WorldWideScience

Sample records for beam irradiation effects

  1. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    Zheng Jiao; Xiaojuan Wan; Bing Zhao; Huijiao Guo; Tiebing Liu; Minghong Wu

    2008-02-01

    In this paper, the effects of electron beam irradiation on the gas sensing performance of tin dioxide thin films toward H2 are studied. The tin dioxide thin films were prepared by ultrasonic spray pyrolysis. The results show that the sensitivity increased after electron beam irradiation. The electron beam irradiation effects on tin dioxide thin films were simulated and the mechanism was discussed.

  2. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  3. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  4. Effect of electron beam irradiation on seed germination

    International Nuclear Information System (INIS)

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber

  5. Effect of electron beam irradiation on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghee; Bae, Youngmin [Changwon Univ., Changwon (Korea, Republic of)

    2013-07-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber.

  6. Effect of electron beam irradiation on surgical rubber gloves

    International Nuclear Information System (INIS)

    This paper outlines the effects of electron beam irradiation on surgical rubber gloves. The tensile strength, elongation at break and modulus were evaluated as function of dose range 20-100 kGy minimum dose, dose uniformity ratio, 3.1, and both, accelerated and normal aging, were used to study the stability of the irradiated gloves after irradiation. The surgical gloves were found to be useful up to the highest dose tested. (orig.)

  7. Effect of electron beam irradiation on surgical rubber gloves

    Science.gov (United States)

    Thevy Ratnam, Chantara; Zaman, Khairul

    1998-04-01

    This paper outlines the effects of electron beam irradiation on surgical rubber gloves. The tensile strength, elongation at break and modulus were evaluated as function of dose range 20-100 kGy minimum dose, dose uniformity ratio, 3.1, and both, accelerated and normal aging, were used to study the stability of the irradiated gloves after irradiation. The surgical gloves were found to be useful up to the highest dose tested.

  8. Electron beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Electron irradiation effects on aromatic polymers having various molecular structures were studied to elucidate the following subjects; (1) relation between radiation stability and molecular structure of repeating units, (2) mechanism of deterioration and (3) adaptability to matrix resin for radiation resistant FRP. Results are summarized as follows: (1) An order of radiation stability of units is; imide ring > diphenyl ether, diphenyl ketone > aromatic amide >> bis-phenol A > diphenyl sulphone. (2) Poly (ether-ether-ketone) and most polyimide are crosslinkable but polysulphones and polyarylate are chain degradation type polymers. (3) Newly developed thermoplastic polyimides have possibilities for use as matrix materials in radiation resistant FRP. (author)

  9. Effect of electron beam irradiation on fisheries water

    International Nuclear Information System (INIS)

    This paper studies about water obtained from fish pond of fisheries research centre. Usual water quality parameters such as pH, COD, Turbidity and Ammonia content were analyzed before and after irradiation. Electron beam irradiation was used to irradiate the water with the dose 100 kGy, 200 kGy and 300 kGy. Only high dose was applied on this water as only a limited amount of samples was supplied. All the parameters indicated a slight increase after irradiation except for the ammonia content, which showed a gradual decrease as irradiation dose increases. Sample condition was changed before irradiation in order to obtain more effective results in the following batch. The water sample from fisheries was diluted with distilled water to the ratio of 1:1.This was followed with irradiation at 100 kGy, 200 kGy and 300 kGy. The results still showed an increase in all parameters after irradiation except for ammonia content. For the following irradiation batch, the pH of the sample was adjusted to pH 4 and pH 8 before irradiation. For this sample the irradiation dose selected was only 100 kGy. A higher value of ammonia was observed for the sample with pH 4 after irradiation. Other parameters were almost the same as the first two batches. (author)

  10. Electron beam irradiation effects on some packaged dried food items

    International Nuclear Information System (INIS)

    For radical sports practitioners, small nutritious snack foods are needed. At the same time, food preparation must guarantee long shelf life and be compact or lightweight for easiness of carrying. Commercial individually packaged foods can be used either for sports practitioners like adventure racing or eventually as military rations. Irradiation processing of foods is an important preservation technology. High-voltage electron beams generated from linear accelerators are an alternative to radioisotope generators as they require much shorter exposure times (seconds vs. hours for γ irradiation) to be effective and are currently used to pasteurize meat products among others food items. This work describes the application of electron beam irradiation on some food items used in sport training diets: fiber rich cookies, fruit cereal bars, instant dehydrated asparagus soup and instant Brazilian corn pudding. Each kind of sample contained 3 groups of 15 units each. Irradiation was performed with an electron beam accelerator Dynamitron (Radiation Dynamics Inc.) model JOB 188, with doses of 5 and 10 kGy. For the evaluation of irradiated samples a methodology based on the Analytical Norms of the Instituto Adolfo Lutz, one of the South America Reference Laboratories was employed. The microbiological and sensory analyses of the diverse irradiated samples are presented. Electron beam irradiation resulted in significant reduction of the fungus and yeast load but caused dose dependent differences of some sensory characteristics. A careful dose choice and special irradiation conditions must be used in order to achieve sensory requirements needed for the commercialization of these irradiated food items. (author)

  11. Synergistic effects obtained by combined electron beam and microwave irradiation

    International Nuclear Information System (INIS)

    A new method based on microwave energy addition to accelerated electron beam energy for material processing was developed. The main idea of this work was to combine the advantages of both electron beam (EB) irradiation and microwave (MW) irradiation, i.e. EB high irradiation efficiency and MW high selectivity and volumetric heating, for material processing. The first expected and obtained result was the decrease of the required EB absorbed dose. Thus, the ionizing radiation costs could be reduced and the application of low intensity EB accelerators will become very economically attractive in the material-processing field. Another expected and obtained result was the improvement of material properties. A special designed facility consisting of an EB accelerator of 5.5 MeV and a MW source of 2.45 GHz and 1.6 kW that performs combined EB and MW irradiation is presented. There are three fields of interest under our investigation for application of combined EB and MW irradiation: environmental waste treatment (sewage sludge, flue gases), sterilization (food residuals, hospital wastes) and food quality and safety. Both, EB (ionizing radiation) and MW (non-ionizing) material processing are based on the radiation ability to alter physical and chemical properties of materials. Irradiation with electron beams was put forth as a very effective method for material processing because can produce ions, electrons, and free radicals at any temperature in the solid, liquid and gas. EB processes are very effective for material processing but the required absorbed dose is still high for pollutants removal, sterilization, vulcanization, etc. MW processing of materials is a relatively new technology that provides new approaches to improve the physical properties of materials and to produce new materials and microstructures that cannot be achieved by other methods. MW processes are less effective for material processing than EB processes but the cost of microwave systems is considerably

  12. Effects on focused ion beam irradiation on MOS transistors

    International Nuclear Information System (INIS)

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 μm minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga+ focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated

  13. Effects on focused ion beam irradiation on MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-04-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 {mu}m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga{sup +} focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.

  14. Effect of electron beam irradiation on fully aromatic polyimide

    International Nuclear Information System (INIS)

    It was clarified that the carbon fiber-reinforced plastics using polyether-ether-ketone as the matrix resin showed high radiation resistance, and the high temperature characteristics were improved by irradiation. The glass transition temperature of PEEK is about 150degC, and for the use in space and aviation fields, the matrix resin with higher heat resistance and thermoplastic property has been demanded. The thermoplastic polyimide, the development of which is advanced by Mitsui Toatsu at present, shows high glass transition temperature, and seems suitable to the use like this. In this study, the effect that electron beam irradiation exerted on the high temperature characteristics of the new thermoplastic polyimide and the change of the molecular mobility by irradiation were measured, and the applicability as a heat resistant and radiation resistant matrix was evaluated. The tensile test and the measurement of dynamic viscoelasticity were carried out. This polyimide maintained the value of 50% - 70% of the value measured at 23 degC even in the temperature zone of 150 - 200 degC, and has the excellent high temperature characteristics. Its strength and Young's modulus hardly changed by electron beam irradiation up to 120 MGy. (K.I.)

  15. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  16. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  17. Effects of electron beam irradiation on bovine pericardium tissue

    International Nuclear Information System (INIS)

    In this work, electron beam irradiation was studied as a way for bovine pericardium (BP) tissue crosslinking. BP samples were irradiated in an electron beam accelerator at different doses (12.5 and 25 kGy), at three different dose ratios (4.67, 9.34 kGy/s), in the presence and absence of oxygen. Irradiated samples were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Scanning Electron Microscopy (SEM) and swelling degree. DSC analysis showed a decrease in shrinkage temperature. However, for all irradiated samples, the energy required in the process was higher than the non irradiated BP. The TGA analysis showed that the thermal behavior, both the control and the irradiated samples, was characterized by three stages concerned in the loss of mass. The BP structure was characterized by swelling degree and SEM. The structure of the BP tissue suffered alteration, becoming looser, or more compact. By swelling degree, when the BP was irradiated in the presence of oxygen, the swelling degree value was higher than non irradiated BP, in the other hand the swelling degree value of BP irradiated in oxygen absence were lower than the non irradiated BP. Those results indicate that the BP irradiated in absence of oxygen could predominantly crosslinks. The BP degradation when it was irradiated in presence of oxygen was confirmed by SEM. (author)

  18. Effects of electron beam irradiation on bovine pericardium tissue

    Energy Technology Data Exchange (ETDEWEB)

    Polak, Roberta; Pitombo, Ronaldo N.M. [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica], e-mail: robertaplk@gmail.com, e-mail: pitombo@usp.br; Rodas, Andrea C.D.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail: andrea.ipen@gmail.com, e-mail: ozhiga@ipen.br; Kodama, Yasko; Machado, Luci D.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: ykodama@ipen.br

    2009-07-01

    In this work, electron beam irradiation was studied as a way for bovine pericardium (BP) tissue crosslinking. BP samples were irradiated in an electron beam accelerator at different doses (12.5 and 25 kGy), at three different dose ratios (4.67, 9.34 kGy/s), in the presence and absence of oxygen. Irradiated samples were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Scanning Electron Microscopy (SEM) and swelling degree. DSC analysis showed a decrease in shrinkage temperature. However, for all irradiated samples, the energy required in the process was higher than the non irradiated BP. The TGA analysis showed that the thermal behavior, both the control and the irradiated samples, was characterized by three stages concerned in the loss of mass. The BP structure was characterized by swelling degree and SEM. The structure of the BP tissue suffered alteration, becoming looser, or more compact. By swelling degree, when the BP was irradiated in the presence of oxygen, the swelling degree value was higher than non irradiated BP, in the other hand the swelling degree value of BP irradiated in oxygen absence were lower than the non irradiated BP. Those results indicate that the BP irradiated in absence of oxygen could predominantly crosslinks. The BP degradation when it was irradiated in presence of oxygen was confirmed by SEM. (author)

  19. Electron beam irradiation effects on xanthan gum. Rheological aspects

    International Nuclear Information System (INIS)

    The paper describes the application of electron beam irradiation to xanthum gum as used as ingredient by the food or cosmetics industry in order to establish their radiosensitivity. The edible powder of xanthum gum samples were irradiated in 1mm thick layers of Petri dishes covered by a transparent PVC of films using an EB accelerator Dynamitron (Radiation Dynamics Inc.) model JOB 188, dose rate 11.17 kGy/s, 0.637 MeV, 1.78 mA, 5 kGy per passage, 3.36 m min-1 with doses of 5, 10, 20 and 50kGy. One % aqueous solutions from irradiated and non-irradiated xanthum gum were prepared and the radiation effects were measured following viscosity changes at 25 deg. C using a Brookfield viscometer; model DVIII, spindel L, with Rheocalc software. Viscosity measurements were performed according to our previous experience and the results are the mean of at least 3 experiments

  20. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  1. Electron beam irradiation effects on xanthan gum, rheological aspects

    International Nuclear Information System (INIS)

    Food ingredients to be used for food processing should be decontaminated in order to prevent food spoilage and food-borne diseases. Xanthan gum is a well-known microbial polysaccharide produced by Xanthomonas campestris used in the hydrocolloid market. This paper describes the application of electron beam (EB) irradiation to xanthan gum as used as ingredient by the food or cosmetics industry in order to establish their radiosensitivity. Viscosity of 1% xanthan gum solutions prepared with the irradiated powder decreased with the increase of the EB irradiation dose. The radiation-induced viscosity detriment of this additive must be considered for practical applications. (author)

  2. Effect of electron-beam irradiation on graphene field effect devices

    OpenAIRE

    Childres, I.; Jauregui, L A; Foxe, M.; Tian, J. F.; R. Jalilian; Jovanovic, I; Chen, Y P

    2010-01-01

    Electron beam exposure is a commonly used tool for fabricating and imaging graphene-based devices. Here, we present a study of the effects of electron-beam irradiation on the electronic transport properties of graphene and the operation of graphene field-effect transistors (GFETs). Exposure to a 30 keV electron-beam caused negative shifts in the charge-neutral point (CNP) of the GFET, interpreted as due to n-dopin...

