool to investigate early obstructive lung disease in CF, but requires independent normative values.

  18. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Michalke, Bernhard

    2016-01-01

    During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter. PMID:27645737

  19. Easy identification of leishmania species by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Oussama Mouri

    2014-06-01

    Full Text Available BACKGROUND: Cutaneous leishmaniasis is caused by several Leishmania species that are associated with variable outcomes before and after therapy. Optimal treatment decision is based on an accurate identification of the infecting species but current methods to type Leishmania isolates are relatively complex and/or slow. Therefore, the initial treatment decision is generally presumptive, the infecting species being suspected on epidemiological and clinical grounds. A simple method to type cultured isolates would facilitate disease management. METHODOLOGY: We analyzed MALDI-TOF spectra of promastigote pellets from 46 strains cultured in monophasic medium, including 20 short-term cultured isolates from French travelers (19 with CL, 1 with VL. As per routine procedure, clinical isolates were analyzed in parallel with Multilocus Sequence Typing (MLST at the National Reference Center for Leishmania. PRINCIPAL FINDINGS: Automatic dendrogram analysis generated a classification of isolates consistent with reference determination of species based on MLST or hsp70 sequencing. A minute analysis of spectra based on a very simple, database-independent analysis of spectra based on the algorithm showed that the mutually exclusive presence of two pairs of peaks discriminated isolates considered by reference methods to belong either to the Viannia or Leishmania subgenus, and that within each subgenus presence or absence of a few peaks allowed discrimination to species complexes level. CONCLUSIONS/SIGNIFICANCE: Analysis of cultured Leishmania isolates using mass spectrometry allows a rapid and simple classification to the species complex level consistent with reference methods, a potentially useful method to guide treatment decision in patients with cutaneous leishmaniasis.

  20. Using accelerator mass spectrometry for radiocarbon dating of textiles

    Energy Technology Data Exchange (ETDEWEB)

    Jull, A.J.T.

    1997-12-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residence ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.

  1. Revisiting hyper- and hypo-androgenism by tandem mass spectrometry.

    Science.gov (United States)

    Fanelli, Flaminia; Gambineri, Alessandra; Mezzullo, Marco; Vicennati, Valentina; Pelusi, Carla; Pasquali, Renato; Pagotto, Uberto

    2013-06-01

    Modern endocrinology is living a critical age of transition as far as laboratory testing and biochemical diagnosis are concerned. Novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays for steroid measurement in biological fluids have abundantly demonstrated their analytical superiority over immunometric platforms that until now have dominated the world of steroid hormones determination in clinical laboratories. One of the most useful applications of LC-MS/MS is in the hypogonadism and hyperandrogenism field: LC-MS/MS has proved particularly suitable for the detection of low levels of testosterone typical of women and children, and in general more reliable in accurately determining hypogonadal male levels. This technique also offers increased informative power by allowing multi-analytical profiles that give a more comprehensive picture of the overall hormonal asset. Several LC-MS/MS methods for testosterone have been published in the last decade, some of them included other androgen or more comprehensive steroid profiles. LC-MS/MS offers the concrete possibility of achieving a definitive standardization of testosterone measurements and the generation of widely accepted reference intervals, that will set the basis for a consensus on the diagnostic value of biochemical testing. The present review is aimed at summarizing technological advancements in androgen measurements in serum and saliva. We also provide a picture of the state of advancement of standardization of testosterone assays, of the redefinition of androgen reference intervals by novel assays and of studies using LC-MS/MS for the characterization and diagnosis of female hyperandrogenism and male hypogonadism.

  2. Biomedical applications of gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Gas chromatography coupled with mass-spectrometry (GC/MS) is a modern technique, which has very important applications in the biomedical area. A large number of qualitative and quantitative determinations of drugs, amino acids, vitamins, lipids, aroma compounds, important nutrients, herb extracts were developed. The extraction procedure is the first important step in the analytical work. The internal standard is usually added at the very begin ing of the quantitative work. The best one is the stable isotopic labeled compound, usually the analogue of the compound of interest. Stable isotopic internal standard or compounds from the same chemical class having boiling point close to that of the compound of interest were used. Quantitation needs very well selected standards and method validation. Some validated methods for the determination of drugs and some active principles in biological media are presented. Several preconcentration extraction procedures were used. The quantitative determinations by detection (GC-MS) were performed. Good validation parameters were obtained: precision, accuracy, linearity in the range of interest, good limit of detection and quantitation, selectivity and specificity. Chromatography was performed on a 5% phenyl methyl polysiloxane column (15 or 30 m x 0.25 mm I.D., 0.25 μm film thickness) operated in suitable temperature programs. Helium carrier gas flow was 1ml/min. Ionization was performed by electron impact and detection in scan or selected ion monitoring (SIM) modes. The methods provided high response linearity (mean r = 0.99), precision and accuracy (< 10% C.V.). Applications of the quantitative methods in biomedical area are described. (author)

  3. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G

    2009-06-15

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  4. Reaction products in mass spectrometry elucidated with infrared spectroscopy.

