WorldWideScience

Sample records for beam loss mechanism

  1. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  2. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  3. Identification of LHC beam loss mechanism : a deterministic treatment of loss patterns

    CERN Document Server

    Marsili, Aurélien

    CERN's Large Hadron Collider (LHC) is the largest machine ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, keeping the particles into two counter circulating beams, which collide in four interaction points. CERN and the LHC will be described in chap. 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets will become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3500 ionisation chambers are installed. Further challenges include the high dyna...

  4. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  5. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  6. LHC beam loss pattern recognition

    CERN Document Server

    Marsili, A; Puzo, P

    2011-01-01

    One of the systems protecting CERN’s Large Hadron Collider (LHC) is the Beam Loss Monitoring system (BLM). More than 3600 monitors are installed around the ring. The beam losses are permanently integrated over 12 different time intervals (from 40 microseconds to 84 seconds). When any loss exceeds the thresholds defined for the integration window, the beam is removed from the machine. Understanding the origin of a beam loss is crucial for machine operation, as it can help to avoid a repetition of the same scenario. The signals read from given monitors can be considered as entries of a vector. This article presents how a loss map of unknown cause can be decomposed using vector based analysis derived from well-known loss scenarios. The algorithms achieving this decomposition are described, as well as the accuracy of the results.

  7. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  8. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  9. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  10. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  11. Beam Loss Monitors at LHC

    CERN Document Server

    Dehning, B

    2016-01-01

    One of the main functions of the LHC beam loss measurement system is the protection of equipment against damage caused by impacting particles creating secondary showers and their energy dissipation in the matter. Reliability requirements are scaled according to the acceptable consequences and the frequency of particle impact events on equipment. Increasing reliability often leads to more complex systems. The downside of complexity is a reduction of availability; therefore, an optimum has to be found for these conflicting requirements. A detailed review of selected concepts and solutions for the LHC system will be given to show approaches used in various parts of the system from the sensors, signal processing, and software implementations to the requirements for operation and documentation.

  12. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    The use of glass as a load carrying material in structural elements is rarely seen even though glass is a popular material for many architects. This is owed to the unreliable and low tensile strength, which is due to surface flaws and high brittleness of the material. These properties lead...... to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  13. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  14. Beam loss studies for the KEK compact-ERL

    International Nuclear Information System (INIS)

    We performed the beam loss study for the compact Energy Recovery Linac (cERL) at KEK. To this purpose the Touschek effect with intra-beam scattering, the residual gas scattering (elastic and inelastic cases) were examined using existing and modified ELEGANT routines, and developed MATLAB data analysis algorithms to handle the large amount of data that is produced by the program. In addition we performed several simulations to judge the impact of field emission issued from the main cavity. By studying the beam losses of cERL, we can better understand the loss mechanisms, estimate the beam loss rates, and localize potentially dangerous areas of the beam line, which is important for the safety low-emittance and high-current beams operation. The data obtained then are compared with the theoretical estimation to verify the accuracy of the simulations. (author)

  15. Beam Loss Monitors at the ESRF

    CERN Document Server

    Joly, B; Naylor, G A

    2000-01-01

    The European Synchrotron radiation facility is a third generation x-ray source providing x-rays on a continuous basis. As a facility available to external users, the monitoring of radiation caused by the loss of high-energy stored beam is of great concern. A network of beam loss monitors has been installed inside the storage ring tunnel so as to detect and localize the slow loss of electrons during a beam decay. This diagnostic tool allows optimization of beam parameters and physical aperture limits as well as giving useful information on the machine to allow the lifetime to be optimized and defects localized.

  16. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  17. Application of optical fiber beam loss monitor

    International Nuclear Information System (INIS)

    KEK is an accelerator complex consisting of an electron-positron injector linac and various types of circular accelerators. In order to protect instruments from radiation damage, discrete beam loss monitors have been installed inside the linac and rings. Although beam losses can be detected using the beam loss monitors (BLMs) or beam position monitors (BPMs), it is difficult to identify the exact position of the loss. The electrons, which strike the duct, lose a fraction of their beam energy, which produces a shower at the location and emits many electrons out of the duct. If an optical fiber is placed inside the beam duct, many of these electrons will pass through the optical fiber where the beam loss is generated. BLMs employing an optical fiber based on Cherenkov radiation are currently being developed and applied to our system. An optical fiber placed into the duct also can be used as a detector for a wire scanner system. Existing wire scanner detectors are set at a fixed position, and detect signals of different beam energies that correspond to the different injection modes. However, the fixed position is not always optimal. Conversely, owing to the optical fiber's distributing nature, optical fiber detector systems containing PMTs enables the effective detection of all signals from various beam modes. We can successfully obtain the clear wire scanner signal by employing this optical fiber system. The measurement of the beam loss at the incidence part of the circular accelerator is also described. The beam loss location as well as the turn-by-turn beam loss can be measured. (author)

  18. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  19. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  20. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  1. Beam Loss Diagnostics Based on Pressure Measurements

    CERN Document Server

    Weinrich, U

    2003-01-01

    The GSI is operating a heavy ion synchrotron, which is currently undergoing an upgrade towards higher beam intensities. It was discovered that beam losses induce a significant pressure increase in the vacuum system. In order to detect the time constants of the pressure increase and decrease, fast total pressure measurements were put into operation. With the recently installed partial pressure diagnostics it is also possible to follow up which types of molecules are released. The presentation will focus on the different techniques applied as well as on some measurement results. The potential and difficulties of this diagnostic tool will also be discussed.

  2. Identification and Classification of Beam Loss Patterns in the Large Hadron Collider

    CERN Document Server

    Panagiotis, Theodoropoulos; Valentino, Gianluca; Redaelli, Stefano; Herbster, Mark

    The Large Hadron Collider, is the largest particle accelerator ever built, achieving record beam energy and beam intensity. Beam losses are unavoidable and can risk the safety of accelerator’s components. Beam loss maps are used to validate the collimation system, designed to protect the accelerator against beam losses. The complexity of this system requires well defined inspection methods and well defined case studies that ensure normal operation and efficient performance evaluation. In this work, enhancements are proposed to the existing validation methods with extensions towards automating the inspection mechanisms, introducing pattern recognition and statistical learning methods.

  3. Beam Loss Control for the Fermilab Main Injector

    CERN Document Server

    Brown, Bruce C

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  4. Characterizing and Controlling Beam Losses at the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rybarcyk, Lawrence J. [Los Alamos National Laboratory

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  5. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  6. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  7. Cavity loss factors for non-ultrarelativistic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.

    1998-12-31

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. The authors calculate the loss factors of a non-relativistic bunch and compare results with the relativistic case.

  8. Cavity Loss Factors For Non-Ultrarelativistic Beams

    CERN Document Server

    Kurennoy, S S

    1998-01-01

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the loss factors of a non-ultrarelativistic bunch and compare results with the relativistic case.

  9. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  10. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  11. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  12. Beam loss studies at the ANKA storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Hertle, Edmund; Smale, Nigel; Goetsch, Tobias; Mueller, Anke-Susanne; Wegh, Frans; Worms, Kai [Karlsruher Institut fuer Technologie (Germany)

    2013-07-01

    The real time study and the post mortem analysis of beam loss are powerful tools for the optimization of a storage ring's performance. It allows, for example, a fast identification of failing hardware components or can be used to improve the beam lifetime by a reduction of the losses. This needs a sophisticated beam loss monitor system with appropriate spatial and temporal resolution. This presentation gives an overview of the loss monitor system under study at the ANKA synchrotron radiation facility of the Karlsruhe Institute of Technology.

  13. Beam Loss Monitors for NSLS-II Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  14. Beam loss monitors comparison at the CERN Proton Synchrotron

    CERN Document Server

    Gilardoni, S S; Effinger, E; Gil-Flores, J; Wienands, U

    2011-01-01

    CERN is planning the renovation and upgrade of the beam loss detection system for the Proton Synchrotron (PS). Improved performance in speed–to be able to monitor beam loss on a bunch-by-bunch basis–and in longterm stability–to reduce or avoid the need for periodic calibration–are aimed for. To select the most suitable technology, different detectors were benchmarked in the machine with respect to the same beam loss. The characteristics of the different detectors, the results of the measurement campaign and their suitability as future monitors for the PS are presented.

  15. Monitoring system experiments on beam loss at SSRF injector

    Science.gov (United States)

    Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming

    2011-12-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  16. Monitoring system experiments on beam loss at SSRF injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  17. Beam Loss Estimates and Control for the BNL Neutrino Facility

    CERN Document Server

    Weng, Wu-Tsung; Raparia, Deepak; Tsoupas, Nicholaos; Wei, Jie; Yung Lee, Yong; Zhang, S Y

    2005-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW for a very long baseline neutrino oscillation experiment. This increase in beam power is mainly due to the faster repetition rate of the AGS by a new 1.5 GeV superconductiong linac as injector, replacing the existing booster. The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations for achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realising the required goals. The process considered in this paper include the emittance growth in the linac, the H-

  18. CCD based beam loss monitor for ion accelerators

    Science.gov (United States)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2014-04-01

    Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

  19. Dependence of bunch energy loss in cavities on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  20. The N8 channel beam loss monitor system

    International Nuclear Information System (INIS)

    High intensity 70 GeV proton beam loss monitor system architecture in the area of single beam pass is described. The main system components choosing as detectors recording and controlling electronics are grounded on. There are list of the main system monitoring tasks and some experimental results. 12 refs.; 6 figs

  1. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  2. Parasitic mode losses versus signal sensitivity in beam position monitors

    Science.gov (United States)

    Denard, J. C.; Bane, K. L.; Bijleveld, J.; Hutton, A. M.; Pellegrin, J. I.; Rivkin, L.; Wang, P.; Weaver, J. N.

    1985-04-01

    A beam position monitor (BPM) for a storage or damping ring may be subject to heating problems due to the parasitic mode (PM) losses, beam interception and synchrotron radiation interception. In addition, high PM losses can cause beam instabilities under some conditions. Recessing and/or masking the BPM may increase the PM losses in the process of solving the latter two problems. Three complementary methods for estimating the PM losses and for improving the design of a stripline directional coupler type of BPM: bench measurements, computer modeling (TBCI), and an equivalent circuit representation are presented. These methods lead to a decrease in PM losses without significant reduction in output signal for the north Stanford Linear Collider (SLC) damping ring BPMs.

  3. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  4. Beam loss detection system in the arcs of the LHC

    Science.gov (United States)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  5. Beam Loss Detection System in the Arcs of the LHC

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet

  6. Beam loss control in the LINAC4 design

    CERN Document Server

    Stovall, J; Crandall, K

    2010-01-01

    The Linac4 DTL reference design has been modified to reduce the power consumption in tank 1 by modifying the accelerating field and phase law. In addition we have adopted an FFDD focusing lattice throughout to minimize expected losses resulting from alignment errors. We have observed, however, that this design suffers from decreasing transverse acceptance and a sensitivity to misalignments that causes any expected beam loss to occcur at the high energy end of the DTL. In this note we investigate two solutions to increase the acceptance, decrease its sensitivity to misalignments and eliminate the potential for a beam-loss “bottleneck” at 50 MeV.

  7. Simulations of Neutral Beam Ion Ripple Loss on EAST

    Institute of Scientific and Technical Information of China (English)

    李吉波; 丁斯晔; 吴斌; 胡纯栋

    2012-01-01

    Predictions on the ripple loss of neutral beam fast ions on EAST are investigated with a guiding center code, including both ripple and collisional effects. A 6% to 16% loss of neutral beam ions is predicted for typical EAST experiments, and a synergistic enhancement of fast ion loss is found for toroidal field (TF) ripples with collisions. The lost ions are strongly localized and will cause a maximum heat load of - 0.05 MW/m^2 on the first wall.

  8. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in

  9. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in the LHC, especially near each quadrupole and next to

  10. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  11. Basis for low beam loss in the high-current APT linac

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D. [Los Alamos National Lab., NM (United States); Crandall, K.R. [TECHSOURCE, Santa Fe, NM (United States)

    1998-12-31

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value.

  12. Radiation Tolerance of Cryogenic Beam Loss Monitor Detectors

    CERN Document Server

    Kurfuerst, C; Bartosik, M; Dehning, B; Eisel, T; Sapinski, M; Eremin, V; Verbitskaya, E; Fabjan, C; Griesmayer, E

    2013-01-01

    At the triplet magnets, close to the interaction regions of the LHC, the current Beam Loss Monitoring system is sensitive to the particle showers resulting from the collision of the two beams. For the future, with beams of higher energy and intensity resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. Investigations are therefore underway to optimise the system by locating the beam loss detectors as close as possible to the superconducting coils of the triplet magnets. This means putting detectors inside the cold mass in superfluid helium at 1.9 K. Previous tests have shown that solid state diamond and silicon detectors as well as liquid helium ionisation chambers are promising candidates. This paper will address the final open question of their radiation resistance for 20 years of nominal LHC operation, by reporting on the results from high irradiation beam tests carried out at CERN in a...

  13. Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T P; Kurennoy, S S; Billen, J H; Crandall, K R; Qiang, J; Ryne, R D; Mustapha, B; Ostroumov, P; Zhao, Q; York, and R. C.

    2008-03-26

    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package.

  14. Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

    CERN Document Server

    Nebot Del Busto, E; Branger, E; Holzer, E B; Doebert, S; Lillestol, R L; Welsch, C P

    2013-01-01

    The Test Beam Line (TBL) of the CLIC Test Facility 3 (CTF3) aims to validate the drive beam deceleration concept of CLIC, in which the RF power requested to boost particles to multi-TeV energies is obtained via deceleration of a high current and low energy drive beam (DB). Despite a TBL beam energy (150-80 MeV) significantly lower than the minimum nominal energy of the CLIC DB (250 MeV), the pulse time structure of the TBL provides the opportunity to measure beam losses with CLIC-like DB timing conditions. In this contribution, a simulation study on the detection of beam losses along the TBL for the commissioning of the recently installed beam loss monitoring system is presented. The most likely loss locations during stable beam conditions are studied by considering the beam envelope defined by the FODO lattice as well as the emittance growth due to the deceleration process. Moreover, the optimization of potential detector locations is discussed. Several factors are considered, namely: the distance to the bea...

  15. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  16. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  17. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author)

  18. Beam Loss Position Monitor Using Cerenkov Radiation in Optical Fibers

    CERN Document Server

    Körfer, M

    2005-01-01

    Single pass Free Electron Lasers SASE-FELs are developed for high brightness and short wavelength applications. The VUV-FEL at DESY will reach an average beam power of about 72 kW. To avoid particle losses in the radiation sensitive undulators a collimator system is installed. However, the proper operation of the collimator system needs to be measured with a beam loss monitor. Conventional radiation sensor systems are not suited for the VUV-FEL undulators, because the free space in the undulator gap is less than 1 mm. A Beam Loss Position Monitor (BLPM) based on Cerenkov light in optical fibers allows the monitoring of losses inside the undulator. Electrons with energies above 175 keV generate Cerenkov light during their penetration of the optical fiber. The fast response of the Cerenkov signal is detected with photomultipliers at the end of the irradiated fibers. The beam loss position along the section of interest can be determinate by exploiting the system trigger (bunch clock) of the accelerator system. T...

  19. Beam Loss Monitoring for Run 2 of the LHC

    CERN Document Server

    Kalliokoski, Matti; Dehning, Bernd; Domingues Sousa, Fernando; Effinger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Holzer, Eva Barbara; Jackson, Stephen; Kolad, Blazej; Nebot Del Busto, Eduardo; Picha, Ondrej; Roderick, Chris; Sapinski, Mariusz; Sobieszek, Marcin; Zamantzas, Christos

    2015-01-01

    The Beam Loss Monitoring (BLM) system of the LHC consists of over 3600 ionization chambers. The main task of the system is to prevent the superconducting magnets from quenching and protect the machine components from damage, as a result of critical beam losses. The BLM system therefore requests a beam abort when the measured dose in the chambers exceeds a threshold value. During Long Shutdown 1 (LS1) a series of modifications were made to the system. Based on the experience from Run 1 and from improved simulation models, all the threshold settings were revised, and modified where required. This was done to improve the machine safety at 7 TeV, and to reduce beam abort requests when neither a magnet quench or damage to machine components is expected. In addition to the updates of the threshold values, about 800 monitors were relocated. This improves the response to unforeseen beam losses in the millisecond time scale due to micron size dust particles present in the vacuum chamber. This contribution will discuss...

  20. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  1. Tracking Simulation for Beam Loss Studies with Application to FCC

    CERN Document Server

    Boscolo, M

    2015-01-01

    We present first results on FCC-ee beam losses using a tracking simulation tool originally developed and successfully applied to Flav or Factories designs. After a brief description of the tool, we discuss first results obtained for FCC-ee at top energy, both for the Touschek effect and radiative Bhabha scattering.

  2. The LEP RF Trip and Beam Loss Diagnostics System

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R

    2002-01-01

    During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...

  3. Update on beam loss monitoring at CTF3 for CLIC

    CERN Document Server

    Devlin, L J; Effinger, E; Holzer, E B; del Busto, E N; Mallows, S; Branger, E

    2013-01-01

    The primary role of the beam loss monitoring (BLM) system for the compact linear collider (CLIC) study is to work within the machine protection system. Due to the size of the CLIC facility, a BLM that covers large distances along the beam line is highly desirable, in particular for the CLIC drive beam decelerators, which would alternatively require some ~40,000 localised monitors. Therefore, an optical fibre BLM system is currently under investigation which can cover large sections of beam line at a time. A multimode fibre has been installed along the Test Beam Line at the CLIC test facility (CTF3) where the detection principle is based on the production of Cherenkov photons within the fibre resulting from beam loss and their subsequent transport along the fibre where they are then detected at the fibre ends using silicon photomultipliers. Several additional monitors including ACEMs, PEP-II and diamond detectors have also been installed. In this contribution the first results from the BLMs are presented, comp...

  4. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  5. Real-Time Beam Loss Monitor Display Using FPGA Technology

    CERN Document Server

    North, Matt R W

    2005-01-01

    This paper outlines the design of a Real-time Beam Loss Monitor Display for the ISIS Synchrotron based at Rutherford Appleton Laboratory (Oxon, UK). Beam loss is monitored using 39 argon filled ionisation chambers positioned around the synchrotron, the levels of which are sampled four times in each cycle. The new BLM display acquires the signals and displays four histograms, each relating to an individual sample period; the data acquisition and signal processing required to build the display fields are completed within each machine cycle (50 Hz). Attributes of the new system include setting limits for individual monitors; displaying over-limit detection, and freezing the display field when a beam trip has occurred. The design is based around a reconfigurable Field Programmable Gate Array, interfacing to a desktop monitor via the VGA standard. Results gained using simulated monitor signals have proven the system.

  6. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    Science.gov (United States)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  7. H- Beam Stripping Loss at Background Partial Pressure of Ar

    Institute of Scientific and Technical Information of China (English)

    Hu Chundong; Wang Shaohu; Hu Liqun

    2005-01-01

    It has been observed that H- current could be improved by adding Ar to H2 plasma.But due to a slower pumping speed for Ar with the existing pumping scheme, the tank pressure will increase quickly during the length of a beam pulse. Since H- stripping loss depends on the tank pressure and gas species, part of the H- beam can be converted to H0 and then H0 can be converted into H+ with background H2 and Ar gas thickness. Therefore, the H- beam current,measured by a Faraday cup, situated at a distance L from GG (ground grid), will decrease because it will be converted into a H+ current. This gives a ratio of the Faraday cup net current to the H- beam current before stripping at background partial pressure of Ar.

  8. MD 382: Beam Transfer Function and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Buffat, Xavier; Crouch, Matthew; Pieloni, Tatiana; Boccardi, Andrea; Fuchsberger, Kajetan; Gasior, Marek; Kotzian, Gerd; Lefevre, Thibaut; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Giachino, Rossano; CERN. Geneva. ATS Department

    2016-01-01

    The Beam Transfer Function (BTF) measurements have been previously tested in the LHC during MD block 1 and 2. Different machine configurations (i.e. energy, beam intensity, emittance etc...) have been tested to determine a safe set-up (excitation amplitude) of the system to be completely transparent to the beam (no emittance blow-up neither losses). The aim of this experiment in MD block 3 was to characterize the Stability Diagram (SD) in the presence of diffusion mechanisms induced by excited resonances due to beam-beam long range and Landau octupole interplay. During the experiment, BTF measurements have been acquired at flat top for different settings of Landau octupole current, different chromaticity values and transverse feedback gains. In this note the description of the experiment is presented together with some preliminary results.

  9. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Science.gov (United States)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  10. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  11. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  12. A Fast CVD Diamond Beam Loss Monitor for LHC

    CERN Document Server

    Griesmayer, E; Dobos, D; Effinger, E; Pernegger, H

    2011-01-01

    Chemical Vapour Deposition (CVD) diamond detectors were installed in the collimation area of the CERN LHC to study their feasibility as Fast Beam Loss Monitors in a high-radiation environment. The detectors were configured with a fast, radiation-hard pre-amplifier with a bandwidth of 2 GHz. The readout was via an oscilloscope with a bandwidth of 1 GHz and a sampling rate of 5 GSPS. Despite the 250 m cable run from the detectors to the oscilloscope, single MIPs were resolved with a 2 ns rise time, a pulse width of 10 ns and a time resolution of less than 1 ns. Two modes of operation were applied. For the analysis of unexpected beam aborts, the loss profile was recorded in a 1 ms buffer and, for nominal operation, the histogram of the time structure of the losses was recorded in synchronism with the LHC period of 89.2 μs. Measurements during the LHC start-up (February to December 2010) are presented. The Diamond Monitors gave an unprecedented insight into the time structure of the beam losses resolving the 400...

  13. RFQ Designs and Beam-Loss Distributions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Robert A [ORNL

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  14. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  15. Fermilab booster operational status: Beam loss and collimation

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Webber

    2002-06-11

    Beam loss reduction and control challenges confronting the Fermilab Booster are presented in the context of the current operational status. In Summer 2002 the programmatic demand for 8 GeV protons will increase to 5E20/year. This is an order of magnitude above recent high rates and nearly as many protons as the machine has produced in its entire 30-year lifetime. Catastrophic radiation damage to accelerator components must be avoided, maintenance in an elevated residual radiation environment must be addressed, and operation within a tight safety envelope must be conducted to limit prompt radiation in the buildings and grounds around the Booster. Diagnostic and performance tracking improvements, enhanced orbit control, and a beam loss collimation/localization system are essential elements in the approach to achieving the expected level of performance and are described here.

  16. Benchmarking of collimation tracking using RHIC beam loss data.

    Energy Technology Data Exchange (ETDEWEB)

    Robert-Demolaize,G.; Drees, A.

    2008-06-23

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system. In order to estimate the prediction accuracy of these tools, benchmarking studies can be performed using actual beam loss measurements from a machine that already uses a similar multistage collimation system. This paper reviews the main results from benchmarking studies performed with specific data collected from operations at the Relativistic Heavy Ion Collider (RHIC).

  17. Power loss mechanisms in pathological tracheas.

    Science.gov (United States)

    Bates, A J; Comerford, A; Cetto, R; Schroter, R C; Tolley, N S; Doorly, D J

    2016-07-26

    The effort required to inhale a breath of air is a critically important measure in assessing airway function. Although the contribution of the trachea to the total flow resistance of the airways is generally modest, pathological alterations in tracheal geometry can have a significant negative effect. This study investigates the mechanisms of flow energy loss in a healthy trachea and in four geometries affected by retrosternal goitre which can cause significant distortions of tracheal geometry including constriction and deviation with abnormal curvature. By separating out the component of energy loss related to the wall shear (frictional loss), striking differences are found between the patterns of energy dissipation in the normal and pathological tracheas. Furthermore the ratio of frictional to total loss is dramatically reduced in the pathological geometries. PMID:26686396

  18. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengzheng, E-mail: liuz@frib.msu.edu; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-11

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR), to be implemented upstream of each FRIB cryomodule, as part of the direct loss monitoring system to fulfill the needs of machine protection. - Highlights: • Traditional BLM is not effective for beam loss monitoring at FRIB low energy linac segments. • We developed LMR to intercept a small portion of beam loss and output voltage signals. • We made a prototype LMR and demonstrated its functionality to monitor small beam losses. • The LMR is very sensitive for small beam losses and is independent of beam current. • The LMR is especially useful for loss monitoring at low energy ion/proton accelerators.

  19. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  20. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  1. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  2. Very Fast Losses of the Circulating LHC Beam, their Mitigation and Machine Protection

    CERN Document Server

    Baer, Tobias; Elsen, Eckhard

    The Large Hadron Collider (LHC) has a nominal energy of 362MJ stored in each of its two counter-rotating beams - over two orders of magnitude more than any previous accelerator and enough to melt 880kg of copper. Therefore, in case of abnormal conditions comprehensive machine protection systems extract the beams safely from the LHC within not more than three turns $\\approx$270$\\mu$s. The first years of LHC operation demonstrated a remarkable reliability of the major machine protection systems. However, they also showed that the LHC is vulnerable to losses of the circulating beams on very fast timescales, which are too fast to ensure an active protection. Very fast equipment failures, in particular of normal-conducting dipole magnets and the transverse damper can lead to such beam losses. Whereas these failures were already studied in the past, other unexpected beam loss mechanisms were observed after the LHC start-up: so-called (un)identified falling objects (UFOs), which are believed to be micrometer-sized m...

  3. Impedances and power losses for an off-axis beam

    CERN Document Server

    Kurennoy, S S

    1996-01-01

    A method for calculating coupling impedances and power losses for off-axis beams is developed. It is applied to calculate impedances of small localized discontinuities like holes and slots, as well as the impedance due to a finite resistivity of chamber walls, in homogeneous chambers with an arbitrary shape of the chamber cross section. The approach requires to solve a two-dimensional electrostatic problem, which can be easily done numerically in the general case, while for some particular cases analytical solutions are obtained.

  4. The LHC beam loss monitoring system commissioning for 2010

    CERN Document Server

    Zamantzas, C; Chery, C; Effinger, E; Emery, J; Grishin, S; Hajdu, C F; Holzer, E B; Jackson, S; Kurfuerst, C; Marsili, A; Nordt, A; Sapinski, M; Tissier, R; Venturini, G G

    2010-01-01

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from approximately 4’000 monitors, and has nearly 3 million configurable parameters. This paper will discuss its performance and ability to provide the expected measurements, the problems encountered and necessary improvements, the adequacy of related software and databases, and in general its readiness and suitability for 3.5 TeV operation.

  5. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  6. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Science.gov (United States)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  7. Loss of accuracy using smeared properties in composite beam modeling

    Science.gov (United States)

    Liu, Ning

    Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS

  8. Reliability Tests of the LHC Beam Loss Monitoring FPGA Firmware

    CERN Document Server

    Hajdu, C F; Dehning, B; Jackson, S

    2010-01-01

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver a feedback of losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from almost 4’000 monitors, and has nearly 3 million configurable parameters. In a system of such complexity, firmware reliability is a critical issue. The integrity of the signal chain of the LHC BLM system and its ability to correctly detect unwanted scenarios and thus provide the required protection level must be ensured. In order to analyze the reliability and functionality, an advanced verification environment has been developed to evaluate the performance and response of the FPGA-based data analysis firmware. This paper will report on the numerous tests that have been performed and on how the results are used to quantify the reliabi...

  9. The Fermilab Main Injector: high intensity operation and beam loss control

    CERN Document Server

    Brown, Bruce C; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  10. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer....... The text serves as a proposal for a renewal in the line of presentation and it is used in structural mechanics at the Department of Building Technology and Structural Engineering at Aalborg University. Furthermore, it also serves as a proposal for a unified line of presentation within the Danish...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

  11. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  12. Design Specifications for a Radiation Tolerant Beam Loss Measurement ASIC

    CERN Document Server

    Venturini, G G; Effinger, E; Zamantzas, C

    2009-01-01

    A novel radiation-hardened current digitizer ASIC is in planning stage, aimed at the acquisition of the current signals from the ionization chambers employed in the Beam Loss Monitoring system at CERN. The purpose is to match and exceed the performance of the existing discrete component design, currently in operation in the Large Hadron Collider (LHC). The specifications include: a dynamic range of nine decades, defaulting to the 1 pA-1mA range but adjustable by the user, ability to withstand a total integrated dose of 10 kGy at least in 20 years of operation and user selectable integrating windows, as low as 500 ns. Moreover, the integrated circuit should be able to digitize currents of both polarity with a minimum number of external components and without needing any configuration. The target technology is the IBM 130nm CMOS process. The specifications, the architecture choices and the reasons on which they are based upon are discussed in this paper.

  13. Development, Production and Testing of 4500 Beam Loss Monitors

    CERN Document Server

    Holzer, E B; Dehning, B; Ferioli, G; Grishin, V; Jimenez, T M; Koshelev, A; Kramer, Daniel; Larionov, A; Taborelli, M; Seleznev, V; Sleptsov, M; Sytin, A; Wevers, I

    2008-01-01

    Beam-loss monitoring (BLM) [1] is a key element in the LHC machine protection. 4250 nitrogen filled ionization chambers (IC) and 350 secondary emission monitors (SEM) have been manufactured and tested at the Institute for High Energy Physics (IHEP) in Protvino, Russia, following their development at CERN. Signal speed and robustness against aging were the main design criteria. Each monitor is permanently sealed inside a stainless-steel cylinder. The quality of the welding was a critical aspect during production. The SEMs are requested to hold a vacuum of $10^{-7}$ bar. Impurity levels from thermal and radiationinduced desorption should remain in the range of parts per million in the ICs. To avoid radiation aging (up to $2·10^{8}$ Gy in 20 years) production of the chambers followed strict UHV requirements. IHEP designed and built the UHV production stand. Due to the required dynamic range of $10^{8}$, the leakage current of the monitors has to stay below 2 pA. Several tests during and after production were ...

  14. Beam Steering Mechanism (BSM) Lessons Learned

    Science.gov (United States)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gostin, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morell, Armando; Armani, Nerses V.; Bonafede, Joseph; Jackson, Molly I.; Steigner, Peter J.; Stromsdorfer, Juan J.

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. High resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of methodology to verify performance was a significant effortadvancement. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite 2 Mission (ICESat 2), which is scheduled to be launched in 2017. The ICESat 2 primary mission is to map the earths surface topography for the determination of seasonal changes of ice sheet thickness as well as vegetation canopy thickness.

  15. ATLAS Beam Steering Mechanism (BSM) Lessons Learned

    Science.gov (United States)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gosten, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morell, Armando; Armani, Nerses V.; Bonafede, Joseph; Jackson, Molly I.; Steigner, Peter J.; Stromsdorfer, Juan J.

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.

  16. ATLAS Beam Steering Mechanism Lessons Learned

    Science.gov (United States)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gostin, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morrell, Armando; Armani, Nerses V.; Bonafede, Joseph; Jackson, Molly I.; Steigner, Peter J.; Stromsdorfer, Juan J.

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.

  17. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  18. A fast beam loss monitor system for the KEK proton synchrotron complex

    Science.gov (United States)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  19. The Long-Term Beam Losses in the CERN Injector Chain

    CERN Document Server

    Gilardoni, Simone; Benedetto, Elena; Damerau, Heiko; Forte, Vincenzo; Giovannozzi, Massimo; Goddard, Brennan; Hancock, Steven; Hanke, Klaus; Huschauer, Alexander; Kowalska, Magdalena; Mcateer, Meghan Jill; Metral, Elias; Mikulec, Bettina; Papaphilippou, Yannis; Rumolo, Giovanni; Sterbini, Guido; Wasef, Raymond; Arduini, Gianluigi; Meddahi, Malika; Chapochnikova, Elena

    2015-01-01

    For the production of the LHC type beams, but also for the high intensity ones, the budget allocated to losses in the CERN injector chain is maintained as tight as possi- ble, in particular to keep as low as possible the activation of the different machine elements. Various beam dynamics effects, like for example beam interaction with betatronic resonances, beam instabilities, but also reduced efficiency of the RF capture processes or RF noise, can produce losses even on a very long time scale. The main different mecha- nisms producing long term losses observed in the CERN injectors, and their cure or mitigation, will be revised.

  20. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  1. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  2. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial Coll., London; Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10:9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31:1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  3. Propagation of Gaussian beams in the presence of gain and loss

    CERN Document Server

    Graefe, Eva-Maria; Schubert, Roman

    2016-01-01

    We consider the propagation of Gaussian beams in a waveguide with gain and loss in the paraxial approximation governed by the Schr\\"odinger equation. We derive equations of motion for the beam in the semiclassical limit that are valid when the waveguide profile is locally well approximated by quadratic functions. For Hermitian systems, without any loss or gain, these dynamics are given by Hamilton's equations for the center of the beam and its conjugate momentum. Adding gain and/or loss to the waveguide introduces a non-Hermitian component, causing the width of the Gaussian beam to play an important role in its propagation. Here we show how the width affects the motion of the beam and how this may be used to filter Gaussian beams located at the same initial position based on their width.

  4. A prototype readout system for the Diamond Beam Loss Monitors at LHC

    CERN Document Server

    Effinger, E; Baer, T; Schmidt, R; Frais-Kölbl, H; Griesmayer, E

    2013-01-01

    Diamond Beam Loss Monitors are used at the LHC for the measurement of fast beam losses. In this note, specimen LHC loss measurements with the prototype readout system “ROSY” from CIVIDEC are presented. The readout system is FPGA-based for on-line, real-time, and dead-time-free data processing, including a Linuxbased server for the interconnection to a GUI. The loss analysis makes full use of the fast signal response of the diamond detectors with 1 ns time resolution and 6.7 ns double pulse resolution. Two examples are presented: applications of the Time Loss Histogram with 1.6 ns binning and 1.2 ns time jitter for loss measurements that are synchronized with the LHC revolution period and a beam-loss-based tune measurement for all circulating bunches in parallel.