  3. Polyamide-6: The effects on mechanical and physicochemical properties by electron beam irradiation at different temperatures

    International Nuclear Information System (INIS)

    The electron beam irradiation of polyamide-6 (PA-6) films was carried out in air over a range of 50–1000 kGy at varying temperatures and a dose rate of 5.1 kGy min−1. The effects of the irradiation at temperatures above and below the glass transition temperature (Tg) on the thermal and mechanical properties were studied. Melting and crystallization temperatures decreased significantly with the increase in irradiation dose, whereas percent of crystallinity varied only slightly and Tg slightly increased for irradiated samples respect to non irradiated one with no significant effect of the dose. Mechanical properties were affected by irradiation. The material became more rigid with a direct relationship between the mechanical properties and the irradiation dose. The irradiation above Tg led to a larger variation in the thermal and mechanical properties respect to the irradiation below Tg. The changes in properties were related to the crosslinking produced in the amorphous part of the polymer by the electron beam irradiation. - Highlights: • Electron beam irradiation in polyamide-6 produced higher crosslinking than in polyamide-6,6. • Crosslinking took place mainly in the amorphous phase of the polymer. • Polyamide-6 melting point slightly decreased with the increase in irradiation dose and crystallinity remained practically unchanged. • Mechanical properties were strongly affected by irradiation dose. Irradiation above Tg significantly increased the changes in thermal and mechanical properties respect to irradiation at ambient temperature

  4. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    Science.gov (United States)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  5. Effects of ion beam irradiation on Oncidium lanceanum orchids

    International Nuclear Information System (INIS)

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12C5+ ions, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as molecular characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, after 4 months of irradiation, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Some morphological changes were seen on in vitro plantlets derived from PLBs irradiated at doses of 1.0 and 2.0 Gy. Most of the regenerated seedlings have been transferred to glasshouse for further morphological selection. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses of irradiation. (Author)

  6. Effects of ion beam irradiation on Oncidium lanceanum

    International Nuclear Information System (INIS)

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12C5+ ion, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as morphological characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Most of the regenerated seedlings have been transferred to glass house for morphological screening. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses

  7. Focused ion beam irradiation effects on nanoscale freestanding thin films

    International Nuclear Information System (INIS)

    The focused ion beam (FIB) technique is a versatile tool for nanoscale manipulation, deposition and etching. However, degradation mechanisms which lead to residual stresses in materials exposed to high-energy ion beams are not well understood. In this study, we examine the evolution of residual stresses in 100 nm thick freestanding aluminum films subjected to typical ion beam exposures within a commercial FIB tool. Experimental results show that the magnitude of the residual stresses increase with cumulative ion beam exposure and that upper limits are attainable. Further investigation demonstrates that a decrease in ion beam current at constant acceleration-voltage augments the upper limits, which manifests itself in greater residual stresses. The stress gradients in thin films develop from surface modifications in the form of amorphous top layers, which are modeled as bilayer approximations. Experimental observations and analysis indicate that ion beam exposure effects on the mechanical properties of nanoscale thin films and nanostructures cannot be ignored

  8. Effect of electron beam irradiation on nutritional ingredient of Tegillarca granosa meat

    International Nuclear Information System (INIS)

    The influences of 0, 1, 3, 5, 7 and 9 kGy electron beam irradiation on the contents of protein and amino acid and the composition of amino acids and fatty acids in Tegillarca granosa meat were investigated. The results showed that the electron beam had no significant effect on contents of moisture, ash and protein. Fat was sensitive to electron beam irradiation, which decreased with the increasing of irradiation dose. The composition of amino acids remained stable with different doses. The values of EAA/TAA and EAA/NEAA were kept in accordance with FAO/WHO protein model. Besides, electron beam irradiation made no effect on the limiting amino acid (the first and second limiting amino acids were Met + Cys and Val, respectively). The relative content of PUFA increased significantly 1 ∼ 7 kGy irradiation. Electron beam irradiation produced a notable impact on the essential fatty acid, induced the increase of linoleic acid, linolenic acid and arachidonic acid at the doses of 5 ∼ 9 kGy. After the irradiation of 9 kGy, the increments of relative contents of the three essential fatty acids reached 94.61%, 41.37% and 89.91%, respectively. Electron beam irradiation had positive effect on EPA with the doses of 3, 5 and 9 kGy. However, DHA was sensitive to electron beam irradiation, whose relative content decreased with the increasing of irradiation dose and undetected at the dose of 9 kGy. According to the research of decontamination effect, the recommended dose of electron beam irradiation on Tegillarca granosa ws fixed at 3 ∼ 5 kGy. (authors)

  9. Effect of electron beam irradiation on physicochemical properties of sago starch

    OpenAIRE

    Duangkhae Kanjanasopa; Zulkafli Ghazali; Sharifah Kharidah Syed Muhammad; Muhammad Ali Hassan; Benchamaporn Pimpa; Kamaruddin Hashim

    2007-01-01

    The effect of electron beam irradiation on sago starch was determined in terms of physicochemical properties. The irradiation dose employed was in the range of 10 to 30 kGy. Peak viscosity was decreasedwhen the irradiation dose was increased. The gel strength was found to be increased when the sago starch was irradiated at 10 to 15 kGy, thereafter, the value was decreased. Solubility was increased while swellingpower was decreased. Redness, yellowness and free acidity were increased. Intrinsi...

  10. Effect of electron beam irradiation on the quality of mackerel (Pneumatophorus japonicus) Meat

    International Nuclear Information System (INIS)

    The effect of 3, 5, 7 kGy electron beam irradiation on the volatile basic nitrogen (VBN) and peroxide value (POV), the contents of histamine and unsaturated fatty acid (UFA) in Pneumatophorus japonicus meat with vacuum or ordinary package were measured during refrigeration. The results showed that electron beam treatment could effectively control the contents of histamine and VBN, postpone the oxidation of unsaturated fatty acid in P. japonicus meat. The shelf life of P. japonicus meat could be extended with electron beam irradiation. Before cold storage, it is appropriate that the P. japonicus meat were ordinary packaged and irradiated at the dose of 5 kGy. (authors)

  11. The effects of electron beam irradiation on sterilization and preservation of chilled pork

    International Nuclear Information System (INIS)

    S The effects of electron beam irradiation on the sterilization and preservation of chilled pork were studied. The aim of this investigation was to provide academic and technical basis for application of electron beam irradiation on meat industry. The response surface analysis was used with electron beam energy(X1) and dose(X2) as factors and colony form unit(Y) as responses. The results have been shown that the model of sterilization of chilled pork by electron beam irradiation can be expressed Y=3.78-0.24X1-0.13X2-0.16X1X2-0.18X12+0.15X12(R2=0.9755). It has been found there is a interaction between electron beam energy and absorbed doses, and the significance sequence of factors is absorbed dose>interaction> electron beam energy. When absorbed doses are in range from 3.23 kGy to 4.0 kGy and electron beam energy is in range from 2.3 MeV to 3.8 MeV, the colony form unit would drop 2 logarithm units. The shelf life of samples treated with electron beam irradiation is longer by about 12 d than that of control samples when the samples are stored at 4 degree C. When the samples are stored at 7∼10 degree C, shelf life of samples treated with electron beam irradiation is longer by about 9 d than that of control samples. The results showed that electron beam irradiation has the effects of sterilization and preservation on chilled pork. This study has been confirmed that the application of electron beam irradiation is very useful for meat industry. (authors)

  12. Effects of Electron Beam Irradiated Natural Casings on the Quality Characteristics of Emulsion Sausage

    International Nuclear Information System (INIS)

    The effects of electron beam irradiated hog and sheep casings (1, 3, and 8 KGy) on the physicochemical properties and shelf stability of emulsion sausage were evaluated. There were no significantly differences in ph, instrumental color, and sensory evaluation among all the samples tested (p>0.05). The cooking yields for the irradiated treated samples were larger than the yields obtained for the non-irradiated samples for both the hog and sheep casing. However, the results on the purge loss after storage for 5 weeks were contradictory. The hardness of the sausage was lower when the irradiated natural casings were used. The irradiated natural casings accelerated lipid oxidation. The volatile basic nitrogen values were lower in samples treated with electron beam irradiation. The natural casings irradiated up to a dose of 3kGy not only had different total aerobic bacteria counts during the initial storage period but also displayed higher TAB counts at the final storage period

  13. Effect of electronic beam irradiation on development of Plodia interpunctella (Huebner)

    International Nuclear Information System (INIS)

    The electronic beam irradiation effects on different developed stages of Plodia interpunctella Huebner were studied. The hatch rate, pupation rate, emergence rate and reproductive capacity of insect after irradiation were tested. The results showed that the order of sensitivity of the life stages of Plodia interpunctella Huebner to electron beam irradiation was: egg > larva > pupae > adult. The hatch rate, pupation rate, emergence rate and reproductive capacity significantly decreased with the increasing of irradiation dose (P<0.05). The egg, larvae, pupae couldn't grow to adults after irradiation at 100, 250 and 600 Gy, respectively. No new generation adult was found after the adults were irradiation at 600 Gy. It is concluded that 600 Gy irradiation could be used as a suitable dose to prevent the reproduction of Plodia interpunctella Huebner during the storage of tobacco. (authors)

  14. Effects of Electron Beam Irradiated Natural Casings on the Quality Characteristics of Emulsion Sausage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunwook; Kim, Hackyoun; Hwang, Koeun; Choi, Sunmi; Kim, Cheonjei; Choi, Jihun; Choi, Yunsang [Konkuk Univ., Seoul (Korea, Republic of); Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    The effects of electron beam irradiated hog and sheep casings (1, 3, and 8 KGy) on the physicochemical properties and shelf stability of emulsion sausage were evaluated. There were no significantly differences in ph, instrumental color, and sensory evaluation among all the samples tested (p>0.05). The cooking yields for the irradiated treated samples were larger than the yields obtained for the non-irradiated samples for both the hog and sheep casing. However, the results on the purge loss after storage for 5 weeks were contradictory. The hardness of the sausage was lower when the irradiated natural casings were used. The irradiated natural casings accelerated lipid oxidation. The volatile basic nitrogen values were lower in samples treated with electron beam irradiation. The natural casings irradiated up to a dose of 3kGy not only had different total aerobic bacteria counts during the initial storage period but also displayed higher TAB counts at the final storage period.

  15. Effect of electron beam irradiation on the quality of fish meal

    International Nuclear Information System (INIS)

    Samples of soybean meal were exposed to electron beam with dosage levels of 0, .083, 1.56, 2.30, 4.93, 7.84 kGy, to evaluate the efficacy of electron beam for decontamination as well as the effect of electron beam irradiation on feeding quality of fish meal. The results showed that the total numbers of aerobic bacteria were reduced to 600 CFU/g and fungi inhibited to 0.05). Volatile basic nitrogen enhanced by electron beam irradiation (p0.05). Total acidity value unchanged by irradiation, but peroxide value was decreased as the dosage increased (p<0.05). It was concluded that the irradiation dosage of 1.56 ∼ 7.84 kGy was very effective for microbial decontamination of fish meal, and did not adversely affect the nutritional quality of fish meal. (authors)

  16. Retting effect of kenaf bast fiber by electron beam irradiation

    International Nuclear Information System (INIS)

    Kenaf (Hibiscus cannabinus) retting were separated from a kenaf bast fiber by a combination of Electron beam irradiation (EBI) and NaOH solution treatment. The methods were based on a 6% NaOH solution treatment after various doses of EBI. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the retted kenaf fibers decreased as the EBI dose increased. Specifically, the lignin in the retted kenaf fiber treated with 300 kGy of EBI was almost completely removed. The morphology of retted kenaf fibers were characterized by SEM image, and the studies showed that the fibrillated degree of retted kenaf fibers treated with various EBI doses and was increased as EBI dose increased. The retted kenaf fibers treated with the EBI at 300 kGy was uniformly fibrillated with 10 ∼ 30 μm diameters

  17. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    OpenAIRE

    Zhanbing Yang; Seiichi Watanabe; Takahiko Kato

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void forma...

  18. Effect of electron beam irradiation sterilization on the biomedical poly (octene-co-ethylene)/polypropylene films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Shifang [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039 (China); Yao Zhanhai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wang Jianwei [Shandong Weigao Group Medical Polymer Co., Ltd., Weihai 264209 (China); Song Yongxian [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.c [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-05-01

    The effect of electron beam irradiation with the dose ranging from 15 to 40 kGy on poly (octene-co-ethylene) (POE)/polypropylene (PP) films was investigated. Wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), yellowness index testing and mechanical performance measurement were applied to characterize the films. It demonstrated that crystalline structure exhibited little change, and degree of crystallinity slightly change under the irradiation treatment. Irradiation brought about oxidation of the films, forming hydroxyl groups of the peroxides and carbonyl groups. Tensile properties become worse as irradiation dose increased. Electron beam irradiation with the dose of 15-40 kGy has little effect on crystalline performance and a little influence for the POE/PP films, indicating a good irradiation resistance.

  19. Effect of electron beam irradiation sterilization on the biomedical poly (octene-co-ethylene)/polypropylene films

    International Nuclear Information System (INIS)

    The effect of electron beam irradiation with the dose ranging from 15 to 40 kGy on poly (octene-co-ethylene) (POE)/polypropylene (PP) films was investigated. Wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), yellowness index testing and mechanical performance measurement were applied to characterize the films. It demonstrated that crystalline structure exhibited little change, and degree of crystallinity slightly change under the irradiation treatment. Irradiation brought about oxidation of the films, forming hydroxyl groups of the peroxides and carbonyl groups. Tensile properties become worse as irradiation dose increased. Electron beam irradiation with the dose of 15-40 kGy has little effect on crystalline performance and a little influence for the POE/PP films, indicating a good irradiation resistance.

  20. Effect of electron beam irradiation on physicochemical properties of sago starch

    Directory of Open Access Journals (Sweden)

    Duangkhae Kanjanasopa

    2007-05-01

    Full Text Available The effect of electron beam irradiation on sago starch was determined in terms of physicochemical properties. The irradiation dose employed was in the range of 10 to 30 kGy. Peak viscosity was decreasedwhen the irradiation dose was increased. The gel strength was found to be increased when the sago starch was irradiated at 10 to 15 kGy, thereafter, the value was decreased. Solubility was increased while swellingpower was decreased. Redness, yellowness and free acidity were increased. Intrinsic viscosity, molecular weight and degree of polymerization were also decreased when the irradiation dose was increased.