    Science.gov (United States)

    Polfer, Nick C; Oomens, Jos

    2007-08-01

    Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown

  5. BPDA - A Bayesian peptide detection algorithm for mass spectrometry

    Directory of Open Access Journals (Sweden)

    Braga-Neto Ulisses

    2010-09-01

    Full Text Available Abstract Background Mass spectrometry (MS is an essential analytical tool in proteomics. Many existing algorithms for peptide detection are based on isotope template matching and usually work at different charge states separately, making them ineffective to detect overlapping peptides and low abundance peptides. Results We present BPDA, a Bayesian approach for peptide detection in data produced by MS instruments with high enough resolution to baseline-resolve isotopic peaks, such as MALDI-TOF and LC-MS. We model the spectra as a mixture of candidate peptide signals, and the model is parameterized by MS physical properties. BPDA is based on a rigorous statistical framework and avoids problems, such as voting and ad-hoc thresholding, generally encountered in algorithms based on template matching. It systematically evaluates all possible combinations of possible peptide candidates to interpret a given spectrum, and iteratively finds the best fitting peptide signal in order to minimize the mean squared error of the inferred spectrum to the observed spectrum. In contrast to previous detection methods, BPDA performs deisotoping and deconvolution of mass spectra simultaneously, which enables better identification of weak peptide signals and produces higher sensitivities and more robust results. Unlike template-matching algorithms, BPDA can handle complex data where features overlap. Our experimental results indicate that BPDA performs well on simulated data and real MS data sets, for various resolutions and signal to noise ratios, and compares very favorably with commonly used commercial and open-source software, such as flexAnalysis, OpenMS, and Decon2LS, according to sensitivity and detection accuracy. Conclusion Unlike previous detection methods, which only employ isotopic distributions and work at each single charge state alone, BPDA takes into account the charge state distribution as well, thus lending information to better identify weak peptide

  6. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti+ and Cr+) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  7. Multi photon ionization mass spectrometry of carbamate pesticides, herbicides and fungicides

    International Nuclear Information System (INIS)

    Pesticides and herbicides are useful for a wide range of applications today. The determination of these substances either in the pure form or in complex matrices is of high analytical interest. Especially since these substances can by found in every day products. The combination of multi photon ionization (MUPI) and time of flight laser mass spectrometry may be a powerful tool for achieving fast well interpretable mass spectra for analytical purposes. In this paper we will discuss the mass spectra of several pesticides and herbicides accessed by MUPI-time-of-flight mass spectrometry. The influence of the laser pulse duration on the mass spectra are discussed

  8. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Short, Joshua TL; Carson, James P.; Cha, Jeeyeon; Dey, Sudhansu K.; Yang, Pengxiang; Prieto Conaway, Maria C.; Laskin, Julia

    2013-10-15

    Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z values at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.

  9. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    Science.gov (United States)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  10. Developments in mass spectrometry for the analysis of complex protein mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khalsa-Moyers, Gurusahai K [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    State-of-the-art proteomics workflows involve multiple interdependent steps: sample preparation, protein peptide separation, mass spectrometry and data analysis.While improvements in any of these steps can increase the depth and breadth of analysis, advances in mass spectrometry have catalysed many of the most important developments. We discuss common classes of mass analysers and how these analysers are put together to produce some of the most popular mass spectrometry platforms.The capabilities of these platforms determine how they can be used in a variety of common proteomic strategies and, in turn, what types of biological questions can be addressed. Moving forward, powerful new hybridmass spectrometers and application of emerging types of tandemmass spectrometry promise that our ability to analyse complex mixtures of proteins will continue to advance.