  5. A Prototype Readout System for the Diamond Beam Loss Monitors at LHC

    CERN Document Server

    Effinger, E; Baer, T; Schmidt, R; Frais-Kölbl, H; Griesmayer, E; Kavrigin, P; CERN. Geneva. ATS Department

    2013-01-01

    Diamond Beam Loss Monitors are used at the LHC for the measurement of fast beam losses. In this note, specimen LHC loss measurements with the prototype readout system “ROSY” from CIVIDEC are presented. The readout system is FPGA-based for on-line, real-time, and dead-time-free data processing, including a Linux-based server for the interconnection to a GUI. The loss analysis makes full use of the fast signal response of the diamond detectors with 1 ns time resolution and 6.7 ns double pulse resolution. Two examples are presented: applications of the Time Loss Histogram with 1.6 ns binning and 1.2 ns time jitter for loss measurements that are synchronized with the LHC revolution period and a beam-loss-based tune measurement for all circulating bunches in parallel.

  6. Mechanisms of pigmentation loss in subterranean fishes

    Directory of Open Access Journals (Sweden)

    Vanessa Felice

    2008-12-01

    Full Text Available Troglobitic (exclusively subterranean organisms usually present, among their apomorphies related to the subterranean life (troglomorphisms, the regression of eyes and melanic pigmentation. The degree of regression varies among species, from a slight reduction to the complete loss of eyes and dark pigmentation, without a taxonomic correlation. While mechanisms of eye reduction have been intensively investigated in some troglobites such as the Mexican blind tetra characins, genus Astyanax, and the European salamander, Proteus anguinus, few studies have focused on pigmentation. The Brazilian subterranean ichthyofauna distinguishes not only by the species richness (23 troglobitic fishes so far known but also by the variation in the degree of reduction of eyes and pigmentation. This study focused on Brazilian fishes completely devoid of melanic pigmentation: the characiform Stygichthys typhlops (Characidae and the siluriforms Ancistrus formoso (Loricariidae, Rhamdiopsis sp.1 (Heptapteridae; from caves in the Chapada Diamantina, Bahia and Rhamdiopsis sp. 2 (cave in Campo Formoso, Bahia. In order to investigate if such depigmentation is the result of blockage in some step in the melanogenesis, in vitro tests of administration of L-DOPA were done, using caudal-fin fragments extracted from living fish. Except for Rhamdiopsis sp. 2, all the studied species were DOPA(+, i.e., melanin was synthesized after L-DOPA administration. This indicates these fish do have melanophores but they are unable to convert L-tyrosine to L-DOPA. On the other hand, Rhamdiopsis sp. 2, like the albino specimens of Trichomycterus itacarambiensis previously studied (which correspond to one third of the population, are DOPA(-, either because the block of melanin synthesis occurs downstream in melanogenesis, which is probably the case with T. itacarambiensis (monogenic system in view of the phenotypic discontinuity, or because the so-called albinos do no possess melanophores. The

  7. Beam losses due to the foil scattering for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Wang, Sheng; Xu, Shou-Yan

    2012-01-01

    For the Rapid Cycling Synchrotron of China Spallation Neutron Source (CSNS/RCS), the stripping foil scattering generates the beam halo and gives rise to additional beam losses during the injection process. The interaction between the proton beam and the stripping foil was discussed and the foil scattering was studied. A simple model and the realistic situation of the foil scattering were considered. By using the codes ORBIT and FLUKA, the multi-turn phase space painting injection process with the stripping foil scattering for CSNS/RCS was simulated and the beam losses due to the foil scattering were obtained.

  8. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  9. Knowing When to Stop: The Brain Mechanisms of Chasing Losses

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Woolrich, Mark; Passingham, Dick;

    2008-01-01

    adult participants decided to chase losses or decided to quit gambling to prevent further losses.ResultsChasing losses was associated with increased activity in cortical areas linked to incentive-motivation and an expectation of reward. By contrast, quitting was associated with decreased activity...... in pathological gambling might involve a failure to appropriately balance activity within neural systems coding conflicting motivational states. Similar mechanisms might underlie the loss-of-control over appetitive behaviors in other impulse control disorders....

  10. Quantum mechanical formalism of particle beam optics

    OpenAIRE

    Khan, Sameen Ahmed

    2001-01-01

    A general procedure for construction of the formalism of quantum beam optics for any particle is reviewed. The quantum formalism of spin-1/2 particle beam optics is presented starting {\\em ab initio} with the Dirac equation. As an example of application the case of normal magnetic quadrupole lens is discussed. In the classical limit the quantum formalism leads to the well-known Lie algebraic formalism of classical particle beam optics.

  11. Mechanical analysis of glulam beams exposed to changing humidity

    OpenAIRE

    Srpčič, Stanislav; Srpčič, Jelena; Saje, Miran; Turk, Goran

    2009-01-01

    This study deals with the mechanical analysis of glulam beams during changing relative humidity of the surrounding air. The computational part of the article includes two separate numerical procedures. First, the diffusion equation is solved to determine the temporal and spatial distribution of water content in the cross-section of the beam. The results of the first computational stage are used as the input data for the numerical analysis of mechanical response of the beam. The displacements ...

  12. Mechanisms of selectivity loss during tungsten CVD (chemical vapor deposition)

    Energy Technology Data Exchange (ETDEWEB)

    Creighton, J.R.

    1990-01-01

    The tungsten subfluoride mechanism as well as other proposed mechanisms of selectivity loss are reviewed. To further demonstrate the viability of the tungsten subfluoride mechanism, we have extended the measurement of the tungsten subfluoride production rate down to 450{degree}C. We also report results from some preliminary experiments designed to identify the selectivity loss mechanism when elemental silicon is available for reaction. Comments regarding the origins of the insulator effect and selectivity loss for silane reduction are offered. 23 refs., 2 figs.

  13. Experimental determination of beam loss point in transport line-2 of Indus Accelerator Complex

    International Nuclear Information System (INIS)

    Radiation field in the Indus-1 SRS Experimental hall during 550 MeV electron beam injection into Transport Line-3 (TL-3)/Indus-2 was found to be higher than during 450 MeV beam injection to Transport line -2 (TL-2)/Indus-1. Experimental investigation was carried out to find out the location of beam loss. For the investigation, Ion chamber based detectors viz direct reading dosimeters (passive detectors) and beam loss monitors (active) were used. The beam loss point was observed near Sputter Ion Pump-5 (SIP-5) of TL-2, in Indus-1 area. The result was confirmed by induced activity profile measurements of the transport lines (TL-2/TL-3) during shut down. In order to reduce the radiation level in Indus-1 hall, two tenth value layers of lead shielding was put near TL2. Later on, correction in the beam optics by beam dynamics section reduced the beam losses at SIP-5 location, thereby reducing the radiation fields in Indus-1 hall substantially. The paper describes the measurement and the results in detail. (author)

  14. Electron beam guiding by grooved SiO2 parallel plates without energy loss

    International Nuclear Information System (INIS)

    Using a pair of grooved SiO2 parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams

  15. Electron beam guiding by grooved SiO2 parallel plates without energy loss

    Science.gov (United States)

    Xue, Yingli; Yu, Deyang; Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-01

    Using a pair of grooved SiO2 parallel plates, stably guided electron beams were obtained without energy loss at 800-2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  16. PRELIMINARY DESIGN OF THE BEAM LOSS MONITORING SYSTEM FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.; GASSNER,D.

    2002-05-06

    The SNS to be built at Oak Ridge National Laboratory will provide a high average intensity 1 GeV beam to produce spallation neutrons. Loss of a even small percentage of this intense beam would result in high radiation. The Beam Loss Monitor (ELM) system must detect such small, long term losses yet be capable of measuring infrequent short high losses. The large dynamic range presents special problems for the system design. Ion chambers will be used as the detectors. A detector originally designed for the FNAL Tevatron, was considered but concerns about ion collection times and low collection efficiency at high loss rates favor a new design. The requirements and design concepts of the proposed approach will be presented. Discussion of the design and testing of the ion chambers and the analog j-Point end electronics will be presented. The overall system design will be described.

  17. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  18. Mechanical characterization of old chestnut beams

    OpenAIRE

    Branco, Jorge M.; Peixoto, Tiago; Lourenço, Paulo B.; Medeiros, Pedro

    2011-01-01

    The main objective of this work is to evaluate, by non-destructive techniques, seven old Chestnut beams. For that, after the geometric assessment and the detailed visual inspection that allowed to strength grade the beams, a series of non-destructive tests was setup. In a first step, non-destructive bending tests, under the elastic limit, were performed to quantify the modulus of elasticity in bending (MoE) of the seven beams. Then, Resistograph® and Pilodyn® tests were done to...

  19. Mechanical loss associated with silicate bonding of fused silica

    International Nuclear Information System (INIS)

    We report on mechanical loss associated with hydroxy-catalysis (or 'silicate') bonding between fused silica substrates in the presence of potassium hydroxide or sodium silicate. We measured the mechanical quality factor of three fused silica samples, each composed of two half-rods bonded together on their flat surfaces and compared them to that of an unbonded half-rod. The measurements show a significant reduction of quality factor due to mechanical loss associated with the silicate bonds. We calculate the loss factor of the bonded region φbond and estimate that the effect of silicate bonding on thermal noise in the Advanced LIGO interferometers will be small

  20. Beam losses due to abrupt crab cavity failures in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-03-28

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  1. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    CERN Document Server

    Baumbaugh, A; Brown, B C; Capista, D; Drennan, C; Fellenz, B; Knickerbocker, K; Lewis, J D; Marchionni, A; Needles, C; Olson, M; Pordes, S; Shi, Z; Still, D; Thurman-Keup, R; Utes, M; Wu, J

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and...

  2. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  3. Comparison between methods of evaluation of soybean mechanized harvesting losses

    Directory of Open Access Journals (Sweden)

    Ariel Muncio Compagnon

    2012-09-01

    Full Text Available he soybean is of great importance in the Brazilian agricultural scenario and both productivity and the area cultivated to each crop are increasing, demanding more speed and quality at harvest. However, losses are recorded in the mechanical harvesting of soybeans, a fundamental stage in the production process of field crops. Looking to quantify these losses was used in this study display a loss, and results were compared with the losses collected manually. Data were collected at Fazenda São Luiz, in the city of Santa Juliana - MG, with a harvester dual-rotor axial, with a platform of 9.14 m. We assessed 40 points in the day and night periods, and the variables: water content of grains, travel speed, plant height, height of first pod, grain yield, losses due to disability at the time of cutting, trail system, cleaning system and total grain losses and losses in the separation of clean grain. The soybean harvest at night had higher levels of coincidence between the obtained sensor separation and the losses measured in the field, while during the day there was a better match for the sensor track. Losses of grain deficiency in cutting height contribute largely to the loss of soybeans at harvest during the day, reducing the correlation between the losses estimated in the field and the losses obtained from the sensors.

  4. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  5. Measurement of the mechanical loss of a dielectric multilayer reflective coating at low temperature

    CERN Document Server

    Yamamoto, K; Ishitsuka, H; Ito, K; Kuroda, K; Miyoki, S; Numata, K; Ohashi, M; Sato, N; Shintomi, T; Suzuki, T; Tomaru, T; Uchiyama, T; Waseda, K; Watanabe, K; Yamamoto, A; Haruyama, Tomiyoshi; Ishitsuka, Hideki; Ito, Kazuhiko; Kuroda, Kazuaki; Miyoki, Shinji; Numata, Kenji; Ohashi, Masatake; Sato, Nobuaki; Shintomi, Takakazu; Suzuki, Toshikazu; Tomaru, Takayuki; Uchiyama, Takashi; Waseda, Koichi; Watanabe, Koji; Yamamoto, Akira; Yamamoto, Kazuhiro

    2006-01-01

    We have measured the mechanical loss of a dielectric multilayer reflective coating (ion-beam sputtered SiO$_2$ and Ta$_2$O$_5$) in cooled mirrors. The loss was nearly independent of the temperature (4 K $\\sim$ 300 K), frequency, optical loss, and stress caused by the coating, and the details of the manufacturing processes. The loss angle was $(4 \\sim 6) \\times 10^{-4}$. The temperature independence of this loss implies that the amplitude of the coating thermal noise, which is a severe limit in any precise measurement, is proportional to the square root of the temperature. Sapphire mirrors at 20 K satisfy the requirement concerning the thermal noise of even future interferometric gravitational wave detector projects on the ground, for example, LCGT.

  6. Wave mechanics of a two-wire atomic beam splitter

    International Nuclear Information System (INIS)

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to nonadiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering quantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities

  7. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    Science.gov (United States)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  8. Mechanical engineering problems in the TFTR neutral beam system

    International Nuclear Information System (INIS)

    A conceptual design of a prototype beam line for the TFTR Neutral Beam System has been developed. The basic components have been defined, cost estimates prepared, and the necessary development programs identified. Four major mechanical engineering problems, potential solutions and the required development programs are discussed

  9. FNAL Proton Source High Intensity Operations and Beam Loss Control

    CERN Document Server

    Garcia, F G

    2014-01-01

    The 40-year-old Fermilab Proton Source machines, constituted by the Pre-Injector, Linac and the synchrotron Booster, have been the workhorse of the Fermi National Accelerator Laboratory (Fermilab). During this time, the High Energy Physics Program has demanded an increase in proton throughput, especially during the past decade with the beginning of the neutrino program at Fermilab. In order to achieve a successful program, major upgrades and changes were made in Booster. Once again, the Proton Source has been charged to double their beam throughput, while maintain the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace the Proton Source machines. This paper discusses the present performance of Booster and the plans involved in reaching even higher intensities.

  10. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and

  11. Demonstration of low-loss electron beam transport and mm-wave experiments of the fusion-FEM

    NARCIS (Netherlands)

    Urbanus, W. H.; Bongers, W. A.; van Dijk, G.; van der Geer, C. A. J.; de Kruif, R.; Manintveld, P.; Pluygers, J.; Poelman, A. J.; Schüller, F. C.; Smeets, P. H. M.; Sterk, A. B.; Verhoeven, A. G. A.; Valentini, M.; van der Wiel, M. J.

    1998-01-01

    In the Fusion-FEM electrostatic Free Electron Maser, an electron beam loss current of less than 0.2% is essential for long-pulse operation. At reduced beam current, 3 A instead of the nominal 12 A, we have demonstrated electron beam acceleration and transport through the undulator at current losses

  12. Study on beam loss system of BEPCII%BEPCII束损系统研究

    Institute of Scientific and Technical Information of China (English)

    何俊; 赵晓岩; 汪林; 杜垚垚; 赵颖; 随艳峰; 岳军会; 曹建社

    2015-01-01

    为更好掌握储存环中的束流状态,在北京正负电子对撞机二期工程的储存环上建立了以二极管为探测器的束流损失探测系统。用蒙特卡罗软件对损失束流产生簇射电子的分布情况进行了模拟,为安装束损探测器位置提供了依据。搭建了包括探头、数据获取系统、数据传输系统在内的束损系统。对束损过程进行了详细的分析与描述。对北京正负电子对撞机多年的束损数据进行了整理分析,对其在丢束诊断、束流寿命研究等多个方面应用情况进行了总结。数据显示建立的束损系统工作状态稳定,是优化机器参数、改善束流寿命、分析丢束过程的有力工具。%Background: A beam loss system that uses the PIN diode as the detector has been set up on Beijing Electron–Positron Collider II (BEPCII) storage after 8-a routine operation. Further study and analysis should been carried out based on the historical data.Purpose: This study aims to learn the beam loss process in depth and further optimize the parameters of the accelerator.Methods: Based on the machine size and beam parameter of BEPCII, the Monte Carlo simulation of the cluster electrons in the storage ring was performed to provide reference for installation position of the beam loss system. Then different methods, including adding all the beam loss monitor (BLM) counts, adding the inner detector, adding the outer detector, have been used for data analysis of the beam life time, beam loss distribution, beam envelope and dispersion,etc., under both the collider mode and synchrotron mode.Results: The results show that the BLM system is useful to study the beam life time and diagnose the beam loss processes. The beam loss system for BEPCII works stablely. The detector counts are much smaller than the dynamic range of the detector.Conclusion: Over the eight years, the response of the beam loss system does not change a lot, which implies that the

  13. Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System

    CERN Document Server

    Venturini, G; Dehning, B; Effinger, E

    2010-01-01

    The particles accelerated in CERN accelerator chain reach high energies, topped by the particle energy at collision in the LHC, 7 GeV. During the operation, an amount of particles is inevitably lost from the beam. Depending on the extent of the losses, physical damage to machine components may be caused and the shower of secondary emission particles deposits energy in the surrounding equipment constituting the accelerator. The hadronic cascade also activates their materials, representing a hazard to the workers at CERN. In the LHC, the superconducting magnets that constitute the synchrotron lattice are kept at an operating temperature of 1:9K through a cryogenic facility employing superliquid helium, the increase in their temperature potentially initiates a quench. In the SPS, the damage due to a lost beam is also visible. The Beam Loss Monitoring (BLM) system has been developed to reliably protect the machines composing CERN’s accelerator chain and additionally provide information about the beam status: th...

  14. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  15. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82+208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  16. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

    2014-01-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  17. Evaluation of source term induced by beam loss in the superconducting linear accelerator at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kim, Su Na; Nam, Shin Woo; Chung, Yon Sei [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2014-11-15

    As a new world-class heavy ion accelerator, RAON is able to accelerate heavy ions from proton to uranium with the energy up to -400 MeV/u and produce rare isotopes. These high purity, high intensity, and high energy beams generate the various secondary radiation which will impact on the shielding aspects of the main linear accelerator tunnels. In the main tunnel the secondary neutrons are produced by uniform beam-loss or accident criteria. In this paper evaluations of several source terms induced by beam-loss will be discussed along with the physics model of the Monte Carlo simulation codes. The beam-loss criteria were tested for the evaluation of source term for the main beam line tunnel of the RAON accelerator. It was found that the amount of the secondary neutrons depends on the incident angle of projectile on the beam pipe and the mass and energy of projectile. The influence of selected physics models and libraries of MCNPX and PHITS has been examined. The secondary neutrons were produced most in the CEM and LAQGSM model.

  18. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  19. Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling

    CERN Document Server

    Hermes, Pascal; Cerutti, Francesco; Ferrari, Alfredo; Jowett, John; Lechner, Anton; Mereghetti, Alessio; Mirarchi, Daniele; Ortega, Pablo; Redaelli, Stefano; Salvachua, Belen; Skordis, Eleftherios; Valentino, Gianluca; Vlachoudis, Vasilis

    2016-01-01

    The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.

  20. Beam-loss monitoring system with free-air ionization chambers

    Science.gov (United States)

    Nakagawa, H.; Shibata, S.; Hiramatsu, S.; Uchino, K.; Takashima, T.

    1980-08-01

    A monitoring system for proton beam losses was installed in the proton synchrotron at the National Laboratory for High Energy Physics in Japan (KEK). The system consists of 56 air ionization chambers (AIC) for radiation detectors, 56 integrators, 56 variable gain amplifiers, two multiplexers, a computer interface circuit, a manual controller and a high tension power supply. The characteristics of the AIC, time resolution, radiation measurement upper limit saturation, kinetic energy dependence of the sensitivity, chamber activation effect, the beam loss detection system and the results of observations with the monitoring system are described.

  1. System Architecture for measuring and monitoring Beam Losses in the Injector Complex at CERN

    CERN Document Server

    Zamantzas, C; Dehning, B; Jackson, S; Kwiatkowski, M; Vigano, W

    2012-01-01

    The strategy for beam setup and machine protection of the accelerators at the European Organisation for Nuclear Research (CERN) is mainly based on its Beam Loss Monitoring (BLM) systems. For their upgrade to higher beam energies and intensities, a new BLM system is under development with the aim of providing faster measurement updates with higher dynamic range and the ability to accept more types of detectors as input compared to its predecessors. In this paper, the architecture of the complete system is explored giving an insight to the design choices made to provide a highly reconfigurable system that is able to fulfil the different requirements of each accelerator using reprogrammable devices.

  2. Special diagnostic methods and beam loss control on high intensity proton synchrotrons and storage rings Circular proton accelerator

    CERN Document Server

    Warsop, C M

    2002-01-01

    Two topics concerning high intensity, medium energy, circular proton accelerators have been studied: specialist diagnostics and beam loss control. The use of specially configured, low intensity diagnostic beams to help measure, understand and control high intensity beams is described. The ideas are developed and demonstrated on the ISIS 800 MeV, high intensity proton synchrotron at the Rutherford Appleton Laboratory in the UK. It is shown that these techniques make much new and valuable information available, which is particularly useful in achieving the precise beam optimisation required for low and controlled losses. Beam loss control in the proposed European Spallation Source (ESS) accumulator rings is studied. The expected losses are summarised, and a design for the beam collimation system presented. A new code for the simulation of loss control is outlined, and then used to test the collimation system under most foreseeable conditions. It is expected that the required loss control levels will be achievab...

  3. Hearing loss in hydrocephalus: a review, with focus on mechanisms.

    Science.gov (United States)

    Satzer, David; Guillaume, Daniel J

    2016-01-01

    While neither hydrocephalus nor cerebrospinal fluid (CSF) shunt placement is traditionally considered in the differential diagnosis of hearing loss, there is substantial evidence that CSF circulation and pressure abnormalities can produce auditory dysfunction. Several indirect mechanisms may explain association between hydrocephalus and hearing loss, including mass effect, compromise of the auditory pathway, complications of prematurity, and genetically mediated hydrocephalus and hearing loss. Nevertheless, researchers have proposed a direct mechanism, which we term the hydrodynamic theory. In this hypothesis, the intimate relationship between CSF and inner ear fluids permits relative endolymphatic or perilymphatic hydrops in the setting of CSF pressure disturbances. CSF is continuous with perilymph, and CSF pressure changes are known to produce parallel perilymphatic pressure changes. In support of the hydrodynamic theory, some studies have found an independent association between hydrocephalus and hearing loss. Moreover, surgical shunting of CSF has been linked to both resolution and development of auditory dysfunction. The disease burden of hydrocephalus-associated hearing loss may be large, and because hydrocephalus and over-shunting are reversible, this relationship merits broader recognition. Hydrocephalic patients should be monitored for hearing loss, and hearing loss in a patient with shunted hydrocephalus should prompt further evaluation and possibly adjustment of shunt settings.

  4. CFRP Mechanical Anchorage for Externally Strengthened RC Beams under Flexure

    Science.gov (United States)

    Ali, Alnadher; Abdalla, Jamal; Hawileh, Rami; Galal, Khaled

    De-bonding of carbon fiber reinforced polymers (CFRP) sheets and plates from the concrete substrate is one of the major reasons behind premature failures of beams that are externally strengthened with such CFRP materials. To delay or prevent de-bonding and therefore enhancing the load carrying capacity of strengthened beams, several anchorage systems were developed and used. This paper investigates the use of CFRP mechanical anchorage of CFRP sheets and plates used to externally strengthen reinforced concrete beams under flexure. The pin-and-fan shape CFRP anchor, which is custom-made from typical rolled fiber sheets and bundles of loose fiber is used. Several reinforced concrete beams were casted and tested in standard four-point bending scheme to study the effectiveness of this anchorage system. The beams were externally strengthened in flexure with bonded CFRP sheets and plates and then fastened to the soffit of the beams' using various patterns of CFRP anchors. It is observed that the CFRP plates begins to separate from the beams as soon as de-bonding occurs in specimens without CFRP anchors, while in beams with CFRP anchors de-bonding was delayed leading to increase in the load carrying capacity over the un-anchored strengthened beams.

  5. On the Mechanical Friction Losses Occurring in Automotive Differential Gearboxes

    Directory of Open Access Journals (Sweden)

    Grégory Antoni

    2014-01-01

    Full Text Available In the automobile industry, the mechanical losses resulting from friction are largely responsible for various kinds of surface damage, such as the scuffing occurring in some mechanical assemblies. These scuffing processes seem to be due to a local loss of lubrication between certain mechanical elements of the same assembly, leading to a sharp increase in the friction, which can lead to a surface and volume damage in some of them, and even can cause, in the worst case, the whole destruction of the mechanical system if it has continued to operate. Predicting and checking the occurrence of this kind of undesirable phenomena, especially in some principal systems of the vehicle, represents nowadays, a crucial challenge in terms of automobile reliability and safety. This study focuses on the mechanical friction losses liable to occur in differential automobile gearboxes, which can lead in the long term to the scuffing of these mechanical systems. The friction losses involved were modeled, using a simple analytical approach, which is presented and discussed.

  6. Radiation losses in PLT during neutral beam and ICRF heating experiments

    International Nuclear Information System (INIS)

    Radiation and charge exchange losses in the PLT tokamak are compared for discharges with ohmic heating only (OH), and with additional heating by neutral beams (NB) or RF in the ion cyclotron frequency range (ICRF). Spectroscopic, bolometric and soft x-ray diagnostics were used. The effects of discharge cleaning, vacuum wall gettering, and rate of gas inlet on radiation losses from OH plasmas and the correlation between radiation from plasma core and edge temperatures are discussed

  7. The Evaluation of the Residual Dose Caused by the Large-Angle Foil Scattering Beam Loss for the High Intensity Beam Operation in the J-PARC RCS

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Harada, Hiroyuki; Hotchi, Hideaki; Saha, Pranab K.; Kinsho, Michikazu

    The Japan Proton Accelerator Research Complex 3-GeV rapid cycling synchrotron (RCS) has adopted the multi-turn charge-exchange injection scheme that uses H- beams. During injection, both the injected and circulating beams scatter from the charge-exchange foil. Therefore, the beam loss caused by the large-angle scattering from the foil occurs downstream of the injection point. For countermeasure against the uncontrolled beam loss, a new collimation system was developed and installed in the summer shutdown period in 2011. During beam commissioning, this uncontrolled beam loss was successfully localized for a 300 kW beam. Since the present target power of the RCS is 1 MW, the accurate simulation model to reproduce experimental results has been constructed in order to evaluate residual dose at higher power operation.

  8. A mechanical model for FRP-strengthened beams in bending

    Directory of Open Access Journals (Sweden)

    P. S. Valvo

    2012-10-01

    Full Text Available We analyse the problem of a simply supported beam, strengthened with a fibre-reinforced polymer (FRP strip bonded to its intrados and subjected to bending couples applied to its end sections. A mechanical model is proposed, whereby the beam and FRP strip are modelled according to classical beam theory, while the adhesive and its neighbouring layers are modelled as an interface having a piecewise linear constitutive law defined over three intervals (elastic response – softening response – debonding. The model is described by a set of differential equations with appropriate boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces, displacements and interfacial stresses. The model predicts an overall non-linear mechanical response for the strengthened beam, ranging over several stages: from linearly elastic behaviour to damage, until the complete detachment of the FRP reinforcement.

  9. The effect of time on optical coating mechanical loss and implications for LIGO-India

    Science.gov (United States)

    Kinley-Hanlon, Maya; Fair, Hannah M.; Jiffar, Isaac; Newport, Jonathan; Gitelman, Louis; Harry, Gregory; Billingsley, Garilynn; Penn, Steve

    2016-07-01

    We report on the persistence of mechanical loss with time of ion beam sputtered dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited onto fused silica substrates. From this, we predict the coating thermal noise in gravitational wave interferometers, after the coated optics have been stored for years. We measured the modal mechanical quality factor, Q, of two coated fused silica samples in 2015. These samples also had their modal Q's measured in 2002. We conclude that storing the coated silica disks for 13 years does not change their mechanical loss and thus the storage of Advanced LIGO gravitational wave detector optics until their future installation in India will not degrade their achievable thermal noise.

  10. Analysis of loss mechanisms in polycrystalline thin film solar cells

    Science.gov (United States)

    Sites, J. R.

    1990-08-01

    Our goal for thin-film polycrystalline solar cell analysis was to increase the useful information extracted from relatively straightforward electrical measurements. The strategy was to (1) systematize measurements and reporting, (2) organize results in terms of quantitative values for individual sources of current and voltage loss, and (3) evaluate possible analytical techniques to enhance precision and avoid pitfalls, and (4) insist on a viable physical explanation of each loss mechanism. Current-voltage, quantum efficiency, and capacitance measurements on CuInSe2 and CdTe solar cells from a variety of sources have been analyzed. In many cases losses were identified that may be lessened relatively easily. However, the operating voltage loss due to excessive forward recombination current throughout the depletion region remains the primary obstacle to efficiencies competitive with single crystal cells.

  11. Analysis of loss mechanisms in polycrystalline thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J.R. (Colorado State Univ., Fort Collins, CO (USA))

    1990-08-01

    Our goal for thin-film polycrystalline solar cell analysis was to increase the useful information extracted from relatively straightforward electrical measurements. The strategy was to (1) systematize measurements and reporting, (2) organize results in terms of quantitative values for individual sources of current and voltage loss, and (3) evaluate possible analytical techniques to enhance precision and avoid pitfalls, and (4) insist on a viable physical explanation of each loss mechanism. Current-voltage, quantum efficiency, and capacitance measurements on CuInSe{sub 2} and CdTe solar cells from a variety of sources have been analyzed. In many cases losses were identified that may be lessened relatively easily. However, the operating voltage loss due to excessive forward recombination current throughout the depletion region remains the primary obstacle to efficiencies competitive with single crystal cells. 1 tab., 4 figs., 26 refs.

  12. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    OpenAIRE

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together with an experimental verification

  13. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    DEFF Research Database (Denmark)

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together...

  14. Multiple-electron losses in uranium ion beams in heavy ion synchrotrons

    Science.gov (United States)

    Bozyk, L.; Chill, F.; Litsarev, M. S.; Tolstikhina, I. Yu.; Shevelko, V. P.

    2016-04-01

    Charge changing processes as the result of collisions with residual gas particles are the main cause of beam loss in high energy medium charge state heavy ion beams. To investigate the magnitude of this effect for heavy ion synchrotrons like the planned SIS100 at GSI, the multiple-electron and the total electron-loss cross sections are calculated for Uq+ ions, q = 10, 28, 40, 73, colliding with typical gas components H2, He, C, N2, O2, and Ar at ion energies E = 1 MeV/u-10 GeV/u. The total electron-capture cross sections for U28+ and U73+ ions interacting with these gases are also calculated. Most of these cross sections are new and presented for the first time. Calculated charge-changing cross sections are used to determine the ion-beam lifetimes τ for U28+ ions which agree well with the recently measured values at SIS18/GSI in the energy range E = 10-200 MeV/u. Using simulations made by the StrahlSim code with the reference ion U28+, it is found that in SIS100 the beam loss caused by single and multiple electron losses has only little impact on the residual gas density due to the high efficiency of the ion catcher system.

  15. Pure mechanical wear loss measurement in corrosive wear

    Indian Academy of Sciences (India)

    Yanliang Huang; Xiaoxia Jiang; Sizuo Li

    2000-12-01

    The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied. The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

  16. Enhanced relativistic-electron-beam energy loss in warm dense aluminum.

    Science.gov (United States)

    Vaisseau, X; Debayle, A; Honrubia, J J; Hulin, S; Morace, A; Nicolaï, Ph; Sawada, H; Vauzour, B; Batani, D; Beg, F N; Davies, J R; Fedosejevs, R; Gray, R J; Kemp, G E; Kerr, S; Li, K; Link, A; McKenna, P; McLean, H S; Mo, M; Patel, P K; Park, J; Peebles, J; Rhee, Y J; Sorokovikova, A; Tikhonchuk, V T; Volpe, L; Wei, M; Santos, J J

    2015-03-01

    Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11}  A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

  17. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    Science.gov (United States)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  18. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  19. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Science.gov (United States)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  20. Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots

    CERN Document Server

    Hall-Wilton, R J; Talanov, V

    2007-01-01

    This note suggests suitable locations to position beam loss monitors to observe losses on the ATLAS Roman Pot station located close to 240m from IP1. This monitoring is envisaged to help to avoid quenches of the super- conducting magnets downstream of the roman pots and to avert damage to either the LHC machine elements or the roman pot detectors. The results presented in this note indicate the locations where the BLMs should be installed. The recommended locations are determined using previous simulation results on BLM response to losses; therefore these results should be considered in conjunction with the previous results. A more detailed note on the topic will follow later.

  1. Recommended locations of beam-loss monitors for the ATLAS Roman pots

    CERN Document Server

    Hall-Wilton, R J; Talanov, V

    2007-01-01

    This note suggests suitable locations to position beam loss monitors to observe losses on the ATLAS Roman Pot station located close to 240m from IP1. This monitoring is envisaged to help to avoid quenches of the super- conducting magnets downstream of the roman pots and to avert damage to either the LHC machine elements or the roman pot detectors. The results presented in this note indicate the locations where the BLMs should be installed. The recommended locations are determined using previous simulation results on BLM response to losses; therefore these results should be considered in conjunction with the previous results. A more detailed note on the topic will follow later.

  2. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    Science.gov (United States)

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  3. The LHC beam loss monitoring system's real-time data analysis card

    CERN Document Server

    Dehning, B; Ferioli, G; Guaglio, G; Leitner, R; Zamantzas, C

    2005-01-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining t...

  4. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical......-control ventilation with static pressure set-point reset. All the equipment has been designed to minimize pressure losses and thereby the fan power needed to operate the system. The total pressure loss is 30-75 Pa depending on the operating conditions. The annual average specific fan power is 330 J/m3 of airflow rate....... This corresponds to 10-15% of the power consumption for conventional mechanical ventilation systems thus enabling the system to fulfil future energy requirements in buildings....