  1. Irradiation effect on zooplankton eggs applied by bremsstrahlung induced from pulsed intense electron beam

    International Nuclear Information System (INIS)

    We have considered an irradiation effect on zooplankton eggs applied by bremsstrahlung induced from pulsed intense electron beam. Zooplankton eggs about 200 have been successfully inactivated using a bremsstrahlung at 3 kGy. We found that 63.9% of zooplankton eggs are inactivated by bremsstrahlung irradiation. It was the increase of 30 points in comparisons with 33.3% of zooplankton eggs inactivated for non-irradiation case. (author)

  2. Effects of Electron Beam and Microwave Irradiation on Human Blood Proteins

    International Nuclear Information System (INIS)

    The effects of separated and combined accelerated electron beam (EB) of 6.23 MeV and microwave (MW) of 2.45GHz irradiation on proteins in samples of human serum, human plasma and human integral blood are presented. Also, it was studied the effect of separate and combined EB and MW irradiation on proteins irradiated in samples of human integral blood, without and in the presence of a synthetic compound solution (S.C.S.) which is expected to exhibit various biological actions, such as to diminish or to increase the irradiation effects

  3. Effect of gamma and electron beam irradiation on textile waste water

    International Nuclear Information System (INIS)

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water were done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/ l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy was reduced to 390 mg/ l for gamma and 400 mg/ l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/ l for gamma and 144 mg/ l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  4. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  5. Effects of Ga ion-beam irradiation on monolayer graphene

    International Nuclear Information System (INIS)

    The effects of Ga ion on the single layer graphene (SLG) have been studied by Raman spectroscopy (RS), SEM, and field-effect characterization. Under vacuum conditions, Ga ion-irradiation can induce disorders and cause red shift of 2D band of RS, rather than lattice damage in high quality SLG. The compressive strain induced by Ga ion decreases the crystalline size in SLG, which is responsible for the variation of Raman scattering and electrical properties. Nonlinear out-put characteristic and resistance increased are also found in the I-V measurement. The results have important implications during CVD graphene characterization and related device fabrication

  6. Effect of electron beam irradiation on the nutritional ingredient of Sciaenops ocellatus meat

    International Nuclear Information System (INIS)

    The influences of electron beam irradiation and package pattern (vacuum or ordinary) on the nutritional ingredient of Sciaenops ocellatus meat were investigated. The results were summarized as follows: (1) Electron-beam irradiation dose had notable effect on the moisture content, but no significant impact on the content of ash, protein, lipid and total carbohydrate. Teh package pattern had no significant effect on the common nutrional composition of Sciaenops ocellatus meat. (2) Either package pattern or irradiation dose showed little influence on the total amino acids, delicious amino acid, EAA/TAA and EAA/NEAA of Sciaenops ocellatus meat. The first limiting amino acid of Sciaenops ocellatus meat changed from Met plus Cys to Val in virtue of electron beam irradiation. (3) Both irradiation dose and package pattern showed no difference to the total fatty acid content. But the irradiation dose had notable effect on the relative content of unsaturated fatty acid, polyunsaturated fatty acid and DHA. The vacuum-packaged group had less DHA loss than the ordinary-packaged group with the same absorbed dose, and low dose groups had less DHA loss than the high groups. As conclusion, combining with the bactericidal effect of electron beam irradiation to Sciaenops ocellatus meat, the recommended dose has been proposed to be 3-5 kGy. (authors)

  7. Effect of electron beam irradiation on pollen mother cells of gladiolus 'chaoji'

    International Nuclear Information System (INIS)

    In order to test the effects of various doses of electron beam on M1 generation pollen mother cells (PMC), the corm of gladiolus 'chaoji' was irradiated by electron beam with 3 MeV energy. Some abnormalities of meiosis of pollen mother cells were studied and the bands of protein subunit were analyzed by SDS-PAGE for the irradiated corm. The genetic damage at meiosis of gladiolus is observed, and the types of chromosomal aberrations are laggard chromosomes, chromosomal bridge, chromosome outside nucleus, unequal separation of chromosome, micronuclei and so on. Some trispores and paraspores are viewed at tetraspore period. The shape and size of the microspores vary in some treated materials, and most of microspores display little volume. The statistic of aberrance types and frequencies in PMCs show that aberrance types are chromosome outside nucleus and micronuclei mostly. The SDS-PAGE result shows that protein expression of M1 generation pollen is obviously changed by electron beam irradiation. Low dose of electron beam has obvious effects, and some special proteins subunit bands are found among varieties of irradiation dosage respectively. The protein bands are absent at the dose more than 160 Gy compared to low dose of electron beam. The results indicate that electron beam irradiation is an effective way for gladiolus breeding. (authors)

  8. Effect of irradiation of electron beam on protein and antioxidized enzyme activity of microcystis aeruginosa

    International Nuclear Information System (INIS)

    Microcystis aeruginosa often threatens human health and safety for its microcystin and bad smell. Its large number and hardness of removal are difficulty for water treatment. In this study, electron beam generated by an accelerator was applied to irradiate Microcystis aeruginosa by dose of l, 2, 3, 4 and 5 kGy. The effect of irradiation on Microcystis aeruginosa characteristic and mechanism was studied by surveying the changing of protein, enzyme activity and photosynthesis rate. The data show that irradiation of 1 kGy has little effect on dissoluble protein, POD and SOD activity. Irradiation of 25 kGy can decrease protein content and destroy the antioxidant system, also the photosynthesis rate decreases obviously, which makes Microcystis aeruginosa lose activity in short time. The result proves that a certain dose of electron beam irradiation can control algae growth and affect its life characteristic efficiently. (authors)

  9. Polyamide-6: The effects on mechanical and physicochemical properties by electron beam irradiation at different temperatures

    Science.gov (United States)

    Adem, E.; Burillo, G.; del Castillo, L. F.; Vásquez, M.; Avalos-Borja, M.; Marcos-Fernández, A.

    2014-04-01

    The electron beam irradiation of polyamide-6 (PA-6) films was carried out in air over a range of 50-1000 kGy at varying temperatures and a dose rate of 5.1 kGy min-1. The effects of the irradiation at temperatures above and below the glass transition temperature (Tg) on the thermal and mechanical properties were studied. Melting and crystallization temperatures decreased significantly with the increase in irradiation dose, whereas percent of crystallinity varied only slightly and Tg slightly increased for irradiated samples respect to non irradiated one with no significant effect of the dose. Mechanical properties were affected by irradiation. The material became more rigid with a direct relationship between the mechanical properties and the irradiation dose. The irradiation above Tg led to a larger variation in the thermal and mechanical properties respect to the irradiation below Tg. The changes in properties were related to the crosslinking produced in the amorphous part of the polymer by the electron beam irradiation.

  10. Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics

    International Nuclear Information System (INIS)

    The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied.

  11. Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics

    Science.gov (United States)

    Aytaç, Ayşe; Deniz, Veli; Şen, Murat; Hegazy, El-Sayed; Güven, Olgun

    2010-03-01

    The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied.

  12. Comparison of the effects of gamma ray and e-beam irradiation on the quality of minced beef during storage

    International Nuclear Information System (INIS)

    This study was conducted to compare the microbiological and physicochemical qualities of minced beef irradiated with gamma ray of e-beam at the absorbed doses from 5 to 20 kGy. The total bacterial counts of minced beef were decreased depending upon the irradiation doses, but sterilizing effect of gamma irradiation was higher than that of e-beam irradiation. The contents of malondialdegyde of minced beef were increased depending upon irradiation doses as well as storage periods (p< 0.05). Volatile basic nitrogen in minced beef was constantly increased during storage, but the increasing rate were retarded by irradiation. The hunter's color values(L*, a* and b*) of gamma or e-beam irradiated minced beef were decreased as irradiation dose increasing. Meanwhile, the quality changes of gamma irradiated samples were faster than e-beam irradiated samples

  13. Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls

    International Nuclear Information System (INIS)

    The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein. - Highlights: ► Our research material is steamed tofu rolls, a kind of soybean products. ► We compared the effects of gamma ray and electron beam irradiation. ► Total bacterial and three strains of pathogens are studied in our research. ► We reported electron beam has similar decontamination effect as gamma ray. ► Radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.

  14. Effect of electron beam irradiation on post harvest quality of Agaricus bisporus

    International Nuclear Information System (INIS)

    The effects of electron beam irradiation on fresh-keeping of Agaricus bisporus was studied after sporecarp samples were irradiated at 1.0, 2.0, 3.0 and 4.0 kGy and then stored at 4 degree C for 14d. The contents of water-soluble vitamins, amino acids and sugars were measured. Results showed that the contents of water-soluble sugars, amino acids, and aneurin, lactochrome, nicotinic acid in sporecarp did not significantly change after irradiation. However, asoribic acid was sensitive to irradiation, and the content was significantly reduced 31.1% at the dose of 4.0 kGy. It is concluded that 2 kGy irradiation can effectively prolong the shelf life, and almost no significant effect on the nutrient components of Agaricus bisporus. (authors)

  15. Separate, successive and simultaneous irradiation effects of electron beam and microwave on microorganisms survival

    International Nuclear Information System (INIS)

    The comparative results obtained by applying separate, successive and simultaneous electron beam (EB) irradiation and microwave (MW) heating in order to reduce the number of viable cells of Escherichia coli, Staphylococcus intermedius, Pseudomonas aeruginosa and Trichinella spiralis are presented. Simultaneous EB and MW irradiation results in a dramatic decrease of number of microorganisms compared to MW or EB irradiation alone. Thus, the number of viable cells of Staphylococcus intermedius was reduced by 5 order of magnitude more by simultaneous EB and MW irradiation than separate EB or MW irradiation. Electron beams destroy microorganisms by attacking the DNA molecule while microwaves, although the true mechanism is not clearly understood yet, can destroy the proteins of microorganisms. In our opinion, it seems that microwave irradiation could cause modification of the micro-organisms sensitivity to EB irradiation and thus the application of successive or simultaneous EB and MW irradiation lead to greater lethal effects than the EB irradiation alone. Experiments were carried out using a system consisting mainly of the following units: an accelerated electron beam source of 6 MeV and 75 mA current peak intensity, a 2.45 GHz microwave source of controlled power up to 0.85 kW and a special designed irradiation chamber. Irradiation chamber consists of a microwave multimode cavity in which the scanned electron beam is introduced perpendicularly to its upper-end plate through a 100 mm thick aluminium foil while the microwave power is coupled to one of its lateral walls via a slotted waveguide used as radiating antenna. The tests demonstrated that irradiation time and the upper limit of EB required absorbed dose, which ensures a complete sterilization effect, could be reduced of five to ten times by additional use of MW energy to EB irradiation. Also, EB costs could be much decreased and the application of low intensity radiation sources, which are less expensive, will

  16. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    International Nuclear Information System (INIS)

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure

  17. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-09-01

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure.

  18. The prophylactic effect of neck irradiation combined with intra-oral electron beam irradiation for early tongue cancer

    International Nuclear Information System (INIS)

    Between 1967 and 1988, 102 patients with Stage T1-2N0 squamous cell carcinoma of the tongue were treated with uneven fractional irradiation therapy (intra-oral electron beam irradiation with and without prophylactic ipsilateral upper neck irradiation at the Dept. of Radiology, Nihon University School of Medicine. Of 102 primary lesions, 89 cases were controlled with this therapy. In this study, these 89 cases were investigated in order to analyze the prophylactic effect of upper neck irradiation. Of the 89 patients, 42 received only intra-oral electron beam irradiation, while the remaining 47 received a combination of intra-oral electron beam irradiation and prophylactic irradiation to the ipsilateral upper neck. Twenty three of the 89 (25.8%) developed metastasis to the neck after the radiotherapy. A breakdown of these 23 cases reveals that 3/21 (14.3%) received 40-50 Gy to the neck, 9/26 (34.6%) received 20-40 Gy to the neck, and 11/42 (26.2%) received no irradiation to the neck (p<0.05 between first and second groups, and between first and third groups). The neck metastasis was classified into one of three categories based on the region in which it first appeared (ipsilateral upper neck, ipsilateral lower neck or contralateral neck). The first metastasis was seen in the ipsilateral upper neck, in the ipsilateral lower neck and in the contralateral neck in 17, 4 and 2 patients, respectively. In 1/19 who had received 40-50 Gy, in 5/21 who had received 20-40 Gy and in 11/42 who had not received neck irradiation the first metastasis appeared in the ipsilateral upper neck. The five year survival rate was 94%, 75% and 85% in the patients receiving 40-50 Gy, 20-40 Gy and no neck irradiation, respectively. These results suggest that prophylactic irradiation of 40-50 Gy to the ipsilateral upper neck might decrease the incidence of neck metastasis and slightly prolong survival time. (author)

  19. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO_2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle; Fabien; Luo; Aiping; Marin; Emmanuel; Meunier; Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  20. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle Fabien; Luo Aiping; Marin Emmanuel; Meunier Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  1. Effect of electronic beam irradiation on last instar larvae of lasioderma serricorne fabricius

    International Nuclear Information System (INIS)

    The electronic beam irradiation effects on the last instar larvae of cigarette beetle (Lasioderma serricorne Fabricius) in tobacco were studied, and the mortality in 42 days, lethal time, pupation rate, emergence rate and reproductive capacity after irradiation were measured. The results showed that the mortality increased with the increase of irradiation dosage, but the larvae did not dead immediately. The last instar larvae irradiated by the dosages higher than 480 Gy could prevent the development of larvae to adults. No new generation was found after 300 Gy treatment of the last instar larvae. So 300 Gy irradiation could be considered as a suitable dose to prevent the reproduction of cigarette beetle of the last instar larvae in the tobacco. (authors)

  2. Low energy Ar+ ion beam irradiation effects on Si ripple pattern.

    Science.gov (United States)

    Pahlovy, Shahjada A; Yanagimoto, Kazuma; Miyamoto, Iwao

    2011-02-01

    Etching of surfaces by ion beam sputtering is widely used to pattern surfaces. Recent studies using the high-spatial-resolution capability of the scanning tunneling microscope, atomic force microscope and SEM (Scanning Electron Microscopy) disclose in fact that ion bombardment creates repetitive structures at micro-nanometre scale, waves (ripples), checkerboards or pyramids. The phenomenon is related to the interaction between ion erosion and diffusion of adatoms (vacancies), which causes surface re-organization. In this paper we investigated the ripple pattern formation on Si substrates by low energy Ar+ ion bombardment and the dose effect on ripple size. We also briefly discussed the irradiation effects (at normal incidence) on ripple pattern for different irradiation time. Finally, based on Bradley and Harper (BH) theory we proposed a model to understand the mechanism of ripple pattern change due to Ar+ ion beam irradiation. PMID:21456140

  3. The Effect of Pretreatment by using Electron Beam Irradiation on Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    A. Kristiani

    2016-04-01

    Full Text Available Oil palm empty fruit bunch (OPEFB is a potential type of lignocellulosic biomass for second-generation bioethanol production. The pretreatment process is an important process in the series of processes to produce bioethanol. This research aims to study the effects of pretreatment process by using electron beam irradiation to OPEFB’s characterization as raw materials for the hydrolysis reaction to produce monomer sugars which will be fermented into ethanol. The untreated and treated OPEFB are characterized in terms of their physical and chemical properties. Analysis results of the compositional analysis by using NREL/TP-510-42618 method show that after pretreatment by using electron beam irradiation, OPEFB's total lignin content is changed little while its cellulose and hemicellulose contents tend to decrease with increasing irradiation dose. X-ray diffraction (XRD analysis shows that there is a decrease of crystallinity compared to untreated OPEFB, except for 200-kGy irradiated OPEFB. The highest decrease of crystallinity was shown by 300-kGy irradiated OPEFB. Further, crystallite sizes of treated OPEFBs are not significantly different from the untreated, except for the 200-kGy irradiated OPEFB. Irradiation pretreatment also increases specific surface area, pore volume, and pore size. The IR spectra analysis show the absorption of cellulose, hemicellulose, and lignin.