  11. Simultaneous determination of seven gestagens in kidney fats by Ultra Performance Convergence Chromatography tandem mass spectrometry

    NARCIS (Netherlands)

    Tao, Yanfei; Balzer-Rutgers, Paula; Stolker, A.A.M.; Chen, Dongmei; Yuan, Zonghui

    2015-01-01

    An ultra-performance convergence chromatography (UPC2) system coupled tandem mass spectrometry was successfully utilised to analyse chlormadinone acetate, delmadinone acetate, fluorogestone acetate, medroxyprogesterone acetate, megestrol acetate, melengestrol acetate, chlortestasterone acetate in

  12. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products

    NARCIS (Netherlands)

    Medema, Marnix; Paalvast, Yared; Nguyen, D.D.; Melnik, A.; Dorrestein, P.C.; Takano, Eriko; Breitling, Rainer

    2014-01-01

    Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strateg

  13. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Science.gov (United States)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  14. Determination of plutonium traces isotopic composition by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Plutonium isotopic composition has been determined by thermal ionization mass spectrometry. An ion counting detector has been used. It allows to noticeably reduce the sample quantity to use. The accuracy of the obtained measures are very good

  15. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    Science.gov (United States)

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated. PMID:2504760

  16. Application of inductively coupled plasma mass spectrometry (ICP-MS) to radioecology

    International Nuclear Information System (INIS)

    The advantages of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) over conventional radioanalytical measurements are presented and the applications of the ICP-MS technique to environmental samples are given

  17. Determination of traces of thorium in uranium by inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    An analytical methodology for the determination of traces of thorium in uranium oxide by Inductively Coupled Plasma Mass Spectrometry has been developed. Recovery studies were carried out by standard addition and also by tracer technique to validate the methodology. (author)

  18. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  19. Imaging of Proteins in Tissue Sections Using Mass Spectrometry as a Discovery Tool

    Institute of Scientific and Technical Information of China (English)

    RichardM.Caprioli

    2004-01-01

    The Mass Spectrometry Group of Richard M. Caprioli at Vanderbilt University is evaluating MacromizerTM for their MALDI-imaging application. The expectation is to see more high mass proteins due to the increased high mass sensitivity of MacromizerTM.

  20. Imaging of Proteins in Tissue Sections Using Mass Spectrometry as a Discovery Tool

    Institute of Scientific and Technical Information of China (English)

    Richard M. Caprioli

    2004-01-01

    @@ The Mass Spectrometry Group of Richard M. Caprioli at Vanderbilt University is evaluating MacromizerTM for their MALDI-imaging application. The expectation is to see more high mass proteins due to the increased high mass sensitivity of MacromizerTM.

  1. Comparative mass spectrometric analyses of Photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry.

    Science.gov (United States)

    Siegel, M M; Tabei, K; Tsao, R; Pastel, M J; Pandey, R K; Berkenkamp, S; Hillenkamp, F; de Vries, M S

    1999-06-01

    Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix-assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 +/- 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques.

  2. Optimization of an ion-to-photon detector for large molecules in mass spectrometry.

    Science.gov (United States)

    Dubois; Knochenmuss; Zenobi

    1999-10-15

    Ion packets can be detected in time-of-flight mass spectrometry by collecting the photons that are produced during the impact of the packets with a scintillator. The photon yield is a function of the ion energy. It was found that post-acceleration of the particles in front of the scintillator was an efficient way of increasing signal intensities. For the same total ion energy, the intensities were larger with post-acceleration than when only increasing the initial ion kinetic energy. A venetian blind dynode, converting the primary ion beam into electrons/secondary ions, was also introduced. Positive or negative secondary particles produced on the dynode surface could be accelerated to the scintillator. Electrons were found to give the highest signals. Intensities similar to those measured with microchannel plates were found. The linearity and onset of saturation of the microchannel plates and the ion-to-photon detector were compared. At optimum operating conditions, the ion-to-photon detector gave around 10 times higher signals than the microchannel plates for heavy ions (150 kDa), with similar mass resolution. Copyright 1999 John Wiley & Sons, Ltd. PMID:10487943

  3. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomics studies

    OpenAIRE

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; De Castillia, Caterina Strambio; Varesio, Emmanuel; Hopfgartner, Gérard

    2015-01-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize mass spectrometry coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilisation and denaturation methods were ...

  4. Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view

    OpenAIRE

    Smith, Rob; Mathis, Andrew D.; Ventura, Dan; Prince, John T.

    2014-01-01

    Background For decades, mass spectrometry data has been analyzed to investigate a wide array of research interests, including disease diagnostics, biological and chemical theory, genomics, and drug development. Progress towards solving any of these disparate problems depends upon overcoming the common challenge of interpreting the large data sets generated. Despite interim successes, many data interpretation problems in mass spectrometry are still challenging. Further, though these challenges...