  5. A possible mechanism of the Scandinavian ozone loss

    Institute of Scientific and Technical Information of China (English)

    邹捍; 周立波; 季崇萍; 王维; 蹇泳啸; 吴瑞欢

    2001-01-01

    Satellite data analysis shows an important Arctic ozone loss over the Scandinavia, with - 50 DU in winter, equivalent to 15% of the total ozone over this region. The study shows a possible mechanism causing the ozone loss. The North Atlantic current carries the heat energy northwards, and causes a relatively high surface temperature along the Scandinavia. The high temperature over the east of North Atlantic heats the atmosphere, induces an upward mass lifting, and therefore causes an ozone divergence near 330°K isoentropic surface, which leads to a decline in the total ozone.

  6. Simulation of the ATLAS SCT barrel module response to LHC beam loss scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2014-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beam line may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth in the sensors which results in less collected charge. These effects provide a larger measure of safety during beam loss events than ...

  7. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides

    Science.gov (United States)

    Wood, Michael G.; Chen, Li; Burr, Justin R.; Reano, Ronald M.

    2014-01-01

    We carried out a multiparameter fabrication study designed to reduce the line edge roughness (LER) of electron beam (e-beam) patterned hydrogen silsesquioxane resist for the purpose of producing low-loss silicon strip waveguides. Reduced mask roughness was achieved for 50°C pre-exposure baking, 5000 μC/cm2 dose with a beam spot size more than twice as large as the electron beam step size, development in 25% tetramethylammonium hydroxide and postdevelopment baking with rapid thermal annealing in an O2 ambient at 1000°C. The LER caused by pattern fracturing and stage stitches was reduced with multipass writing and per-pass linear and rotational offsets. Si strip waveguides patterned with the optimized mask have root-mean-square sidewall roughness of 2.1 nm with a correlation length of 94 nm, as measured by three-dimensional atomic force microscopy. Measured optical propagation losses of these waveguides across the telecommunications C-band were 2.5 and 2.8 dB/cm for the transverse magnetic and transverse electric modes, respectively. These reduced loss waveguides enable the fabrication of advanced planar lightwave circuit topologies.

  8. Evaluation of Beam Loss and Energy Depositions for a Possible Phase II Design for LHC Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Lari, L.; /EPFL-ISIC, Lausanne /CERN; Assmann, R.; /CERN; Bracco, C.; /EPFL-ISIC, Lausanne /CERN; Brugger, M.; /CERN; Cerutti, F.; /CERN; Doyle, E.; /SLAC; Ferrari, A.; /CERN; Keller, L.; Lundgren, S.; Markiewicz, Thomas W.; /SLAC; Mauri, M.; Redaelli, S.; Sarchiapone, L.; /CERN; Smith, J.; /SLAC; Vlachoudis, V.; Weiler, T.; /CERN

    2011-11-07

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  9. Evaluation of Beam Losses And Energy Deposition for a Possible Phase II Design for LHC Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Lari, L.; Assmann, R.W.; Bracco, C.; Brugger, M.; Cerutti, F.; Ferrari, A.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Vlachoudis, Vasilis; Weiler, Th.; /CERN; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, Thomas W.; Smith, J.C.; /SLAC; Lari, L.; /LPHE, Lausanne

    2011-11-01

    The Large Hadron Collider (LHC) beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  10. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    Science.gov (United States)

    Hotchi, Hideaki; Tani, Norio; Watanabe, Yasuhiro

    2015-04-01

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations.

  11. Background gas density and beam losses in NIO1 beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Veltri, P.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro (PD) (Italy)

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  12. Background gas density and beam losses in NIO1 beam source

    Science.gov (United States)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  13. Test of Different Beam Loss Detectors at the GSI Heavy Ion Synchrotron

    CERN Document Server

    Forck, P

    2001-01-01

    For the sensitive process of slow extraction from a synchrotron a reliable control of the beam losses is needed. We have tested several types of particle detectors mounted at the extraction path of the SIS: A BF-tube for pure neutron detection, a liquid and a plastic scintillator detecting neutrons, gammas and charged particles and an Argon filled ionization chamber mainly sensitive to charged particles. While the count rate is quite different, the time evolution of all detector signals during the spill are similar, but the plastic scintillator has the highest dynamic range. This type is going to be used for beam alignment.

  14. Beam loss in HIRFL-CSR due to collisions with residual gas in vacuum

    International Nuclear Information System (INIS)

    The author discusses the collision of heavy ions with residual gas atoms in the vacuum and the cross-sections of the collision processes. The method calculating beam transmission efficiency in vacuum is presented taking HIRFL and CSR machine as examples. Based on rich experimental data, a series of empirical formulae of calculating the cross-section of charge changing process is given. The transmission efficiency curves of different sections in HIRFL and CSR are also calculated, and thus the reasonable requirements for HIRFL and CSR vacuum systems are given. The calculation method has been checked by the measurements of vacuum and beam loss in HIRFL

  15. Beam-size effect and particle losses at Super$B$ factory developed in Italy

    CERN Document Server

    Kotkin, G L

    2009-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the $e^+ e^- \\to e^+ e^- \\gamma$ process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at Super$B$ factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%.

  16. Beam-size effect and particle losses at B-factories KEKB and PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2005-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at B-factories KEKB and PEP-II. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  17. Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms

    Institute of Scientific and Technical Information of China (English)

    WANG Nianfeng; LIANG Xiaohe; ZHANG Xianmin

    2015-01-01

    Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion.

  18. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    International Nuclear Information System (INIS)

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio

  19. A Gigabit Ethernet link for an FPGA based Beam Loss Measurement System

    CERN Document Server

    Kwiatkowski, M; Dehning, B; Vigano, W; Zamantzas, C

    2013-01-01

    A new Beam Loss Monitoring (BLM) system is under development at the European Organisation for Nuclear Research (CERN) within the LHC Injector Upgrade (LIU) project. The multi-channel system will have the ability to measure beam losses from various types of detectors with high precision and wide dynamic range. Several modes of data acquisition are supported. The data rate in the singlechannel mode is 16 Mbps and in the multi-channel mode 128 Mbps. The Gigabit Ethernet link is implemented in an FPGA, which allows both a high throughput and a quick validation of the digital data processing algorithms using standard PCs in the initial stages of the development. Both TCP and UDP protocols were explored. The implementation of the Ethernet link is flexible and proved to be highly reliable, leading to its planned use in other measurement systems developed at CERN. The implementation details of the Ethernet link and the results achieved will be described in this paper.

  20. Calculated electronic energy loss of swift proton and helium ion beams in liquid water

    OpenAIRE

    Abril Sánchez, Isabel; García Molina, Rafael; Denton Zanello, Cristian D.; Emfietzoglou, Dimitris

    2008-01-01

    The electronic energy loss of swift proton and helium beams in liquid water is theoretically evaluated. Our model is based in the dielectric formalism, taking into account the charge exchange of the projectile during its travel through the target. The electronic properties of liquid water are described by the MELF-GOS model, where the outer electron excitations are represented by a sum of Mermin functions fitted to the experimental data in the optical limit, whereas the inner-shell electron e...

  1. Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils

    OpenAIRE

    García Molina, Rafael; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; Heredia Ávalos, Santiago

    2006-01-01

    We have developed a theoretical treatment and a simulation code to study the energy loss of swift H+ and He+ ion beams interacting with thin foils of different carbon allotropes. The former is based on the dielectric formalism, and the latter combines Monte Carlo with the numerical solution of the motion equation for each projectile to describe its trajectory and interactions through the target. The capabilities of both methods are assessed by the reasonably good agreement between their predi...

  2. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  3. Simulation of the ATLAS SCT Barrel Module Response to LHC Beam Loss Scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2013-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth which results in less collected charge. These effects provide a larger measure of safety during beam loss events than we have previous...

  4. Mechanisms of hearing loss after blast injury to the ear.

    Directory of Open Access Journals (Sweden)

    Sung-Il Cho

    Full Text Available Given the frequent use of improvised explosive devices (IEDs around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body's most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction.

  5. Beam-Induced Damage Mechanisms and their Calculation

    CERN Document Server

    Bertarelli, A

    2016-01-01

    The rapid interaction of highly energetic particle beams with matter induces dynamic responses in the impacted component. If the beam pulse is sufficiently intense, extreme conditions can be reached, such as very high pressures, changes of material density, phase transitions, intense stress waves, material fragmentation and explosions. Even at lower intensities and longer time-scales, significant effects may be induced, such as vibrations, large oscillations, and permanent deformation of the impacted components. These lectures provide an introduction to the mechanisms that govern the thermomechanical phenomena induced by the interaction between particle beams and solids and to the analytical and numerical methods that are available for assessing the response of impacted components. An overview of the design principles of such devices is also provided, along with descriptions of material selection guidelines and the experimental tests that are required to validate materials and components exposed to interactio...

  6. Fundamental consolidation mechanisms during selective beam melting of powders

    International Nuclear Information System (INIS)

    During powder based additive manufacturing processes, a component is realized layer upon layer by the selective melting of powder layers with a laser or an electron beam. The density of the consolidated material, the minimal spatial resolution as well as the surface roughness of the resulting components are complex functions of the material and process parameters. So far, the interplay between these parameters is only partially understood. In this paper, the successive assembling in layers is investigated with a recently described 2D-lattice Boltzmann model, which considers individual powder particles. This numerical approach makes several physical phenomena accessible, which cannot be described in a standard continuum picture, e.g. the interplay between capillary effects, wetting conditions and the local stochastic powder configuration. In addition, the model takes into account the influence of the surface topology of the previous consolidated layer on the subsequent powder layer. The influence of the beam power, beam velocity and layer thickness on the formation and quality of simple walls is investigated. The simulation results are compared with experimental findings during selective electron beam melting. The comparison shows that our model, although 2D, is able to predict the main characteristics of the experimental observations. In addition, the numerical simulation elucidates the fundamental mechanisms responsible for the phenomena that are observed during selective beam melting. (paper)

  7. MECHANICAL DEFLECTION OF POLYSILICON MICROCANTILEVER BEAMS USING NANOINDENTATION

    Institute of Scientific and Technical Information of China (English)

    Ding Jianning; Meng Yonggang; Wen Shizhu

    2000-01-01

    The validity of a novel,direct and convenient method for micromechanical property measurements by beam bending using a nanoindenter is demonstrated.This method combines a very high load resolution with a nanometric precision in the determination of the microcantilever beam deflection The method is described clearly.In the deflection of microbeams,the influence of the indenter tip pushing into the top of the microbeams and the curvature across its width must be considered.The measurements were made on single-layer,micro-thick,several kinds of width and length polysilicon beams that were fabricated using conventional integrated circuit (IC) fabrication techniques.The elastic of a polysilicon rnicrocantilever beam will vary linearly with the force and the deformation is thought to be elastic.Furthermore,it suggests that Young modulus of the beam can be determined from the slope of this linear relation.From the load-deflection data acquired during bending the mechanical properties of the thin films were determined.Measured Young modulus is 137 GPa with approximately a ± 2.9% ~± 6.3% difference in Young modulus.

  8. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  9. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  10. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  11. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  12. Prestress Loss and Bending Capacity of Pre-cracked 40 Year-Old PC Beams Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Dasar Amry

    2016-01-01

    Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.

  13. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity. - Highlights: • PA6 was modified by the electron-beam initiated mediation process. • Maximum increase in complex viscosity of modified PA6 was 75 times higher than virgin PA6 at 0.1 rad/s. • Mechanical properties were improved without scarifying of processability. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  14. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    International Nuclear Information System (INIS)

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (∼16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip. (paper)

  15. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.L.; Drozhdin, A.I.; Mokhov, N.V.; Sidorov, V.I.; Tropin, I.S.; /Fermilab

    2012-05-14

    A fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-05 straight section is currently used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With the maximum magnetic field of 72.5 Gauss, it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-06 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using three horizontal kickers in the Long-12 section. STRUCT calculations show that using horizontal notchers, one can remove up to 96% of the 3-bunch intensity at 400-700 MeV, directing 95% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.

  16. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    CERN Document Server

    Rakhno, I L; Mokhov, N V; Sidorov, V I; Tropin, I S

    2012-01-01

    Currently a fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-5 straight section is used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With magnetic field of 72.5 Gauss it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-6 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using two horizontal kickers in the Long-12 section. The STRUCT calculations show that using such horizontal notchers, one can remove up to 99% of the 3-bunch intensity at 400-700 MeV, directing 96% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerabl...

  17. Perturbation of the energy loss spectra for an accelerated electron beam due to the photo injector exit

    CERN Document Server

    Salah, W

    2003-01-01

    The influence of the photo-injector exit hall on the energy loss for an accelerated electron beam is investigated, by calculating the total energy transferred from the electrons to the wakefields, which are driven by the beam. The obtained energy loss is compared to those previously obtained for a 'pill-box' cavity. This comparison shows that the influence of this hall, in terms of energy loss, varies over the beam length. It is strongest in the middle of the beam and decreases towards both ends. In consequence of this perturbation, the center of the beam is displaced from its initial position during the first phase (t < 200 ps) where the exit aperture has no effect to a new equilibrium position which takes place at 200 < t < 250 ps. (author)

  18. The LHC beam loss monitoring system's real-time data analysis card

    Energy Technology Data Exchange (ETDEWEB)

    Zamantzas, C.; Dehning, B.; Effinger, E.; Ferioli, G.; Guaglio, G.; Leitner, R. [Conseil Europeen pour la Recherche Nucleaire, Geneve (Switzerland)

    2005-07-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2 km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining the data from the integrator and the ADC, and in keeping the running sums updated in a way that gives the best compromise between memory needs, computation, and approximation error. (authors)

  19. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Ahn, Joonwook [ORNL; Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Bertelli, Nicola [Princeton Plasma Physics Laboratory (PPPL); Diallo, A. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. K. [Oak Ridge National Laboratory (ORNL); Green, David L [ORNL; Jaeger, E. F. [XCEL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Jaworski, M. A. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); McLean, Adam G [ORNL; Maingi, Rajesh [ORNL; Phillips, C. K. [Princeton Plasma Physics Laboratory (PPPL); Podesta, M. [Princeton Plasma Physics Laboratory (PPPL); Ryan, Philip Michael [ORNL; Sabbagh, S. A. [Columbia University; Scotti, F. [Princeton Plasma Physics Laboratory (PPPL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL)

    2013-01-01

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  20. Beam-size effect and particle losses at SuperB factory developed in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G L; Serbo, V G [Novosibirsk State University, 630090, Novosibirsk, Pirogova st., 2 (Russian Federation)], E-mail: serbo@math.nsc.ru

    2009-06-15

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields} e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at SuperB factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%. We perform a critical comparison of our result with that presented in the Conceptual Design Report of the Italian SuperB factory.

  1. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  2. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  3. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  4. Loss of beam ions to the inside of the PDX [Poloidal Divertor Experiment] tokamak during the fishbone instability

    International Nuclear Information System (INIS)

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak

  5. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  6. A Compactrio-Based Beam Loss Monitor For The SNS RF Test Cave

    International Nuclear Information System (INIS)

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  7. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    Energy Technology Data Exchange (ETDEWEB)

    Blokland, Willem [ORNL; Armstrong, Gary A [ORNL

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  8. Updated analytical solutions of continuity equation for electron beams precipitation - II. Mixed energy losses

    Science.gov (United States)

    Zharkova, V. V.; Dobranskis, R. R.

    2016-06-01

    In this paper we consider simultaneous analytical solutions of continuity equations for electron beam precipitation (a) in collisional losses and (b) in ohmic losses, or mixed energy losses (MEL) by applying the iterative method to calculate the resulting differential densities at given precipitation depth. The differential densities of precipitating electrons derived from the analytical solutions for MELs reveal increased flattening at energies below 10-30 keV compared to a pure collisional case. This flattening becomes stronger with an increasing precipitation depth turning into a positive slope at greater precipitation depths in the chromosphere resulting in a differential density distribution with maximum that shifts towards higher energies with increase in column depth, while the differential densities combining precipitating and returning electrons are higher at lower energies than those for a pure collisional case. The resulting hard X-ray (HXR) emission produced by the beams with different initial energy fluxes and spectral indices is calculated using the MEL approach for different ratios between the differential densities of precipitating and returning electrons. The number of returning electrons can be even further enhanced by a magnetic mirroring, not considered in the present model, while dominating at lower atmospheric depths where the magnetic convergence and magnitude are the highest. The proposed MEL approach provides an opportunity to account simultaneously for both collisional and ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR spectra and evaluation of a fraction of returning electrons versus precipitating ones. The semi-analytical MEL approach is used for spectral fitting to Reuven High Energy Solar Spectroscopic Imager observations of nine C, M and X class flares revealing a close fit to the observations and good resemblance to numerical FP solutions.

  9. Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

    Directory of Open Access Journals (Sweden)

    Pravin Kumar

    2014-10-01

    Full Text Available We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt–Si thin film with medium-energy neon ions at constant fluence (1.0 × 1017 ions/cm2. Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (Se/Sn from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS, atomic force microscopy (AFM, scanning electron microscopy (SEM, X-ray diffraction (XRD and high resolution transmission electron microscopy (HRTEM. A TEM image of a cross section of the film irradiated with Se/Sn = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of Se/Sn. The synergistic effect of the energy losses of the ion beam (molten zones are produced by Se, and sputtering and local defects are produced by Sn leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

  10. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  11. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  12. Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams

    OpenAIRE

    Shahdin, Amir; Mezeix, Laurent; Bouvet, Christophe; Morlier, Joseph; Gourinat, Yves

    2009-01-01

    The aim of this paper is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber cores and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. Although the entang...

  13. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    Science.gov (United States)

    Rodionova, Natalia

    bone tissue. The macrophages are incorporated into resorption lacunaes and utilize the organic matrix and cellular detritus. The products are secreted to remodeling zones and act as haemoattractants for recruiting and subsequent differentiation here of the osteogenic precursor cells. However, as shown by our results with 3H-glycine, in absence of mechanical stimulus the activization of osteoblastogenesis either doesn't occur, or takes place on a smaller scale. According to our electron-microscopic data a load deficit leads to an adaptive differentiation of fibroblasts and adipocytes in this remodeling zones. This sequence of events is considered as a mechanism of bone tissue loss which underlies the development of osteopenia and osteoporosis under space flight condition.

  14. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  15. Effects of Optical Loss Factors on Heliostat Field Layout for Beam-Down Solar Concentrating Systems

    Science.gov (United States)

    Utamura, Motoaki; Takamatsu, Tadahiko; Yuasa, Minoru; Kajita, Rina; Yamamoto, Takashi

    A methodology to give an optimal layout of a group of heliostats has been developed for beam-down concentrating solar tower systems. Given the maximum solar power together with optical parameters, the method determines an optimal configuration of a heliostat field around a tower. Various optical losses such as cosine factor, shadowing and blocking at heliostats are considered in the calculation. Furthermore, spillage at the receiver is taken into account due to the spread of light caused by the effects of a finite solar disk, flat facet and various stochastic errors in optical hardware and control. It is found the effect of spillage becomes significant at heliostats from the tower at the distance farther than four times of upper focus height of the reflector when receiver diameter is one fifteenth of the height and dominates the configuration of the optimal heliostat layout.

  16. 10 Orders of Magnitude Current Measurement Digitisers for the CERN Beam Loss Systems

    CERN Document Server

    Vigano, W; Dehning, B; Kwiatkowski, M; Venturini, G G; Zamantzas, C

    2014-01-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31nA in an integration window of 2μs. Increasing the integration window, the dynamic range covers 2•1010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  17. 10 orders of magnitude current measurement digitisers for the CERN beam loss systems

    Science.gov (United States)

    Viganò, W.; Alsdorf, M.; Dehning, B.; Kwiatkowski, M.; Venturini, G. G.; Zamantzas, C.

    2014-02-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31 nA in an integration window of 2 μs. Increasing the integration window, the dynamic range covers 21010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  18. Improved design and construction of an ionization chamber for the CSNS beam loss monitor (BLM)

    Institute of Scientific and Technical Information of China (English)

    TIAN Jian-Min; XU Mei-Hang; ZHAO Zhong-Liang; CHEN Chang; RUAN Xiang-Dong; CHEN Yuan-Bo; XU Tao-Guang; LU Shuang-Tong

    2012-01-01

    Based on the first ionization chamber (IC) prototype,the structure,working gas component and electrode material of the IC are improved.The test of the improved IC shows that the plateau length is about 2000 V,the plateau slope is less than 0.2%/100 V,the sensitivity is 19.6 pA/rad.h-1,the up-limitation of the linearity can be up to 3.6× 105 rad/h,and the applied voltage can be operated to 3500 V.The test results show that the performance of the improved IC meets the requirements of the beam loss monitor.

  19. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  20. Mechanisms of stable lipid loss in a social insect

    OpenAIRE

    Ament, Seth A.; Chan, Queenie W.; Wheeler, Marsha M.; Nixon, Scott E.; Johnson, S. Peir; Rodriguez-Zas, Sandra L.; Foster, Leonard J.; Robinson, Gene E.

    2011-01-01

    Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in olde...

  1. Study on the radiation problem caused by electron beam loss in accelerator tubes

    Institute of Scientific and Technical Information of China (English)

    LI Quan-Feng; GUO Bing-Qi; ZHANG Jie-Xi; CHEN Huai-Bi

    2008-01-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement.

  2. Up-scattering of beam ions by nuclear elastic scattering and its effect on energy loss rate in thermonuclear plasmas

    International Nuclear Information System (INIS)

    An expression for the average energy loss rate of beam ions due to nuclear elastic scattering (NES) in Maxwellian plasmas is derived, by taking into consideration the thermal motion of the background ions. The NES effect on deuterium beam injection plasma heating is examined using the expression derived. As a result of the scattering due to NES of the slowing down deuterons up to the higher energy range, the average energy loss rate due to NES of 1 MeV deuterons in 20 keV deuterium plasmas decreases by about 60% compared with the case of cold background plasmas. An examination is also made of the fraction of the beam energy deposited to ions. It is shown that when the beam energy is higher than 1 MeV, the increase in the fraction due to NES becomes appreciable. (author). Letter-to-the-editor

  3. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyuk, A.N.; Trigub, N.P.; Zamkov, V.N.; Ivasishin, O.M.; Markovsky, P.E.; Teliovich, R.V.; Semiatin, S.L

    2003-04-15

    The chemical homogeneity, microstructure, texture, and mechanical properties of Ti-6Al-4V ingots synthesized via electron-beam melting were established. Despite large aluminum losses during melting, very uniform compositions well within the specification for the alloy were obtained in both 200- and 400-mm diameter ingots. The local conditions of melting and solidification produced essentially texture-free as-cast material with a largely equiaxed beta grain structure. Following hot working via rolling at various temperatures, a wide range of microstructures and textures similar to those found in conventionally-processed Ti-6Al-4V was obtained. The resulting mechanical properties were comparable to or better than those found in Ti-6Al-4V synthesized via vacuum arc remelting.

  4. Energy loss of a fast-electron beam due to the excitation of collective oscillation in hot plasma

    Institute of Scientific and Technical Information of China (English)

    Ma Jin-Yi; Qiu Xi-Jun; Zhu Zhi-Yuan

    2004-01-01

    Energy loss due to a fast-electron beam interacting with the hot plasma at a high density is analysed theoretically.By splitting the particle density fluctuations into the individual part due to the random thermal motion of the individual electrons and the collective part due to plasma-wave excitation, we are concerned with the collective interaction of the relativistic plasma electrons resulting from the Coulomb interactions. Consequently, we derive the frequency of the hot plasma and the "Debye length" with the modification of the relativistic effect. And finally we calculate the energy loss of a fast-electron beam due to the excitation of collective oscillation in the hot plasma.

  5. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    OpenAIRE

    Liu X; Queen D.R.; Metcalf T.H.; Karel J.E.; Hellman F.

    2015-01-01

    The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H) with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si), we show that TLS can be eliminated in this system as the films become denser and more structur...

  6. Mechanisms of stable lipid loss in a social insect.

    Science.gov (United States)

    Ament, Seth A; Chan, Queenie W; Wheeler, Marsha M; Nixon, Scott E; Johnson, S Peir; Rodriguez-Zas, Sandra L; Foster, Leonard J; Robinson, Gene E

    2011-11-15

    Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes.

  7. A Cherenkov-based Beam Loss Scintillator system for beam, background and online luminosity monitoring at the LHCb experiment at CERN

    CERN Document Server

    Alessio, F; Jacobsson, R

    2013-01-01

    The installation of a scintillator-based system in the LHCb cavern was initially proposed in order to observe injection problems around the LHCb interaction region. Thanks to the fact that LHCb had already developed a custom-made electronics board (BPIM) for the LHCb beam pickups and global LHCb timing monitoring, a complete, inexpensive but flexible and robust system was quickly developed and installed few cm from the beam pipe just in front of the LHCb VELO detector in time for the very first beams injected in the LHC. The current and final system – commonly referred to as Beam Loss Scintillator (BLS) system - ultimately played a central role in the fast beam, background and online luminosity monitoring at LHCb. In this paper, the features of the detector – based on quartz radiator and Cherenkov light - are described, including the functionalities that the system acquired during the proton-proton physics programmes in 2009- 2013 thanks to its flexibility, reliability and sensitivity to beam hal...

  8. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  9. The mechanism of cloud loss phenomena in orange juice

    NARCIS (Netherlands)

    Krop, J.J.P.

    1974-01-01

    The importance of many factors for the cloud stability of orange juice was investigated. By the determination of methanol, cloud loss of orange juice could be ascribed directly to the action of pectin esterase. However, clarification only occurs if calcium ions are available to precipitate the low m

  10. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain.

    Science.gov (United States)

    Cai, Yangjian; Zhu, Shijun

    2014-04-01

    We derive the general expression for the orbital angular momentum (OAM) flux of an astigmatic partially coherent beam carrying twist phase [i.e., twisted anisotropic Gaussian-Schell model (TAGSM) beam] propagating through an astigmatic ABCD optical system with loss or gain. The evolution properties of the OAM flux of a TAGSM beam in a Gaussian cavity or propagating through a cylindrical thin lens are illustrated numerically with the help of the derived formula. It is found that we can modulate the OAM of a partially coherent beam by varying the parameters of the cavity or the orientation angle of the cylindrical thin lens, which will be useful in some applications, such as free-space optical communications and particle trapping.

  11. Localization of the large-angle foil-scattering beam loss caused by the multiturn charge-exchange injection

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Yoshimoto, Masahiro; Harada, Hiroyuki; Kinsho, Michikazu

    2013-07-01

    In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, significant losses were observed at the branching of the H0 dump line and the beam position monitor that was inserted downstream of the H0 dump branch duct. These losses were caused by the large-angle scattering of the injection and circulating beams at the charge-exchange foil. To realize high-power operation, these losses must be mitigated. Therefore, a new collimation system was developed and installed in October 2011. To efficiently optimize this system, the behavior of particles scattered by the foil and produced by the absorber were simulated, and the optimal position and angle of the absorber were investigated. During this process, an angle regulation method for the absorber was devised. An outline of this system, the angle regulation method for the absorber, and the performance of this new collimation system are described.

  12. Mechanical properties of electron beam irradiated polyamide 6,6

    International Nuclear Information System (INIS)

    Radiation processing has been applied to improve product quality, energy saving and to manufacture products with special properties as a result of inducing reactions in solid state and at room temperature. This processing brings, many advantages comparing to the conventional chemical processing. Polyamide 6,6 due to its excellent mechanical, thermal and electrical properties and its great performance in multiple industrial applications is considered one of the most important engineering polymer. However, in specific applications, some of its properties need to be improved by means additives or fillers to reach the required properties, which increase its final cost. By these considerations, the aim of this work was to apply the ionizing radiation to improve the natural mechanical properties of polyamide 6,6. Also, to evaluate the irradiation parameters, and the mechanical performance of the irradiated polymer in order to use the cross-linking, induced by ionizing radiation, as substitute of additives and fillers. Therefore, Tensile, impact, hardness and wear properties of EB irradiated Polyamide 6,6 were evaluated under electron beam irradiation. Samples, of polyamide 6,6 without additives, for the mechanical tests, were injection-molded using a Battenfeld injector. These samples were irradiated with electrons at the IPEN irradiation facilities, using a Dynamitron JOB 188 electron accelerator with 1.5 MeV and 37.5 kW, and the doses were 70, 100, 150, and 200kGy. tives. Samples for tensile strength, impact, hardness and wear were injection-molded. These irradiated samples were conditioned at 23 deg. C and 50% humidity for 40 hours before being mechanically tested. The tensile strength, impact, hardness, and wear properties were evaluated according to standards ASTM D-680, ASTM D-256, ASTM D-2240, and ASTM D 1242 respectively. The tensile strength measurements were made with an EMIC Universal Testing Machine, model MEM-10000. The Izod Zwick Impact measurements were

  13. Influence of the beam-size effect on particle losses at B-factories PEP-II and KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2004-01-21

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross-section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross-section of this process has to be substantially modified. In the present paper such a beam-size is calculated for bremsstrahlung at B-factories PEP-II and KEKB. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  14. Age-related hearing loss: ear and brain mechanisms.

    Science.gov (United States)

    Frisina, Robert D

    2009-07-01

    Loss of sensory function in the aged has serious consequences for economic productivity, quality of life, and healthcare costs in the billions each year. Understanding the neural and molecular bases will pave the way for biomedical interventions to prevent, slow, or reverse these conditions. This chapter summarizes new information regarding age changes in the auditory system involving both the ear (peripheral) and brain (central). A goal is to provide findings that have implications for understanding some common biological underpinnings that affect sensory systems, providing a basis for eventual interventions to improve overall sensory functioning, including the chemical senses.

  15. Thermo-mechanical modelling of high energy particle beam impacts

    CERN Document Server

    Scapin, M; Dallocchio, A

    2010-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in LHC in a single beam is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage occurs in a regime where practical experience does not exist. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam, in which 8 bunches irradiate the target directly. The energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA. ...

  16. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    Science.gov (United States)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  17. Generation mechanism of whistler waves produced by electron beam injection in space

    Science.gov (United States)

    Pritchett, P. L.; Karimabadi, H.; Omidi, N.

    1989-01-01

    Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.

  18. Fiberglass-reinforced glulam beams: mechanical properties and theoretical model

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2006-09-01

    Full Text Available The glued-laminated lumber (glulam technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

  19. Collective process in microsecond relativistic electron beam: regularities and mechanism

    International Nuclear Information System (INIS)

    The collective processes in the spatial charge of the microsecond relativistic electron beams with magnetic isolation are studied. The spatial-time characteristics of the low-frequency and high-frequency branches of oscillations are determined. The effect of the beams magnetic compression on the above oscillations near the cathode is studied. The basic source of the low-frequency oscillations - the collective motions of the spatial charge, developing in the crossed electric and magnetic fields near the cathode, is identified. It is established that the basic cause of the high-frequency oscillations consists in the development of the two-phase instability in the beam. The possibility of suppressing the low-frequency and high-frequency oscillations through the relativistic electron beams compression near the cathode is identified

  20. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    Directory of Open Access Journals (Sweden)

    Liu X.

    2015-04-01

    Full Text Available The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si, we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in a-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that a-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.

  1. Fiberglass-reinforced glulam beams: mechanical properties and theoretical model

    OpenAIRE

    Juliano Fiorelli; Antonio Alves Dias

    2006-01-01

    The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains a...

  2. Starlight and Sandstorms: Mass Loss Mechanisms on the AGB

    Science.gov (United States)

    Höfner, S.

    2011-09-01

    There are strong observational indications that the dense slow winds of cool luminous AGB stars are driven by radiative pressure on dust grains which form in the extended atmospheres resulting from pulsation-induced shocks. For carbon stars, detailed models of outflows driven by amorphous carbon grains show good agreement with observations. Some still existing discrepancies may be due to a simplified treatment of cooling in shocks, drift of the grains relative to the gas, or effects of giant convection cells or dust-induced pattern formation. For stars with C/O < 1, recent models indicate that absorption by silicate dust is probably insufficient to drive their winds. A possible alternative is scattering by Fe-free silicate grains with radii of a few tenths of a micron. In this scenario one should expect less circumstellar reddening for M- and S-type AGB stars than for C-stars with comparable stellar parameters and mass loss rates.

  3. Starlight and Sandstorms: Mass Loss Mechanisms on the AGB

    CERN Document Server

    Höfner, Susanne

    2011-01-01

    There are strong observational indications that the dense slow winds of cool luminous AGB stars are driven by radiative pressure on dust grains which form in the extended atmospheres resulting from pulsation-induced shocks. For carbon stars, detailed models of outflows driven by amorphous carbon grains show good agreement with observations. Some still existing discrepancies may be due to a simplified treatment of cooling in shocks, drift of the grains relative to the gas, or effects of giant convection cells or dust-induced pattern formation. For stars with C/O < 1, recent models indicate that absorption by silicate dust is probably insuffcient to drive their winds. A possible alternative is scattering by Fe-free silicate grains with radii of a few tenths of a micron. In this scenario one should expect less circumstellar reddening for M- and S-type AGB stars than for C-stars with comparable stellar parameters and mass loss rates.

  4. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams......, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism...... in microdimensions is investigated by changing the relative stiffness of the flexible beams. The actuation force versus displacement characteristics of several cases is explored and the full simulation results of one of the cases are presented. This paper demonstrates the united application of the PRBM...