  4. The effects of ion-beam irradiation of polymers

    International Nuclear Information System (INIS)

    Polymethacrylonitrile (PMCN) and polystyrene (PSt) were irradiated in the absence of O2 with heavy-particle radiation: 275 MeV 1020Ne7+ ions, 6.5 MeV 1840Ar2+ ions and 180 MeV 1840Ar8+ ions. In the case of PMCN the 100 eV yield of main-chain scission was found to decrease with increasing LET. In the case of PSt the 100 eV yield of crosslinks was found to be independent of LET within the limits of measurement error. The dependence of G(S) on -dE/dx observed with PMCN, and also with polymethylmethacrylate, is explained in terms of an increasing probability of radical-radical reaction and an increasing probability of ionization and excitation occurring in neighbouring repeating units with increasing LET of the radiation. The independence of G(X) found for PSt is explained in terms of crosslinking being a free-radical process, the occurrence of which does not become less likely with increasing LET because of the extremely low free-radical yield in this polymer. Therefore, radical-radical reactions do not become more probable with increasing LET in this case. Poly-2-chloroethylmethacrylate (PMCMA) turned out to be a probe material to establish pronounced temperature increases in the polymer sample during irradiation at high LET: PMCMA was crosslinked to an insoluble gel, if not cooled carefully during irradiation. It underwent predominant main-chain scission, however, if sufficiently cooled. (author)

  5. The effects of electron beam irradiation on additives present in food-contact polymers

    International Nuclear Information System (INIS)

    A range of additives (Irganox 1010, Irganox 1076, Irganox 1330, Irgafos 168 and Tinuvin 622) has been incorporated into a variety of food-contact polymers including polypropylene and low density polyethylene. Samples of these stabilized polymers were subjected to electron-beam or gamma irradiation to receive doses of 1,5,10,25 and 50 kGy. The effects of electron-beam irradiation on the amount of extractable antioxidant in polymers were determined. Using hplc techniques it was found that there was a dose-related reduction in the amount of extractable antioxidant similar to that caused by gamma irradiation. The magnitude of this reduction was found to be dependent upon the nature of both the antioxidant and the polymer type. Electron-beam irradiation was also found to cause a dose-related reduction in the levels of the antioxidants Irganox 1010 and Irganox 1076 migrating from polymers into a food simulant. This effect was similar to that caused by gamma irradiation. (author)

  6. Effect of electron beam irradiation on conidial germination activity and pathogenicity of Botrytis cinerea

    International Nuclear Information System (INIS)

    Conidia of Botrytis cinerea were irradiated by electron beam at 0.5, 1.0, 2.0 and 3.0 kGy. The influence of electron beam on the activities of conidial germination and pathogenicity at the temperatures of 5 ℃ and 25 ℃ were tested, respectively. The results showed that the electron beam could inhibit germination of conidia and the length of germ tube of Botrytis cinerea, and delay the germination time. It could also decrease the pathogenicity obviously and higher irradiation dose showed stronger effects. Compared with control, the complete germination time of conidia extended to 5 and 9 d at the cultivate temperatures of 25 ℃ and 5 ℃, after 2 kGy of irradiation, and the germination rate was reduced 46.57% and 33.68%, respectively. The inhibition rates of germ tube were 25.12% and 74.29% when cultured 24 h. The pathogenicity of Botrytis cinerea to strawberry was reduced significantly. After 2.0 kGy irradiation and cultivate at 25 ℃ for 2 d, the disease index was 4.17 and it decreased to 15.28 after cultivation of 5 ℃ for 15 d. Electron beam treatment could inhibit the spore germination and germ tube elongation of Botrytis cinerea significantly, delayed the germination time, and reduced its pathogenicity, the higher the dose, the effect was more obvious. (authors)

  7. Gamma and electron beam irradiation effects on SiR-EPDM blends

    Directory of Open Access Journals (Sweden)

    R. Deepalaxmi

    2014-07-01

    Full Text Available Ethylene Propylene Diene Monomer (EPDM is widely used as Cable Insulation Material (CIM due to its good mechanical strength. Silicone Rubber (SiR is used in high temperature environments due to its good di-electric properties/hydrophobicity. The blending of SiR-EPDM may result in the improvement in their specific properties. The SiR-EPDM blend of equal composition (50:50 was prepared. When such blends are used as Cable Insulation Materials (CIM, they should perform their safety functions throughout their installed life in Nuclear Power Plants (NPP. The CIM will be exposed to Gamma irradiation at the installed locations. The short time accelerated testing was carried out, in order to forecast long-term performance of CIM. Electron beam irradiation is widely used in cable manufacturing industries to improve the performance of the polymeric materials. In the current study, on the purpose to investigate the effect of gamma/electron beam irradiation on the 50–50 composition of SiR-EPDM blend, blend was exposed to 25 Mrad dose of gamma/electron beam irradiation. The electrical and mechanical parameters like Volume Resistivity (VRY, Surface Resistivity (SRY, Tensile Strength (TS, Elongation at Break (EB, Hardness (H of the virgin, gamma/electron beam irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier Transform Infrared Spectroscopy (FTIR. To determine the elemental composition of the materials at the surface, Energy Dispersive X-ray Analysis (EDAX has been done. Scanning Electron Microscopy (SEM analysis has been done to study the morphological changes. The occurrence of cross-linking is found to be the mechanism for ageing in gamma/electron beam irradiated SiR-EPDM blends.

  8. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    International Nuclear Information System (INIS)

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D10) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  9. 50 MeV lithium ion beam irradiation effects in poly vinylidene fluoride (PVDF) polymer

    Indian Academy of Sciences (India)

    A K Srivastava; H S Virk

    2000-12-01

    Irradiation effects of 50 MeV 7Li+3 ion beam induced in bulk PVDF polymer have been studied with respect to their optical, chemical, structural and electrical behaviour by using UV-visible, FT-IR spectroscopy, XRD technique and electrical frequency response using LCR bridge. The ion fluences ranging from 1.27 × 1011 to 2.15 × 1013 ions cm–2 have been used to study dose effects of irradiation in PVDF. The recorded UV-visible spectra clearly shows five characteristic peaks at 315, 325, 360, 425 and 600 nm. Due to irradiation, the optical absorption initially decreases but then increases with higher fluences. In the FT-IR spectra, no appreciable change has been observed after irradiation, indicating that this polymer is chemically stable. There is exponential increase in admittance with log of frequency but the effect of irradiation is not quite appreciable. The value of tan and relaxation frequency are changed appreciably due to irradiation. The diffraction pattern of PVDF indicates that this polymer is in semi-crystalline form; a decrease in the crystallinity and crystallite size has been observed due to irradiation.

  10. Early field observations on the effect of gamma and ion beam irradiations on Chrysanthemum morifolium

    International Nuclear Information System (INIS)

    Full text: Chrysanthemum is one of the main temperate cut flowers in Malaysian floriculture industry and also a good model for mutagenesis study in vegetatively propagated ornamental plants. Selection of desired mutants in vegetatively propagated plants must be made directly in the field especially for characteristics of plant morphology and flower colour. For chrysanthemum, greenhouse screenings need to be carried out to investigate the phenotypic changes of the plants after irradiation with physical mutagens. This paper discusses early effects of acute gamma and ion beam irradiations on the vegetative growth of in vitro irradiated chrysanthemum in both low and high lands. Data on the number of leaves, plant height and inter node length of the irradiated plants was recorded and statistically analysed. (author)

  11. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24–48 h old), the larval (4–5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge. - Highlights: • Electron beam irradiation induced abnormal development of Helicoverpa armigera. • ED99 value for inhibition of adult emergence was estimated at 197.8 Gy for egg. • ED99 value for inhibition of adult emergence was estimated at 189.6 Gy for larva

  12. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    Science.gov (United States)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  13. Effect of helium and hydrogen production on hardness of F82H steel irradiated by dual/triple ion beams

    International Nuclear Information System (INIS)

    Effect of helium and hydrogen production on radiation-hardening of F82H irradiated by dual or triple beam condition were investigated. The specimens used were four types of ferritic martensitic steels of F82H-std (Fe-8Cr-2W-0.2V-0.04Ta-0.1C) steels tempered at 750degC for 60 minutes, 20% cold worked F82H steel, F82H tempered for 10 minutes and non-tempered F82H steels. The irradiation was performed at 450degC to 50 dpa under simultaneous dual beams of 10.5 MeV Fe3+ and 1.05 MeV He+ or triple beams of those and 380 keV H+ ions. The ratios of He (appm)/dpa and H(appm)/dpa were 15 nad 15 (or 150) for dual and triple ion beams. The hardness of the irradiated specimens measured at room temperature using a micro indentation after the irradiations. The hardness in these F82H steels irradiated at 450degC to 18 dpa under triple beam irradiation was harder than that under dual beam irradiation. Irradiation softening and hardening under dual beams was observed in F82H steel irradiated at 450degC to 18 and 50 dpa, respectively. (author)

  14. Electron beam and gamma irradiation effects on conducting polystyrene studied by positron annihilation technique

    International Nuclear Information System (INIS)

    The effects of electron beam and gamma irradiation on microscopic structure of a conducting polystyrene (polystyrene + 15% carbon black) have been studied using positron annihilation lifetime spectroscopy. X-ray diffraction profiles for non-irradiated and irradiated conducting polystyrene are performed to investigate the structural nature of the samples. The samples were irradiated at room temperature with doses ranging from 30 up to 1500 kGy. The observed lifetime spectra were resolved into three components and the ortho-positronium (o-Ps) lifetime component was associated with the pick-off annihilation of positronium trapped by the free volume. After gamma irradiation no detectable changes are observed in the o-Ps lifetime. In contrast, the intensity of the o-Ps component, I3, decreases with the dose, up to about 540 kGy, followed by a much smooth decrease up to 1200 kGy then it levels off up to 1500 kGy. Meanwhile, after electron irradiation, the intensity of the o-Ps lifetime component as the dose increases exhibits two different regions may be identified as a rapid drop, followed by a smooth increase, then, it levels off and remains constant. The back increase in the electron curve seems to be absent in the case of gamma irradiation. These results are discussed on the basis of the free volume model

  15. Effect of electron beam irradiation on thermoresistant polymers containing aromatic rings

    International Nuclear Information System (INIS)

    Effect of electron beam irradiation was studied on thermoresistant polymers containing aromatic rings in the skeleton, which are presumed to use in nuclear energy fields in the near future. The seven polymers used are; polyimide (KAPTON), bis-phenol A type polysulfone(u-PS), polyethersulfone(PES), polyarylate(u-Polymer), modified polyphenyleneoxide(NORYL), polyether-imide(ULTEM), and polyether-ether-ketone(PEEK). Irradiation was carried out by the use of 2MeV, 1.5mA electron beam (0.5 Mrad/sec) up to 12000 Mrad at room temperature in air. Radiation tolerance was evaluated by change in tensile properties. Polysulfones containing -C6H6-SO2-C6H6- group in the skeleton showed low radiation tolerance and polyimide KAPTON showed the highest radiation tolerance. It is clarified from the comparison of radiation effects of the seven polymers that the radiation tolerance is related closely thier chemical structures. (author)

  16. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO2 substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 μC/cm2) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

  17. Effect of electron beam irradiation on the properties of carbon fiber

    International Nuclear Information System (INIS)

    Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermal gravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation

  18. Investigations of the effect of electron-beam irradiation on bacteria in sewage sludge

    International Nuclear Information System (INIS)

    The effect of electron beams on bacteria was investigated in 2 experimental facilities. A 400 kV electron accelerator was used to irradiate sludge quantities of 10 l and 180 l. The total bacterial count, the number of coliform bacteria and, in injected sludge, the relative bacteria density of salmonella were investigated. A dose of 0.5 to 0.75 Mrad was required to reduce coliform bacteria to below the detectable level in 0.1 ml. With a dose of 1.5 Mrad salmonella were reduced by 6 orders of magnitude on the average. In addition, the dependence of the reduction in bacteria on the dose rate as well as on mixing of the irradiated material was investigated. Substantial reproduction of bacteria in digested sludge was found in all cases after the irradiation. (orig./MG)

  19. Investigations of the effect of electron-beam irradiation on bacteria in sewage sludge

    International Nuclear Information System (INIS)

    The effect of electron beams on bacteria was investigated in 2 experimental facilities. A 400 kV electron accelerator was used to irradiate sludge quantities of 10 l and 180 l. The total bacterial count, number of coliform bacteria and, in injected sludge, the relative bacteria density of salmonella were investigated. A dose of 0.5 to 0.75 Mrad was required to reduce coliform bacteria to below the detectable level in 0.1 ml. With a dose of 1.5 Mrad salmonella were reduced by 6 orders of magnitude on the average. In addition, the dependence of the reduction in bacteria on the dose rate as well as on mixing of the irradiation material was investigated. Substantial reproduction of bacteria in digested sludge was found in all cases after the irradiation. (author)

  20. Effect of electron beam irradiation on the structure and optical properties of nickel oxide nanocubes

    Indian Academy of Sciences (India)

    P A Sheena; K P Priyanka; N Aloysius Sabu; S Ganesh; Thomas Varghese

    2015-08-01

    This work reports the effect of electron beam (EB) irradiation on the structure and optical properties of nanocrystalline nickel oxide (NiO) cubes. NiO nanocubes were synthesized by the chemical precipitation method. The characterization was carried out by employing analytical techniques like X-ray diffraction, transmission electron microscopy, UV–visible and photoluminescence (PL) spectroscopy. The present investigation found that non-stoichiometry, defects and particle size variation caused by EB irradiation have a great influence on optical band gap, blue shift and band modification of absorption and PL spectra. Moreover, EB irradiation can result enhanced optical absorption performance and photo-activity in NiO nanocubes for optoelectronics and photo-catalytic applications. The study of International Commission on Illumination chromaticity diagram indicates that NiO can be developed as a suitable phosphor material for the application in near ultraviolet excited colour LEDs.