  5. Enhancement of the isotopic abundance sensitivity of mass spectrometry by Doppler-free resonance ionization

    International Nuclear Information System (INIS)

    The use of two-photon Doppler-free excitation in atomic resonance ionization offers the possibility of considerable enhancement of the isotopic abundance sensitivity of conventional mass spectrometry. In some applications of interest, e.g. carbon dating, this technique may provide sensitivity comparable to that presently attained by accelerator-based high energy mass spectrometry. The basic physics underlying the method is discussed and preliminary experimental work on three-photon ionization of atomic carbon is described. (author)

  6. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    OpenAIRE

    Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M; Wong, Chi-Huey; Siuzdak, Gary

    2008-01-01

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This “soft” immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitiv...

  7. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    Science.gov (United States)

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  8. Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics

    OpenAIRE

    Jiwen eYang; Sebastian Alexander Wagner; Petra eBeli

    2015-01-01

    Protein-protein interactions are at the core of all cellular functions and dynamic alterations in protein interactions regulate cellular signaling. In the last decade, mass spectrometry-based proteomics has delivered unprecedented insights into human protein interaction networks. Affinity purification-mass spectrometry has been extensively employed for focused and high-throughput studies of steady state protein-protein interactions. Future challenges remain in mapping transient protein intera...

  9. Determination of ultra-trace amounts of nuclides by sensitive inorganic mass spectrometry

    International Nuclear Information System (INIS)

    Recent development of ICP (Inductively Coupled Plasma) mass spectrometry has a potential to detect very tiny amounts of radioactive nuclides owing to its high sensitivity. The detection of long-lived nuclides such as 236U, 135Cs, and 129I has been reported in the recent years. In this review, principle of inorganic mass spectrometry (MS) and characteristics of ICP are explained, and their detection limits are compared with those obtained by conventional radiation measurements. (author)

  10. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry

    OpenAIRE

    José Juan Ordaz-Ortiz; Sofia Foukaraki; Leon Alexander Terry

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography–full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, ...

  11. Conformation and dynamics of biopharmaceuticals: transition of mass spectrometry-based tools from academe to industry

    OpenAIRE

    Kaltashov, Igor A.; Bobst, Cedric E.; Abzalimov, Rinat R.; Berkowitz, Steven A; Houde, Damian

    2009-01-01

    Mass spectrometry plays a very visible role in biopharmaceutical industry, although its use in development, characterization and quality control of protein drugs is mostly limited to the analysis of covalent structure (amino acid sequence and post-translational modifications). Despite the centrality of protein conformation to biological activity, stability and safety of biopharmaceutical products, the expanding arsenal of mass spectrometry-based methods that are currently available to probe h...

  12. Determination of wheat quality by mass spectrometry and multivariate data analysis

    DEFF Research Database (Denmark)

    Gottlieb, D.M.; Schultz, J.; Petersen, M.;

    2002-01-01

    Multivariate analysis has been applied as support to proteome analysis in order to implement an easier and faster way of data handling based on separation by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The characterisation phase in proteome analysis by means of s...... of multivariate analysis on data from mass spectrometry has thus shown to be a promising technique to minimize the number of two-dimensional gels within the field of proteome analysis....

  13. Getting to the core of protein pharmaceuticals – comprehensive structure analysis by mass spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Mistarz, Ulrik Hvid; Rand, Kasper Dyrberg

    2015-01-01

    Protein pharmaceuticals are the fastest growing class of novel therapeutic agents, and have been a major research and development focus in the (bio)pharmaceutical industry. Due to their large size and structural diversity, biopharmaceuticals represent a formidable challenge regarding analysis....... Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry...

  14. 87Sr/86Sr measurements on marine sediments by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    The application of inductively coupled plasma-mass spectrometry (ICP-MS) is documented for the study of the strontium isotopic composition (87Sr/86Sr) in geological samples, i.e. in the marine lithic fraction of core sediments. Methods for the determination of the isotopic composition, its accuracy and precision are reported. The results obtained simultaneously on 11 samples by both ICP-MS and thermal ionization mass spectrometry (TIMS) reveal a very good correlation (r2 = 0.955). (orig.)