  5. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  6. Mass loss as a driving mechanism of tectonics of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2015-04-01

    Summary We suggest that the mass loss from South Polar Terrain (SPT) is the main driving force of the following tectonic processes on Enceladus: subsidence of SPT, flow in the mantle and motion of plates. 1. Introduction Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic activity is observed. Every second, the mass of ~200 kg is ejected into space from the South Polar Terrain (SPT) - [1, 2, 3]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic model that could explain this paradox. 2. Subsidence of SPT and tectonics The volatiles escape from the hot region through the fractures forming plumes in the space. The loss of the volatiles results in a void, an instability, and motion of solid matter into the hot region to fill the void. The motion includes : Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm-yr-1. However, all three types of motion are probably important, so the subsidence is slower but mantle flow and plates' motion also play a role in filling the void. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. 3. Models of subsidence The numerical model of suggested process of subsidence is developed. It is based on the typical set of equation: Navier-Stokes equation for incompressible viscous liquid, equation of continuity and equation of heat conduction. The Newtonian and non-Newtonian rheologies are used. The preliminary results of the model indicate that the subsidence rate of

  7. Design and construction of the first prototype ionization chamber for CSNS and PA beam loss monitor (BLM) system

    Institute of Scientific and Technical Information of China (English)

    XU Mei-Hang; TIAN Jian-Min; CHEN Chang; CHEN Yuan-Bo; XU Tao-Guang; LU Shuang-Tong

    2009-01-01

    Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (<0.1 pA), good plateau (≈800 V) and linearity range up to 200 Roentgen/h axe obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.

  8. Effect of radiation by electron beam on the mechanical properties of high density polyethylene

    International Nuclear Information System (INIS)

    In this work, the high density polyethylene (HDPE) was submitted to radiation doses ranging from 150 to 250 kGy in a 1.5 MeV electron accelerator, with purpose to evaluate the radiation dose effects on his mechanical properties. The irradiations were accomplished at 14 kGy/s dose, room temperature and presence of air. The material mechanical properties changes due to the irradiation were evaluated by means of traction and flexure resistance tests. The results presented a gain up to 150 % in the original rupture traction of the HDPE (not irradiated samples, gain up to 10 % in the percentage of maximum elongation in rupture for the irradiated samples, except for the 250 kGy, where no significant changes were observed (p < 0.05). The results also presented gains up to 20 % in the flexure resistance and losses of the order of 3 to 4 % in the traction resistance in the HDPE drainage related to the original, for the studied radiation dose interval (p <0.05). These results indicate that the irradiation by electron beam, at the conditions studied in this work, is a adequate d process for the modification of the HDPE mechanical properties, mainly for those applications requiring a high resistance to the traction solicitations

  9. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  10. Improvement of thermo-mechanical position stability of the beam position monitor in PLS-II

    CERN Document Server

    Ha, Taekyun; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-01-01

    In the storage ring of PLS-II, we reduced mechanical displacement of electron beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The orbit feedback system intends that the electron beam pass through the center of the BPM, so to provide stable photon beam into beamlines the BPM pickup itself must be stable to sub-micrometer precision. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report the thermo-mechanical analysis and displacement measurements of BPM pickups after the improvements.

  11. A novel digitization scheme with FPGA-base TDC for beam loss monitors operating at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Warner, Arden; /Fermilab

    2011-11-01

    Recycling integrators are common current-to-frequency converting circuits for measurements of low current such as that produced by Fermilab's cryogenic ionization chambers. In typical digitization/readout schemes, a counter is utilized to accumulate the number of pulses generated by the recycling integrator to adequately digitize the total charge. In order to calculate current with reasonable resolution (e.g., 7-8 bits), hundreds of pulses must be accumulated which corresponds to a long sampling period, i.e., a very low sampling rate. In our new scheme, an FPGA-based Time-to-Digital Convertor (TDC) is utilized to measure the time intervals between the pulses output from the recycling integrator. Using this method, a sample point of the current can be made with good resolution (>10 bits) for each pulse. This effectively increases the sampling rates by hundreds of times for the same recycling integrator front-end electronics. This scheme provides a fast response to the beams loss and is potentially suitable for accelerator protection applications. Moreover, the method is also self-zero-suppressed, i.e., it produces more data when the beam loss is high while it produces significantly less data when the beam loss is low.

  12. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    Science.gov (United States)

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone.

  13. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation.

    Science.gov (United States)

    Fan, Ruoxun; Gong, He; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  14. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Science.gov (United States)

    Avilov, Mikhail; Aaron, Adam; Amroussia, Aida; Bergez, Wladimir; Boehlert, Carl; Burgess, Thomas; Carroll, Adam; Colin, Catherine; Durantel, Florent; Ferrante, Paride; Fourmeau, Tiffany; Graves, Van; Grygiel, Clara; Kramer, Jacob; Mittig, Wolfgang; Monnet, Isabelle; Patel, Harsh; Pellemoine, Frederique; Ronningen, Reginald; Schein, Mike

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from 16O to 238U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti-6Al-4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  15. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    Science.gov (United States)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  16. Pericyte migration - A novel mechanism of pericyte loss in experimental diabetic retinopathy

    NARCIS (Netherlands)

    Pfister, Frederick; Feng, Yuxi; Hagen, Franziska vom; Hoffmann, Sigrid; Molema, Grietje; Hillebrands, Jan-Luuk; Shani, Moshe; Deutsch, Urban; Hammes, Hans-Peter

    2008-01-01

    OBJECTIVE-The mechanism underlying pericyte loss during incipient diabetic retinopathy remains controversial. Hyperglycemia induces angiopoietin-2 (Ang-2) transcription, which modulates capillary pericyte coverage. In this study, we assessed loss of pericyte subgroups and the contribution of Ang-2 t

  17. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    Science.gov (United States)

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-01

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered.

  18. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  19. Mechanical mechanism and support design analysis on bolt-beam-net support in soft rock roadway in Qigou Coal Mine

    Institute of Scientific and Technical Information of China (English)

    LI Tao; SHAN Ren-liang; HAN Huan-shang; YANG Wei-hong; LIU Nian

    2012-01-01

    The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels,which is important to coal mine production and construction.By physical mechanics experiments and X-ray diffraction (XRD) tests,the engineering mechanical properties of soft rock,as well as main mineral composition of the surrounding soft rock of Qigou Coal Mine,were obtained.Based on analysis results,a method using bolt-beam-net combination to support was put forward.Mechanical analysis of the support form was done by using the calculation software FLAC3D.Results show that clay minerals of this mine are kaolinite and illite mixed layer,of which the water absorption is relatively obvious and presented mudding characteristic after absorbing water,with the plasticity index of 0.35,with small expansibility,which is weakly consolidated colloid with strong connected force in unit cell.The rock blocks have the characteristics of moisture absorption softening,and the deformation mechanical mechanism of which is with the coexistence of molecular expansive mechanism,colloid expansive mechanism,and weak layer trend type.The calculation results show that the bolt-beam-net support structure makes the bolt,beam,and roof deform compatibly.The beams make the force in the bolt relatively homogeneous,which restricts the displacement of the tunnel roof as well.Finally,using in situ monitoring,the numerical results were verified.

  20. Cure and mechanical behaviors of cycloaliphatic/DGEBA epoxy blend system using electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, G.Y.; Park, S.J. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2002-05-01

    4-Vinyl-1- cyclohexene diepoxide (VCE)/ diglycidyl ether of bisphenol -A(DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. the effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system varied within 100:0, 80:20, 60:40. 40:60 20:80, and 0:100wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor (K{sub 1C}) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chide structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T{sub max}), and decomposition activation energy (E{sub d}) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum K{sub 1C} value showed at mixing ratio of 40:60 wt% in this blend system. (author). 22 refs., 2 tabs., 6 figs.

  1. In-Plane MEMS Shallow Arch Beam for Mechanical Memory

    Directory of Open Access Journals (Sweden)

    Md Abdullah Al Hafiz

    2016-10-01

    Full Text Available We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC bias voltage, thereby proving the memory concept.

  2. An FPGA Based Implementation for Real-Time Processing of the LHC Beam Loss Monitoring System's Data

    CERN Document Server

    Dehning, B; Emery, J; Ferioli, G; Zamantzas, C

    2006-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. At each turn, there will be several thousands of data to record and process in order to decide if the beams should be permitted to continue circulating or their safe extraction is necessary to be triggered. The processing involves a proper analysis of the loss pattern in time and for the decision the energy of the beam needs to be accounted. This complexity needs to be minimized by all means to maximize the reliability of the BLM system and allow a feasible implementation. In this paper, a field programmable gate array (FPGA) based implementation is explored for the real-time processing of the LHC BLM data. It gives emphasis on the highly efficient Successive Running Sums (SRS) technique used that allows many and long integration periods to be maintained for each detector's data with relatively small leng...

  3. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Science.gov (United States)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  4. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  5. The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid

    Institute of Scientific and Technical Information of China (English)

    刘士和; 薛娇; 范敏

    2013-01-01

    The calculation of the mechanical energy loss is one of the fundamental problems in the field of Hydraulics and Enginee- ring Fluid Mechanics. However, for a non-uniform flow the relation between the mechanical energy loss in a volume of fluid and the kinematical and dynamical characteristics of the flow field is not clearly established. In this paper a new mechanical energy equation for the incompressible steady non-uniform pipe flow of homogeneous fluid is derived, which includes the variation of the mean tur- bulent kinetic energy, and the formula for the calculation of the mechanical energy transformation loss for the non-uniform flow bet- ween two cross sections is obtained based on this equation. This formula can be simplified to the Darcy-Weisbach formula for the uniform flow as widely used in Hydraulics. Furthermore, the contributions of the mechanical energy loss relative to the time avera- ged velocity gradient and the dissipation of the turbulent kinetic energy in the turbulent uniform pipe flow are discussed, and the con- tributions of the mechanical energy loss in the viscous sublayer, the buffer layer and the region above the buffer layer for the turbu- lent uniform flow are also analyzed.

  6. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  7. Modelling the Loss of Steel-Concrete Bonds in Corroded Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2007-01-01

    The existing stochastic models for deterioration of reinforced concrete structures is extended by adding modelling of "loss of bond" due to corrosion between the reinforcement bars and the surrounding concrete.......The existing stochastic models for deterioration of reinforced concrete structures is extended by adding modelling of "loss of bond" due to corrosion between the reinforcement bars and the surrounding concrete....

  8. Research on Delay and Packet Loss Control Mechanism in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Qiuling Yang

    2014-04-01

    Full Text Available In wireless mesh networks, the performance of TCP was degraded rapidly due to the interference in wireless channels. To deal with this problem, A TCP control mechanism based on the character of delay distribution and wireless packet loss is proposed in this paper. Firstly, this delay model can capture the delay exactly that a packet experiences at one hop transmission with rigorous theoretic derivation and lower overhead, and computational complexity. Then we analyze the character of the wireless packet loss. Furthermore, this mechanism points out the control method at transport layer to deal with the different type of packet loss. The simulation results show that our mechanism can decrease the packet loss rate efficiently

  9. A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams

    CERN Document Server

    Christensen, Jeppe brage; Bassler, Niels

    2016-01-01

    Dosimetry with ionization chambers in clinical ion beams for radiation therapy requires correction for recombination effects. However, common radiation protocols discriminate between initial and general recombination and provide no universal correction method for the presence of both recombination types in ion beams of charged particles heavier than protons. Here, we present the open source code IonTracks, where the combined initial and general recombination effects in principle can be predicted for any ion beam with arbitrary particle-energy spectrum and temporal structure. IonTracks uses track structure theory to distribute the charge carriers in ion tracks. The charge carrier movements are governed by a pair of coupled differential equations, based on fundamental physical properties as charge carrier drift, diffusion, and recombination, which are solved numerically while the initial and general charge carrier recombination is computed. The algorithm is numerically stable and in accordance with experimental...

  10. Laser-driven proton beams: Acceleration mechanism, beam optimization, and radiographic applications

    Energy Technology Data Exchange (ETDEWEB)

    Borghesi, M.; Romagnani, L.; Kar, S.; Wilson, P.A. [School of Mathematics and Physics, The Queen' s University of Belfast (United Kingdom); Cecchetti, C.A. [School of Mathematics and Physics, The Queen' s University of Belfast (United Kingdom); Also with the Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa (Italy); Toncian, T.; Pipahl, A.; Amin, M.; Jung, R.; Osterholz, J.; Willi, O. [Institute for Laser and Plasma Physics, Heinrich Heine University, Dusseldorf (Germany); Fuchs, J.; Audebert, P.; Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses LULI, UMR 7605 CNRS-CEA-Ecole Polytechnique, 91 - Palaiseau (France); Antici, P. [Laboratoire pour l' Utilisation des Lasers Intenses LULI, UMR 7605 CNRS CEA Ecole Polytechnique, 91 - Palaiseau (France); Frascati National Laboratories INFN, Frascati (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, St. Andrews (United Kingdom); Clarke, R.J.; Notley, M.; Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX Didcot (United Kingdom); Mora, P.; Grismayer, T. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91 - Palaiseau (France); Schurtz, G. [Centre d' Etudes des Lasers Intenses et Applications, UMR 5107 University Bordeaux I-CNRS-CEA, 33 - Talence (France); Schiavi, A. [Dipartimento di Energetica, Universita -La Sapienza-, Rome (Italy); Sentoku, Y.; D' Humieres, E. [Physics Department, MS 220, University of Nevada, Reno, NV (United States)

    2008-08-15

    This paper reviews recent experimental activity in the area of optimization, control, and application of laser-accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l'Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered micro-lens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted protons and select monochromatic beamlets; out of the broad spectrum beam. This approach could be advantageous in view of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses. (authors)

  11. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices.

    Science.gov (United States)

    Jiao, Yuqing; Pello, Josselin; Mejia, Alonso Millan; Shen, Longfei; Smalbrugge, Barry; Geluk, Erik Jan; Smit, Meint; van der Tol, Jos

    2014-03-15

    In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators. The fabrication of distributed Bragg reflector structures has shown improvement in terms of pattern definition accuracy with respect to the same structures fabricated with normal ZEP resist. Straight InP membrane waveguides with different lengths have been fabricated using this mixed resist. A decrease of the propagation loss from 6.6 to 3.3  dB/cm has been demonstrated.

  12. Ion beam sputtering coatings on large substrates: toward an improvement of the mechanical and optical performances.

    Science.gov (United States)

    Cimma, Bernard; Forest, Danièle; Ganau, Patrick; Lagrange, Bernard; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pignard, Renée; Pinard, Laurent; Remillieux, Alban

    2006-03-01

    Large mirrors (ø350 mm) having extremely low optical loss (absorption, scattering, wavefront) were coated for the VIRGO interferometer. The new generation of mirrors needs to have a better wavefront and lower mechanical loss. To improve the component wavefront, the corrective coating technique was used. By doping the tantalum pentoxide layers, we improved, for the first time to our knowledge, the multilayer mechanical loss. The first results are discussed. PMID:16539246

  13. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-07-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  14. Sediment losses from forest management: mechanical vs. chemical site preparation after clearcutting

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, R.S.; Granillo, A.B.; Zillmer, V.

    The comparative effects of mechanical and chemical site preparation water yields and sediment losses following forest clearcutting were evaluated over a 4-yr period in the Athens Plateau area of southwestern Arkansas. After 1 yr of pretreatment measurements, three forested water sheds were clearcut and the residual vegetation and debris were sheared and windrowed but not burned. Three watersheds were clearcut in a similar manner, but received chemical site preparation. Residual trees on two watersheds were injected with 2-4, D amine; the third watershed was aerially sprayed with a mixture of Tordon (active ingredient: picloram (4-amino-3,5,6-trichloropicoline acid)) and Garlon (active ingredient; triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid)). Three additional watersheds were left undisturbed for controls. Mean annual sediment losses on the mechanically, site prepared watersheds during the first posttreatment year were significantly higher than those from either the chemically site prepared watersheds or controls. Chemical site preparation did not significantly increase sediment losses. Although 2nd yr losses for the mechanical site preparation and control treatments doubled over 1st-yr levels, no significant treatment effect was detected for either site preparation treatment. Third-year losses decreased below 1st-yr losses for all treatments but not to pretreatment year levels. The relatively sharp declines in sediment losses during the third posttreatment year were attributed to rapid regrowth of natural vegetation on the sites.

  15. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    International Nuclear Information System (INIS)

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  16. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    Science.gov (United States)

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-01

    We have determined "effective" Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  17. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; /CERN; Bocian, D.; /Fermilab /CERN; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  18. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    Science.gov (United States)

    Thomé, Lionel; Debelle, Aurélien; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves; Velisa, Gihan; Miro, Sandrine

    2013-04-01

    Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (Sn) and electronic (Se) energy losses. Rutherford backscattering experiments in channeling conditions show that the Sn/Se cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative Sn/Se effects may lead to the preservation of the integrity of nuclear devices.

  19. Calculated energy loss of a swift fullerene ion beam in InP

    OpenAIRE

    Abril Sánchez, Isabel; García Molina, Rafael; Denton Zanello, Cristian D.; Heredia Ávalos, Santiago

    2009-01-01

    Bombardment of semiconductors with fullerene has been used to induce the formation of tracks. It is now accepted that target electronic excitation and ionization, which gives rise to the slowing down of the projectile is essential to calculate the track diameter. In the case of cluster beams, like fullerenes, the electronic excitation induced by each of the cluster constituents is enhanced, for certain projectile energies and target depths, by the so-called vicinage effects. Here we use a sim...

  20. Degradation mechanism of polyurethane foam induced by electron beam irradiation

    International Nuclear Information System (INIS)

    The degradation mechanism of irradiated polyurethane foam has been studied in detail. The changes of chemical structure and micro-phase separation have been determined by DTG. The gas products from irradiated samples are analyzed quantitatively and qualitatively by GC. The degradation mechanism of irradiated polyurethane foam has been deduced according to the experimental results. It provides some basis of the application on the polyurethane in the radiation field

  1. Beam Losses in the Extraction Line of a TeV E+ E- Linear Collider With a 20-Mrad Crossing Angle

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; /Uppsala U.; Nosochkov, Y.; /SLAC

    2006-03-29

    In this paper, we perform a detailed study of the power losses along the postcollision extraction line of a TeV e+e- collider with a crossing angle of 20 mrad between the beams at the interaction point. Five cases are considered here: four luminosity configurations for ILC and one for CLIC. For all of them, the strong beam-beam effects at the interaction point lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- pairs. The power losses along the 20 mrad extraction line, which are due to energy deposition by a fraction of the disrupted beam, of the beamstrahlung photons and of the e+e- coherent pairs, were estimated in the case of ideal collisions, as well as with a vertical position or angular o set at the interaction point.

  2. A bench measurement of the energy loss of a stored beam to a cavity

    International Nuclear Information System (INIS)

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch of an rf cavity or other vacuum-chamber structure---the so-called ''cavity radiation.'' The proposed method is analyzed in some detail. 2 refs., 4 figs

  3. Differentiating Sudden Loss Mechanisms of Inner-belt Protons from Multisatellite Observations

    Science.gov (United States)

    Chen, Y.; Henderson, M. G.; Reeves, G. D.; Baker, D. N.; Lanzerotti, L. J.; Blake, J. B.; Mazur, J. E.; Spence, H.; Mitchell, D. G.

    2013-12-01

    Energetic protons (with kinetic energy from several to ~100 MeV) residing in the inner Van Allen belt region are usually stable except when disturbed by transient events such as interplanetary (IP) shocks. When a strong IP shock accompanied by a large population of solar energetic protons impinges the Earth's magnetosphere, it is often observed that a new proton belt emerges at L-shells ~2.5-3.5. One plausible explanation for these new protons is that, after the penetrating solar protons load a seed population at medium L-shells, those protons are promptly transported inward to low L-shells by impulsive shock-induced electric fields and adiabatically accelerated to higher energies. However, the mechanism for the sudden loss--i.e., the new proton belt may disappear with another impinging IP shock--it is still an open question, and three hypotheses currently exist. The first is the loss due to strengthened scattering from the build-up of the ring current. Another mechanism is that the shock-induced electric field will further move preexisting protons toward the Earth, causing the apparent sudden losses at some L-shells. The third loss process is that shock-induced ULF waves may outward diffuse protons along the direction of radial gradient in the proton distribution. A systematic examination of particle and field observations is required to differentiate among these three loss hypotheses. Here we analyze two sets of satellite observations: One is from past missions including HEO-3 (measuring at low-latitude), Polar (mid-latitude), and SAMPEX (high-latitude); the other set is from the operating Van Allen Probes mission. The first data set covers a long time interval (1998-2007), including a list of loss events, and the multi-point measurements enable us to investigate the pitch-angle- and energy- dependences of losses in the inner belt region. The second data set has the most comprehensive coverage of energy and pitch-angle as well as very high time resolutions, which

  4. Mechanical and thermal properties of commercial multilayer PET/PP film irradiated with electron-beam

    International Nuclear Information System (INIS)

    The effects of electron-beam irradiation on mechanical and thermal properties, for one commercial flexible food packaging multilayer structure, were studied. The laminated poly(ethylene terephthalate) (PET)/ polypropylene (PP) structure was irradiated up to 60 kGy, using a 1.5 MeV electron beam accelerator, at room temperature in the presence of air. Mechanical properties showed significant changes (p < 0.05). In addition, the DSC analysis, after treatment, showed that the fusion enthalpy and crystallinity of the PET/PP structure components presented significant changes (p < 0.05) with the electron-beam radiation doses applied. It was observed an increase in PP crystallinity while the PET crystallinity decreases. Such decrease in PET crystallinity indicates the predominance of a cross-linking process on the irradiated PET layer; responsible for the increase in some mechanical properties of the studied film. (author)

  5. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R. [Centre de Développement des Technologies Avancées (CDTA). BP n°17 Baba Hassen, Alger (Algeria)

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  6. Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections

    Science.gov (United States)

    Wu, Helong; Kitipornchai, Sritawat; Yang, Jie

    2016-09-01

    This paper presents thermo-electro-mechanical postbuckling analysis of geometrically imperfect functionally graded carbon nanotube-reinforced composite (FG-CNTRC) hybrid beams that are integrated with surface-bonded piezoelectric actuators. The material properties of FG-CNTRCs are assumed to be temperature-dependent and graded in the thickness direction. By using a generic imperfection function, various possible imperfections with different shapes and locations in the beam are considered. The theoretical formulations are based on the first-order shear deformation beam theory with von-Kármán nonlinearity. A differential quadrature approximation based iteration process is employed to obtain the postbuckling equilibrium path of piezoelectric FG-CNTRC hybrid beams under thermo-electro-mechanical loading. Parametric studies are conducted to examine the effect of geometric imperfection, distribution pattern and volume fraction of carbon nanotubes, temperature rise, actuator voltage, beam geometry and boundary conditions on the thermo-electro-mechanical postbuckling behaviour. The results show that the thermo-electro-mechanical postbuckling is considerably affected by the imperfection mode, half-wave number, location and amplitude, as well as the temperature rise and boundary conditions. The effect of applied actuator voltage is much less pronounced but tends to be relatively more noticeable as the slenderness ratio increases.

  7. Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    CERN Document Server

    Serra, E; Marin, F; Marino, F; Pontin, A; Prodi, G A; Bonaldi, M

    2012-01-01

    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Y...

  8. First measurements of bulk and shear mechanical loss in optical thin film materials

    Science.gov (United States)

    Abernathy, Matthew; Harry, Gregory; Newport, Jonathan; Fair, Hanna; Hickey, Sam; Grettarsson, Andri; Penn, Steve; LIGO Collaboration

    As advanced gravitational wave detectors come online, and the possibility of the first gravitational wave detection nears, plans for the next generation of gravitational wave detectors are already in the works. These new detectors, and those already planned for the future, are expected to be limited in their most sensitive frequency bands by the Brownian thermal noise generated within the optical thin films used to produce the interferometer mirrors. In order to fully predict the level of this Brownian noise, it is necessary to know the two independent mechanical moduli (Young modulus and Poisson ratio, Bulk and Shear moduli, etc.) as well as their associated mechanical loss parameters. Traditional measurements of the mechanical loss of thin films has measured only one linear combination of these two loss parameters. Here, we present measurements of the bulk and shear mechanical loss of tantalum pentoxide (tantala) thin films made by taking advantage of the differing ratios of elastic deformation in the various resonant modes of a coated silica disc. These results may have immediate implications for the ultimate sensitivity of currently operated gravitational wave detectors.

  9. High power operation with beam of a CLIC pets equipped with on/off mechanism

    CERN Document Server

    Syratchev, I; Dubrovskiy, A; Skowronski, P; Ruber, R

    2012-01-01

    One of the feasibility issues of the CLIC two-beam scheme, is the possibility of rapidly switching off the rf power production in an individual Power Extraction and Transfer Structures (PETS) in case of breakdowns, either in the PETS or one of the main beam accelerating structures. The proposed solution is to use a variable external reflector connected to the PETS. When activated, this scheme allows us to gradually manipulate the rf power transfer to the accelerating structure and to reduce the rf power production in the PETS itself by a factor of 4. Recently the first operation of the Two Beam Test Stand (TBTS) PETS equipped with an ON/OFF mechanism was performed in CTF3. In this paper we will present the results of the PETS operation when powered by the drive beam up to high peak power levels (>100 MW) and compare them to expectations.

  10. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  11. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds

    International Nuclear Information System (INIS)

    Electron beam welds of aluminum alloy 2219 offer much higher strength compared to gas tungsten arc welds of the same alloy and the reasons for this have not been fully explored. In this study both types of welds were made and mechanical properties were evaluated by tensile testing and pitting corrosion resistance by potentio dynamic polarization tests. It is shown that electron beam welds exhibit superior mechanical and corrosion properties. The weld metals have been characterized by scanning electron microscopy; transmission electron microscopy and electron probe micro analysis. Presence of partially disintegrated precipitates in the weld metal, finer micro porosity and uniform distribution of copper in the matrix were found to be the reasons for superior properties of electron beam welds apart from the fine equiaxed grain structure. Transmission electron micrographs of the heat affected zones revealed the precipitate disintegration and over aging in gas tungsten arc welds

  12. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  13. Research on Mechanical Property of Multiple Suspended Beam Roof of a Gymnasium

    Science.gov (United States)

    Liu, Zhu; Lu, Guoyun; Pian, Chao

    A steel roof of a gymnasium is a multiple suspended beam structure. This structure system is new and unique, and the similar project experiences is lack. To further understand the mechanical property, the structure was simulated by ABAQUS finite element analysis software. Based on the model, analyzed the effects of prestress on the mechanical property of multiple suspended beam, and compared with the latticed shell that removed cables and struts, focused on stability and seismic response of the structure. Research found that adding cables and struts could improve the integral rigidity of latticed shell, so that changed buckling modes of the structure, and improved stability significantly. The seismic capacity of multiple suspended beam structure was increased significantly, and occured ductility damage obviously, achieved good seismic resistant capacity.

  14. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  15. Crack-arresting and Strengthening Mechanism of Hybrid Fiber Reinforced Polymer Sheets in Strengthening of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    X. B. He

    2013-07-01

    Full Text Available The failure process of reinforced concrete (RC beams is exactly the emergence and propagation process of cracks. According to the principles of Fracture Mechanics, if the cracks were retarded in RC beams, the structure performance would be improved. In this paper, hybrid fiber reinforced polymer (HFRP sheets are proposed to retard crack propagation in RC beams, and the crack-arresting and strengthening mechanism of the HFRP composite in the strengthening of RC beams is revealed, which is substantiated by the finite-element-modelling (FEM analysis and bending improvement of RC beams with externally-bonded hybrid glass/carbon FRP (Hybrid G/C FRP sheets.

  16. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  17. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  18. Experimental Studies on The Mechanism and COntrol of Secondary Flow Losses in Turbine Cascades

    Institute of Scientific and Technical Information of China (English)

    WangZhongqi; HanWanjin; 等

    1992-01-01

    This paper summarizes the results of the authors' 4 year experimental studies on the secondary flow losses in turbine cascades.cascade wind tunnel experiments were carried out concerning the influence of aspect rations,incidence,turning angles and outer endwall divergent angles in order to unveil the evolution mechanism of secondary flow losses in turbine cascades without end clearance.Some methods for controlling the secondary flows are investigated including the blade leaning,blade cambering,endwall convergence and leading edge extension at two ends of the blade.

  19. Studies on the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Nousiainen, R; Österberg, K

    2010-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behaviour of the CLIC two-beam module to facilitate its design and development. In this paper, the fundamental thermal environments for the RF-components of the module are described. Also the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical behaviour under the main CLIC collider operation conditions.

  20. Microbubble Beam (MBB), A potential Dispersion Mechanism for Multiphase Gas-Liquid Microreactor Systems

    NARCIS (Netherlands)

    Doku, George N.; Verboom, Willem; Reinhoudt, David N.; Berg, van den Albert

    2003-01-01

    Systems consisting of single and multiple micropipet tips mounted in a channel for the generation of microbubble beams (MBB, as a gas−liquid dispersion mechanism) in moving liquids were constructed in stainless steel housing with Pyrex windows on both sides of the housing for imaging. Pressure head

  1. Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories

    DEFF Research Database (Denmark)

    Krenk, Steen

    The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...

  2. Conjugate In-situ and Incoherent Scatter Radar Observations of Radiation Belt Loss Mechanisms.

    Science.gov (United States)

    Kaeppler, S. R.; Jaynes, A. N.; Sanchez, E. R.; Nicolls, M. J.; Varney, R. H.; Marshall, R. A.

    2015-12-01

    We present results from conjugate observations between the Radiation Belt Storms Probe (RBSP) and the Poker Flat Incoherent Scatter Radar (PFISR) of energetic radiation belt precipitation. A key objective of the RBSP mission is to understand loss mechanisms of energetic particles from the radiation belt. The relative contribution from plasma waves (e.g., EMIC, hiss, chorus, and etc.) that pitch angle scatter particles into the loss cone remains an open scientific question. Rigorous experimental validation of these mechanisms is difficult to achieve because nearly simultaneous conjugate observations of in-situ pitch angle scattering and precipitation into the atmosphere are required. One ground-based signature of energetic precipitation is enhanced ionization and electron density at D-region altitudes. Incoherent scatter radar is a powerful remote sensing technique that is sensitive to electron density enhancements. By measuring the altitude profiles of ionization we infer the flux of particles precipitating into the atmosphere. PFISR observations show frequent occurrence of D-region ionization during both quiet-time and storm-time conditions. We present results from two events when the foot-points of the RBSP satellite were within 500 km of PFISR: a quiet-time event on January 13, 2015, and a storm-time event on April 16, 2015. PFISR observations of the D-region ionization signatures are presented, along with simultaneous conjugate RBSP observations of the magnetic field, electric field, and electron flux. Plasma waves are identified using the electric and magnetic field data, and evaluated as possible pitch angle scattering mechanisms. A direct comparison between the measured fluxes and loss cone fluxes predicted by theoretical wave-particle diffusion rates into the loss cone is used to test the validity of particle loss mechanisms predicted by the different theories. Preliminary results are presented of PFISR inversions of the D-region ionization to quantify the

  3. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  4. Mechanical behavior and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading

    International Nuclear Information System (INIS)

    This study introduces a new CFRC-strengthened RC beam model which can both strengthen and monitor the large-scale RC element used in concrete infrastructures. An experiment of testing four-point bending beams is proceeded in order to analyze mechanical behavior and electrical property of the designed beam under monotonic loading as well as the relationship between electrical property and fatigue damage under cyclic flexural loading. The analytical results indicate that this innovative CFRC-strengthened beam has better flexural performance due to the improved cracking resistance capacity of the CFRC layer. Besides, the change in electrical resistance of the beam is detected under monotonic loading. It is found that the thicker the CFRC layer, the larger the electrical resistance increases, and while electrical resistance irreversibly increases as load cycling progresses, the greater the stress amplitude, the greater the fatigue damage, and the larger the residual resistance increases. Based on this discovery, a new technique to monitor the damage of the designed CFRC-strengthened RC beam is produced by means of resistance measurement

  5. Electrical and thermo-mechanical analysis of beam recovery system for megawatt power gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Ranajoy, E-mail: joy_trm@yahoo.com [Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031 (India); Sahu, Naveen Kr [Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031 (India); Khan, Arani Ali [Department of Electronics and Communication, Indian Institute of Technology, Kharagpur (India); Khatun, Hasina; Sinha, A.K. [Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031 (India)

    2013-05-15

    Highlights: • Electrical design of single stage depressed collector for high power gyrotron tube. • Efficiency enhancement by collecting spent beam. • Optimization of geometry and magnetic field for optimized beam spread. • Optimization of cooling duct system for better thermal management. -- Abstract: The paper presents the electrical and thermo-mechanical design of single stage beam recovery system for 120 GHz, 1 MW gyrotron. The electrical study shows that the cylindrical shape single stage beam recovery system enhances the efficiency by 66.26%. The maximum power deposited to collector in depressed collector operation is 0.48 MW for electronic efficiency, 30% and 1.44 MW for DC electron beam. The thermo-mechanical analysis has been performed to evaluate the water cooling system. The cooling system has capability of accommodating a peak wall loading, 0.9 kW/cm{sup 2} at flow rate of 1500 l/min for safe operating time, 60 ms. Further, a high voltage analysis is also carried out to appraise the electric field distribution in the collector.

  6. Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator

    Science.gov (United States)

    Martin, K.; Esguerra, J.; Dodson, C.; Razani, A.

    2015-12-01

    In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing. In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations.