  1. Use of gamma irradiation for microbial inactivation of buckwheat flour and products, 8; Effects of electron beam irradiation on sterility and quality of buckwheat flour

    Energy Technology Data Exchange (ETDEWEB)

    Muramatu, Nobuyuki; Ohinata, Hiroshi; Karasawa, Hideyuki; Oike, Terutake (Nagano State Lab. of Food Technology (Japan)); Ito, Hitoshi; Ishigaki, Isao

    1991-10-01

    Effects of irradiation at 3.0-7.0 kGy with 2 MeV electron beams were investigated on the number of microorganisms and quality of buckwheat flour. Electron beams and gamma-rays were compared in terms of the effects on the quality of buckwheat flour. The results were as follows. (1) Electron beams at 3 kGy reduced the number of microorganisms almost to the same level as gamma-rays. Oxygen content in buckwheat flour had no effect on inactivation of microorganisms by irradiation with electron beams and gamma-rays. (2) Peroxide-value (POV) of lipid in buckwheat flour increased with absorbed dose of gamma-rays and electron beams. The increase of POV was suppressed by the usage of oxygen absorber. The color change of buckwheat flour was suppressed by the usage of oxygen absorber as well. Acid-value (AV) of lipid in buckwheat flour was not changed by irradiation at high dose with gamma-rays or electron beams. (3) Maximum torque in Farinograph test of dough prepared from irradiated buckwheat flour decreased with increase of absorbed dose of electron beams. However, oxygen absorber suppressed the change of these properties induced by irradiation. (4) The usage of oxygen absorber resulted in a high sensory score of noodles from irradiated buckwheat flour with small changes of color, flavor and texture. (author).

  2. Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type

    International Nuclear Information System (INIS)

    Ceramics with the sodium zirconium phosphate or NZP type structure have potential as nuclear waste form and inert matrix materials. For both applications the material will be subjected to self-radiation damage from α-decay of the incorporated actinides. In this study, ion-beam irradiation using Au- and He-ions has been used to simulate the consequences of α-decay and the effects of irradiation on the structural and macroscopic properties (density and hardness) have been investigated. Irradiation by Au-ions resulted in a significant volume contraction of ∼7%, a reduction in hardness of ∼30% and a loss in long-range order at fluences above 1014 Au-ions/cm2. In contrast, little effect on the material properties was noted for samples irradiated with He-ions up to a fluence of 1017 ions/cm2. Thermal annealing was investigated for the highest fluence Au-ion irradiated sample and significant decomposition was observed

  3. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo

    2015-07-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.

  4. Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Septennial ionahta

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.B. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China)]. E-mail: libinzhou@impcas.ac.cn; Li, W.J. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Ma, S. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Dong, X.C. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Yu, L.X. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Li, Q. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Zhou, G.M. [Radiobiology Department, Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Gao, Q.X. [Institute of Cell Biology, School of Life Science, Lanzhou University, Southern Tianshui Road 222, Lanzhou 730000 (China)

    2006-03-15

    The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the X-ray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpaulia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.

  5. Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta

    Science.gov (United States)

    Zhou, L. B.; Li, W. J.; Ma, S.; Dong, X. C.; Yu, L. X.; Li, Q.; Zhou, G. M.; Gao, Q. X.

    2006-03-01

    The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the X-ray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpaulia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.

  6. Effect of electron-beams irradiation for inactivation of microorganisms on spices

    International Nuclear Information System (INIS)

    Total aerobic bacteria in spices used in this study were determined to be 1x106 to 6x107 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6 to 9 kGy of EB (electron-beams) or gamma irradiation were required to reduce the total aerobic bacteria tobelow 103 per gram. However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These difference of radiation sensitivities between EB and gamma-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. Components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and gamma-rays. (author)

  7. Effects of electron beam irradiation on highly oriented poly(di-methyl silane) film

    International Nuclear Information System (INIS)

    The effects of electron beam irradiation on highly oriented poly(di-methyl silane) film are studied. The highly oriented films, in which the silicon backbone of poly(di-methyl silane) is perpendicular to the substrate surface, are prepared by means of a vacuum-evaporation technique. The orientation of the polysilane is confirmed by ultraviolet absorption and x-ray diffraction measurements. By electron beam irradiation, the polysilanes in the film are bonded with the nearest neighbour chains by forming C-O-C, Si-O-C, and/or Si-O-Si groups, which are investigated using Fourier transform infrared spectroscopy. The irradiated part of the film is hardened, and remains on the substrate after etching by concentrated H2SO4, whereas the other part is completely removed. By using such a process, a negative-tone pattern having sufficient resistance against acid can be obtained. The possibility of the application of this effect is also discussed on the basis of the microscopic structure of the present film. (author)

  8. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    Science.gov (United States)

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  9. Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Wan [Department of Food Science and Biotechnology, Kyungnam University, Masan 631-701 (Korea, Republic of); Lee, Byung Cheol [Laboratory for Quantum Optics, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of); Lee, Jong-Hwa [School of Bioresource Sciences, Andong National University, Andong 760-749 (Korea, Republic of); Nam, Ki-Chang [Chemistry and Biotechnology Examinations Bureau, Korean Intellectual Property Office, Daejeon 302-701 (Korea, Republic of); Lee, Seung-Cheol [Department of Food Science and Biotechnology, Kyungnam University, Masan 631-701 (Korea, Republic of)], E-mail: sclee@kyungnam.ac.kr

    2008-01-15

    After electron-beam irradiation of citrus pomaces (CP), the total phenolic content (TPC), radical scavenging activity (RSA), and reducing power (RP) were evaluated. When CP were irradiated at 37.9 kGy; the TPC, RSA and RP of water extract of CP increased from 6543.2 to 7405.4 {mu}M, 37.6% to 52.9%, and 0.64 to 0.90, respectively, compared with the non-irradiated control. The results indicate that the electron-beam irradiation can be an efficient process for increasing the antioxidant activity of CP.

  10. A comparative study on the effects of electron beam irradiation on imidacloprid-resistant and -susceptible Aphis gossypii (Hemiptera: Aphididae)

    International Nuclear Information System (INIS)

    The melon and cotton aphid, Aphis gossypii, is a polyphagous insect pest. This study compared the development, reproduction, DNA damage, recovery, and gene expression in imidacloprid-resistant (IMI-R) and -susceptible (S) strains of A. gossypii by electron beam irradiation. When 1st instar nymphs were irradiated with 100 Gy, the fecundity (nymphs of F1 generation) of the resultant adults were completely inhibited. When adults were irradiated with 200 Gy, the number of total 1st instar nymphs produced per adult was 3.0±1.7 and 1.9±1.4 in the S and IMI-R strains, respectively, but adult development was completely suppressed. However, electron beam irradiation did not affect adult longevity in either the S or IMI-R strain. There was no statistically significant difference between the effect of irradiation on the S and IMI-R strains. Therefore, electron beam irradiation at 200 Gy could be used as a phytosanitary irradiation treatment for both S and IMI-R strains of A. gossypii. The DNA damage caused by electron beam irradiation was evaluated by an alkaline comet assay. Exposure to an electron beam (50 Gy) induced DNA damage that was repaired to a similar level as the untreated control group (0 Gy) over time. However, at more than 100 Gy, the DNA damage was not completely repaired. The expression of P450, HSP70, cuticle protein, and elongation factor genes were higher in the IMI-R strain than in the S strain. - Highlights: • Electron beam irradiation induces abnormal development in both the IMI-R and -S strain. • Electron beam irradiation induces DNA damage in both the S and IMI-R strain. • The expression of several specific genes were higher in the IMI-R strain. • 200 Gy could be used as a phytosanitary treatment for both strains of this species

  11. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  12. Comparative study on the effect of electron beam irradiation on the physical properties of ethylene-vinyl acetate copolymer composites

    Science.gov (United States)

    Wang, Bibo; Hong, Ningning; Shi, Yongqian; Wang, Biao; Sheng, Haibo; Song, Lei; Tang, Qinbo; Hu, Yuan

    2014-04-01

    Ethylene-vinyl acetate copolymer (EVA) flame retarded by a combination of cellulose acetate butyrate (CAB) microencapsulated ammonium polyphosphate (MCAPP) and polyamide-6 (PA-6) have been crosslinked by high energy electron beam irradiation. The effect of high energy electron beam irradiation on the crosslinking degree, mechanical, electrical and thermal properties of EVA/MCAPP/PA-6 cable material was studied by gel content, heat extention test, mechanical test, dynamic mechanical analysis, high-insulation resistance meter and thermogravimetric analysis. The gel content and heat extention test results showed that the EVA/MCAPP/PA-6 composites can be easily crosslinked by electron beam irradiation. The tensile strength of EVA composites was drastically increased from 16.2 to maximum 26.2 MPa as the electron beam irradiation dose increases from 0 to 160 kGy. The volatilized products of EVA/MCAPP/PA-6 composites were analyzed and compared by thermogravimetric analysis/infrared spectrometry (TG-FTIR).

  13. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Science.gov (United States)

    Van Renterghem, W.; Uytdenhouwen, I.

    2016-08-01

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 1020 n/cm2 and 4.74 × 1020 n/cm2 at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 1021/m³ to 9 × 1022/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock.

  14. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  15. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  16. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Science.gov (United States)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  17. Effect of Ion Beam Irradiation on Silicon Carbide with Different Microstructures

    International Nuclear Information System (INIS)

    SiC and SiC/SiC composites are one of promising candidates for structural materials of the next generation energy systems such as the gas-cooled reactors and fusion reactors. This anticipation yields many material issues, and radiation effects of silicon carbide are recognized as an important research subject. Silicon carbide has diverse crystal structures (called polytypes), such as α-SiC (hexagonal structure), β-SiC (cubic structure) and amorphous SiC. Among these polytypes, β-SiC has been studied as matrix material in SiC/SiC composites. Near-stoichiometric β-SiC with high crystallinity and purity is considered as suitable material in the next generation energy system and matrix material in SiC/SiC composites because of its excellent radiation resistance. Highly pure and crystalline β-SiC and SiC/SiC composites could be obtained by the chemical vapor deposition (CVD) and Infiltration (CVI) process using a gas mixture of methyltrichlorosilane (CH3SiCl3, MTS) and purified H2. SiC produced by the CVD method has different grain size and microstructural morphology depended on the process conditions such as temperature, pressure and the input gas ratio. In this work, irradiation effects of silicon carbide were investigated using ion beam irradiation with emphasis on the influence of grain size and grain boundary. MeV ion irradiation at low temperature makes amorphous phase in silicon carbide. The microstructures and mechanical property changes of silicon carbide with different structures were analyzed after ion beam irradiation

  18. The effects of combined electron beam irradiation and microwave heating on microorganisms inactivation

    International Nuclear Information System (INIS)

    The comparative results obtained by applying electron beam irradiation (EBI), microwave heating (MH) and combined EBI and MH (successive or simultaneous) to the reduction of Staphylococcus intermedius and Pseudomaonas aeruginosa cells are presented. Both gamma and electron beam radiation processes are used now commercially for microorganisms sterilization because the ionizing radiations are capable, in adequate doses, to destroy all forms of life. However, high doses are required for the sterilization process. In this respect the possibility of reduction of these doses is a very attractive prospect. A new method, which is still under research and development, is based on the use of microwaves. The microwave sterilization effect is explained by their heating property on polar or polarizable molecules of biological systems. The mild thermal treatment using MWH in addition to EBI could be considered to be sufficient for complete sterilization of a wide variety of materials including foods and medical objects. Our experiments demonstrated that the separate, successive and simultaneous EBI and MH have no the same effect to the microorganisms reduction. The simultaneous EBI and MH cause greater lethal effects than their separate or successive application. Thus, the number of viable colony forming units per ml (CFU/ml) of Staphylococcus intermedius was as follows: 3x1014 CFU/ml for the unirradiated sample; 5.3x109 CFU/ml for electron beam irradiation with 600 Gy; 3.3x109 CFU/ml for 15 s microwave heating up to 45 deg C; 4.1x107 CFU/ml for successive irradiation - first 600 Gy electrons and then 15 s microwave heating up to 45 deg C; 2.45x105 CFU/ml for successive irradiation - first 15 s microwave heating up to 45 deg C and then 600 Gy electrons; 1.8x104 CFU/ml for simultaneous irradiation with 600 Gy electrons and 15 s microwave heating up to 45 deg C. Experiments were carried out using an electron linear accelerator of 6 MeV and 0.18 kW, a 2.45 GHz microwave source of