  15. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  16. Secondary ion mass spectrometry of MCsn+molecular ion complexes

    Science.gov (United States)

    Saha, Biswajit; Chakraborty, Purushottam

    2007-05-01

    Excellent detection sensitivity, high dynamic range and good depth resolution make the SIMS technique extremely powerful for the analysis of surfaces and interfaces. However, a serious problem in SIMS analysis is its "matrix effect" that hinders the quantification of a certain species in a sample and consequently, probing the composition of surfaces or interfaces by SIMS is greatly hindered. Appropriate corrective measures are therefore, needed to calibrate the secondary ion currents into respective concentrations for accurate compositional analysis. Working in the MCs+-SIMS mode (M - element to be analyzed, Cs+ - bombarding ions) can circumvent the matrix effect. The quantitative potential of the MCs+-SIMS method is understood by assuming that an MCs+ ion is generated by the combination of a secondary neutral M0 atom with a re-sputtered Cs+ ion in the near-surface region. The emission process for the species M0 is thus decoupled from the subsequent MCs+ ion formation process, in analogy with the ion formation in secondary neutral mass spectrometry (SNMS), resulting in a drastic decrease in matrix effect. Although this technique has found its applicability in direct quantification, it generally suffers from a low useful yield. In such cases, detection of MCsn+(n = 2, 3, …) molecular ions offers a better sensitivity as the yields of such molecular ion complexes have often been found higher than that of MCs+ ions. This is true in most of the cases where the elements are strongly electronegative with respect to cesium. Several works have been reported on the emission of MCsn+molecular ions in the SIMS process, but a complete understanding on the formation mechanism of these ion complexes is still lacking. The kinetic energy distributions of secondary MCsn+molecular ion complexes has been found to be an effective approach to estimate the local instantaneous surface work function changes under various surface exposure conditions, thereby enabling one to elucidate on

  17. An ultra-sensitive instrument for collision activated dissociation mass spectrometry with high mass resolution

    International Nuclear Information System (INIS)

    During the last decade Collision Activated Dissociation Mass Spectrometry (CAD-MS) has developed into an important and sometimes unique technique for the structure elucidation of ions. An extensive description of the double stage MS is given, which has been especially devloped for CAD-MS. A high mass resolution and a very high sensitivity are obtained by application of special techniques like post-acceleration of fragment ions, quadrupole (Q-pole) lenses and an electro-optical, simultaneous ion detection system. The operation of the rather complex ion-optics is demonstrated by application of a computer simulation of the tandem MS. Special attention is given to the action of the four Q-pole lenses and the second sector magnet upon curvature and position of the mass focal plane. Two mass calibration methods are described for the fragment spectra. The so-called polynomial-method applies a fifth-order polynomial approximation of the functional relation between position on the detector and corresponding relative momentum of fragment ions. The second method uses the matrix model of the instrument. The detector consists of two channelplates (CEMA), a fibre optics slab, coated with a phosphor layer, a camera objective and a 1024-channels photodiode-array. A bio-chemical and an organic-chemical application of the instrument are given. As bio-chemical application the peak m/z 59 in the pyrolysis mass spectrum of complete mycobacteria is identified. As an example of organic-chemical application the fragmentation process of 2,3-butadienoic acid has been investigated. (Auth.)

  18. Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry.

    Science.gov (United States)

    Nortes-Méndez, Rocío; Robles-Molina, José; López-Blanco, Rafael; Vass, Andrea; Molina-Díaz, Antonio; Garcia-Reyes, Juan F

    2016-09-01

    This article reports the development of two HPLC-MS methods for the determination of polar pesticides in olive oil and olive samples by hydrophilic interaction liquid chromatography (HILIC) separation followed by mass spectrometry detection with tandem mass spectrometry using a triple quadrupole instrument operated in multiple reaction monitoring mode (HILIC-MS/MS) or electrospray time-of-flight mass spectrometry (HILIC-TOFMS). The selected polar pesticides included in the study were: amitrol, cyromazine, diquat, paraquat, mepiquat, trimethylsulfonium (trimesium, glyphosate counterion) and fosetyl aluminium. The simple sample treatment procedure was based on liquid partitioning with methanol. The performance of the sample extraction was evaluated in terms of recovery rates and matrix effects in both olive oil and olives matrices. The results obtained for olive oil were satisfactory while, due to the high complexity of olives, poor recovery rates were obtained for the extraction of diquat, paraquat and amitrol, although with a reasonable precision enabling its use in routine analysis. Similarly, matrix effects were minor in the case of olive oil (ca. 20% suppression average), while significantly higher suppression was observed for olives (30-50% suppression average). The studied approaches were found to be useful for the determination of the pesticides studied in olive oil and olives with limits of quantitation below 5µgkg(-1) in most cases when tandem mass spectrometry was used, thus being in compliance with MRLs set by current EU regulation. PMID:27343599

  19. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  20. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 7 papers are interesting for the ETDE database and are analyzed separately. (O.M.)