  7. A new method of probing mechanical losses of coatings at cryogenic temperatures

    CERN Document Server

    Galliou, Serge; Goryachev, Maxim; Neuhaus, Leonhard; Cagnoli, Gianpietro; Zerkani, Salim; Dolique, Vincent; Vacheret, Xavier; Abbé, Philippe; Pinard, Laurent; Michel, Christophe; Karassouloff, Thibaut; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Tobar, Michael E; Bourquin, Roger

    2016-01-01

    A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of extremely high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coatings nowadays. The approach is demonstrated for Chromium, Chromium/Gold and a multilayer tantala/silica coatings. The ${\\rm Ta}_2{\\rm O}_5/{\\rm Si}{\\rm O}_2$ coating has been found to exhibit a loss angle lower than $1.6\\times10^{-5}$ near 30 {\\rm MHz} at 4 {\\rm K}. The results are compared to the previous measurements.

  8. Numerical Investigation of Loss Generation Mechanisms of Flow in Turbomachinery by Using Curved Square Duct

    Institute of Scientific and Technical Information of China (English)

    Hoshio Tsujita; Shimpei Mizuki; Gaku Minorikawa; Atsumasa Yamamoto

    2003-01-01

    The secondary flow within a passage of turbomachinery exhibits a complex flow pattern by the effect of the centrifugal and the Coriolis forces. The passage vortex in this secondary flow generates a major part of the losses.However, the mechanism of the loss generation has not been fully clarified yet. In this point of view, the passage vortex is closely examined by the computational method using the two-dimensional curved square ducts as fundamental models. The inlet boundary layer thickness and the inlet velocity distortion are considered to be the major parameters affecting the generation of passage vortex in the present study. The computed results revealed that the passage vortex gave the predominant effects for the generation of loss not only in the breakdown process but also in the development process.

  9. Influence of the beam-size or MD-effect on particle losses at B-factories PEP-II and KEKB

    CERN Document Server

    Kotkin, G L

    2004-01-01

    For the $e^+ e^- \\to e^+ e^- \\gamma$ process at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard calculations have to be essentially modify. In the present paper such a beam-size or MD-effect is calculated for bremsstrahlung at B-factories PEP-II and KEKB using the list of nominal parameters from Review of Particle Physics (2002). We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  10. WRN loss induces switching of telomerase-independent mechanisms of telomere elongation.

    Directory of Open Access Journals (Sweden)

    April Renee Sandy Gocha

    Full Text Available Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT. ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs, suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50-70, at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.

  11. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    Science.gov (United States)

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-01

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation. PMID:25590261

  12. Microstructure and mechanical properties of automobile beam steels produced by EAF-CSP process

    Institute of Scientific and Technical Information of China (English)

    Zhengzhi Zhao; Yonglin Kang; Hao Yu

    2006-01-01

    The microstructure, mechanical properties, and misorientation of automobile beam steels produced by EAF-CSP process were studied using optical microscopy (OM) and electron back-scattered diffraction (EBSD). It is shown that the microstructure of strips is mainly polygonal ferrite, and the average grain size is about 5-8 μm. The electron back-scattered diffraction results show that grain boundaries in ferrite are basically high-angle grain boundaries without remarkable preferred orientation. Hot strips of automobile beam steels possess a good combination of strength and plasticity because of their fine microstructures and low quantity of impurities.

  13. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  14. Mechanism of laser beam welding for SiCP/6063Al composite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The laser beam welding technique was used to process SiC particles /6063Al alloy matrix composite, the influence of laser power and welding speed on the properties of joint was studied. Decreasing the laser beam power with same welding speed can make the quantity and size of Al4C3 decreased, and the interactive mechanism of the reinforcing particles and the matrix in the joint and the causes for joint strength reduction were analyzed.Increasing welding speed properly can improve the distribution of energy and restrain the interfacial reaction in the molten pool, and measures for improving were proposed.

  15. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions.

    Science.gov (United States)

    Liu, Ruimin; Wang, Jiawei; Shi, Jianhan; Chen, Yaxin; Sun, Chengchun; Zhang, Peipei; Shen, Zhenyao

    2014-01-15

    In recent years, nonpoint source (NPS) pollution has become the main contributor to water quality problems. Research on nitrogen (N) and phosphorus (P) losses from farmland and the factors that influence these losses is very meaningful both for increasing the crop yield and for improving environmental water quality. To explore the mechanism by which N and P are lost from farmland in the North China Plain (NCP), 16 simulated rainfalls were conducted in 14 experimental fields (each of which had different conditions) in the NCP from July to August in 2010. The results showed that the rainfall intensity, the antecedent soil moisture content, and the vegetation cover status were the main factors that affected the surface runoff in the NCP. The runoff volume increased with the increasing rainfall intensity and the increasing soil moisture content, and decreased with the increasing vegetation cover. These factors also significantly affected the losses of P and N. The losses of P and N were positively correlated with the rainfall intensity and the antecedent soil moisture content, and negatively correlated with the vegetation cover. A longer and more intense rainfall resulted in a higher loss of N and P. Dissolved nitrogen was the predominant form of N loss. For phosphorous, the predominant loss form was greatly influenced by the rainfall intensity, the vegetation cover, and the antecedent soil moisture content. Most of phosphorus existed as dissolved phosphorus in Baizhuang (BZ) and as particulate phosphorus in Tangcheng (TC) and Fentai (FT). The minimum requirements for runoff occurrence in experimental regions were a rainfall depth of 5.1mm, a rainfall intensity of 50mm/h, and an antecedent soil moisture of approximately 29.6%.

  16. Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial

    International Nuclear Information System (INIS)

    Understanding the loss mechanism of microwave absorption is of great significance for the design and fabrication of low-cost, high-efficient and light-weight microwave absorbing materials. In this study, the microwave absorption of a hierarchical NiCo2O4 nanomaterial synthesized via a hydrothermal method and a subsequent annealing process was investigated in detail. The effects of the annealing temperature on the phase evaluation and microwave absorption properties were also investigated to reveal the microwave loss mechanism of NiCo2O4 nanostructures. The results show that the Debye relaxation and superior electric conductivity of NiCo2O4 are beneficial to its excellent microwave absorption performance. This study will be useful for the fundamental understanding of microwave absorption in NiCo2O4 nanomaterial, and for the design of a novel microwave absorbent. (paper)

  17. Mechanisms of optical losses in Bi:SiO2 glass fibers.

    Science.gov (United States)

    Zlenko, Alexander S; Mashinsky, Valery M; Iskhakova, Ludmila D; Semjonov, Sergey L; Koltashev, Vasiliy V; Karatun, Nikita M; Dianov, Evgeny M

    2012-10-01

    The mechanisms of optical losses in bismuth-doped silica glass (Bi:SiO(2)) and fibers were studied. It was found that in the fibers of this composition the up-conversion processes occur even at bismuth concentrations lower than 0.02 at.%. Bi:SiO(2) core holey fiber drawn under oxidizing conditions was investigated. The absorption spectrum of this fiber has no bands of the bismuth infrared active center. Annealing of this fiber under reducing conditions leads to the formation of the IR absorption bands of the bismuth active center (BAC) and to the simultaneous growth of background losses. Under the realized annealing conditions (argon atmosphere, T(max) = 1100°C, duration 30 min) the BAC concentration reaches its maximum and begins to decrease in the process of excessive Bi reduction, while the background losses only increase. It was shown that the cause of these background losses is the absorption of light by nanoparticles of metallic bismuth formed in bismuth-doped glasses as a result of reduction of a part of the bismuth ions to Bi(0) and their following aggregation. The growth of background losses occurs owing to the increase of the concentration and the size of the metallic bismuth nanoparticles.

  18. Mechanical loss in state-of-the-art amorphous optical coatings

    CERN Document Server

    Granata, Massimo; Morgado, Nazario; Cajgfinger, Alix; Cagnoli, Gianpietro; Degallaix, Jérôme; Dolique, Vincent; Forest, Danièle; Franc, Janyce; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele

    2015-01-01

    We present the results of mechanical characterizations of many different high-quality optical coatings made of ion-beam-sputtered titania-doped tantala and silica, developed originally for interferometric gravitational-wave detectors. Our data show that in multi-layer stacks (like high-reflection Bragg mirrors, for example) the measured coating dissipation is systematically higher than the expectation and is correlated with the stress condition in the sample. This has a particular relevance for the noise budget of current advanced gravitational-wave interferometers, and, more generally, for any experiment involving thermal-noise limited optical cavities.

  19. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries

    Science.gov (United States)

    Agar, Ertan

    Vanadium redox flow batteries (VRFBs) are an emerging energy storage technology that offers unique advantages for grid-scale energy storage due to their flexible design and decoupled power/energy feature. Despite their popularity, a series of technical challenges hinder their widespread implementation. Among these, capacity loss (i.e., loss of energy storage capability) due to the undesired species crossover across the membrane has been identified as the key issue limiting the longevity of these systems. This issue is primarily governed by the properties of the membrane and can be mitigated by using proper membrane architectures with desired features. Presently, identifying proper membrane architectures for VRFB systems is hampered by the lack of a fundamental understanding of the nature of species transport mechanisms and how they are related to the membrane properties and key operating conditions. This Ph.D. study seeks to address this critical challenge by exploring the fundamental mechanisms responsible for species transport within the membrane. The overall objective of this dissertation study is to establish a fundamental understanding of the multi-ionic transport in VRFB membranes by investigating the ionic transport mechanisms responsible for crossover, and utilize this understanding to reveal the role of membrane properties and operating conditions on the capacity loss. To achieve these goals, a combined experimental and computational study was designed. An experimentally validated, 2-D, transient VRFB model that can track the vanadium crossover and capture the related capacity loss was developed. In addition to the model, several electrochemical techniques were used to characterize different types of membrane and study the effects of various operating conditions on the species crossover. Using these computational and experimental tools, an in-depth understanding of the species transport mechanisms within the membrane and how they are related to membrane

  20. Mechanisms of plasma disruption and runaway electron losses in the TEXTOR tokamak

    Science.gov (United States)

    Abdullaev, S. S.; Finken, K. H.; Wongrach, K.; Tokar, M.; Koslowski, H. R.; Willi, O.; Zeng, L.; Zeng

    2015-10-01

    > . The thermal quench (TQ) time caused by the fast electron transport in a stochastic magnetic field is calculated using the collisional transport model. The current quench (CQ) stage is due to the particle transport in a stochastic magnetic field. The RE beam current is modelled as a sum of a toroidally symmetric part and a small-amplitude helical current with a predominant component. The REs are lost due to two effects: (i) by outward drift of electrons in a toroidal electric field until they touch the wall and (ii) by the formation of a stochastic layer of REs at the beam edge. Such a stochastic layer for high-energy REs is formed in the presence of the MHD mode. It has a mixed topological structure with a stochastic region open to the wall. The effect of external resonant magnetic perturbations on RE loss is discussed. A possible cause of the sudden MHD signals accompanied by RE bursts is explained by the redistribution of runaway current during the resonant interaction of high-energetic electron orbits with the MHD mode.

  1. Theoretical analysis and numerical simulation of mechanical energy loss and wall resistance of steady open channel flow

    Institute of Scientific and Technical Information of China (English)

    刘士和; 薛娇

    2016-01-01

    The mechanical energy loss and the wall resistance are very important in practical engineering. These problems are investigated through theoretical analysis and numerical simulation in this paper. The results are as follows. (1) A new mechanical energy equation for the total flow is obtained, and a general formula for the calculation of the mechanical energy loss is proposed. (2) The general relationship between the wall resistance and the mechanical energy loss for the steady channel flow is obtained, the simplified form of which for the steady uniform channel flow is in consistent with the formula used in Hydraulics deduced byπ theorem and dimensional analysis. (3) The steady channel flow over a backward facing step with a small expansion ratio is numerica- lly simulated, and the mechanical energy loss, the wall resistance as well as the relationship between the wall resistance and the mechanical energy loss are calculated and analyzed.

  2. The renal concentrating mechanism and the clinical consequences of its loss

    Directory of Open Access Journals (Sweden)

    Emmanuel I Agaba

    2012-01-01

    Full Text Available The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus. The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions.

  3. Free-electron laser from wave-mechanical beats of 2 electron beams

    Science.gov (United States)

    Lichtenstein, R. M.

    1982-01-01

    It is possible, though technically difficult, to produce beams of free electrons that exhibit beats of a quantum mechanical nature. (1) the generation of electromagnetic radiation, e.g., light, based on the fact that the beats give rise to alternating charge and current densities; and a frequency shifter, based on the fact that a beam with beats constitutes a moving grating. When such a grating is exposed to external radiation of suitable frequency and direction, the reflected rediation will be shifted in frequency, since the grating is moving. A twofold increase of the frequency is readily attainable. It is shown that it is impossible to generate radiation, because the alternating electromagnetic fields that accompany the beats cannot reform themselves into freely propagating waves. The frequency shifter is useless as a practical device, because its reflectance is extremely low for realizable beams.

  4. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  5. Mechanical and Thermal Design of the CEBAF Hall A Beam Calorimeter

    CERN Document Server

    Bevins, Michael E; Degtiarenko, Pavel; Dillon-Townes, Lawrence A; Freyberger, Arne; Gilman, Ronald; Saha, Arun; Slachtouski, Stephanie

    2005-01-01

    A calorimeter has been proposed to provide 0.5% - 1.0% absolute measurements of beam current in the Hall A end station of the Thomas Jefferson National Accelerator Facility (JLab) CEBAF machine. Silver and copper calorimeters built in the 1960's achieved precisions of about 1%. Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that will minimize beam loss while maintaining a rapid thermal response time. Heat leaks will be minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

  6. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation

    Science.gov (United States)

    Wu, Sujuan; Jiang, Yi; Hu, Lijun; Sun, Jianguo; Wan, Piaopiao; Sun, Lidong

    2016-06-01

    Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline one. This is promising for applications in nanofabrication where high quality interfaces are desired between two joining parts.Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non

  7. The mechanism of phase formation in Pt/Co bilayers during ion beam mixing

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, S., E-mail: balas@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Panigrahi, B.K.; Amirthapandian, S.; Kalavathi, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Nair, K.G.M. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-10-15

    Highlights: •We propose a mechanism of phase formation in Pt/Co bilayers during ion beam mixing. •We examine the influence of heat of formation during ion beam mixing in Pt/Co bilayers. •Parameters deciding phase synthesis during ion mixing in Pt/Co bilayers are explored. -- Abstract: Ion beam mixing of Pt/Co/Si (Substrate) bilayers were carried out with a 4 MeV Si{sup +} ion beam at two different temperatures – room temperature and 300 °C. When the mixing is carried out at 300 °C, diffusion of Co atoms to the top Pt layer is observed thereby synthesizing CoPt and Co{sub 3}Pt crystalline phases. When the irradiation is carried out at room temperature, Co and Pt atoms diffuse inwards to the silicon substrate and no new crystalline phase formation is observed. We propose that the direction of movement of the atoms and the resulting concentration profile in the Pt/Co/Si bilayers during ion beam mixing decides the nature of phase synthesized.

  8. Mechanical and electrical impedance matching in a piezoelectric beam for Energy Harvesting

    Science.gov (United States)

    Koszewnik, A.; Grześ, P.; Walendziuk, W.

    2015-11-01

    A piezoelectric beam is one of transducers for energy harvesting. It provides easy implementation and good performance in changing mechanical stress into electric voltage. In order to maximize output power, it is important to provide mechanical and electrical impedance matching. In the paper the authors proposed a methodology which allows to find values of lumped elements in an electromechanical model after completing appropriate measurements. Due to linear equations, it is possible to model a beam in both mechanical and electrical ways, and match the best load depending of frequency. The proposed model of a piezoelectric cantilever shows a potential use of these devices in micro scale as a cantilever which is a part of a silicon structure. Moreover, in the paper, the authors discuss mechanical aspects of using a weight as the way to tune the piezoelectric beam to a specific frequency. The electrical aspect of matching the source impedance with load, which is based on an electrical model of a piezoelectric transducer, is also presented. In the paper a mathematical model was verified by an experiment in which a laboratory stand equipped with a vibration generator, a piezoelectric energy harvester and acceleration sensors was used.

  9. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam

    International Nuclear Information System (INIS)

    It is estimated that the annual world car production rate will reach 76 million vehicles per year by 2020. New regulations such as the EU End of Life Vehicles (ELV) regulations are forcing car manufacturers to consider the environmental impact of their production and possibly shift from the use of synthetic materials to the use of agro-based materials. Poor mechanical properties and certain manufacturing limitations currently limit the use of agro-based materials to non-structural and semi-structural automotive components. The hybridization of natural fiber with glass fiber provides a method to improve the mechanical properties over natural fibers alone. This research is focused on a hybrid of kenaf/glass fiber to enhance the desired mechanical properties for car bumper beams as automotive structural components with modified sheet molding compound (SMC). A specimen without any modifier is tested and compared with a typical bumper beam material called glass mat thermoplastic (GMT). The results indicate that some mechanical properties such as tensile strength, Young's modulus, flexural strength and flexural modulus are similar to GMT, but impact strength is still low, and shows the potential for utilization of hybrid natural fiber in some car structural components such as bumper beams.

  10. Assessment of mechanical properties of metallic thin-films through micro-beam testing

    International Nuclear Information System (INIS)

    Microelectronic industry is driven by the continuous miniaturization process conducing to the introduction of materials with better performance. These materials are subjected to stresses mainly due to thermal mismatch, microstructural changes or process integration which can be in the origin of mechanical reliability issues. To study these phenomena and even electromigration a good mechanical characterization of the materials is needed. This work aims at developing tests to assess fracture and elastoplastic behavior of thin Cu films. The tests developed are based on the deflection of microbeams (micromachined using a focused ion beam) using a nanoindenter. Different test geometries for microbeams have been evaluated and quantitative data have been obtained combining experimental results with analytical or numerical models, depending on the property under study. Microbeam response shows a strong dependence on the orientation of the grains close to the fixed end. Grain orientation has been measured by electron backscatter diffraction and the plastic behavior has been modeled by the finite element method using an in-house crystal plasticity subroutine. The effect of film thickness on fracture energy has been determined from tests of notched beams. - Highlights: • Cu microbeams have been machined with a focused ion beam and tested at a TriboIndenter. • Crystal plasticity has been accounted for when modeling constitutive behavior of Cu. • Fracture energy has been calculated using notched microcantilever beams. • Fracture energy decreases with film thickness

  11. Assessment of mechanical properties of metallic thin-films through micro-beam testing

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Gonzalez, D.; Elizalde, M.R.; Martínez-Esnaola, J.M. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastián (Spain); Hernandez, M.T.; Li, H.; Pantuso, D. [Design Technology Solutions, Intel Corporation, Hillsboro 97124, OR (United States); Ocaña, I., E-mail: iocana@ceit.es [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastián (Spain)

    2014-11-28

    Microelectronic industry is driven by the continuous miniaturization process conducing to the introduction of materials with better performance. These materials are subjected to stresses mainly due to thermal mismatch, microstructural changes or process integration which can be in the origin of mechanical reliability issues. To study these phenomena and even electromigration a good mechanical characterization of the materials is needed. This work aims at developing tests to assess fracture and elastoplastic behavior of thin Cu films. The tests developed are based on the deflection of microbeams (micromachined using a focused ion beam) using a nanoindenter. Different test geometries for microbeams have been evaluated and quantitative data have been obtained combining experimental results with analytical or numerical models, depending on the property under study. Microbeam response shows a strong dependence on the orientation of the grains close to the fixed end. Grain orientation has been measured by electron backscatter diffraction and the plastic behavior has been modeled by the finite element method using an in-house crystal plasticity subroutine. The effect of film thickness on fracture energy has been determined from tests of notched beams. - Highlights: • Cu microbeams have been machined with a focused ion beam and tested at a TriboIndenter. • Crystal plasticity has been accounted for when modeling constitutive behavior of Cu. • Fracture energy has been calculated using notched microcantilever beams. • Fracture energy decreases with film thickness.

  12. INVESTIGATION OF DYNAMIC PARAMETRS OF SPLIT SKEWED BRIDGE SPANS IN CASE OF LOSS OF CONTACT BETWEEN END BEAM AND ITS SUPPORT

    Directory of Open Access Journals (Sweden)

    V.S.Safronov

    2015-02-01

    Full Text Available Statement of the problem. In order to get a valid estimate of risks of fracture during the mainten-ance of simply supported skew slab-and-girder reinforced concrete spans of highway bridges the influence of the supporting skew on the natural frequencies spectrum and the corresponding ei-genmodes in case of changing the design model due to loss of contact between beams and support.Results. Possible loss of contact between one of the marginal beams and its support near the sharp angle during the maintenance of transport facility depending on its type and geometrical parameters is substantiated. Modal and frequency spectrum analysis of spans in case of loss of contact between one of the marginal beams and its support is performed.Conclusions. The analysis revealed possible loss of contact between marginal beams and support, which increases as the skew angle grows and the width and length of the span reduce. A signifi-cant influence of support separation on eigenmodes and frequency spectrum of spans is revealed.

  13. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  14. The behavior of beams of relativistic non-thermal electrons under the influence of collisions and synchrotron losses

    Science.gov (United States)

    Mctiernan, James M.; Petrosian, Vahe

    1989-01-01

    For many astrophysical situations, such as in solar flares or cosmic gamma-ray bursts, continuum gamma rays with energies up to hundreds of MeV were observed, and can be interpreted to be due to bremsstrahlung radiation by relativistic electrons. The region of acceleration for these particles is not necessarily the same as the region in which the radiation is produced, and the effects of the transport of the electrons must be included in the general problem. Hence it is necessary to solve the kinetic equation for relativistic electrons, including all the interactions and loss mechanisms relevant at such energies. The resulting kinetic equation for non-thermal electrons, including the effects of Coulomb collisions and losses due to synchrotron emission, was solved analytically in some simple limiting cases, and numerically for the general cases including constant and varying background plasma density and magnetic field. New approximate analytic solutions are presented for collision dominated cases, for small pitch angles and all energies, synchrotron dominated cases, both steady-state and time dependent, for all pitch angles and energies, and for cases when both synchrotron and collisional energy losses are important, but for relativistic electrons. These analytic solutions are compared to the full numerical results in the proper limits. These results will be useful for calculation of spectra and angular distribution of the radiation (x rays, gamma-rays, and microwaves) emitted via synchrotron or bremsstrahlung processes by the electrons. These properties and their relevance to observations will be observed in subsequent papers.

  15. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  16. Wave-optics description of self-healing mechanism in Bessel beams

    CERN Document Server

    Aiello, Andrea

    2014-01-01

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  17. Wave-optics description of self-healing mechanism in Bessel beams.

    Science.gov (United States)

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  18. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  19. Diffraction losses in a laser-heated solenoid plasma

    International Nuclear Information System (INIS)

    A solution for diffraction loss of a laser beam propagating in a plasma light pipe is found by analogy to the tunnel effect of quantum mechanics. It is shown that diffraction tends to dissipate the beam layer by layer, working from the outside inward. A characteristic dissipation length can be defined for each layer of the beam. Diffraction is estimated for a very long narrow plasma relevant to the fusion reactor concept and is found not to be a significant loss mechanism

  20. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells

    Science.gov (United States)

    Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2010-12-01

    We present a device characterization study for hydrazine-processed kesterite Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with a focus on pinpointing the main loss mechanisms limiting device efficiency. Temperature-dependent study and time-resolved photoluminescence spectroscopy on these cells, in comparison to analogous studies on a reference Cu(In,Ga)(Se,S)2 (CIGS) cell, reveal strong recombination loss at the CZTSSe/CdS interface, very low minority-carrier lifetimes, and high series resistance that diverges at low temperature. These findings help identify the key areas for improvement of these CZTSSe cells in the quest for a high-performance indium- and tellurium-free solar cell.

  1. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running

    DEFF Research Database (Denmark)

    Oliveira, Anderson S. C.; Caputo, Fabrizio; Aagaard, Per;

    2013-01-01

    The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective...... effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60° and 180° s(-1)). In a second...... session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180° s(-1), or served as controls (n...

  2. Methods and apparatus for laser beam scanners with different actuating mechanisms

    Science.gov (United States)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  3. Mechanisms of radon loss from zircon: Microstructural controls on emanation and diffusion

    Science.gov (United States)

    Eakin, Marty; Brownlee, S. J.; Baskaran, M.; Barbero, L.

    2016-07-01

    Understanding how radon escapes from minerals is important for many fields in Earth science, yet few studies have focused on the mechanisms for radon escape. We measured radon emanation rate and radon loss upon heating for crushed aliquots of three large zircon crystals from three localities: Mud Tank (Australia), Bancroft (Canada), and Malawi (Africa). Our study, in conjunction with published data, shows that the room temperature radon emanation coefficient (REC) varies over 5 orders of magnitude in zircon. For low U zircon, Mud Tank, there are variations in REC that appear to be related to annealing at different temperatures, possibly due to annealing of fission tracks, however, all REC values for Mud Tank zircon are within error of one another. Bancroft and Malawi zircons have higher U content and do not show any systematic relationship of REC to annealing temperature. Results from Mud Tank zircon suggest that partial annealing of fission tracks decreases REC, but when all fission tracks are annealed REC reaches a maximum. REC in zircons with high U content, Bancroft and Malawi, is slightly higher than in zircon with lower U, although results are within error. Results of measurements of radon loss upon heating suggest that radon diffusion is slow, ∼30% of the radon is lost during heating at 975 °C for 48 h. Samples heated a second time yield less fractional radon loss, ∼10%, suggesting that diffusion parameters are changed during heating at temperatures ⩾975 °C, which is likely the result of annealing of radiation damage. Diffusion parameters calculated from the fractional loss experiments reflect diffusion in highly radiation damaged or metamict zircons. Our results indicate that internal microstructures in zircon, such as fission tracks and alpha-radiation damage, influence radon escape for diffusion and recoil mechanisms, and hence if these effects can be further characterized, measurements of 222Rn escape have the potential to be useful for probing

  4. Biophysical Mechanisms Underlying Hearing Loss Associated with a Shortened Tectorial Membrane

    Science.gov (United States)

    Oghalai, John S.; Xia, Anping; Liu, Christopher C.; Gao, Simon S.; Applegate, Brian E.; Puria, Sunil; Rousso, Itay; Steele, Charles

    2011-11-01

    The tectorial membrane (TM) connects to the stereociliary bundles of outer hair cells (OHCs). Herein, we summarize key experimental data and modeling analyses that describe how biophysical alterations to these connections underlie hearing loss. The heterozygous C1509G mutation in alpha tectorin produces partial congenital hearing loss that progresses in humans. We engineered this mutation in mice, and histology revealed that the TM was shortened. DIC imaging of freshly-dissected cochlea as well as imaging with optical coherence tomography indicated that the TM is malformed and only stimulates the first row of OHCs. Noise exposure produced acute threshold shifts that fully recovered in Tecta+/+ mice although there was some OHC loss within all three rows at the cochlear base. In contrast, threshold shifts only partially recovered in TectaC1509G/+ mice. This was associated with OHC loss more apically and nearly entirely within the first row. Young's modulus of the TM, measured using atomic force microscopy, was substantially reduced at the middle and basal regions. Both the wild-type and heterozygous conditions were simulated in a computational model. This demonstrated that the normalized stress distribution levels between the TM and the tall cilia were significantly elevated in the middle region of the heterozygous cochlea. Another feature of the TectaC1509G/+ mutation is higher prestin expression within all three rows of OHCs. This increased electricallyevoked movements of the reticular lamina and otoacoustic emissions. Furthermore, electrical stimulation was associated with an increased risk of OHC death as measured by vital dye staining. Together, these findings indicate that uncoupling of the TM from some OHCs not only leads to partial hearing loss, but also puts the OHCs that remain coupled at higher risk. Both the mechanics of the malformed TM and increased electromotility contribute to this higher risk profile.

  5. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury.

    Science.gov (United States)

    Urich, Daniela; Eisenberg, Jessica L; Hamill, Kevin J; Takawira, Desire; Chiarella, Sergio E; Soberanes, Saul; Gonzalez, Angel; Koentgen, Frank; Manghi, Tomas; Hopkinson, Susan B; Misharin, Alexander V; Perlman, Harris; Mutlu, Gokhan M; Budinger, G R Scott; Jones, Jonathan C R

    2011-09-01

    Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury. PMID:21878500

  6. Prediction of mechanical property loss in polyamide during immersion in sea water

    Science.gov (United States)

    Le Gac, Pierre Yves; Arhant, Mael; Le Gall, Maelenn; Burtin, Christian; Davies, Peter

    2016-05-01

    It is well known that the water absorption in polyamide leads to a large reduction in the mechanical properties of the polymer, which is induced by the plasticization of the amorphous phase. However, predicting such a loss in a marine environment is not straightforward, especially when thick samples are considered. This study presents a modeling study of the water absorption in polyamide 6 based on the free volume theory. Using this modeling coupled with a description of the stress yield changes with Tg, it is possible to predict the long term behavior of thick samples when immersed in sea water. Reliability of the prediction is checked by a comparison with experimental results.

  7. A Theory of Interaction Mechanism between Laser Beam and Paper Material

    Science.gov (United States)

    Piili, Heidi

    Paper making and converting industry in Europe is suffering from transfer of basic manufacturing to fast-growing economies, such as China and Brazil. Pulp and paper production volume in Finland, Sweden and France was the same in 2011 as it was in 2000. Meanwhile China has tripled its volume and Brazil doubled. This is a situation where innovative solutions for papermaking and converting industry are needed. Laser can be solution for this, as it is fast, flexible, accurate and reliable. Before industrial application, characteristics of laser beam and paper material interaction has to be understood. When this fundamental knowledge is known, new innovations can be created. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. This study was executed by treating dried kraft pulp (grammage 67 g m-2) with different laser power levels, focal point settings and interaction time. Laser equipment was TRUMPF TLF HQ2700 CO2 laser (wavelength 10.6 μm). Interaction between laser beam and dried kraft pulp was detected with multi-monitoring system (MMS), which consisted of spectrometer, pyrometer and active illumination imaging system. There is two different dominating mechanisms in interaction between laser beam and paper material. Furthermore, it was noticed that there is different interaction phases within these two interaction mechanisms. These interaction phases appear as function of time and as function of peak intensity of laser beam. Limit peak intensity divides interaction mechanism from one-phase interaction into dual-phase interaction.

  8. Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy

    International Nuclear Information System (INIS)

    Highlights: → High quality joints were obtained in laser beam welding of 6056 Al-alloy using AlSi12 filler wire. → A decrease in the strength of HAZ due to overaging was detected. → The strength of the FZ was restored to the level of the HAZ by using Si-containing filler wire. → Intergranular crack propagation was detected in the TL-welded specimens. → The presence of porosity retards the crack propagation provided that they are small in size. - Abstract: Laser beam welding is considered to be a suitable joining process for high speed, low distortion, and high quality fabrication of aircraft structures manufactured from aluminum alloys, which are mainly preferred due to their favourable properties, such as high strength to weight ratio, ease of forming and high thermal and electrical conductivity. However, the laser beam welding of 6000 series aluminum alloys may exhibit a tendency to solidification cracking, and porosity may be a major problem unless appropriate welding parameters and filler metal are employed. In this study, the microstructural aspects and mechanical properties of laser beam welded new generation aluminum alloy, namely 6056, developed especially for aircraft structures, are investigated. A continuous wave CO2 laser using AlSi12 filler wire was employed. A detailed microstructural examination of the weld region was carried out by Scanning Electron Microscopy (SEM). Standard tensile and microflat tensile specimens extracted from the welded plates were tested at room temperature for the determination of general and local mechanical properties of the welded joints. Extensive microhardness measurements were also conducted. Crack growth mechanisms of the joints produced were also determined by conducting fatigue tests under various stress ratios (i.e., 0.1 ≤ R ≤ 0.7).

  9. Progress on modelling of the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Raatikainen, R; Niinikoski, T; Riddone, G

    2011-01-01

    under study, imposes micrometer mechanical stability of the 2-m long two-beam modules, the shortest repetitive elements of the main linacs. These modules will be exposed to variable high power dissipation during operation resulting in mechanical distortions in and between module components. The stability of the CLIC module will be tested in laboratory conditions at CERN in a full-scale prototype module. In this paper, the FEA model developed for CLIC prototype module is described. The thermal and structural results for the new module configuration are presented considering the thermo-mechanical behavior of the CLIC collider in its primary operation modes. These results will be compared to the laboratory measurements to be done during 2011 and 2012 with the full-scale prototype module. The experimental results will allow for better understanding of the module behaviour and they will be propagated back to the present thermo-mechanical model.

  10. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  11. Electron loss mechanisms in collisions of He+ ions with various targets

    International Nuclear Information System (INIS)

    The electron loss of high-velocity ions by neutral atoms is due to two different and competing mechanisms. In the screening mode, the electron loss is basically due to the nucleus-electron interaction, with the target electrons assuming the passive role of decreasing the Coulomb field of the target nucleus in the vicinity of the projectile active electron. For a fixed projectile velocity, this contribution is expected to give a non-linear dependence with the target atomic number Z2 due to the incomplete screening at the impact parameter region where the projectile ionization is more likely to occur. Within first-order theories, if the screening is completely absent, the expected dependence would be Z22; with screening, it should scale between Z2 and Z22. On the other hand, in the antiscreening mode, where the loss is due to the action of the target electrons and the target nucleus plays no active role, the expected dependence would be approximately linear with Z2. Thus, for first-order theories, the expected overall dependence with Z2 would be dominated by the screening mode as Z2 increases. We have measured total electron-loss cross sections of He+ ions impinging upon He, Ne, Ar, Kr and Xe targets in the energy range from 1.0 to 4.0 MeV to complement previous measurements and the results point towards a much smaller contribution from the screening mode than expected from first-order theories, possibly due to a saturation effect manifested only in the screening channel. (orig.)