  19. Study of the electron beam irradiation effect on some properties of aromatic aliphatic copolyester films

    International Nuclear Information System (INIS)

    Biodegradable and green plastics are the new tendency in the world. The effect of the electron beam irradiation in aromatic aliphatic copolyester and the blend with corn starch films (EcoflexR and EcobrasR) were studied by tensile strength at break, elongation at break, Scanning Electronic Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), crosslinking degree and biodegradability. The measurements in both, the machine direction and the transverse direction were made for mechanical tests. It was found that, the electron irradiation caused an increase in the strength at break of the blend with corn starch film, when doses of up to 10 kGy were applied. A significant decrease of the elongation at break of the blend with corn starch was observed at doses of 10 kGy and 40 kGy. It was not found important change in tensile properties for aromatic aliphatic copolyester. Structural changes of the samples (crosslinking or degradation) by SEM were not observed. The FT-IR identified the characteristic peaks of each involved functional group (copolyester and corn starch). However, it was not found bands of oxidation of the samples. In the DSC, changes in the melting temperature of the irradiated EcoflexR and EcobrasR samples, was not identified when compared with the samples of reference. However, it was verified a reduction in the melting enthalpy of the EcobrasR samples after irradiation. The EcobrasR material presented crosslinking, when submitted to doses of 10 kGy and 40 kGy. The EcoflexR material did not present crosslinking when submitted to these doses. The biodegradability of the materials was evaluated by two methods of test: soil simulated and enzymatic. In both methods, the irradiated samples presented faster biodegradation than the references not irradiated. (author)

  20. Effects of electron beam irradiation on elasticity of CFRTP (CF/PEEK)

    International Nuclear Information System (INIS)

    Homogeneous low voltage electron beam irradiation (HLEBI) improved the elasticity indicated by both flexural modulus (Ef) and the maximum slope value ((dσ/dε)max) of the bending stress-strain curve of carbon fiber reinforced thermoplastic polyetheretherketone (CFRTP) composite sheets with 0.50 mm thickness, although the penetration depth estimated was from 0.14 to 0.21 mm on both side surfaces. HLEBI remarkably enhanced both Ef and (dσ/dε)max. The Ef at middle cumulative probability (PE) of 0.50 for CFRTP irradiated at 0.30 MGy (kJg-1) was 3.3 GPa, which was 27% higher (2.6 GPa) than for CFRTP before irradiation. Moreover, (dσ/dε)max at middle cumulative probability (PE=0.50) was more than 4.9 GPa for CFRTP irradiated at 0.30 MGy. The interfacial friction force, as well as the strengthening of both carbon fiber and polyetheretherketone probably contributed to the HLEBI effects to enhance both Ef and (dσ/dε)max in the CFRTP. (author)

  1. Effects of electron beam irradiation on the dielectric properties of polyimide films

    International Nuclear Information System (INIS)

    Polyimide films have excellent thermal stability, reliable mechanical properties and low dielectric constant. Therefore, this material is widely used in many industrial fields such as microelectronics, flexible circuits, semiconductor products and aerospace materials. In space applications, earth-orbiting hardware operates in environments that generally include neutral particles, charged particles such as trapped protons and electrons, solar protons, and cosmic rays. Under these conditions, polyimide films were changed in the optical, electrical and mechanical properties. Therefore, in this study, we evaluated the effects of electron beam irradiation on polyimide. The O-H functional groups were created on the polyimide film surface in the results of FT-IR spectra. And it was found that the dielectric constants were changed as a function of electron beam dose

  2. Effects of heavy-ion beams irradiation on survival rate and antioxidant enzymes of sweet sorghum seedlings

    International Nuclear Information System (INIS)

    [Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by 12C6+ heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA-POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irradiated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for further work on breeding and improvement of sweet sorghum irradiated by 12C6+ heavy ion beams

  3. Effect of Electron Beam Irradiation on the Structural and Optical Properties of Bayfol DPF 5023 Polycarbonate

    International Nuclear Information System (INIS)

    Samples from sheets of the polymeric material Bayfol DPF 5023 have been exposed to electron beam in the dose range 10-250 KGy. The modifications induced in Bayfol samples due to electron beam irradiation have been studied through different characterization techniques such as X-ray diffraction XRD, Fourier Transform Infrared spectroscopy FTIR, intrinsic viscosity, refractive index and color difference studies. The FTIR spectroscopy indicated that the crosslinking is the dominant mechanism at the dose range 20-150 KGy. The Crosslinking reported by FTIR spectroscopy destroyed the degree of ordering in the Bayfol samples as revealed by XRD technique. Also, this crosslinking led to an increase in the value of intrinsic viscosity from 0.56 for the non irradiated sample to 0.68 for the sample irradiated with 150 kGy at 28 degree C. This indicates an increase in the average molecular mass, associated with an increase in the refractive index. Additionally, the non irradiated Bayfol samples showed significant color sensitivity towards electron beam irradiation. Thc sensitivity in color change towards electron beam irradiation appeared in the change in the blue color component of the non irradiated Bayrol film to yellow after exposure to electron beam up to 250 KGy. This is accompanied by a net increase in the darkness of the samples

  4. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    International Nuclear Information System (INIS)

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  5. Residual Nitrite in Some Egyptian Meat Products and the Reduction Effect of Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Dalia A. Zahran

    2011-10-01

    Full Text Available Nitrite, a curing agent of meat products, is a precursor of carcinogenic N-nitrosamines during processing of meat products or under human stomach conditions, as well as having its own toxicity. To investigate the residual nitrite level in meat products marketed in Egyptian markets, 160 samples of cured cooked (luncheon and frankfurter and cured raw (oriental sausages and pastirma meat products (40 sample each were analyzed for residual nitrite by a spectrophotometric method. Samples were subjected to irradiation (3.0 and 5.0 kGy by electron beam accelerator to evaluate its effect on the residual nitrite level in the examined cured meat products. For statistical analysis, means and standard errors of residual nitrite level were determined and analyzed by one-way analysis of variance. The results revealed that the residual nitrite level was ranging between 10.45-251.6 ppm in the examined meat products and that pastirma had the highest residual level (p<0.05 while luncheon showed the least level. Residual nitrite level was significantly reduced (p<0.05 by electron beam irradiation (5.0 kGy and the reduction was dose dependent. This demonstrated that it would still be important to strengthen on control of residual nitrite level in Egyptian meat products and food safety education for public people.

  6. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    International Nuclear Information System (INIS)

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production. - Highlights: ► The effect of E-beam irradiated natural casings on sausage quality was evaluated. ► The use of irradiated casings improved shelf stability of sausage. ► Natural casings irradiated below 3 kGy are suitable for sausage production.

  7. Effects of Heavy-ion Beams Irradiation on Survival Rate and Antioxidant Enzymes of Sweet Sorghum Seedlings

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.

  8. Quality of electron beam irradiated strawberries

    International Nuclear Information System (INIS)

    Fresh 'Tristar' strawberries were treated by electron beam irradiation to determine the effects on postharvest quality attributes and shelf life. The intensity of red color rated by sensory panelists decreased as irradiation dosage increased from 0- to 2 kGy. Hunter 'L' values were higher for fruit treated with 2 kGy than for 0 and 0.5 kGy. Instron firmness values were lower for all irradiated fruit than for control fruit. Panelists rated irradiated fruit less firm than nonirradiated fruit stored 1, 2 and 4 days. An increase in off-flavor was noted among all treatments stored 6 and 8 days. Irradiation suppressed fungi on stored berries. Irradiation doses of 1 and 2 kGy extended shelf life 2 and 4 days, respectively. Electron beam irradiation technology has excellent potential for extension of shelf life of fresh strawberry fruits

  9. Turbulent effects of strong irradiance fluctuations on the orbital angular momentum mode of fractional Bessel Gauss beams.

    Science.gov (United States)

    Gao, Jie; Zhang, Yixin; Dan, Weiyi; Hu, Zhengda

    2015-06-29

    The turbulent effects of strong irradiance fluctuations on the probability densities and the normalized powers of the orbital angular momentum (OAM) modes are modeled for fractional Bessel Gauss beams in paraxial turbulence channel. We find that the probability density of signal OAM modes is a function of position deviation from the beam center, and the farther away from the beam center the detection position is, the smaller the probability density is. For fractional OAM quantum numbers, the average probability densities of signal/crosstalk modes oscillate along the beam radius except the half-integer. When the beam waist of source decreases or the irradiance fluctuation increases, the average probability density of the signal OAM mode drops. The peak of the average probability density of crosstalk modes shifts to outward of the beam center as beam waist gets larger. In the nearby region of beam center, the larger the quantum number deviation of OAM, the smaller the beam waist and the turbulence fluctuations are, the lower average probability densities of crosstalk OAM modes are. Especially, the increase of turbulence fluctuations can make the crosstalk stronger and more concentrated. Lower irradiance fluctuation can give rise to higher the normalized powers of the signal OAM modes, which is opposite to the crosstalk normalized powers. PMID:26191711

  10. A comparison of the effects of gamma and electron-beam irradiation on antioxidants present in food-contact polyolefins

    International Nuclear Information System (INIS)

    Preliminary details have been reported of studies of the effects of progressive doses of gamma irradiation on the extractable levels of hindered phenol antioxidants (Irganox 1076 and Irganox 1010) and also the hindered phosphite stabiliser, Irgafos 168, present in a range of food contact polymers. Electron-beam irradiation offers an alternative approach for the radiation treatment of pre-packaged foods as an on-line process, provided that due consideration is given to the energy of the incident radiation and to the thickness of the package. It was of interest to establish whether the two irradiation processes had similar effects on the extent of destruction of antioxidants present in food contact polymers. Preliminary details are now reported of a comparison of the effects of gamma and electron-beam irradiation on the extent of destruction of Irganox 1076, Irganox 1010 and Irgafos 168 present in polypropylene and low density polyethylene (LDPE) samples. (author)

  11. Effect Of Electron Beam Irradiation On The Molecular And Colour Properties Of Chlorinated Polyvinyl Chloride

    International Nuclear Information System (INIS)

    Polymeric films of chlorinated polyvinyl chloride (CPVC) of nearly 0.25 mm thickness could be obtained by dissolving one gram of CPVC in 10 ml of freshly distilled tetrahydrofurane. Samples from these films were irradiated with different electron beam doses in the range 5-100 kGy. The structural modifications in the electron beam irradiated CPVC samples have been studied as a function of dose using intrinsic viscosity. The results indicate that the electron beam irradiation of CPVC in the dose range 40-100 kGy resulted in an improvement in its intrinsic viscosity and thus in its average molecular mass. Furthermore, the transmission of these samples in the wavelength range 200-2500 nm, as well as any colour changes, was studied. Using the transmission data, both the tri stimulus and the Commission Internationale de l'Eclairage (CIE) LAB coordinate values were calculated. In addition, the colour differences between the non-irradiated sample and those irradiated with different doses were calculated. The results indicate that the CPVC polymer has more response to colour change by electron beam irradiation and accompanied by a significant increase in the yellow and green colour components.

  12. Effect of ion beam irradiation on metal particle doped polymer composites

    Indian Academy of Sciences (India)

    N L Singh; Sejal Shah; Anjum Qureshi; A Tripathi; F Singh; D K Avasthi; P M Raole

    2011-02-01

    Polymethyl methacrylate (PMMA) was prepared by solution polymerization method. Different concentrations (10, 20 and 40%) of Ni powder were dispersed in PMMA and the composite films were prepared by casting method. These films were irradiated with 120 MeV Ni$^{10+}$ ions at a fluence of 5 × 1012 ions/cm2. Electrical, structural and chemical properties of the composites were studied by means of an LCR meter, X-ray diffraction, FTIR spectroscopy and SEM/AFM, respectively. The results showed that the conductivity increases with metal concentration and also with ion beam irradiation. This reveals that ion beam irradiation promotes the metal/polymer bonding and converts polymeric structure into hydrogen depleted carbon network. It was observed from XRD analysis that percentage crystallinity and crystalline size decrease upon irradiation. This might be attributed to rupture of some polymeric bonds, which is also corroborated with FTIR spectroscopic analysis. Ion beam tempts graphitization of polymeric material by emission of hydrogen and/or other volatile gases. Surface morphology of the pristine and irradiated films was studied by atomic force microscopy (AFM)/scanning electron microscopy (SEM). Result showed that the surface roughness increases after ion beam irradiation.

  13. Effect of electron beam irradiation on the degradation of monochlorophenols in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    ADELEKE Olukunle Francis; ZHOU Rui-min; Zu Jian-hua; Ekoko Bakambo Gracien

    2005-01-01

    Electron beam was successfully used for the degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) in aqueous solutions in this research. The effect of radiation dose on substrate degradation and dechlorination of solutions with concentration of 50 mg/L was investigated. The effect of initial concentration, pH and presence of oxygen was also investigated. The concentration of 2-CP and 4-CP remaining in solution after irradiation were measured by HPLC. The results showed that increased radiation dose led to increased degradation of the chlorophenols and increased Cl- yield. Deaeration was also found to significantly increase the rate of degradation of chlorophenols in water while degradation and dechlorination under alkaline condition was lower than at low to neutral pH.

  14. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    Science.gov (United States)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  15. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  16. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  17. The effects of gamma- and electron beam-irradiation on. alpha. -tocopherol (vitamin E) present as an antioxidant in polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.W.; Crowson, A.; Leathard, D.A.; Mistry, U. (Sheffield Polytechnic (United Kingdom))

    1991-08-19

    The authors have reported on the effects of gamma- and electron beam-irradiation on additives (chiefly hindered phenols and organophosphites) present in food-contact polymers. It has been shown that increasing doses of either form of radiation result in the progressive transformation of such antioxidants into other substances, some of which are the same as products derived from the antioxidant under thermal oxidation conditions, and some of which are different substances. Now, the effect of both electron beam- and gamma-irradiation on {alpha}-tocopherol (vitamin E) present in polypropylene is reported. (author).

  18. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    International Nuclear Information System (INIS)

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50–70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application. - Highlights: • Use of electron beam irradiation for the treatment of municipal sewage sludge. • Irradiation at 4.5 kGy is required to eliminate risks of bacterial infection. • Irradiation at 14.5 kGy is required to eliminate risks of helminth infection. • Electron beam technology is not effective for controlling volatile organic compounds. • Electron beam treatment of sludge is less expensive than traditional techniques

  19. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  20. Radiation effects in LiB3O5 nonlinear crystals under eletron beam irradiation

    International Nuclear Information System (INIS)

    Investigation results on defect accumulation in LiB3O5 crystals under electron beam irradiation are presented. A conclusion has been made about the role of radiation-induced defects in the accumulation of electric charges in LBO crystals under destructive electron irradiation due to electric breakdown. The processes considered can simulate defect formation in a crystaltransformer based on LBO affected by powerful laser pulses

  1. Synergistic Effects of Electron-beam Irradiation and Leek Extract on the Quality of Pork Jerky during Ambient Storage

    OpenAIRE

    Kim, Hyun-Joo; Kang, Mingu; Yong, Hae In; Bae, Young Sik; Jung, Samooel; Jo, Cheorun

    2013-01-01

    To investigate the synergistic effect(s) of electron-beam (EB) irradiation and leek (Allium tuberosum Rottler) extract on the quality of pork jerky during ambient storage, we irradiated prepared pork jerky samples (control and samples with 0.5% and 1.0% leek extract) with EB technology at doses of 0, 1, 2, and 4 kGy, stored them for 2 months at 25°C, and analyzed them. Water activity was 0.73 to 0.77 in non-irradiated samples, and no significant difference in the water activity was observed b...

  2. The effect of E-beam irradiation on the sterilization for calcium lactate

    International Nuclear Information System (INIS)

    The sterilization of calcium lactate as food additive was performed by electron beam. The quality, numbers of colony, gather mold and yeasts were determined before and after irradiation. It was found that the mortality of microbes significantly decreased with the increment of absorbed doses and the D10 value of colony number was determined to be 4.38 kGy. And the quality of calcium lactate satisfied the food standard though its mass fraction decreased a little after irradiation with electron beam of 10 kGy. (authors)

  3. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Taghinejad-Roudbaneh, M., E-mail: mtaghinejad@iaut.ac.i [Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.O. Box 51589, Tabriz (Iran, Islamic Republic of); Ebrahimi, S.R. [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Azizi, S. [Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, P.O. Box 57155-1177, Urmia (Iran, Islamic Republic of); Shawrang, P. [Nuclear Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2010-12-15

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  4. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased ( P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved ( P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  5. A comparative study on the effects of electron beam irradiation on imidacloprid-resistant and -susceptible Aphis gossypii (Hemiptera: Aphididae)

    Science.gov (United States)

    Yun, Seung-Hwan; Koo, Hyun-Na; Lee, Seon-Woo; Kim, Hyun Kyung; Kim, Yuri; Han, Bumsoo; Kim, Gil-Hah

    2015-07-01

    The melon and cotton aphid, Aphis gossypii, is a polyphagous insect pest. This study compared the development, reproduction, DNA damage, recovery, and gene expression in imidacloprid-resistant (IMI-R) and -susceptible (S) strains of A. gossypii by electron beam irradiation. When 1st instar nymphs were irradiated with 100 Gy, the fecundity (nymphs of F1 generation) of the resultant adults were completely inhibited. When adults were irradiated with 200 Gy, the number of total 1st instar nymphs produced per adult was 3.0±1.7 and 1.9±1.4 in the S and IMI-R strains, respectively, but adult development was completely suppressed. However, electron beam irradiation did not affect adult longevity in either the S or IMI-R strain. There was no statistically significant difference between the effect of irradiation on the S and IMI-R strains. Therefore, electron beam irradiation at 200 Gy could be used as a phytosanitary irradiation treatment for both S and IMI-R strains of A. gossypii. The DNA damage caused by electron beam irradiation was evaluated by an alkaline comet assay. Exposure to an electron beam (50 Gy) induced DNA damage that was repaired to a similar level as the untreated control group (0 Gy) over time. However, at more than 100 Gy, the DNA damage was not completely repaired. The expression of P450, HSP70, cuticle protein, and elongation factor genes were higher in the IMI-R strain than in the S strain.

  6. Development of MeV cluster ion beams and irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hirata, Kouichi; Kobayashi, Yoshinori [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The production and acceleration of cluster ion beams were developed by using a sputtering ion source and a tandem accelerator. Molecular beams of iron oxides were produced from Fe{sub 2}O{sub 3} powder prepared as the specimen of the ion source and accelerated to energy of MeV range. Defect densities in silicon and polycarbonate targets by irradiation were compared between monoatomic carbon ions and carbon cluster beams (C{sub 2}-C{sub 4}). Beam currents by injection of carbon cluster beams (C{sub 8}) were measured for various targets such as Si, Al, Al{sub 2}O{sub 3} and polycarbonate. The target and time dependence of the beam currents were originated from sputtered ions due to water molecules and oxides adhered at the surface of the targets. (Y. Kazumata)

  7. Effect of electron beam irradiation on viscosity/temperature characteristics of cellulose derivatives

    International Nuclear Information System (INIS)

    The direct relationship between intrinsic viscosity and molecular weight of polymers allowed to attend the aggregation, cross-linking and degradation processes induced by electron beam irradiation on carboxymethylcellulose and hydroxiethylcellulose in aqueous solutions. The changes in viscosity were related to irradiation doses from 2.5x104Gy to 25x104Gy at 50C, 250C, 500C and 750C measured at different intervals after irradiation. The results showed the viscosity decrease characteristics as a function of those parameters for each one of the polymers. (author)

  8. Effect of electrons beam irradiation on viscosity/temperature characteristics of cellulose derivatives

    International Nuclear Information System (INIS)

    The direct relationship between intrinsic viscosity and molecular weight of polymers allowed to attend the aggregation, cross-linking and degradation processes induced by electron beam irradiation on carboxymethylcellulose and hydroxiethylcellulose in aqueous solutions. The changes in viscosity were related to in aqueous solutions. The changes in viscosity were related to irradiation doses from 2.5 x 10 sup(4)Gy to 25 x 10 sup(4)Gy at 5 sup(0)C, 25 sup(0)C, 50 sup(0)C and 75 sup(0)C measured at different intervals after irradiation. The results showed the viscosity decrease characteristics as a function of those parameters for each one of the polymers. (author)

  9. Effectiveness of electron beam irradiation in the control of some soilborne pathogens

    International Nuclear Information System (INIS)

    Electron beam (EB) irradiation was tested against Botrytis cinerea, Pythium ultimum and Phytophthora citricola the most dangerous pathogens causing stem and root rot of seedlings, cuttings and older plants. In the laboratory trials cultures of 3 species were irradiated with doses 0 (control), 1.5, 3.0, 4.5 and 6.0 kGy whereas peat was treated with 10, 15 and 25 kGy. P. citricola was the most sensitive species for irradiation. In greenhouse trials 15 kGy irradiation of peat protected chrysanthemum cuttings against B. cinerea and P. ultimum as well as rhododendron young plants against P. citricola. Irradiation of peat did not influence the growth and development of the tested plants. (authors)

  10. The mass effect model of the survival rate's dose effect of organism irradiated with low energy ion beam

    International Nuclear Information System (INIS)

    The main characteristic of the low energy ions mutation is its mass deposition effect. Basing on the theory of 'double strand breaking' and the 'mass deposition effect', the authors suggests that the mass deposition products can repair or further damage the double strand breaking of DNA. According to this consideration the dose effect model of the survival rate of organism irradiated by low energy of N+ ion beam is deduced as: S exp{-p[αφ + βφ2-Rφ2exp(-kφ)-Lφ3exp(-kφ)]}, which can be called 'mass effect model'. In the low energy ion beam mutation, the dose effects of many survival rates that can not be imitated by previous models are successfully imitated by this model. The suitable application fields of the model are also discussed

  11. Comparison of γ-radiation and electron beam irradiation effects on gelatin

    International Nuclear Information System (INIS)

    Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular weight derived by hydrolytic action from collagen, a protein of mammal external protective tissues. There are many characteristics of a material that can indicate its quality or performance in its intended use. The knowledge of a material's rheological characteristics is valuable to predict its pourability, its performance in a dipping or coating operation or the ease with which it may be handled, processed or used. In this work bovine powder gelatin was submitted to γ-radiation from a 60Co source, dose rate about 7 kGy/h and to electron beam irradiation, dose rate about 11 kGy/s. The doses applied were 5, 10, 20 and 50 kGy. The radiation effects were measured following viscosity changes at 40 deg. C of gelatin powder 10% aqueous solutions. The relationship between the decrease in viscosity of gelatin solutions and radiation dose presented close comparable values for both irradiation processes

  12. Electron beam sterilization of medical products. The effects of irradiation on surgical rubber gloves

    International Nuclear Information System (INIS)

    Radiation damage of five commercially produced rubber gloves using electron beam and γ- rays from Cobalt-60 have been investigated in relation to radiation sterilization. Samples were irraadiated up to 100 kGy. The radiation damage of rubber gloves was ssmaller in electron beam than γ- rays. Good retention in tensile strength (T sub b) and elongation at break (E sub b) were observed even after six months storage. Higher beam currents (higher dose rate) above 5 mA was favourable for sterilization of rubber gloves because of smaller degradation. The tensile strength and elongation of the irradiated rubber gloves is still withinAM/N

  13. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  14. Green coffee decontamination by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nemtanu, Monica R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)]. E-mail: monica@infim.ro; Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, RO 77 125, Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)

    2005-10-15

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  15. Effects of electron beam irradiation on the microbial growth and quality of beef jerky during storage

    International Nuclear Information System (INIS)

    Electron beam irradiation was applied to improve the microbial safety of beef jerky during storage. Beef jerky samples were irradiated at doses of 1, 3, 5, and 10 kGy and stored at 20 oC for 60 d. Microbiological data indicated that the populations of total aerobic bacteria significantly decreased with increasing irradiation dosage. In particular, the populations of total aerobic bacteria were significantly decreased by 1.76 log CFU/g at 10 kJ/m2, compared to the control. Color measurements showed reduced Hunter L and a values of beef jerky for all the treatments during storage, and the Hunter L, a, and b values of beef jerky were not significantly different among the treatments. Sensory evaluation results also showed that electron beam irradiation did not affect sensory scores in overall during storage. Therefore, the results suggest that electron beam irradiation could be useful in improving the microbial safety without impairing the quality of beef jerky during storage.

  16. Dose Rate Effects on The Radiation Oxidation of Polyethylene: Electron Beam vs Gamma Irradiation

    International Nuclear Information System (INIS)

    The yields and spatial distribution of the oxidation products stemming from the oxidation of LLPE films induced by 60-Co gamma and by irradiation with 300 kev, 0.3 mA electrons in the dose range 0.04 kGy/h - 0.6 kGy/h (gamma) and at 1.5 kGy/hr ( e-beam) have been determined by applying a methodology involving FTIR microscopy (carbonyl products, resolution 10 μ), iodometric analysis (peroxides). The FTIR and EPR spectroscopies coupled with the multilayer technique (resolution 25 μ) were also employed for carrying on measurements of the film depth profiles of peroxyl radicals and their alky radicals precursors, radical decay kinetics, 'free' and ' bound' hydroperoxides and alcools. With gamma radiations the products yields are enhanced following the decrease of the dose rate from 0.7 to 0.04 kGy/h without substantial effect on the film depth distributions which appear rather uniform. Using e-beam (dose rate 1.5 kGy/h) a low level concentration limit is attained confined within the first 50 μ which is about 1 order of magnitude smaller as compared to gamma. The mechanistic implications inherent to the experimental results as well as the practical consequences related to the use of radiooxidation as a tool for inducing graft copolymerization reactions are discussed

  17. Irradiation effect on PET surface using low energy argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Barakat A. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Abdelrahman, Moustafa M., E-mail: moustafa82003@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Abdelsalam, Fatama W. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Aly, Kamal A. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt); Physics Department, Faculty of Science and Arts, Khulais, King Abdulaziz University (KAU) (Saudi Arabia)

    2013-01-15

    A study of various physical properties of a PET film irradiated with an Ar beam is reported. SEM images and UV-VIS and FTIR spectra were obtained for a number of ionic fluxes and three irradiation times. Small changes in the energy gap of degradated samples were found, and the SEM images indicate that the optimum homogeneity and roughness are reached after 30 min of irradiation. These results may well be of practical interest. A modified saddle field ion source was used as a preparation tool of the surface of polyethylene terephthalate PET polymer substrate to be ready for coating or thin film deposition. Argon ion beam was used for this purpose, where the scanning electron microscope (SEM) shows that, the best sample is the one which was irradiated to 30 min, where this sample is more homogenous and roughness than other irradiated samples. Also the (UV-VIS) spectrum tells us that, there is small change on energy gap and this is meaning that, the change on electric properties is small also. In this case the sample is more homogenous and of higher roughness than other irradiated samples.

  18. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A' aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  19. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    International Nuclear Information System (INIS)

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD5, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively

  20. Synergistic Effects of Electron-beam Irradiation and Leek Extract on the Quality of Pork Jerky during Ambient Storage.