  12. Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters

    Science.gov (United States)

    Segev, Gideon; Rosenwaks, Yossi; Kribus, Abraham

    2013-07-01

    Photon Enhanced Thermionic Emission (PETE) solar converters are based on emission of energetic electrons from a semiconductor cathode that is illuminated and heated with solar radiation. By using a semiconductor cathode, photo generated electrons enable high electron emission at temperatures much lower than the common range for thermionic emitters. Simple models show that PETE conversion can theoretically reach high efficiency, for example, above 40% at concentration of 1000 suns. In this work, we present a detailed one-dimensional model of PETE conversion, accounting for recombination mechanisms, surface effects, and spatial distribution of potential and carrier concentration. As in the previous PETE models, negative space charge effects, photon recycling, and temperature gradients are not considered. The conversion efficiency was calculated for Si and GaAs based cathodes under a wide range of operating conditions. The calculated efficiencies are lower than predictions of previous zero-dimensional models. We analyze the loss mechanisms and show that electron recombination at the cathode contact is a significant loss. An electron-blocking junction at the cathode back contact is therefore essential for achieving high efficiency. The predicted efficiencies for Si and GaAs cathodes with homo-junction back surface field layers are both around 31%, but with more favorable assumptions on the contact structure, it may be near 40%. The analysis leads to important conclusions regarding the selection of cathode material and back surface junction configuration.

  13. Effects of arsenic upon the no-disyuntion and X chromosome loss mechanisms in Drosophila melanogaster

    International Nuclear Information System (INIS)

    In the present investigation we make the analysis of the effect of the sodium arsenite chemistry in concentration 0.2 m M over the events of no-disyuntion and chromosome loss X in germinal cells of Drosophila melanogaster. The Drosophila lineages used for this assay were: females (y2 wa / y2 wa ; e/e) and males (XC2 yf bb- / Bs Y y+). Those lineages were propagated and isolated for to be used after in the assays. Subsequently these, we make some links types with these individuals with the object to observed the effects of the oral administration of sodium arsenite in the adult individuals, in each one, we induce a damage in the sperm of the male with gamma radiation (25 Gy) and was observed immediately the results of the different assay applied in the first generation (F1). Finally, we analyze and compare the results in contrast with and other investigation we find that the chemistry cause a significant increment in the chromosome loss X either the No-disyuntion was not significative. Also, the arsenite sodium increment the male descendant productivity, so, we deduced that the sodium arsenite do not cause an inhibition of the reparation mechanisms present in the Drosophila melanogaster female ovocites, but the chemistry operated like a modulator of this mechanisms, and prevent an increment of the damage provoked for the gamma radiation over the Drosophila melanogaster male sperm. (Author)

  14. Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors

    Directory of Open Access Journals (Sweden)

    Rau U.

    2012-06-01

    Full Text Available Monte-Carlo simulations analyze the photon collection in photovoltaic systems with fluorescent collectors. We compare two collector geometries: the classical setup with solar cells mounted at each collector side and solar cells covering the collector back surface. For small ratios of collector length and thickness, the collection probability of photons is equally high in systems with solar cells mounted on the sides or at the bottom of the collector. We apply a photonic band stop filter acting as an energy selective filter which prevents photons emitted by the dye from leaving the collector. We find that the application of such a filter allows covering only 1% of the collector side or bottom area with solar cells. Furthermore, we compare ideal systems in their radiative limits to systems with included loss mechanisms in the dye, at the mirror, or the photonic filter. Examining loss mechanisms in photovoltaic systems with fluorescent collectors enables us to estimate quality limitations of the used materials and components.

  15. Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory.

    Science.gov (United States)

    Zhang, Jin; Wang, Chengyuan

    2016-10-01

    A molecular structural mechanics (MSM) method has been implemented to investigate the free vibration of microtubules (MTs). The emphasis is placed on the effects of the configuration and the imperfect boundaries of MTs. It is shown that the influence of protofilament number on the fundamental frequency is strong, while the effect of helix-start number is almost negligible. The fundamental frequency is also found to decrease as the number of the blocked filaments at boundaries decreases. Subsequently, the Euler-Bernoulli beam theory is employed to reveal the physics behind the simulation results. Fitting the Euler-Bernoulli beam into the MSM data leads to an explicit formula for the fundamental frequency of MTs with various configurations and identifies a possible correlation between the imperfect boundary conditions and the length-dependent bending stiffness of MTs reported in experiments.

  16. Evidence of surface loss as ubiquitous limiting damping mechanism in SiN micro- and nanomechanical resonators

    DEFF Research Database (Denmark)

    Villanueva, Luis Guillermo; Schmid, Silvan

    2014-01-01

    , and cantilevers) SiN resonators extracted from literature, suggesting surface loss as ubiquitous damping mechanism in thin SiN resonators with Qsurf=βh and β=6×1010±4×1010  m−1. Based on the intrinsic loss the maximal achievable Qs and Qf products for SiN membranes and strings are outlined....

  17. The relation between the distribution behaviour of the hysteresis loss and magnetization reversal mechanism in CoCr films

    NARCIS (Netherlands)

    Li, Cheng-Zhang; Lodder, J.C.

    1988-01-01

    The distribution of the hysteresis loss as a function of the applied field has been successfully used to investigate the magnetization reversal mechanism in our CoCr films. For high Hc/Hk films, the distribution of the hysteresis loss vs. applied field exhibits a monotonically decreasing curve with

  18. Evaluation of mechanical properties and DSC study of commercial multilayer PA/PE film treated with E-beam radiation

    International Nuclear Information System (INIS)

    Packaging materials have been widely processed by ionizing radiation in order to improve their chemical and physical properties and also for sterilization purposes. Basically, flexible packaging manufacturers apply specific radiation doses to promote cross-linking and scission of the polymeric chains and thus obtain alterations in certain properties of the material. While enhancing a specific property, significant losses may result in others. In this study, we examined the effects of E-beam radiation on a commercial multilayer PA6/LDPE based film, irradiated with doses up to 127 kGy. Food producers mostly use this structure as a thermoforming bottom web for processed meat products. Two weeks after irradiation, tensile strength and elongation of the film were analyzed. Both mechanical properties were again analyzed 18 months after irradiation took place. Significant changes of mechanical properties were observed specially 18 months after irradiation. Once cross-linking and scission are able to affect the material crystalline arrangement and consequently cause properties changes, a DSC ( Differential Scanning Calorimetry) study was carried out for doses up to 130 kGy in order to verify such changes. (author)

  19. Phytophthora capsici - Loss of Heterozygosity (LOH): A Widespread Mechanism for Rapid Adaptation ( 7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, Joanne [NCGR

    2012-06-01

    Joanne Mudge on "Phytophthora capsici - Loss of Heterozygosity (LOH): A Widespread Mechanism for Rapid Mutation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  20. A Real-Time FPGA based Algorithm for the combination of Beam Loss Acquisition Methods used for Measurement Dynamic Range expansion

    CERN Document Server

    Kwiatkowski, M; Alsdorf, M; Dehning, B; Vigano, W

    2012-01-01

    The aim of the Beam Loss Monitoring Dual Polarity (BLEDP) module under development at the European Organisation for Nuclear Research (CERN) is to measure and digitise with high precision the current produced by several types of beam loss detectors. The BLEDP module consists of eight analogue channels each with a fully differential integrator and an accompanying 16 bit ADC at the output of each analogue integrator. The on-board FPGA device controls the integral periods, instructs the ADC devices to perform measurements at the end of each period and collects the measurements. In the next stage it combines the number of charge and discharge cycles accounted in the last interval together with the cycle fractions observed using the ADC samples to produce a digitised high precision value of the charges collected. This paper describes briefly the principle of the fully differential integrator and focuses on the algorithm employed to process the digital data.

  1. Mechanisms of change of a novel weight loss programme provided by a third sector organisation : a qualitative interview study.

    OpenAIRE

    McMahon, N.E.; Visram, S.; Connell, L.A.

    2016-01-01

    Background There is a need for theory-driven studies that explore the underlying mechanisms of change of complex weight loss programmes. Such studies will contribute to the existing evidence-base on how these programmes work and thus inform the future development and evaluation of tailored, effective interventions to tackle overweight and obesity. This study explored the mechanisms by which a novel weight loss programme triggered change amongst participants. The programme, delivered by a thir...

  2. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    Science.gov (United States)

    Rytlewski, Piotr; Malinowski, RafaŁ; Moraczewski, Krzysztof; Żenkiewicz, Marian

    2010-10-01

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  3. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Rytlewski, Piotr, E-mail: prytlewski@ukw.edu.p [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, RafaL [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland); Moraczewski, Krzysztof [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Zenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland)

    2010-10-15

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  4. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  5. Effects of electron-beam irradiation on some mechanical properties of polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zenkiewicz, M. E-mail: marianzenkiewicz@ic.torun.pl

    2004-04-01

    Effect of the electron-beam irradiation on the tensile strength at break, elongation at break, and tear resistance for packaging films made of low-density polyethylene (LDPE), biaxially oriented polypropylene (BOPP), and polyethylene terephthalate (PET) is discussed. The measurements in both the machine direction and the transverse direction were made. It was found that the electron irradiation caused an increase in the tear resistance of the LDPE film when doses of up to 100 kGy were applied. A significant decrease and even loss of the tear resistance of the films of BOPP and, partially, PET were observed at doses already below 25 kGy. This indicates that the BOPP and PET films when modified with the electron radiation can hardly be used in packaging.

  6. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores.

    Science.gov (United States)

    Yang, Zhongling; Hautier, Yann; Borer, Elizabeth T; Zhang, Chunhui; Du, Guozhen

    2015-09-01

    Nutrient supply and herbivores can regulate plant species composition, biodiversity and functioning of terrestrial ecosystems. Nutrient enrichment frequently increases plant productivity and decreases diversity while herbivores tend to maintain plant diversity in productive systems. However, the mechanisms by which nutrient enrichment and herbivores regulate plant diversity remain unclear. Abundance-based mechanisms propose that fertilization leads to the extinction of rare species due to random loss of individuals of all species. In contrast, functional-based mechanisms propose that species exclusion is based on functional traits which are disadvantageous under fertilized conditions. We tested mechanistic links between fertilization and diversity loss in the presence or absence of consumers using data from a 4-year fertilization and fencing experiment in an alpine meadow. We found that both abundance- and functional-based mechanisms simultaneously affected species loss in the absence of herbivores while only abundance-based mechanisms affected species loss in the presence of herbivores. Our results indicate that an abundance-based mechanism may consistently play a role in the loss of plant diversity with fertilization, and that diversity decline is driven primarily by the loss of rare species regardless of a plant's functional traits and whether or not herbivores are present. Increasing efforts to conserve rare species in the context of ecosystem eutrophication is a central challenge for grazed grassland ecosystems.

  7. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  8. One-dimensional pattern of Au nanodots by ion-beam sputtering: formation and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J-H; Ha, N-B; Kim, J-S [Department of Physics, Sook-Myung Women' s University, Seoul 140-742 (Korea, Republic of); Joe, M; Lee, K-R [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cuerno, R, E-mail: jskim@sm.ac.kr [Departamento de Matematicas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes (Spain)

    2011-07-15

    Highly ordered one-dimensional arrays of nanodots, or nanobeads, are fabricated by forming nanoripples and nanodots in sequence, entirely by ion-beam sputtering (IBS) of Au(001). This demonstrates the capability of IBS for the fabrication of sophisticated nanostructures via hierarchical self-assembly. The intricate nanobead pattern ideally serves to identify the governing mechanisms for the pattern formation: nonlinear effects, especially local redeposition and surface-confined transport, are essential both for the formation and the preservation of the one-dimensional order of the nanobead pattern.

  9. Niobium thermal - mechanical treatment produced by continuously cast ingots and electron beam fusion

    International Nuclear Information System (INIS)

    Continuonsly cast Nb ingots produced in Brazil by electron beam fusion have been thermally-mechanically processed. These ingots were subjected to a pre-deformation between 0 to 50%, and subsequently treated thermally between 900 to 18000C for 2,3 and 4 hours. Grain refinement was attained by further reduction in area deformations between 42 to 96%, followed by thermal treatments for 3 hours between 810 to 13000C. The results material exhibited an equiaxial grain structure of 50 μm and was tensile tested. These tensile results are compared to the results for niobium produced by traditional commercial practices. (Author)

  10. RC Beams Strengthened with Mechanically Fastened Composites: Experimental Results and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Enzo Martinelli

    2014-03-01

    Full Text Available The use of mechanically-fastened fiber-reinforced polymer (MF-FRP systems has recently emerged as a competitive solution for the flexural strengthening of reinforced concrete (RC beams and slabs. An overview of the experimental research has proven the effectiveness and the potentiality of the MF-FRP technique which is particularly suitable for emergency repairs or when the speed of installation and immediacy of use are imperative. A finite-element (FE model has been recently developed by the authors with the aim to simulate the behavior of RC beams strengthened in bending by MF-FRP laminates; such a model has also been validated by using a wide experimental database collected from the literature. By following the previous study, the FE model and the assembled database are considered herein with the aim of better exploring the influence of some specific aspects on the structural response of MF-FRP strengthened members, such as the bearing stress-slip relationship assumed for the FRP-concrete interface, the stress-strain law considered for reinforcing steel rebars and the cracking process in RC members resulting in the well-known tension stiffening effect. The considerations drawn from this study will be useful to researchers for the calibration of criteria and design rules for strengthening RC beams through MF-FRP laminates.

  11. Effects on mechanical properties in electron beam welding of TC4 alloy by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    LU Jinzhong; ZHANG Yongkang; KONG Dejun; REN Xudong; GE Tao; ZOU Shikun

    2007-01-01

    The surface of TC4 titanium alloy welding line by electron beam welding (EBW) was processed by high power Q-switched and repetition-rate Nd: glass laser. Effects of laser power and spot diameter on residual stress and microhardness of the TC4 alloy welding line by laser shock processing (LSP) have been analyzed. Results show that residual stresses almost do not change as laser poweris 45.9 J,spot diameter is φ9 mm; While laser power is 45.9 J, spot diameter less than φ3 mm, the distribution of residual stress in welding line occurs obvious variation, which residual stress increase obviously with spot diameter decrease. When power density is bigger than 1.8×1010W/cm2, residual stresses of electron beam welding line occur change by LSP,which improve obviously residual stress distribution; while laser power is bigger than 1.2×1010W/cm2, the surface micro-hardness of electron beam welding line occurs change by LSP, which improve obviously micro-hardness distribution. Mechanical properties of TC4 titanium alloy welding line will be improved by LSP, which provides experimental foundation for further controlling the distributions of residual stress and micro-hardness during laser shock processing.

  12. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism

    OpenAIRE

    Martínez-Vega, Raquel; Garrido, Francisco; Partearroyo, Teresa; Cediel, Rafael; Varela, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2015-01-01

    Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus m...

  13. 预应力损失对连续梁桥内力的影响%Impacts of prestress loss on internal force of continuous beam bridge

    Institute of Scientific and Technical Information of China (English)

    曾辉; 杨凡坤

    2012-01-01

    Integrating with three-span continuous beam bridge on the extra large(48+80+48)m bridge,this paper discusses two conditions with and without considering prestress loss,introduces the composition and calculation method of prestress loss,and studies the impacts of prestress loss on internal force of continuous beam bridge,which has provided theoretical guidance for the design and calculation of three-span continuous beam bridge.%结合广东某特大桥(48+80+48)m三跨连续梁,从考虑和不考虑预应力损失两种情况进行了论述,介绍了预应力损失的组成和计算方法,进行了预应力损失对桥梁结构内力影响的研究,为三跨连续梁桥设计计算提供了理论指导。

  14. Analysis of Loss Mechanisms in G-M Type Pulse Tube Refrigerators

    Science.gov (United States)

    Baik, J. H.; Nellis, G. F.; Pfotenhauer, J. M.

    2004-06-01

    A one dimensional, numerical analysis that considers the heat transfer between the pulse tube walls and the internal working fluid has been performed to incorporate DC flow and shuttle heat loss mechanisms in a 5-valve G-M type pulse tube refrigerator model. All of the physical dimensions and operating conditions associated with three refrigeration systems built at UW-Madison have been used to provide input information for a 1st and 2nd order numerical analysis. The 1st order numerical analysis assumes that the pulse-tube is adiabatic and predicts the pressure, temperatures and mass flow rates at any time and location during a cycle. The gas and wall temperature profiles are subsequently modified by a 2nd order analysis that considers more realistic thermal behavior in the pulse-tube by explicitly modeling the heat transfer interaction between the fluid and the wall. Three different convective heat transfer correlations have been considered. The 2nd order analysis allows the calculation of various losses including DC flow and shuttle heat transfer in order to predict actual performances of the systems. The comparisons of the numerical model with a series of experimental results display very good agreement across significantly different system geometries and operating conditions.

  15. Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss

    Energy Technology Data Exchange (ETDEWEB)

    Schmidsfeld, A. von, E-mail: avonschm@uos.de; Reichling, M., E-mail: reichling@uos.de [Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück (Germany)

    2015-09-21

    In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavity via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.

  16. Mechanism of Strength Loss of No-bake Phosphate Bonded Sand Mold/Core

    Institute of Scientific and Technical Information of China (English)

    ZHANG Youshou; XUE Yiyu; HUANG Jin; LI Sinian; XIA Lu; HUANG Caihua

    2009-01-01

    The strength loss mechanism of the phosphate bonded sand mold/core was studied. The morphology and composition of phosphate membrane on the surface of sands was analyzed with electron probe X-ray microanalyzer. Results show that magnesium causes cracks in cured phosphate membrane and results in the decrease of sand molds/cores strength. However, the addition of magne-sium significantly enhanced hygroscopy resistance of phosphate membrane. In addition, the phosphate binder added with the magnesium modifier has more rapid hardening reaction speed compared that without or with low magnesium binder. It can be concluded that the phosphate binder with the addition of magnesium modifier is favorably used in high humid and cold circumstance.

  17. An experimental study of energy loss mechanisms and efficiency consideration in the low power dc arcjet

    Science.gov (United States)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30% of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  18. An experimental study of energy loss mechanisms and efficiency considerations in the low power dc arcjet

    Science.gov (United States)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30 percent of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  19. Measurements and Simulations on the Mechanisms of Efficiency Losses in HIT Solar Cells

    Directory of Open Access Journals (Sweden)

    Silvio Pierro

    2015-01-01

    Full Text Available We study the electrical and the optical behavior of HIT solar cell by means of measurements and optoelectrical simulations by TCAD simulations. We compare the HIT solar cell with a conventional crystalline silicon solar cell to identify the strengths and weaknesses of the HIT technology. Results highlight different mechanisms of electrical and optical efficiency losses caused by the presence of the amorphous silicon layer. The higher resistivity of the a-Si layers implies a smaller distance between the metal lines that causes a higher shadowing. The worst optical coupling between the amorphous silicon and the antireflective coating implies a slight increase of reflectivity around the 600 nm wavelength.

  20. On the Diversity of Compact Objects within Supernova Remnants II: Energy Loss Mechanisms

    CERN Document Server

    Rogers, Adam

    2016-01-01

    Energy losses from isolated neutron stars are commonly attributed to the emission of electromagnetic radiation from a rotating point-like magnetic dipole in vacuum. This emission mechanism predicts a braking index $n=3$, which is not observed in highly magnetized neutron stars. Despite this fact, the assumptions of a dipole field and rapid early rotation are often assumed a priori, typically causing a discrepancy between the characteristic age and the associated supernova remnant (SNR) age. We focus on neutron stars with `anomalous' magnetic fields that have established SNR associations and known ages. Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are usually described in terms of the magnetar model, which posits a large magnetic field established by dynamo action. The high magnetic field pulsars (HBPs) have extremely large magnetic fields just above QED scale (but below that of the AXPs and SGRs), and central compact objects (CCOs) may have buried fields that will emerge in the future as nas...

  1. Measurement of mechanical loss in the Acktar Black coating of silicon wafers

    Science.gov (United States)

    Abernathy, M. R.; Smith, N.; Korth, W. Z.; Adhikari, R. X.; Prokhorov, L. G.; Koptsov, D. V.; Mitrofanov, V. P.

    2016-09-01

    Some proposed interferometric gravitational wave detectors of the next generation are designed to use silicon test masses cooled to cryogenic temperatures. The test masses will need to be partially coated with high emissivity coating to provide sufficient cooling when they absorb the laser light. The mechanical loss of the Acktar Black coating is determined based on the measurements of the Q-factors of the bending vibration modes of coated and uncoated commercial silicon wafers. The Young's modulus of the coating material is determined using nanoindentation. We use this information to calculate thermal noise of the silicon test masses associated with a high emissivity coating on its lateral side (barrel). It is found that such a coating results in a less than 9% increase of the total strain noise of LIGO Voyager design for a future cryogenic gravitational wave detector.

  2. Mechanisms for covalent immobilization of horseradish peroxi-dase on ion beam treated polyethylene

    CERN Document Server

    Kondyurin, Alexey V; Tilley, Jennifer M R; Nosworthy, Neil J; Bilek, Marcela M M; McKenzie, David R

    2011-01-01

    The mechanism that provides the observed strong binding of biomolecules to polymer sur-faces modified by ion beams is investigated. The surface of polyethylene (PE) was modified by plasma immersion ion implantation with nitrogen ions. Structure changes including car-bonization and oxidation were observed in the modified surface layer of PE by Raman spec-troscopy, FTIR ATR spectroscopy, atomic force microscopy, surface energy measurement and XPS spectroscopy. An observed high surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with stor-age time after PIII treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish per-oxidase was covalently attached onto the modified PE surface. The enzymatic activity of co-valently attached protein remained high. A mechanism based on the covalent attachment by the reaction of protein with free r...

  3. Collisional mechanisms in D- beam sources for MFE experiments and reactors. Technical progress report

    International Nuclear Information System (INIS)

    Initially, this work was directed toward predicting the angular scattering in D- beams produced from D+ charge-transfer in alkali targets. However, the work has now been redirected to provide information on the mechanisms that govern the behavior of direct extraction D- ion sources, with immediate emphasis on the very promising Ehlers-Leung source at Lawrence Berkeley National Laboratory. The controlling mechanisms in these sources and some aspects of their behavior are only vaguely understood, and this work is intended to answer many of these questions. Included in these are problems related to both the surface production of negative ions and electrons, as well as processes within the source plasma region that determine the characteristics of the ions and neutrals that bombard the converter surface

  4. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  5. Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering.

    Science.gov (United States)

    Cetinörgü, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik

    2009-08-10

    Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide (Nb(2)O(5)), tantalum oxide (Ta(2)O(5)), and silicon dioxide (SiO(2)) thin films prepared by dual ion beam sputtering. First, we investigate the stress (sigma), hardness (H), reduced Young's modulus (E(r)), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson's ratio (nu) using the two-substrate method. For the high refractive index films, namely, Nb(2)O(5) (n at 550 nm=2.30) and Ta(2)O(5) (n at 550 nm=2.13), we obtained H approximately 6 GPa, E(r) approximately 125 GPa, CTE=4.9x10(-6) degrees C(-1), nu=0.22, and H approximately 7 GPa, E(r) approximately 133 GPa, CTE=4.4x10(-6) degrees C(-1), and nu=0.27, respectively. In comparison, for SiO(2) (n at 550 nm=1.48), these values are H approximately 9.5 GPa, E(r) approximately 87 GPa, CTE=2.1x10(-6) degrees C(-1), and nu=0.11. Correlations between the growth conditions (secondary beam ion energy and ion current), the microstructure, and the film properties are discussed. PMID:19668268

  6. Strong-Strong Beam-Beam Simulation of Bunch Length Splitting at the LHC

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    Longitudinal bunch length splitting was observed for some LHC beams. In this paper, we will report on the study of the observation using strong-strong beam-beam simulations. We explore a variety of factors including initial momentum deviation, collision crossing angle, synchrotron tune, chromaticity, working points and bunch intensity that contribute to the beam particle loss and the bunch length splitting, and try to understand the underlying mechanism of the observed phenomena.

  7. Combined crossed molecular beam and ab initio investigation of the multichannel reaction of boron monoxide (BO; X2Σ+) with Propylene (CH3CHCH2; X1A'): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; An, Yi; Sun, Bing-Jian; Chang, A H H

    2014-10-16

    The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively.

  8. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  9. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  10. From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance

    Science.gov (United States)

    Laperrousaz, B.; Drillon, G.; Berguiga, L.; Nicolini, F.; Audit, B.; Satta, V. Maguer; Arneodo, A.; Argoul, F.

    2016-08-01

    Soft materials such as polymer gels, synthetic biomaterials and living biological tissues are generally classified as viscoelastic or viscoplastic materials, because they behave neither as pure elastic solids, nor as pure viscous fluids. When stressed beyond their linear viscoelastic regime, cross-linked biopolymer gels can behave nonlinearly (inelastically) up to failure. In living cells, this type of behavior is more frequent because their cytoskeleton is basically made of cross-linked biopolymer chains with very different structural and flexibility properties. These networks have high sensitivity to stress and great propensity to local failure. But in contrast to synthetic passive gels, they can "afford" these failures because they have ATP driven reparation mechanisms which often allow the recovery of the original texture. A cell pressed in between two plates for a long period of time may recover its original shape if the culture medium brings all the nutrients for keeping it alive. When the failure events are too frequent or too strong, the reparation mechanisms may abort, leading to an irreversible loss of mechanical homeostasis and paving the way for chronic diseases such as cancer. To illustrate this discussion, we consider a model of immature cell transformation during cancer progression, the chronic myelogenous leukemia (CML), where the formation of the BCR-ABL oncogene results from a single chromosomal translocation t(9; 22). Within the assumption that the cell response to stress is scale invariant, we show that the power-law exponent that characterizes their mechanosensitivity can be retrieved from AFM force indentation curves. Comparing control and BCR-ABL transduced cells, we observe that in the later case, one month after transduction, a small percentage the cancer cells no longer follows the control cell power law, as an indication of disruption of the initial cytoskeleton network structure.

  11. Mechanical Design of the Injection Beam Line of Small Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The injection beam line is a key device for beam transport of the small medical cyclotron, giving direct influence to the beam quality of the cyclotron. According to the medical needs of the cyclotron, the overall length of the injection beam line is as short as possible,

  12. Mechanisms of ammonium transformation and loss in intermittently aerated leachfield soil.

    Science.gov (United States)

    Richard, John T; Potts, David A; Amador, José A

    2014-11-01

    Optimization of N removal in soil-based wastewater treatment systems requires an understanding of the microbial processes involved in N transformations. We examined the fate of NH in intermittently aerated leachfield mesocosms over a 24-h period. Septic tank effluent (STE) was amended with NHCl to help determine N speciation and distribution in drainage water, soil, and headspace gases. Our results show that 5.7% of the N was found in soil, 10.0% in drainage water, and 84.3% in the gas pool. Ammonium accounted for 41.7% of the soil N pool, followed by NO (29.2%), organic N (21.7%), and microbial biomass N (7.5%). In drainage water, NO constituted ∼80% of the N pool, whereas NH was absent from this pool. Nitrous oxide was the dominant form of N in the gas phase 6 h after addition of NH-amended STE to the mesocosms, after which its mass declined exponentially; by contrast, the mass of N was initially low but increased linearly with time to become the dominant form of N after 24 h. Analysis based on the isotopic enrichment of NO and N indicates that nitrification contributed 98.8 and 23.1% of the NO flux after 6 and 24 h, respectively. Our results show that gaseous losses are the main mechanism for NH removal from wastewater in intermittently aerated soil. In addition, nitrification, which is generally not considered a significant pathway for N loss in soil-based wastewater treatment, is an important source process for NO. PMID:25602229

  13. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, N. [Tsukamoto Laboratory, Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)]. E-mail: n-sekine@tsukalab.dnj.ynu.ac.jp; Tada, S. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Higuchi, T. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Furumura, Y. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Takao, T. [Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Yamanaka, A. [Research Center, Toyobo, Co., Ltd, 2-1-1, Katata, Otsu, Shiga 520-0292 (Japan)

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema[reg] fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon[reg] fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  14. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    Science.gov (United States)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  15. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    International Nuclear Information System (INIS)

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema[reg] fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon[reg] fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished

  16. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    Science.gov (United States)

    Momeni Hasan Abadi, Seyed Mohamad Amin; Booske, John H.; Behdad, Nader

    2016-08-01

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of the reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ0) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.

  17. Mechanisms of Focused Ion Beam Implantation Damage and Recovery in Si

    Science.gov (United States)

    Balasubramanian, G. P. S.; Hull, R.

    2016-06-01

    The ion current density in focused ion beam (FIB) systems, 0.1-10 A cm-2, is at least three orders of magnitude greater than that in commercial broad ion beam implanters. This large difference in ion current density is expected to strongly affect the damage recovery dynamics. In this work, we study the ion implantation damage and recovery of Si(100) substrates implanted with 1 × 1012-5 × 1015 Si cm-2 fluences of 60-keV Si2+ at normal incidence in a mass-selecting FIB. Additionally, damage and recovery in different broad ion beam implants of 60-keV Si+ were studied for a comparison. For recovering implantation damage, specimens were annealed for different times at 730-900°C in an ultra-high purity nitrogen ambient, and for characterizing damage and recovery, Raman spectroscopy at wavelengths 405 nm and 514 nm was carried out. Raman measurements comprised of measurements of crystalline Si (c-Si) peak height of the peak at 520 cm-1, and the peak shift relative to that of un-implanted reference Si. Our measurements of structural damage—calculated from the attenuation in the c-Si peak heights for the implants relative to that of unimplanted Si(100)—indicates that the FIB implantations lead to a greater as-implanted damage but also typically lead to a better recovery than that for the commercial broad-area implants. The underlying mechanisms for these observations are discussed.

  18. Experimental study on interaction mechanism of small H-beams and a soil-cement retaining wall

    Institute of Scientific and Technical Information of China (English)

    WANG Suo-rong; CAO Bao-fei

    2008-01-01

    Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before crack-ing. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in practice.

  19. CSNS/RCS粒子散射束流损失研究%Study of Beam Loss due to Particle Scattering in CSNS/RCS

    Institute of Scientific and Technical Information of China (English)

    黄明阳; 王娜; 邱静; 王生; 黄楠

    2012-01-01

    在中国散裂中子源快循环同步加速器(CSNS/RCS)中,质子束流在加速过程中会与一些器件(如剥离膜、准直器、散射引出膜等)相互作用,产生粒子散射并导致束流损失.本工作首先利用ORBIT模拟RCS束流注入过程,并用FLUKA模拟注入束流穿过剥离膜的粒子散射过程,计算剥离膜散射所造成的束流损失.其次,模拟质子束流与准直器相互作用的粒子散射,计算质子束流与不同尺寸的次级准直器相互作用的吸收效率,作为对次级准直器优化的依据.最后,研究CSNS/RCS膜散射引出方案,利用FLUKA对不同引出方案进行模拟并比较,得到最佳的可行性方案.%In the Rapid Cycling Synchrotron of China Spallation Neutron Source (CSNS/ RCS) , the proton beam will interact with some devices, such as the stripping foil, beam collimator, and foil for scattering extraction. These interactions result in some particle scattering and beam losses. In this paper, firstly, the beam transportation in the injection procedure was simulated by ORBIT and the particle scattering due to the interaction between the beam and stripping foil was simulated by FLUKA, then the beam loss due to the foil scattering was calculated. Secondly, the particle scattering due to the proton beam interacting with the secondary collimator was simulated, and based on which, the secondary collimator was optimized by calculating the absorb efficiency. The optimization was done for the foil scattering extraction scheme by simulating and comparing different schemes with FLUKA.

  20. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  1. Types of hair loss and treatment options, including the novel low-level light therapy and its proposed mechanism.

    Science.gov (United States)

    Ghanaat, Mahyar

    2010-09-01

    Androgenetic alopecia (AGA) is the most common form of hair loss in men, and female pattern hair loss (FPHL) is the most common form of hair loss in women. Traditional methods of treating hair loss have included minoxidil, finasteride, and surgical transplantation. Currently there is a myriad of new and experimental treatments. In addition, low-level light therapy (LLLT) has recently been approved by the United States Food and Drug Administration (FDA) for the treatment of hair loss. There are several theories and minimal clinical evidence of the safety and efficacy of LLLT, although most experts agree that it is safe. More in vitro studies are necessary to elucidate the mechanism and effectiveness at the cellular level, and more controlled studies are necessary to assess the role of this new treatment in the general population. PMID:20689478

  2. High intensity pulsed plasma beams modification of surface morphology and mechanical properties of steels

    International Nuclear Information System (INIS)

    Surface engineering technology is well-known method used to obtain, investigate and apply surface layers with different improved properties, than the base material. High energy ion or plasma pulse is one of contemporary intensively investigated methods used for surface modification. Achieved up to now results show, that steel irradiation with high-intensive pulsed beam can change surface morphology and the mechanical properties of material. The aim of this work was to investigate the correlation of carbon concentration and type of ion used on those changes. Intense pulsed nitrogen and argon plasma beam were used for modification of constructional, unalloyed steels. The duration of pulse was in the range of microseconds, density of energy was about 6 J/cm2. Each sample was irradiated with 5 impulses. Heating and cooling processes were on non-equilibrium type. The surface morphology was analysed using scanning electron microscopy. Measurements of surface roughness, hardness HV5 and wear resistance (the pin-on-disc method) were carried out. Obtained results are presented in this work. (author)

  3. Opto-mechanical devices for the Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Antares is a 24-beam CO2 laser system for controlled fusion research, under construction at Los Alamos National Laboratory. Rapid automatic alignment of this system is required prior to each experimental shot. Unique opto-mechanical alignment devices, which have been developed specifically for this automatic alignment system, are discussed. A variable focus alignment telescope views point light sources. A beam expander/spatial filter processes both a visible Krypton Ion and a 10.6 μm CO2 alignment laser. The periscope/carousel device provides the means by which the alignment telescope can sequentially view each of twelve optical trains in each power amplifier. The polyhedron alignment device projects a point-light source for both centering and pointing alignment at the polyhedron mirror. The rotating wedge alignment device provides a sequencing point-light source and also compensates for dispersion between visible and 10.6 μm radiation. The back reflector flip in remotely positions point-light sources at the back reflector mirrors. A light source box illuminates optic fibers with high intensity white light which is distributed to the various point-light sources in the system

  4. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...... due to cell fractures, and the additional series resistance losses observed under illumination. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test and initial and final module flash testing...... to determine the power degradation characteristic of the module....

  5. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    CERN Document Server

    Liu, Yu-Long; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2016-01-01

    We theoretically study a strongly-driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar those observed in $\\mathcal{PT}$-symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that: (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically-induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultra-long group delay. The time delay $\\tau$ can be optimized by regulating the optomechanical coupling strength through the control field and improved up to several orders of magnitude ($\\tau\\sim2$ $\\math...

  6. Mechanisms for Midlatitude Ozone Loss: Heterogeneous Chemistry in the Lowermost Stratosphere?

    Science.gov (United States)

    Smith, Jessica B.; Hintsa, Eric J.; Allen, Norton T.; Stimpfle, Richard M.; Anderson, James G.

    2001-01-01

    The question of midlatitude ozone erosion by chlorine free radical catalysis is examined. We present and analyze simultaneous, high-resolution observations of ClO, H2O, tropopause height, particle reactive surface area, and ice saturation occurrence frequency obtained from the NASA ER-2 aircraft. The objective is to test the hypothesis that the existence of cirrus clouds or cold aerosols in the first few kilometers above the tropopause at midlatitudes is responsible for increasing the ratio of chlorine free radicals to total inorganic chlorine, thus amplifying the rate of catalytic ozone destruction. The observations reveal a sharp decrease in ice saturation frequency at the tropopause, a marked degree of undersaturation just above the tropopause, a corresponding sharp gradient in the product of cold aerosol reactive surface area and reaction probability, gamma-S(sub a), and, finally, the consistent absence of enhanced concentrations of ClO immediately above the tropopause. These results suggest that midlatitude ozone loss is not controlled in situ by the mechanism of cirrus cloud and/or cold aerosol enhancement of chlorine radicals in the vicinity of the tropopause.

  7. Biophysical mechanisms of trichloroethylene uptake and loss in baldcypress growing in shallow contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Nietch, C.T.; Morris, J.T. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Biological Sciences; Vroblesky, D.A. [Geological Survey, Columbia, SC (United States)

    1999-09-01

    Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass-carbons decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seeding water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seeding water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential to TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.

  8. Beam deflector and position sensor using electrowetting and mechanical wetting of sandwiched droplets

    Science.gov (United States)

    Shahzad, Amir; Song, Jang-Kun

    2016-09-01

    Electrowetting (EW) offers a facile manipulation of a liquid droplet on a surface, and several different systems have been suggested to utilize EW on various applications. In this letter, the manipulation of an electrolyte droplet with a floating movable substrate was investigated on a solid substrate. Two types of approaches were made; firstly, we controlled the vertical position of a floating substrate using EW property of droplets. The tilting angle of a floating substrate can be precisely controlled along two orthogonal directions independently, which can be used to devise a beam deflector. In the other case, mechanical wetting of droplets via external pressure was used to detect the position of a floating substrate; this position sensor has at least four orders of magnitude higher sensitivity than the conventional position sensor based on capacitance.

  9. Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Melis, C.; Colombo, L. [Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Ghisleri, C.; Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2015-03-23

    We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Young's modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio of metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.

  10. Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance

    Science.gov (United States)

    Courel, Maykel; Andrade-Arvizu, J. A.; Vigil-Galán, O.

    2015-09-01

    One of the most important issues in kesterite Cu2ZnSnS4 (CZTS)-based thin film solar cells is low open circuit voltage, which is mainly related to loss mechanisms that take place in both CZTS bulk material and CdS/CZTS interface. A device model for CZTS/CdS solar cell which takes into account loss mechanisms influence on solar cell performance is presented. The simulation results showed that our model is able to reproduce experimental observations reported for CZTS/CdS-based solar cells with the highest conversion efficiencies, measured under room temperature and AM1.5 intensity. The comparison of simulation results to experimental observations demonstrated that among the different loss mechanisms, trap-assisted tunneling losses are the major hurdle to boost open circuit voltage. Under this loss mechanism, a solar cell efficiency enhancement up to 10.2% with CdS donor concentration decrease was reached. Finally, the possible path toward a further solar cell efficiency improvement is discussed.

  11. Additive manufacturing of Inconel 718 using electron beam melting: Processing, post-processing, & mechanical properties

    Science.gov (United States)

    Sames, William James, V.

    Additive Manufacturing (AM) process parameters were studied for production of the high temperature alloy Inconel 718 using Electron Beam Melting (EBM) to better understand the relationship between processing, microstructure, and mechanical properties. Processing parameters were analyzed for impact on process time, process temperature, and the amount of applied energy. The applied electron beam energy was shown to be integral to the formation of swelling defects. Standard features in the microstructure were identified, including previously unidentified solidification features such as shrinkage porosity and non-equilibrium phases. The as-solidified structure does not persist in the bulk of EBM parts due to a high process hold temperature (˜1000°C), which causes in situ homogenization. The most significant variability in as-fabricated microstructure is the formation of intragranular delta-phase needles, which can form in samples produced with lower process temperatures (718. Traditional post-processing methods of hot isostatic pressing (HIP) and solution treatment and aging (STA) were found to result in variability in grain growth and phase solution. Recrystallization and grain structure are identified as possible mechanisms to promote grain growth. These results led to the conclusion that the first step in thermal post-processing of EBM Inconel 718 should be an optimized solution treatment to reset phase variation in the as-fabricated microstructure without incurring significant grain growth. Such an optimized solution treatment was developed (1120°C, 2hr) for application prior to aging or HIP. The majority of as-fabricated tensile properties met ASTM AM Inconel 718 standards for yield stress and ultimate tensile strength, and STA yield stress, ultimate tensile strength, and elongation exceeded the ASTM standards for AM Inconel 718.

  12. Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model

    Science.gov (United States)

    Huang, Xuanqi; Fu, Houqiang; Chen, Hong; Lu, Zhijian; Ding, Ding; Zhao, Yuji

    2016-06-01

    InGaN semiconductors are promising candidates for high-efficiency next-generation thin film solar cells. In this work, we study the photovoltaic performance of single-junction and two-junction InGaN solar cells using a semi-analytical model. We analyze the major loss mechanisms in InGaN solar cell including transmission loss, thermalization loss, spatial relaxation loss, and recombination loss. We find that transmission loss plays a major role for InGaN solar cells due to the large bandgaps of III-nitride materials. Among the recombination losses, Shockley-Read-Hall recombination loss is the dominant process. Compared to other III-V photovoltaic materials, we discovered that the emittance of InGaN solar cells is strongly impacted by Urbach tail energy. For two- and multi-junction InGaN solar cells, we discover that the current matching condition results in a limited range of top-junction bandgaps. This theoretical work provides detailed guidance for the design of high-performance InGaN solar cells.

  13. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    Science.gov (United States)

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  14. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    Science.gov (United States)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  15. Enhancement of mechanical properties and failure mechanism of electron beam welded 300M ultrahigh strength steel joints

    International Nuclear Information System (INIS)

    Highlights: ► Normalizing at 970 °C plus quenching and tempering cannot refine the columnar grains. ► Ductility and toughness of conventional quenched and tempered joint are very low. ► An optimum combination of strength and ductility was obtained for the welded joints. ► Intergranular cracked columnar dendritic grains were found on the fracture surface. -- Abstract: In this study, four post-weld heat treatment (PWHT) schedules were selected to enhance the mechanical properties of electron beam welded 300M ultrahigh strength steel joints. The microstructure, mechanical properties and fractography of specimens under the four post-weld heat treatment (PWHT) conditions were investigated and also compared with the base metal (BM) specimens treated by conventional quenching and tempering (QT). Results of macro and microstructures indicate that all of the four PWHT procedures did not eliminate the coarse columnar dendritic grains in weld metal (WM). Whereas, the morphology of the weld centerline and the boundaries of the columnar dendritic grains in WM of weld joint specimens subjected to the PWHT procedure of normalizing at 970 °C for 1 h followed by conventional quenching and tempering (W-N2QT) are indistinct. The width of martensite lath in WM of W-N2QT is narrower than that of specimens subjected to other PWHT procedures. Experimental results indicate that the ductility and toughness of conventional quenched and tempered joints are very low compared with the BM specimens treated by conventional QT. However, the strength and impact toughness of the W-N2QT specimens are superior to those of the BM specimen treated by conventional QT, and the ductility is only slightly inferior to that of the latter.

  16. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R; Jowett, J; Bocian, D; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  17. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    OpenAIRE

    Cumming, Alan; Martin, Iain; Bassiri, Riccardo; Cunningham, Liam; Fejer, Martin; Harris, James; Haughian, Karen; Heinert, Daniel; Lantz, Brian; Lin, Angie; Markosyan, Ashot; Nawrodt, Ronny; Route, Roger; Rowan, Sheila

    2015-01-01

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of...

  18. Active vibration control of a free-free beam by using a tendon mechanism

    Science.gov (United States)

    Tani, Junji; Ueda, Hiroki

    This paper is concerned with an active vibration control of a free-free beam. The beam is reduced to a finite-degree-of-freedom system by the modal analysis, in which the mode function is derived from the transfer matrix method. A control force is produced by a pair of tendons and a DC servo motor attached to the beam. The state of the beam is presumed by the minimum order state observer and the control force is determined by the digital optimum regulator theory. It is found that the active tendon control method is effective to suppress the vibration of the free-free beam.

  19. Physical mechanism of the linear beam-size effect at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, K. [Institut fuer Physik, THEP, Johannes Gutenberg Universitaet, Staudinger weg 7, D 55099 Mainz (Germany); Kotkin, G.L.; Serbo, V.G. [Novosibirsk State University, 630090, Novosibirsk (Russia)

    1996-09-01

    We present a qualitative but precise description of the linear beam-size effect predicted for the processes in which unstable but long-living particles collide with each other. We derive a physically pronounced equation for the event rate which proves that the linear beam-size effect corresponds to the scattering of one beam of particles on the decay products of the other. We compare this linear beam-size effect with the known logarithmic beam-size effect measured in the experiments on a single bremsstrahlung at Novosibirsk{close_quote}s VEPP-4 and DESY HERA. {copyright} {ital 1996 The American Physical Society.}

  20. Physical mechanism of the linear beam-size effect at colliders

    CERN Document Server

    Melnikov, K; Serbo, V G

    1996-01-01

    We present qualitative but precise description of the linear beam-size effect predicted for the processes in which unstable but long--living particles collide with each other. We derive physically pronounced equation for the events rate which proves that the linear beam-size effect corresponds to the scattering of one beam of particles on the decay products of the other. We compare this linear beam-size effect with the known logarithmic beam-size effect measured in the experiments on a single bremsstrahlung at VEPP-4 and HERA.

  1. FRP-RC Beam in Shear: Mechanical Model and Assessment Procedure for Pseudo-Ductile Behavior

    Directory of Open Access Journals (Sweden)

    Floriana Petrone

    2014-07-01

    Full Text Available This work deals with the development of a mechanics-based shear model for reinforced concrete (RC elements strengthened in shear with fiber-reinforced polymer (FRP and a design/assessment procedure capable of predicting the failure sequence of resisting elements: the yielding of existing transverse steel ties and the debonding of FRP sheets/strips, while checking the corresponding compressive stress in concrete. The research aims at the definition of an accurate capacity equation, consistent with the requirement of the pseudo-ductile shear behavior of structural elements, that is, transverse steel ties yield before FRP debonding and concrete crushing. For the purpose of validating the proposed model, an extended parametric study and a comparison against experimental results have been conducted: it is proven that the common accepted rule of assuming the shear capacity of RC members strengthened in shear with FRP as the sum of the maximum contribution of both FRP and stirrups can lead to an unsafe overestimation of the shear capacity. This issue has been pointed out by some authors, when comparing experimental shear capacity values with the theoretical ones, but without giving a convincing explanation of that. In this sense, the proposed model represents also a valid instrument to better understand the mechanical behavior of FRP-RC beams in shear and to calculate their actual shear capacity.

  2. THEORETICAL MODEL ON INTERFACE FAILURE MECHANISM OF REINFORCED CONCRETE CONTINUOUS BEAM STRENGTHENED BY FRP

    Institute of Scientific and Technical Information of China (English)

    Hong Yuan; Zifeng Lin

    2009-01-01

    Fiber reinforced polymer (FRP) composites are increasingly being used for the re-pair and strengthening of deteriorated concrete structural components through adhesive bonding of prefabricated strips/plates and the wet lay-up of fabric. Interracial bond failure modes have at-tracted the attention of researchers because of the importance. The objective of the present study is to analyse the interface failure mechanism of reinforced concrete continuous beam strength-ened by FRP. An analytical solution has been firstly presented to predict the entire debonding process of the model. The realistic bi-linear bond-slip interfacial law was adopted to study this problem. The crack propagation process of the loaded model was divided into four stages (elastic, elastic-softening, elastic-softening-debonded and softening-debonded stage). Among them, elastic-softening-debonded stage has four sub-stages. The equations are solved by adding suitable stress and displacement boundary conditions. Finally, critical value of bond length is determined to make the failure mechanism in the paper effective by solving the simultaneously linear algebraic equations. The interaction between the upper and lower FRP plates can be neglected if axial stiffness ratio of the concrete-to-plate prism is large enough.

  3. A Study of the Effect of Preschool Children's Participation in Sensorimotor Activities on Their Understanding of the Mechanical Equilibrium of a Balance Beam

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara

    2009-01-01

    The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its…

  4. Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; /SLAC; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne

    2010-09-14

    In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

  5. Beam halo studies in LEHIPA DTL

    International Nuclear Information System (INIS)

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch

  6. Beam halo studies in LEHIPA DTL

    Science.gov (United States)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  7. Evaluation of Microstructure and Mechanical Properties of Laser Beam Welded AISI 409M Grade Ferritic Stainless Steel%Evaluation of Microstructure and Mechanical Properties of Laser Beam Welded AISI 409M Grade Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; V Balasubramanian

    2012-01-01

    The microstructure analysis and mechanical properties evaluation of laser beam welded AISI 409M ferritic stainless steel joints are investigated. Single pass autogeneous welds free of volumetric defects were produced at a welding speed of 3 000 mm/min. The joints were subjected to optical microscope, scanning electron fractographe, microhardness, transverse and longitudinal tensile, bend and charpy impact toughness testing. The coarse ferrite grains in the base metal were changed into dendritic grains as a result of rapid solidification of laser beam welds. Tensile testing indicates overmatching of the weld metal is relative to the base metal. The joints also exhibited acceptable impact toughness and bend strength properties.

  8. Mechanisms of Docosahexaenoic and Eicosapentaenoic Acid Loss from Pacific Saury and Comparison of Their Retention Rates after Various Cooking Methods.

    Science.gov (United States)

    Cheung, Lennie K Y; Tomita, Haruo; Takemori, Toshikazu

    2016-08-01

    The docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents of Pacific saury (Cololabis saira), a fatty fish and staple of the Japanese diet, have been reported to decrease after cooking. This study compared the DHA and EPA contents remaining in saury after grilling, pan-frying or deep-frying to center temperatures of 75, 85, or 95 °C, and examined physical loss, lipid oxidation, and thermal degradation as mechanisms of DHA and EPA loss. Temperature changes inside the saury were monitored using thermocouples, while DHA and EPA contents, oxygen radical absorbance capacity, and measurements of lipid oxidation (that is, carbonyl value and thiobarbituric acid value) were determined chemically. Visualization of temperature distribution inside fish samples during cooking revealed large differences in heat transfer among cooking methods. True retention rates in grilled (DHA: 84 ± 15%; EPA: 87 ± 14%) and pan-fried samples (DHA: 85 ± 16%; EPA: 77 ± 17%) were significantly higher than deep-fried samples (DHA: 58 ± 17%; EPA: 51 ± 18%), but were not affected by final center temperatures despite differences in cooking times. Physical loss via cooking losses (grilling and pan-frying) or migration into frying oil (deep-frying) accounted for large quantities of DHA and EPA loss, while lipid oxidation and thermal degradation did not appear to be major mechanisms of loss. The antioxidant capacity of saury was not significantly affected by cooking treatments. The results of this study suggest that minimization of physical losses during cooking may increase DHA and EPA contents retained in cooked Pacific saury. PMID:27305642

  9. A phased array antenna with a broadly steerable beam based on a low-loss metasurface lens

    Science.gov (United States)

    Liu, Yahong; Jin, Xueyu; Zhou, Xin; Luo, Yang; Song, Kun; Huang, Lvhongzi; Zhao, Xiaopeng

    2016-10-01

    A new concept for a gradient phase discontinuity metasurface lens integrated with a phased array antenna possessing a broadly steerable beam is presented in this paper. The metasurface lens is composed of a metallic H-shaped pattern and the metallic square split ring can achieve complete 360° transmission phase coverage at 30° phase intervals. The metasurface can refract an incident plane wave to an angle at will by varying the lattice constant. We demonstrate that the beam steering range of the phased array antenna is between 12° and 85° when the metasurface lens with a refracting electromagnetic wave is employed at 45°. Interestingly, the proposed array antenna has a much higher gain than a conventional phased array antenna at low elevation angles. It is expected that the proposed array antenna will have potential applications in wireless and satellite communications. Furthermore, the proposed array antenna is fabricated easily and is also low in cost due to its microstrip technology.

  10. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  11. Multi-effects and Mechanism of Broad Bean M1 Root-tip Cells Implanted by Low Energy N+ Beam

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Broad beans were divided into six groups and implanted with N+ beam of 30 KeV, 8 × 1016/cm2 per time for various radiating times respectively. Besides the statistics of its vigor of germination, the M1 root-tip cells of these broad beans were systematically analyzed on their changes in mitotic percentage, morphology and behavior of chromosomes, along with the structure of cytoskeletons, including microtubule and intermediate filament. Based on all results of these studies, our opinions have been expressed in the report on the mechanism of low-energy N+ beams effecting on higher dicotyledons such as broad bean.

  12. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  13. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Sallamand, P. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Belyavina, N. [Department of Physics, Taras Shevchenko University, 2, Glushkov Avenue, 03022 Kiev (Ukraine); Pilloz, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France)

    2013-11-15

    The influence of operational parameters on the local phase composition and mechanical stability of the electron beam welds between titanium alloy and AISI 316L austenitic stainless steel with a copper foil as an intermediate layer has been studied. It was shown that two types of weld morphologies could be obtained depending on beam offset from the center line. Beam shift toward the titanium alloy side results in formation of a large amount of the brittle TiFe{sub 2} phase, which is located at the steel/melted zone interface and leads to reducing the mechanical resistance of the weld. Beam shift toward the steel side inhibits the melting of titanium alloy and, so, the formation of brittle intermetallics at the titanium alloy/melted zone interface. Mechanical stability of the obtained junctions was shown to depend on the thickness of this intermetallic layer. The fracture zone of the weld was found to be a mixture of TiCu (3–42 wt%), TiCu{sub 1−x}Fe{sub x} (x=0.72–0.84) (22–68 wt%) and TiCu{sub 1−x}Fe{sub x} (x=0.09–0.034) (0–22 wt%). In order to achieve the maximal ultimate tensile strength (350 MPa), the diffusion path length of Ti in the melted zone should be equal to 40–80 µm.

  14. Mechanism Research on Melting Loss of Coppery Tuyere Small Sleeve in Blast Furnace

    Science.gov (United States)

    Chai, Yi-Fan; Zhang, Jian-Liang; Ning, Xiao-Jun; Wei, Guang-Yun; Chen, Yu-Ting

    2016-01-01

    The tuyere small sleeve in blast furnace works under poor conditions. The abnormal damage of it will severely affect the performance of the blast furnace, thus it should be replaced during the damping down period. So it is of great significance that we study and reduce the burnout of tuyere small sleeve. Melting loss is one case of its burnout. This paper studied the reasons of tuyere small sleeve's melting loss, through computational simulation and microscopic analysis of the melting section. The research shows that the temperature of coppery tuyere small sleeve is well distributed when there is no limescale in the lumen, and the temperature increases with the thickness of limescale. In addition, the interruption of circulating water does great harm to the tuyere small sleeve. The melting loss of tuyere small sleeve is caused by iron-slag erosion, with the occurrence of the melt metallurgical bonding and diffusion metallurgical combination.

  15. A Mechanical and Experimental Study on the Heat Loss of Solar Evacuated Tube

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui-zhong; LIU Zhen-yan; ZHANG Min; HUANG Chen; WANG Li-hui; ZOU Zhi-jun

    2009-01-01

    The experimental system of heat loss of all-glass evacuated solar collector tubes (evacuated tube) is firstly designed and constructed, which uses electric heater as thermal resource. The equilibrium temperatures are less than ±1℃ during the test, and the temperature differences of up/middle/low node in the tube are less than 1 ℃, 3 ℃, and 7℃ respectively. The heat loss of evacuated tube increases about 2.7% with vacuum state of 0.01-1 mPa, and it has the best performance at tube temperature of 20-280℃. The invalidation tube (> 200 mPa) has the biggest heat loss that increases linearly with the tube temperature. The evacuated tubes with the vacuum of 0.01-1 mPa are suitable for most solar adsorption refrigeration.

  16. A method to compensate the energy loss of a continuous stacked beam with a large momentum spread

    International Nuclear Information System (INIS)

    A system of rectangular drift tube loaded cavities resonating in the TE 101 mode combined with a cyclic scaling guide field can be used to accelerate an unbunched beam of charged particles. The system is superior to phase displacement because the cavities are driven at a fixed frequency with certain phase differences between each other. The range of particle momenta is limited by rf-knock out. Rf-induced betatron oscillations and phase dependent momentum changes can be compensated by means of sixteen cavities on the circumference of the accelerator. The amplitude of the betatron oscillations and the energy gain were calculated numerically for storage devices consisting of a spiral-sector FFAG guide field and one or sixteen cavities, respectively, using measured rf-feld data. The systems seem to be practical only for electrons with an energy up to 100 MeV. The rf-system works within an energy width of several MeV. (Auth.)

  17. Potential Mechanisms Mediating Sustained Weight Loss Following Roux-en-Y Gastric Bypass and Sleeve Gastrectomy.

    Science.gov (United States)

    Makaronidis, Janine M; Batterham, Rachel L

    2016-09-01

    Bariatric surgery is the only effective treatment for severe obesity. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), the most commonly performed procedures, lead to sustained weight loss, improvements in obesity-related comorbidities and reduced mortality. In humans, the main driver for weight loss following RYGB and SG is reduced energy intake. Reduced appetite, changes in subjective taste and food preference, and altered neural response to food cues are thought to drive altered eating behavior. The biological mediators underlying these changes remain incompletely understood but changes in gut-derived signals, as a consequence of altered nutrient and/or biliary flow, are key candidates.

  18. Mechanical behaviour of vacuum chambers and beam screens under quench conditions in dipole and quadrupole fields

    CERN Document Server

    Rathjen, C

    2002-01-01

    A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.

  19. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams.

    Science.gov (United States)

    Demore, Christine E M; Yang, Zhengyi; Volovick, Alexander; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2012-05-11

    We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam's topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result. PMID:23003045

  20. Out-of-plane nano-electro-mechanical tuning of the Fano resonance in photonic crystal split-beam nanocavity

    Science.gov (United States)

    Lin, Tong; Zhang, Xingwang; Zou, Yongchao; Chau, Fook Siong; Deng, Jie; Zhou, Guangya

    2015-10-01

    We propose and experimentally demonstrate the use of Fano resonance as a means to improve the Quality factor of photonic crystal split-beam nanocavities. The Fano resonance is triggered by the interference between the second-order quasi-transverse electric resonant mode and the leaky high-order quasi-transverse electric propagation mode of the optimized photonic crystal split-beam nanocavity. Compared with a similar photonic crystal split-beam nanocavity without asymmetric Fano lineshape, the Q-factor is increased up to 3-fold: from 1.99 ×104 to 5.95 ×104 . Additionally, out-of-plane tuning of the Fano resonance is investigated by means of a Nano-Electro-Mechanical Systems based actuator. The maximum centre wavelength shift of the Fano resonance reached 116.69 pm, which is more than 4.5 times the original quasi-Full Width at Half Magnitude.

  1. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity

    DEFF Research Database (Denmark)

    Gordillo, M.; Vega, H.; Trainer, A.H.;

    2008-01-01

    on enzymatic activity and cellular phenotype. We found that ESCO2 W539G results in loss of autoacetyltransferase activity. The cellular phenotype produced by this mutation causes cohesion defects, proliferation capacity reduction and mitomycin C sensitivity equivalent to those produced by frameshift...

  2. Camshaft with roller bearings to reduce mechanical losses; Waelzgelagerte Nockenwelle zur Reduzierung von Reibungsverlusten

    Energy Technology Data Exchange (ETDEWEB)

    Artur, Christophe; Lemaitre, Fabrice [Timken Europe, Colmar (France); Schneider, Falk; Kreisig, Michael [Mahle Ventiltrieb GmbH, Stuttgart (Germany)

    2010-03-15

    Reducing frictional losses in combustion engine and power train applications is imperative to achieve future CO-2 emissions targets. Mahle and Timken have combined their expertise to develop new camshaft technology which could positively contribute to this industry effort. This paper describes the content and the results of this joint work and highlights the potential benefits of the proposed solution. (orig.)

  3. Effects of electron beam radiation on mechanical properties and on the resistance to punctures caused by Plodia interpunctella in cereal bar packaging

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Juliana N.; Moura, Esperidiana A.B.; Oliveira, Vitor M., E-mail: julianaabc@usp.b, E-mail: eabmoura@ipen.b, E-mail: volmiranda@gmail.co [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Potenza, Marcos R., E-mail: potenza@biologico.sp.gov.b [Instituto Biologico de Sao Paulo/APTA, Sao Paulo, SP (Brazil); Arthur, Valter, E-mail: varthur@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2009-07-01

    Plodia interpunctella is an important pest in stored products in the tropical and subtropical regions, infesting grains and flours. The adult of P. interpunctella is a small butterfly with about 15 - 20mm of spread and the female places separately of 100 the 400 eggs in groups on the grains whose hard incubation some days. This insect infesting diverse types of food packaging, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by P. interpunctella in BOPPmet/BOPP structure, used commercially as cereal bar packaging, after electron beam irradiation. The material samples were irradiated up to 120 kGy using a 1.5 MeV electrostatic accelerator, at room temperature, in air, dose rate 11.22 kGy/s. Irradiation doses were measured using cellulose triacetate film dosimeters 'CTA-FTR-125' from Fuji Photo Film Co. Ltd. After irradiation the BOPPmet/BOPP samples were subjected to tests of puncture resistance by P. interpunctella, tensile tests and penetration resistance. The results showed significant decreases (p<0.05) in the original mechanical properties of the structures according to the radiation doses applied and effective resistance against punctures by P. interpunctella for irradiated and nonirradiated BOPPmet/BOPP samples. These results indicate that non-irradiated and irradiated BOPPmet/BOPP structure presents puncture resistance against P. interpunctella and that electron-beam irradiation, in conditions studied in this work, may turn the structure inappropriate for cereal bar packaging, due to high reduction its mechanical properties after irradiation. (author)

  4. Effects of electron beam radiation on mechanical properties and on the resistance to punctures caused by Plodia interpunctella in cereal bar packaging

    International Nuclear Information System (INIS)

    Plodia interpunctella is an important pest in stored products in the tropical and subtropical regions, infesting grains and flours. The adult of P. interpunctella is a small butterfly with about 15 - 20mm of spread and the female places separately of 100 the 400 eggs in groups on the grains whose hard incubation some days. This insect infesting diverse types of food packaging, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by P. interpunctella in BOPPmet/BOPP structure, used commercially as cereal bar packaging, after electron beam irradiation. The material samples were irradiated up to 120 kGy using a 1.5 MeV electrostatic accelerator, at room temperature, in air, dose rate 11.22 kGy/s. Irradiation doses were measured using cellulose triacetate film dosimeters 'CTA-FTR-125' from Fuji Photo Film Co. Ltd. After irradiation the BOPPmet/BOPP samples were subjected to tests of puncture resistance by P. interpunctella, tensile tests and penetration resistance. The results showed significant decreases (p<0.05) in the original mechanical properties of the structures according to the radiation doses applied and effective resistance against punctures by P. interpunctella for irradiated and nonirradiated BOPPmet/BOPP samples. These results indicate that non-irradiated and irradiated BOPPmet/BOPP structure presents puncture resistance against P. interpunctella and that electron-beam irradiation, in conditions studied in this work, may turn the structure inappropriate for cereal bar packaging, due to high reduction its mechanical properties after irradiation. (author)

  5. Modelling, Simulation and Identification of Heat Loss Mechanisms for Parabolic Trough Receivers Installed in Concentrated Solar Power Plants

    OpenAIRE

    Caron, Simon; Röger, Marc

    2015-01-01

    This paper describes a thermodynamic model library developed with the object-oriented language Modelica, which is both implemented for steady-state and transient heat transfer analyses of Parabolic Trough Receivers (PTRs) installed in Concentrated Solar Power (CSP) plants. For the identification of PTR heat loss mechanisms, this heat transfer model is coupled to a derivative-free hybrid optimization routine developed in Matlab, combining a Particle Swarm Optimization (PSO) algorithm with a...

  6. Static mechanical properties of hybrid RTM-made composite I- and Π-beams under three-point flexure

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2015-06-01

    Full Text Available This paper deals with three-point flexure tests on hybrid I- and Π-beams, made out of multi-layer carbon fiber/epoxy resin (including twill woven fabric CF3031/5284 and unidirectional cord fabric U3160/5284 reinforced composites, processed using the RTM (resin transfer molding technique. Static bending properties were determined and failure initiation mechanism was deduced from experimental observations. Failure mode of the tested hybrid RTM-made I-beams can be reckoned to be characteristic of the delamination from the cutout edge within the web and the debonding propagation along the interface between the inverted triangular resin-rich zone and the adjacent curved web until local buckling within the curved webs around the conjunction fillet region. In contrast, as distinct from hybrid RTM I-beams subjected to three-point bending loading, hybrid RTM-made Π-beams in three-point flexure tests experienced the resin debonding in the inverted triangular resin-rich zones and the debonding propagation along the interface between the inverted triangular resin-rich zone and the adjacent curved web until complete separation of the curved web from the flange. Progressive damage models (PDMs were presented to predict failure loads and process of hybrid RTM-made I- and Π-beams under three-point flexure. Good correlation was achieved between experimental and numerical results.

  7. Mechanism of Electron Beam Induced Oxide Layer Thickening on Iron–Iron Oxide Core–Shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You

    2015-04-16

    Materials exposed to radiation show structural changes and damages, especially in the nanoscale range. The characterizing equipment involving electron beam (e-beam) radiation for a nanosize imaging process, such as a transmission electron microscope, is no exception, in which the most prominent behavior of native oxide layer thickening has been widely studied. In this paper, we describe the physics behind the growth mechanism of the oxide layer in a core–shell iron/iron oxide nanoparticle (NP) under the impact of e-beam radiation. The particles studied were synthesized via a cluster deposition system. Due to the impact of the e-beam, these particles were observed to grow inward and outward resulting in a total increase of NP size. The theory is connected with experimental evidence to reveal the oxide layer thickening of the NP, which is favored and enhanced by vacancy formation, surface oxidation, and diffusion/void nucleation under the impact of a 200 keV e-beam.

  8. Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams

    Science.gov (United States)

    Demore, Christine E. M.; Yang, Zhengyi; Volovick, Alexander; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2012-05-01

    We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam’s topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result.

  9. Mechanical scanner-less multi-beam confocal microscope with wavefront modulation

    Science.gov (United States)

    Takiguchi, Yu; Seo, Min-Woong; Kagawa, Keiichiro; Takamoto, Hisayoshi; Inoue, Takashi; Kawahito, Shoji; Terakawa, Susumu

    2016-04-01

    We propose a novel full-electronically controlled laser confocal microscope in which a liquid-crystal-on-silicon spatial light modulator and a custom CMOS imaging sensor are synchronized for performing multi-beam confocal imaging. Adaptive wavefront modulation for functional multi-beam excitation can be achieved by displaying appropriate computer generated holograms on the spatial light modulator, in consideration of the numerical aperture of the focusing objective. We also adopted a custom CMOS imaging sensor to realize multi-beam confocal microscopy without any physical pinhole. The confocality of this microscope was verified by improvements in transverse and axial resolutions of fluorescent micro-beads.

  10. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    CERN Document Server

    Garion, C; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the sup...

  11. The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell

    KAUST Repository

    Peters, Craig H.

    2011-10-11

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanism and Therapeutic Strategies of Ailamode in the Treatment of RA-induced Bone Loss

    Institute of Scientific and Technical Information of China (English)

    Wang Feng

    2013-01-01

    Rheumatoid arthritis (RA) caused by exceed bone absorption than osteogenesis and the subsequent osteoporosis (bone loss) around joints and in entire body, is the most commonly seen bone disease in clinic, which is induced by inlfammatory factors and corticosteroid therapies, while RA-induced bone loss is believed to be associated with the decreased osteogenesis because of the increased bone absorption and low osterix expression by reason of over-expressions of TNF-α, IL-1, Il-6 and RANKL, etc.. Ailamode (ALMD, T-614) is a new anti-RA agent (DMARDs) and a regulator for immunity and bone metabolism. Research showed that T-614 could eliminate bone absorption and up-regulate osterix expression to improve osteogenesis by inhibiting some inlfammatory factors (TNF-α, IL-1 and Il-6), so as to reduce bone and joint damages. And several clinical evidences have proved that T-614 is safe in treating RA and has synergistic effect with methotrexate (MTX), which could strengthen the efifcacy and decrease bone erosion. Therefore, it is considered to be the most valuable agent in the treatment of RA and RA-induced bone loss at present.

  13. Electro-mechanical response of functionally graded beams with imperfectly integrated surface piezoelectric layers

    Institute of Scientific and Technical Information of China (English)

    YAN; Wei; CHEN; Weiqiu

    2006-01-01

    The time-dependent behavior of a simply-supported functionally graded beam bonded with piezoelectric sensors and actuators is studied using the state-space method. The creep behavior of bonding adhesives between piezoelectric layers and beam is characterized by a Kelvin-Voigt viscoelastic model, which is practical in a high temperature circumstance. Both the host elastic functionally graded beam and the piezoelectric layers are orthotropic and in a state of plane stress, with the former being inhomogeneous along the thickness direction. A laminate model is employed to approximate the host beam. Moreover, the coupling effect between the elastic deformation and electric field in piezoelectric layers is considered. Results indicate that the viscoelastic property of interfacial adhesives has a significant effect on the function of bonded actuators and sensors with time elapsing.

  14. Preliminary thermo-mechanical analysis of angular beam impact on LHC collimators

    CERN Document Server

    Cauchi, M; Bertarelli, A; Carra, F; Dallocchio, A; Deboy, D; Mariani, N; Rossi, A; Lari, L; Mollicone, P; Sammut, N

    2012-01-01

    The correct functioning of the LHC Collimation System is crucial to attain the desired LHC luminosity performance. However, the requirements to handle high intensity beams can be demanding. In this respect, accident scenarios must be well studied in order to assess their effect on the robustness of the collimators. One of the most probable accident scenarios identified is an asynchronous beam dump coupled with slight angular misalignment errors of the collimator installation at the beam-line. Previous work presented a preliminary thermal evaluation of the extent of beam-induced damage for such scenarios, where it was shown that in some cases, a tilt of the jaw could actually serve to mitigate the effect of an asynchronous dump on the collimators. This paper will further analyze the response of tertiary collimators in presence of such angular jaw alignments. Such work will also help to start identifying optimal operational conditions.

  15. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    Science.gov (United States)

    Cumming, A. V.; Craig, K.; Martin, I. W.; Bassiri, R.; Cunningham, L.; Fejer, M. M.; Harris, J. S.; Haughian, K.; Heinert, D.; Lantz, B.; Lin, A. C.; Markosyan, A. S.; Nawrodt, R.; Route, R.; Rowan, S.

    2015-02-01

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of the mechanical dissipation of promising alternative crystalline coatings that use multi-layers of single crystal gallium phosphide (GaP) and aluminium gallium phosphide (AlGaP) that are epitaxially grown and lattice matched to a silicon substrate. Analysis shows that the dissipation of the crystalline coating materials appears to be significantly lower than that of the currently used amorphous coatings, potentially enabling a reduction of coating thermal noise in future gravitational wave detectors.

  16. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  17. Experimental research on mechanical properties of prestressed truss concrete composite beam encased with circular steel tube

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo-yi; ZHENG Wen-zhong

    2009-01-01

    Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circu-lar steel tube were carried out.It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the rati-o of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's sec-area to the effective tensile concrete area.The coefficient of uneven crack distribution is 1.68 and the for-mula for the calculation of crack width is established.Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index βo.The pure bending region of beams accords with the plane section assumption from loading to failure.The calcu-lation formula of ultimate stress increment of the unbonded tendon and the method to caleulate the bearing ca-pacity ot normal section of beams have been presented.Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.

  18. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  19. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    Science.gov (United States)

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  20. Loss of PPARα perpetuates sex differences in stroke reflected by peripheral immune mechanisms.

    Science.gov (United States)

    Dotson, Abby L; Wang, Jianming; Liang, Jian; Nguyen, Ha; Manning, Dustin; Saugstad, Julie A; Offner, Halina

    2016-06-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor transcription factor that plays a role in immune regulation. Because of its expression in cerebral tissue and immune cells, PPARα has been examined as an important regulator in immune-based neurological diseases. Many studies have indicated that pre-treatment of animals with PPARα agonists induces protection against stroke. However, our previous reports indicate that protection is only in males, not females, and can be attributed to different PPARα expression between the sexes. In the current study, we examine how loss of PPARα affects male and female mice in experimental stroke. Male and female PPARα knockout mice were subject to middle cerebral artery occlusion (MCAO) or sham surgery, and the ischemic (local) or spleen specific (peripheral) immune response was examined 96 h after reperfusion. We found that loss of PPARα perpetuated sex differences in stroke, and this was driven by the peripheral, not local, immune response. Specifically we observed an increase in peripheral pro-inflammatory and adhesion molecule gene expression in PPARα KO males after MCAO compared to females. Our data supports previous evidence that PPARα plays an important role in sex differences in the immune response to disease, including stroke. PMID:26868919

  1. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities

  2. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    Science.gov (United States)

    Gerhard, Marina; Gehrig, Dominik; Howard, Ian A.; Arndt, Andreas P.; Bilal, Mühenad; Rahimi-Iman, Arash; Lemmer, Uli; Laquai, Frédéric; Koch, Martin

    2016-04-01

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified.

  3. Small signal modeling of high electron mobility transistors on silicon and silicon carbide substrate with consideration of substrate loss mechanism

    Science.gov (United States)

    Sahoo, A. K.; Subramani, N. K.; Nallatamby, J. C.; Sylvain, L.; Loyez, C.; Quere, R.; Medjdoub, F.

    2016-01-01

    In this paper, we present a comparative study on small-signal modeling of AlN/GaN/AlGaN double hetero-structure high electron mobility transistors (HEMTs) grown on silicon (Si) and silicon carbide (SiC) substrate. The traditional small signal equivalent circuit model is modified to take into account the transmission loss mechanism of coplanar waveguide (CPW) line which cannot be neglected at high frequencies. CPWs and HEMTs-on-AlN/GaN/AlGaN epitaxial layers are fabricated on both the Si and SiC substrates. S-parameter measurements at room temperature are performed over the frequency range from 0.5 GHz to 40 GHz. Transmission loss of CPW lines are modeled with a distributed transmission line (TL) network and an equivalent circuit model is included in the small-signal transistor model topology. Measurements and simulations are compared and found to be in good agreement.

  4. Electrical Properties and Signal-Loss Mechanisms in Ferroelectric Plzt Films for Dynamic RAMS.

    Science.gov (United States)

    Sudhama, Chandrasekhara

    Due to the scaling down of storage capacitor area with every new generation of dynamic random access memory (DRAM) chips, there is a need for the development of high -permittivity dielectrics for achieving a storage capacitance of 30fF per cell. Lead-zirconate-titanate (PZT) and lanthanum doped PZT (PLZT) in the perovskite phase are attractive because of their high permittivities, good thermal stability of properties, and ability to be deposited in thin film form. This work is an examination of relevant electrical properties of PLZT films (with platinum electrodes) deposited using d.c. magnetron sputtering and sol-gel deposition. In this work, various techniques have been developed for the measurement of polarization charge. Negligible large-signal polarization dispersion, a desirable quality for DRAM dielectrics, is exhibited by sol-gel derived 50/50 PZT. The magnitudes of bit "0" relaxation and a hitherto unexplored bit "1" relaxation, both of which potentially cause signal loss during READ/WRITE operations, diminish when lanthanum is added to PZT. Further, Q(V) non-linearity also decreases when La is used as a dopant. At 2V a high charge-storage density of 20muC/cm ^2 (equivalent to 100fF/ mum^2), obtained from an undoped PZT film, is stable up to 150^ circC. The reduction in permittivity with the addition of lanthanum to PZT is attributed to deviations from stoichiometrically correct composition, and is accompanied by an improvement in fatigue rates (from ~ 1.8% to 0.8% per time decade). Dielectric breakdown strength is the most serious drawback of thin film PZT. The requirement of a 10 year extrapolated lifetime at operating voltage is not met at high temperatures, and may be achieved through improvements in defectivity of the film. New measurement techniques are proposed for the measurement of internal leakage current density (J _{rm L}) in the dielectric, which characteristic potentially causes signal loss during memory idle-times. Conventional estimates of

  5. Thermal and mechanical properties of e-beam irradiated butt-fusion joint in high-density polyethylene pipes

    Science.gov (United States)

    Vijayan, Vipin; Pokharel, Pashupati; Kang, Min Kwan; Choi, Sunwoong

    2016-05-01

    The effects of electron beam irradiation on the thermal and mechanical properties of a butt-fusion joint in high density polyethylene (HDPE) pipes were investigated. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infra-red spectroscopy of welded samples revealed the changes of crystallinity due to the cross linking effect of electron beam irradiation. The suppression of the degree of crystallinity with increasing the irradiation dose from 0 kGy to 500 kGy indicated that the e-beam radiation induced cross-links among the polymer chains at the weld zone. The cross-link junction at the joint of HDPE pipe prevented chain folding and reorganization leading to the formation of imperfect crystallites with smaller size and also less in content. Tensile test of the welded samples with different dose of e-beam irradiation showed the increased values of the yield stress and Young's modulus as a function of irradiation dose. On the other hand, the elongation at break diminished clearly with increasing the irradiation doses.

  6. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity.

    Science.gov (United States)

    Bennett, Richard J; Forche, Anja; Berman, Judith

    2014-10-01

    Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis. PMID:25081629

  7. Extensor-mechanism-reconstruction of the knee joint after traumatic loss of the entire extensor apparatus.

    Science.gov (United States)

    Raschke, D; Schüttrumpf, J P; Tezval, M; Stürmer, K M; Balcarek, P

    2014-06-01

    Injuries to the extensor apparatus of the knee joint have an incidence of 0.5% to 6%. Although previous studies have described the advantages and disadvantages of operative treatment in cases of patellar tendon rupture, patella fracture or quadriceps tendon lesions, a report on the reconstruction of the extensor apparatus after traumatic loss of the patella, the patellar tendon, the tibial tuberosity and parts of the lateral quadriceps muscle is absent from the literature. We present the case of a young motorcyclist who underwent a reconstruction of the extensor apparatus using autologous tendon grafts. At a 24-month follow-up, the patient has a nearly physiological range of motion of the knee joint and is able to cope well with everyday life.

  8. Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Karlsson Mats

    2010-11-01

    Full Text Available Abstract Glutathione peroxidase 3 (GPX3 is one of the key enzymes in the cellular defense against oxidative stress and the hepatocyte growth factor receptor, (MET has been suggested to be influenced by the GPX3 gene expression. In a previous microarray study performed by our group, Gpx3 was identified as a potential biomarker for rat endometrial adenocarcinoma (EAC, since the expression was highly downregulated in rat EAC tumors. Herein, we have investigated the mRNA expression and Gpx3 and Met in rat EAC by real time quantitative PCR (qPCR, and the methylation status of Gpx3. In addition we have examined the expression of GPX3 and MET in 30 human EACs of different FIGO grades and 20 benign endometrial tissues. We found that the expression of GPX3 was uniformly down regulated in both rat and human EAC, regardless of tumor grade or histopathological subtype, implying that the down-regulation is an early event in EAC. The rate of Gpx3 promoter methylation reaches 91%, where biallelic methylation was present in 90% of the methylated tumors. The expression of the Met oncogene was slightly upregulated in EACs that showed loss of expression of Gpx3, but no tumor suppressor activity of Gpx3/GPX3 was detected. Preliminary results also suggest that the production of H2O2 is higher in rat endometrial tumors with down-regulated Gpx3 expression. A likely consequence of loss of GPX3 protein function would be a higher amount of ROS in the cancer cell environment. Thus, the results suggest important clinical implications of the GPX3 expression in EAC, both as a molecular biomarker for EAC and as a potential target for therapeutic interventions.

  9. Reduction of absorption loss in multicrystalline silicon via combination of mechanical grooving and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    Surface texturing of silicon wafer is a key step to enhance light absorption and to improve the solar cell performances. While alkaline-texturing of single crystalline silicon wafers was well established, no efficient chemical solution has been successfully developed for multicrystalline silicon wafers. Thus, the use of alternative new methods for effective texturization of multicrystalline silicon is worth to be investigated. One of the promising texturing techniques of multicrystalline silicon wafers is the use of mechanical grooves. However, most often, physical damages occur during mechanical grooves of the wafer surface, which in turn require an additional step of wet processing-removal damage. Electrochemical surface treatment seems to be an adequate solution for removing mechanical damage throughout porous silicon formation. The topography of untreated and porous silicon-treated mechanically textured surface was investigated using scanning electron microscopy (SEM). As a result of the electrochemical surface treatment, the total reflectivity drops to about 5% in the 400-1000 nm wavelength range and the effective minority carrier diffusion length enhances from 190 {mu}m to about 230 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Aspects of Metal Surface Glowing Mechanisms with Intensive Electron Beam Bombardment

    Directory of Open Access Journals (Sweden)

    I.V. Barsuk

    2012-06-01

    Full Text Available The paper gives a brief description and analysis of the main physical processes which can have an effect on the glowing nature of metal element surfaces in different electric vacuum devices when they are bombarded by electron beams. It has been found that the electron glowing effects on metal surfaces according to the electron energy can be explained with the help of the transition scattering on plasma waves or just with the classical transition radiation effect. This fact is rather important in terms of classical physics interpretation of the observed glowing effects on metal surface elements and techniques optimization of metal and electron beams diagnostics as well.

  11. Monitoring Dosimetric Impact of Weight Loss With Kilovoltage (KV) Cone Beam CT (CBCT) During Parotid-Sparing IMRT and Concurrent Chemotherapy

    International Nuclear Information System (INIS)

    Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT was prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a ≥10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated

  12. Monitoring Dosimetric Impact of Weight Loss With Kilovoltage (KV) Cone Beam CT (CBCT) During Parotid-Sparing IMRT and Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Kean Fatt, E-mail: hokeanfatt@hotmail.com [Academic Radiation Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom); Marchant, Tom; Moore, Chris; Webster, Gareth; Rowbottom, Carl [North Western Medical Physics, The Christie NHS Foundation Trust, Manchester (United Kingdom); Penington, Hazel [Wade Radiotherapy Research Centre, The Christie NHS Foundation Trust, Manchester (United Kingdom); Lee, Lip; Yap, Beng; Sykes, Andrew; Slevin, Nick [Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom)

    2012-03-01

    Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT was prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a {>=}10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated

  13. Sensorineural hearing loss and status epilepticus associated with ulcerative colitis: Is there enough evidence to support immune-related mechanisms?

    Directory of Open Access Journals (Sweden)

    Sinem Yazici

    2015-01-01

    Full Text Available Ulcerative colitis (UC is characterized by an inflammatory disorder of the gastrointestinal tract. Immune-mediated extraintestinal manifestations of UC have increasingly attracted attention in the literature recently, for which UC is now considered as a systemic disease. Neurologic involvement associated with UC is probably under-reported because of the unawareness of many physicians, although early recognition and treatment are crucial in preventing major morbidity and sequel. In this case report is presented a patient newly diagnosed as UC, who developed both sensorineural hearing loss and intractable status epilepticus that we suggest to have resulted from immune-mediated mechanisms.

  14. How much can disaster and climate science contribute to loss and damage mechanisms in international climate policy?

    Science.gov (United States)

    Huggel, Christian; Allen, Simon; Eicken, Hajo; Hansen, Gerrit; Stone, Dáithí

    2015-04-01

    As the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) recently has shown, there is increasing evidence of observed impacts of climate change on natural and human systems. Some of these impacts are negative and result in damage and loss of lives and assets. In international climate policy negotiations under the UNFCCC the discussions on loss and damage have gained significant traction during the past negotiation rounds. At COP 19 the Warsaw International Mechanism for Loss and Damage (WIM) was created as an institutional arrangement to address this issue. Thereby, loss and damage (L&D) are typically defined as the residual damage and loss that occur beyond mitigation and adaptation efforts. This implies that effective mitigation and adaptation policy can substantially reduce L&D. While there is wide agreement that knowledge and understanding needs to be strengthened on how L&D due to climate change affects countries, in particular highly vulnerable countries and populations, there is still substantial disagreement on several aspects. In fact, after COP20 in Lima a number of options are on the table, including whether L&D should be located under the adaptation framework or form a separate institutional arrangement, or whether a compensation regime should be established to support developing countries. Similarly, the scientific framework for a clear L&D concept, its application in real-world cases, and implications for international climate policy, in particular with respect to questions of responsibility, liability, compensation and financing, is still evolving. Earlier proposals, for instance, have included a threshold concept, with payments released upon crossing of certain thresholds of climate (related) parameters, similar to insurance procedures. The threshold would be defined as a departure of the parameter from baseline conditions, for instance a rainfall event that is more intense than a certain baseline based threshold. Further

  15. Molecular Mechanisms of Age-Related Sleep Loss in the Fruit Fly

    OpenAIRE

    Robertson, Meagan; Keene, Alex. C.

    2013-01-01

    Across phyla, aging is associated with reduced sleep duration and efficiency. Both aging and sleep involve complex genetic architecture and diverse cell types and are heavily influenced by diet and environment. Therefore, understanding the molecular mechanisms of age-dependent changes in sleep will require integrative approaches that go beyond examining these two processes independently. The fruit fly, Drosophila melanogaster, provides a genetically amenable system for dissecting the molecula...

  16. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment.

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100-130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130-140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  17. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    NARCIS (Netherlands)

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders

  18. Energetics of the Beamed Zombie Turbulence Maser Action Mechanism for Remote Detection of Submerged Oceanic Turbulence

    Science.gov (United States)

    Gibson, C. H.; Bondur, V. G.; Keeler, R. N.; Leung, P. T.

    2011-11-01

    Sea surface brightness spectral anomalies from a Honolulu municipal outfall have been detected from space satellites in 200 km2 areas extending 20 km from the wastewater diffuser (Bondur 2005, Keeler et al. 2005, Gibson et al. 2005). Dropsonde and towed body microstructure measurements show outfall enhanced viscous and temperature dissipation rates above the turbulence trapping layer. Fossil turbulence waves and secondary (zombie, zebra) turbulence waves break as they propagate near-vertically and then break again near the surface to produce wind ripple smoothing in narrow frequency band (zebra) patterns from soliton-like sources of secondary turbulence energy acting on fossils advected from the outfall. The 30-250 m solitons reflect a nonlinear cascade from tidal and current kinetic energy to boundary layer turbulence events, to fossil turbulence waves, to internal soliton and tidal waves. Secondary (zombie) turbulence acts on outfall fossil patches to amplify, channel in chimneys, and vertically beam ambient internal wave energy just as energized metastable molecules around stars amplify and beam quantum frequencies in astrophysical masers. Kilowatts of buoyancy power from the treatment plant produces fossil turbulence patches trapped below the thermocline. Beamed zombie turbulence maser action (BZTMA) in mixing chimneys amplifies these kilowatts into the megawatts of surface turbulence dissipation required to affect brightness on wide sea surface areas by maser action vertical beaming of fossil-wave-power extracted from gigawatts dissipated by intermittent bottom turbulence events on topography from the tides and currents.

  19. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  20. Mechanisms of defect formation in zinc selenide during impulsed irradiation by powerful subthreshold electron beams

    International Nuclear Information System (INIS)

    Processes of subthreshold defect formation on irradiation of ZnSe by electron pulsed beams having 90ns durtion and 0.2-1.3 J/cm2 energy density in a pulse are studied. Irradiated layers are tested by electron microscopy and photoluminescence methods. 10 refs.; 2 figs

  1. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-06-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization.

  2. Design and Application of a Beam Testing System for Experiential Learning in Mechanics of Materials

    Science.gov (United States)

    Sullivan, R. Warsi; Rais-Rohani, M.

    2009-01-01

    Research shows that students can significantly improve their understanding and retention of topics presented in an engineering course when discussions of theoretical and mathematical approaches are combined with active-learning exercises involving hands-on physical experiments. In this paper, the design and application of a beam testing system…

  3. One cryogenic collimator, tested with beam

    CERN Document Server

    EuCARD, Collaboration

    2014-01-01

    The main accelerator SIS100 of the FAIR-complex will provide heavy ion beams of highest intensities. Beam loss due to ionization is the most demanding loss mechanism at operation with high intensity, intermediate charge state heavy ions. A special synchrotron design has been developed for SIS100, aiming for hundred percent control of ionization beam loss by means of a dedicated cryogenic ion catcher system. To suppress dynamic vacuum effects, the cryocatcher system shall provide a significantly reduced effective desorption yield. The construction and test of a prototype cryocatcher is a task of the EuCARD WP8 ColMat. A prototype test setup, including cryostat has been constructed, manufactured and tested under realistic conditions with beams from the heavy ion synchrotron SIS18. The design and results are presented.

  4. Microstructural Characterization and Mechanical Properties of Electron Beam Welded Joint of High Strength Steel Grade S690QL

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2016-06-01

    Full Text Available In the paper the results of metallographic examination and mechanical properties of electron beam welded joint of quenched and tempered steel grade S690QL are presented. Metallographic examination revealed that the concentrated electron beam significantly affect the changes of microstructure in the steel. Parent material as a delivered condition (quenched and tempered had a bainitic-martensitic microstructure at hardness about 290 HV0.5. After welding, the microstructure of heat affected zone is composed mainly of martensite (in the vicinity of the fusion line of hardness 420 HV0.5. It should be noted, however, that the microstructure of steel in the heat affected zone varies with the distance from the fusion line. The observed microstructural changes were in accordance with the CCT-S transformation diagram for the examined steel.

  5. Electron beam damage in oxides: a review.

    Science.gov (United States)

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  6. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  7. Morphological and mechanical properties of polyamide 6/linear low density polyethylene blend compatibilized by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    The aim of this study was to compatibilize immiscible polyamide 6 (PA6)/linear low density polyethylene (LLDPE) blend by using electron-beam initiated mediation process. Glycidyl methacrylate (GMA) was chosen as a mediator for cross-copolymerization at the interface between PA6 and LLDPE. The exposure process was carried out to initiate cross-copolymerization by the medium of GMA at the interface between PA and LLDPE. The mixture of the PA6/LLDPE/GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam radiation at various doses at room temperature. To investigate the results of this compatibilization strategy, the morphological and mechanical properties of the blend were analyzed. Morphology study revealed that the diameters of the dispersion particles decreased and the interfacial adhesion increased with respect to irradiation doses. The elongation at break of the blends increases significantly with increasing irradiation dose up to 100 kGy while the tensile strength and the modulus increased nonlinearly with increasing irradiation dose. The reaction mechanisms of the mediation process with the GMA mediator at the interface between PA6 and LLDPE were estimated. - Highlights: • PA6/LLDPE blend was compatibilized by the electron-beam initiated mediation process. • Interfacial adhesion was significantly enhanced by the radiation initiated cross-copolymerization. • The elongation at break of blend irradiated at 100 kGy was 4 times higher than PA6. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  8. Margin selection to compensate for loss of target dose coverage due to target motion during external-beam radiation therapy of the lung.

    Science.gov (United States)

    Foster, W Kyle; Osei, Ernest; Barnett, Rob

    2015-01-08

    The aim of this study is to provide guidelines for the selection of external-beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm.

  9. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  10. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance.

    Science.gov (United States)

    Darboux, Isabelle; Pauchet, Yannick; Castella, Claude; Silva-Filha, Maria Helena; Nielsen-LeRoux, Christina; Charles, Jean-François; Pauron, David

    2002-04-30

    The mosquitocidal activity of Bacillus sphaericus is because of a binary toxin (Bin), which binds to Culex pipiens maltase 1 (Cpm1), an alpha-glucosidase present in the midgut of Culex pipiens larvae. In this work, we studied the molecular basis of the resistance to Bin developed by a strain (GEO) of C. pipiens. Immunohistochemical and in situ hybridization experiments showed that Cpm1 was undetectable in the midgut of GEO larvae, although the gene was correctly transcribed. The sequence of the cpm1(GEO) cDNA differs from the sequence we previously reported for a susceptible strain (cpm1(IP)) by seven mutations: six missense mutations and a mutation leading to the premature termination of translation. When produced in insect cells, Cpm1(IP) was attached to the membrane by a glycosylphosphatidylinositol (GPI). In contrast, the premature termination of translation of Cpm1(GEO) resulted in the targeting of the protein to the extracellular compartment because of truncation of the GPI-anchoring site. The interaction between Bin and Cpm1(GEO) and the enzyme activity of the receptor were not affected. Thus, Bin is not toxic to GEO larvae because it cannot interact with the midgut cell membrane, even though its receptor site is unaffected. This mechanism contrasts with other known resistance mechanisms in which point mutations decrease the affinity of binding between the receptor and the toxin. PMID:11983886

  11. Exterior beam-column joint study with non-conventional reinforcement detailing using mechanical anchorage under reversal loading

    Indian Academy of Sciences (India)

    S Rajagopal; S Prabavathy

    2014-10-01

    Reinforced concrete structures beam-column joints are the most critical regions in seismic prone areas. Proper reinforcement anchorage is essential to enhance the performance of the joints. An attempt has been made to appraise the performance of the anchorages and joints. The anchorages are detailed as per ACI-352 (mechanical anchorages), ACI-318 (conventional bent hooks) and IS-456 (conventional full anchorage). The joints are detailed without confinement in group-I and with additional X-cross bar in group-II. To assess the seismic performance, the specimens are assembled into two groups of three specimens each and were tested under reversal loading, The specimen with T-type mechanical anchorage (Headed bar) and T-type mechanical anchorage combination with X-cross bar exhibited significant improvement in seismic performance: load-displacement capacity, displacement ductility, stiffness degradation, controlled crack capacity in the joint shear panel and also reduced congestion of reinforcement in joint core.

  12. Mechanism of Laser/light beam interaction at cellular and tissue level and study of the influential factors for the application of low level laser therapy

    OpenAIRE

    Khalid, Muhammad Zeeshan

    2016-01-01

    After the discovery of laser therapy it was realized it has useful application of wound healing and reduce pain, but due to the poor understanding of the mechanism and dose response this technique remained to be controversial for therapeutic applications. In order to understand the working and effectiveness different experiments were performed to determine the laser beam effect at the cellular and tissue level. This article discusses the mechanism of beam interaction at tissues and cellular l...

  13. Properties of microfiltration membranes: Mechanisms of flux loss in the recovery of an enzyme.

    Science.gov (United States)

    Bowen, W R; Hall, N J

    1995-04-01

    The transmission and rate of filtration of the enzyme yeast alcohol dehydrogenase (YADH) has been studied at capillary pore microfiltration membranes. Photon correlation spectroscopy (PCS) with nanometer resolution showed that the enzyme existed as discreate molecules only for a narrow range of pH and ionic strength. Under such conditions, the transmission of the enzyme was high. However, the rate of filtration still decreased continuously with time. Analyssis of the time dependence of the rate of filtration indicated that this decrease was due to in-pore enzyme deposition at low concentration ("standard blocking model") and suface depositon at high concentration ("cake filtration model"). Use of atomic force microscopy (AFM) gave unequivocal and quantitative confirmation of these inferences. The work shows the great advantage of using advanced physical characterization techniques, both for the identification of the optimum conditions for filtration (PCS) and for the elucidation of mechanisms giving rise to inefficiencies in the filtration process (AFM). (c) 1995 John Wiley & Sons, Inc.

  14. Evaluation of diagnostic accuracy of conventional and digital periapical radiography, panoramic radiography, and cone-beam computed tomography in the assessment of alveolar bone loss

    Science.gov (United States)

    Takeshita, Wilton Mitsunari; Vessoni Iwaki, Lilian Cristina; Da Silva, Mariliani Chicarelli; Tonin, Renata Hernandes

    2014-01-01

    Background: To evaluate the diagnostic accuracy of different radiographic methods in the assessment of proximal alveolar bone loss (ABL). Materials and Methods: ABL, the distance between cement-enamel junction and alveolar bone crest, was measured in 70 mandibular human teeth – directly on the mandibles (control), using conventional periapical radiography with film holders (Rinn XCP and Han-Shin), digital periapical radiography with complementary metal-oxide semiconductor sensor, conventional panoramic, and cone-beam computed tomography (CBCT). Three programs were used to measure ABL on the images: Image tool 3.0 (University of Texas Health Sciences Center, San Antonio, Texas, USA), Kodak Imaging 6.1 (Kodak Dental Imaging 6.1, Carestream Health®, Rochester, NY, USA), and i-CAT vision 1.6.20. Statistical analysis used ANOVA and Tukey's test at 5% significance level. Results: The tomographic images showed the highest means, whereas the lowest were found for periapical with Han-Shin. Controls differed from periapical with Han-Shin (P digital periapical (P = 0.0027). Conventional periapicals with film holders differed from each other (P = 0.0007). Digital periapical differed from conventional periapical with Han-Shin (P = 0.0004). Conclusions: Conventional periapical with Han-Shin film holder was the only method that differed from the controls. CBCT had the closest means to the controls. PMID:25191066

  15. Loss mechanisms in high-efficiency solar cells: Study of material properties and high-efficiency solar-cell performance on material composition: Project tasks

    Science.gov (United States)

    Sah, C. T.

    1985-01-01

    Loss mechanisms in high-efficiency solar cells were discussed. Fundamental limitations and practical solutions were stressed. Present cell efficiency is limited by many recombination sites: emitter, base, contacts, and oxide/silicon interface. Use of polysilicon passivation was suggested. After reduction of these losses, a 25% efficient cell could be built. A floating emitter cell design was shown that had the potential of low recombination losses.

  16. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    OpenAIRE

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders that are required for introducing the shear, but also diffracts significantly into higher orders. Consequently, in the few millimeters of free space propagation between the QWLSI WFS grating and it...

  17. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  18. Mechanisms involved in the induction of aneuploidy: the significance of chromosome loss

    Directory of Open Access Journals (Sweden)

    A.I. Seoane

    2000-12-01

    Full Text Available The induction of aneuploidy by physical and chemical agents using different test systems was evaluated. The effect of X-rays, caffeine, acetaldehyde, ethanol, diethylstilbestrol, propionaldehyde, and chloral hydrate was studied by chromosome counting in Chinese hamster embryonic diploid cells. Aneugenic ability of cadmium chloride, cadmium sulfate, potassium dichromate, chromium chloride, nickel chloride, and nickel sulfate was assessed by means of anaphase-telophase analysis in Chinese hamster ovary cells. Chromosome counting in human fibroblasts (MRC-5 cell line was employed to evaluate the effect of cacodilic acid, cadmium chloride, cadmium sulfate, and potassium dichromate. Finally, the induction of kinetochore-positive and kinetochore negative micronuclei by cadmium chloride, cadmium sulfate, potassium dichromate, chromium chloride, and nickel chloride was studied using CREST antibodies. When the effect of different agents was determined by chromosome counting, an increase of hypoploid but not of hyperploid cells was observed. Anaphase-telophase analysis showed that metal salts increased the frequency of lagging chromosomes. This finding has been confirmed by the increment of kinetochore-positive micronuclei using CREST antibodies. Therefore, chromosome loss could be considered as the main cause of induced aneuploidy.A indução de aneuploidia por agentes físicos e químicos usando diferentes sistemas de teste foi avaliada. O efeito de raios-X, cafeína, acetaldeído, etanol, dietilestilbestrol, propionaldeído e hidrato de cloral foi estudado por contagem cromossômica em células diplóides embriônicas de hamster chinês. A habilidade aneugênica de cloreto de cádmio, sulfato de cádmio, dicromato de potássio, cloreto de crômio, cloreto de níquel e sulfato de níquel foi avaliada por meio de análise de anáfase-telófase em células de ovário de hamster chinês. A contagem cromossômica em fibroblastos humanos (linhagem celular

  19. Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, K.; Gell, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Metallurgy; Jordan, E. [Dept. Mechanical Engineering, University of Connecticut, CT-06269, Storrs (United States)

    2000-11-01

    Grain boundary ridges, that form on the surface of platinum aluminide [(Ni,Pt)Al] bond coats prior to the deposition of the yttria stabilized zirconia ceramic layer by the electron beam physical vapor deposition (EB-PVD) process, were shown to be the sites for spallation damage initiation in (Ni,Pt)Al/EB-PVD thermal barrier coatings. When these ridges are removed prior to deposition of the ceramic layer, a 3 x life improvement is achieved. This study compares the spallation mechanisms in specimens with and without bond coat ridges, in order to explain the improvement in spallation life. (orig.)

  20. Mechanical design, development, and installation of ultra high vacuum compatible beam position indicators for insertion devices in Indus-2

    International Nuclear Information System (INIS)

    Recently, two insertion devices (undulators) have been installed in long straight sections LS-2 and LS-3 of Indus-2. For precise monitoring of electron beam position at the entry and exit of these insertion devices, 17 mm vertical low gap type ultra high vacuum (UHV) compatible insertion device beam position indicators (IDBPls) have been designed, developed, and installed by Beam Diagnostics Section. The water cooled RF shielded bellows have also been designed, developed, and integrated in IDBPI assembly by Ultra High Vacuum Technology Section. The IDBPI has 17 mm (V) x 81 mm (H) internal race track profile aperture same as of vacuum chamber of insertion device. It incorporates four numbers of electrode subassemblies directly welded (by TIG) to its vacuum chamber. The button diameter is 9 mm. The horizontal separation between buttons is 12 mm. The IDBPI assemblies have been installed in Indus-2 ring and are in operation since Jan 2015. The mechanical design, development procedure and initial results have been described in this paper