    Science.gov (United States)

    Kim, Hyun-Joo; Kang, Mingu; Yong, Hae In; Bae, Young Sik; Jung, Samooel; Jo, Cheorun

    2013-04-01

    To investigate the synergistic effect(s) of electron-beam (EB) irradiation and leek (Allium tuberosum Rottler) extract on the quality of pork jerky during ambient storage, we irradiated prepared pork jerky samples (control and samples with 0.5% and 1.0% leek extract) with EB technology at doses of 0, 1, 2, and 4 kGy, stored them for 2 months at 25°C, and analyzed them. Water activity was 0.73 to 0.77 in non-irradiated samples, and no significant difference in the water activity was observed between the samples treated with leek and the control. The total aerobic bacterial count was significantly decreased with an increase in the irradiation dose and leek extract addition when compared to that of the control (4.54±0.05 log CFU/g). Further, the Hunter color values (L*, a*, and b*) were found to be significantly decreased following leek extract addition and EB irradiation. However, the color values, especially the a* value of the irradiated samples significantly increased during storage. Notably, increasing the EB irradiation dose enhanced the peroxide value. Sensory evaluation revealed that irradiation decreased flavor and overall acceptability. Our findings suggest the use of EB irradiation in combination with leek extract to improve the microbiological safety of pork jerky. However, in order to meet market requirements, novel methods to enhance the sensory quality of pork jerky are warranted. PMID:25049828

  1. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  2. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  3. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  4. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  5. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (EcobrasR) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (EcoflexR) film in both methods studied. (author)

  6. Monte Carlo simulation of small OpenPET prototype with 11C beam irradiation: effects of secondary particles on in-beam imaging

    International Nuclear Information System (INIS)

    In-beam positron emission tomography (PET) can enable visualization of an irradiated field using positron emitters (β+ decay). In particle therapies, many kinds of secondary particles are produced by nuclear interactions, which affect PET imaging. Our purpose in this work was to evaluate effects of secondary particles on in-beam PET imaging using the Monte Carlo simulation code, Geant4, by reproducing an experiment with a small OpenPET prototype in which a PMMA phantom was irradiated by a 11C beam. The number of incident particles to the detectors and their spectra, background coincidence for the PET scan, and reconstructed images were evaluated for three periods, spill-time (beam irradiation), pause-time (accelerating the particles) and beam-off time (duration after the final spill). For spill-time, we tested a background reduction technique in which coincidence events correlated with the accelerator radiofrequency were discarded (RF gated) that has been proposed in the literature. Also, background generation processes were identified. For spill-time, most background coincidences were caused by prompt gamma rays, and only 1.4% of the total coincidences generated β+ signals. Differently, for pause-time and beam-off time, more than 75% of the total coincidence events were signals. Using these coincidence events, we failed to reconstruct images during the spill-time, but we obtained successful reconstructions for the pause-time and beam-off time, which was consistent with the experimental results. From the simulation, we found that the absence of materials in the beam line and using the RF gated technique improved the signal-to-noise ratio for the spill-time. From an additional simulation with range shifter-less irradiation and the RF gated technique, we showed the feasibility of image reconstruction during the spill-time. (paper)

  7. Effect of triple ion beam irradiation on mechanical properties of high chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    A high-chromium austenitic stainless steel has been developed for an advanced fuel cladding tube considering waterside corrosion and irradiation embrittlement. The candidate material was irradiated in triple ion (Ni, He, H) beam modes at 573 K up to 50 dpa to simulate irradiation damage by neutron and transmutation product. The change in hardness of the very shallow surface layer of the irradiated specimen was estimated from the slope of load/depth-depth curve which is in direct proportion to the apparent hardness of the specimen. Besides, the Swift's power low constitutive equation (σ=A(ε0 + ε)n, A: strength coefficient, ε0: equivalent strain by cold rolling, n: strain hardening exponent) of the damaged parts was derived from the indentation test combined with an inverse analysis using a finite element method (FEM). For comparison, Type304 stainless steel was investigated as well. Though both Type304SS and candidate material were also hardened by ion irradiation, the increase in apparent hardness of the candidate material was smaller than that of Type304SS. The yield stress and uniform elongation were estimated from the calculated constitutive equation by FEM inverse analysis. The irradiation hardening of the candidate material by irradiation can be expected to be lower than that of Type304SS. (author)

  8. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm-1, respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. (author)

  9. Irradiation of Gemstones using Electron Beam

    International Nuclear Information System (INIS)

    Gemstone irradiation treatment using radiation is one of the studies conducted in the ALURTRON. The purpose of radiation is to study the effects of radiation on the gems. Through studies conducted on freshwater pearls and stones such as Topaz, Kunzite, TOURMALINE, Aquamarine, Quartz and so on, electron beam irradiation method can highlight the jewel colors but also to reduce the effects of haze on gemstones. The dose of radiation used is 25 kGy to 200 kGy. (author)

  10. Effect of electron beam irradiation on dynamic mechanical, thermal and morphological properties of LLDPE and PDMS rubber blends

    International Nuclear Information System (INIS)

    The effect of electron beam irradiation on the blends of linear low-density polyethylene (LLDPE) and poly dimethyl siloxane rubber (PDMS) prepared over a wide range of compositions starting from 70:30 to 30:70 (LLDPE: PDMS) by varying the radiation doses from 50 to 300 kGy has been studied. The dynamic modulii and dielectric strength of the blends increase on irradiation at 100 kGy as compared to that for the unirradiated blends. Degree of crystallinity and melting behaviour remain unchanged upon irradiation upto a dose of 100 kGy, beyond which it decreases. Thermal stability increases with increase in the proportion of PDMS rubber in the blend as well as on irradiation at 100 kGy. The phase morphology of the blends examined under the SEM exhibit two phase morphology before electron beam irradiation, whereas single phase morphology is observed after electron beam irradiation due to intra- as well as inter-molecular crosslinking leading to a miscible system. - Highlights: ► Immiscible blends of LLDPE and PDMS rubber becomes miscible after electron beam irradiation (EBR). ► The gel content and cross link density of the blends increase on EBR, upto a dose of 100 kGy. ► Dielectric strength of the blends increase with increase in LLDPE proportion in the blends after EBR. ► Dielectric constant of the blends increase with proportion of silicone rubber in the blend after EBR. ► Thermal stability of the blends increase on exposure to EBR.

  11. Study of irradiation effects with electron beam over chloro sulfonate polyethylene

    International Nuclear Information System (INIS)

    Thermo analytical methods and x-ray diffraction were used to study electron irradiated chloro sulfonate polyethylene platelets. The beam energy was 0,65 MeV and the dose rate did not exceed 2,5 Mrad. With increase of the dose the samples got a yellowish color. For doses between 5 and 15 Mrad the polymer showed changes in its behaviour which were compatible with the curing dose used in industry. (author)

  12. Effect of electron beam irradiation on the properties of crosslinked rubbers

    International Nuclear Information System (INIS)

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature (Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ)Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy. (author)

  13. Effect of electron beam irradiation on the properties of crosslinked rubbers

    Science.gov (United States)

    Banik, Indranil; Bhowmick, Anil K.

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature ( Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy.

  14. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, TM, was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  15. Effect of Anorganic Substance on Physical Properties of Poly (Butylene Succinate -co- Adipate) Irradiated by Electron Beam

    International Nuclear Information System (INIS)

    Poly(butylene succinate-co-adipate), PBSA were electron beam irradiated in the presence of inorganic materials. The samples gave high gel fraction by irradiation in the presence of 2% silicon dioxide and 2% carbon black. It was found that addition of carbon black (CB) was effective for improving the heat stability of the sample. This is because of three-dimensional carbon black- polymer networks. Irradiated PBSA sheets broke immediately at 110 oC with load 6.67 kgf/cm2, while irradiated the same sample mixed with 2% carbon black did not break at the same condition. Biodegradability of crosslinked PBSA by soil burial tests was accelerated by addition of carbon black. (author)

  16. Triple ion beam irradiation facility

    International Nuclear Information System (INIS)

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm2 in area. Typical depth ranges are 0.1 to 1.0 μm. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab

  17. Radiosensitizing effect of nitric oxide in tumor cells and experimental tumors irradiated with gamma rays and proton beams

    International Nuclear Information System (INIS)

    Nitric oxide (NO) has been reported to be a radiosensitizer of mammalian cells under hypoxic conditions. In a previous study, we demonstrated an enhancement in radiation response induced by NO in mouse tumor cells under aerobic conditions, with an increasing effect as a function of malignancy. The aim of the present study was to evaluate the effect of NO in tumor cells and in experimental tumors irradiated with γ rays and proton beams. Irradiations were performed with a 137Cs γ source and with proton beams generated by the TANDAR accelerator. Tumor cells were treated with the NO donor DETA-NO and the sensitizer enhancement ratio (SER) was calculated using the α parameter of the survival curve fitted to the linear-quadratic model. Tumor cells irradiated with protons were radio sensitized by DETA-NO only in the more malignant cells irradiated with low LET protons (2.69±0.08 keV/μm). For higher LET protons there were no radiosensitizing effect. For human tumor cells pre-treated with DETA-NO and irradiated with γ rays, a significantly greater effect was demonstrated in the malignant cells (MCF-7) as compared with the near normal cells (HBL-100). Moreover, a significant decrease in tumor growth was demonstrated in mice pre-treated with the NO donor spermine and irradiated with γ rays and low LET protons as compared with mice irradiated without pre-treatment with the NO donor. In conclusion, we demonstrated a differential effect of NO as a radiosensitizer of malignant cells, both with γ rays and low LET protons. This selectivity, coupled to the in vivo inhibition of tumor growth, is of great interest for the potential use of NO releasing agents in radiotherapy. (author)

  18. Effect of dietary poly unsaturated fatty acids on total brain lipid concentration and anxiety levels of electron beam irradiated mice

    International Nuclear Information System (INIS)

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 poly unsaturated fatty acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore this study was undertaken to establish the role of Omega-3 poly unsaturated fatty acids on total brain lipid concentration, lipid peroxidation and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on total brain lipid concentration, lipid peroxidation and anxiety level were investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of EBR and also the flax seed extract and fish oil were given orally to the irradiated mice. Irradiated groups show significant elevation in anxiety levels when compared to control group, indicating the acute radiation effects on the central nervous system. But the oral supplementation of dietary PUFA source decrees the anxiety level in the irradiated group. The analysis of lipid peroxidation showed a significant level of changes when compared between control and radiation groups. Dietary PUFA supplementation showed a significant level of decrease in the lipid peroxidation in the irradiated groups. The observation of total lipids in brain shows decrease in concentration in the irradiated groups, the differences in the variables follow the similar patterns as of that the MDA levels. This study suggests that the dietary intake of PUFAs may help in prevention and recovery of the oxidative stress caused by radiation. (author)

  19. High fluence irradiation effect on the ion beam graft polymerization method

    International Nuclear Information System (INIS)

    Radiation graft polymerization method has been applied to make many industrial product. Ion beam graft polymerization method has been developed by Betz and many researchers, and we have also developed the method with proton whose energy is below a few MeV. Using the method, the substrate, e.g. polyethylene film, is graft-polymerized and has the graft chains near the surface. To conduct the method for some times, the structure of graft chains near the surface can be formed. When we want to produce the graft chains inside of the substrate, the graft chains near the surface are unnecessary. One of our objectives is to produce a functional polymer with a structure in the film. When the sample is irradiated in sufficiently high fluence, the sample can’t be graft-polymerized in the next irradiation. Comparing the density of radicals and the number of double bond with the degree of grafting, the reason why formation of a part not grafted in high fluence irradiation was discussed. Because the number of the double bond and the allyl radicals in PE are increased for high fluence irradiation, the number of the alkyl radical as a grafting point is decreased. Moreover, the alkyl radical is not produced in following irradiation since existence of double bond and peroxy radical

  20. Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides

    International Nuclear Information System (INIS)

    We report the results of ion irradiation influence on rare earth sesquioxides structure, which are materials of practical importance as a radiation resistant ceramics in nuclear applications. Y2O3, Gd2O3 and Er2O3 sesquioxides in the pellet form were irradiated by oxygen ions (O2+) beam with the energy of 30 keV and implantation fluence of 5 x 1020 m-2. Samples are characterized by Grazing Incidence X-ray Diffraction (GIXRD), Raman spectroscopy and atomic force microscopy (AFM). By GIXRD it was found partial transformation from cubic (C) to monoclinic (B) phase only in Gd2O3, induced by O2+ irradiation. This was confirmed by Raman spectroscopy. Although full phase transition from C to B phase in Y2O3 was not observed, the splitting and broadening of the main intensity Raman band for C phase could be explained by the stress and the disorder induced by the quenching. Analysis done by AFM showed changes in surface topology, i.e. values of average roughness (Ra) and root mean squared roughness (RMS) were significantly changed after irradiation for all samples. RMSs in Y2O3 before and after irradiation were 35 nm and 26 nm, respectively.

  1. Windowless Electron Beam Experimental Irradiation WEBExplr

    International Nuclear Information System (INIS)

    The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation

  2. The effect of dual Fe+/He+ ion beam irradiation on microstructural changes in FeCrAl ODS alloys

    International Nuclear Information System (INIS)

    Highlights: ► High temperature annealing leads to phase transformation of oxide particles. ► Radiation induced hardening is stronger in heat treated HT-ODS materials. ► Hardness increase for simultaneous irradiation is larger than sequential irradiation. ► Helium filled cavities observed in a close surface area in irradiated samples. -- Abstract: Nanostructured ferritic oxide dispersion strengthened (ODS) alloys contain a high density of Y–Al–Ti–O nanoparticles, high dislocation densities and fine grains. Structural analysis with HRTEM shows that the composition of the initial Y2O3 oxide is modified to perovskite YAlO3 (YAP), Y2Al5O12 garnet (YAG) and Y4Al2O9 monoclinic (YAM) particles. Irradiation of these alloys was performed with a dual beam implantation of 2.5 MeV Fe+ and 350 keV He+, either simultaneously or sequentially. Additionally, the He+ concentration was varied between 18 and 72 appm/dpa. Irradiation causes atomic displacements resulting in vacancy and self-interstitial lattice defects and dislocation loops. A clear hardness increase in the irradiated area is observed by nanoindentation in every ion implantation regime. Hardness ratios of irradiated relative to non-irradiated ODS materials and the appearance of hardness maxima close to the surface region are discussed in detail. The irradiation induced hardening effect is stronger for a heat treated HT-ODS alloy than for an as-received one. The large difference in the hardness data of as-received ODS for simultaneous and sequential implantation can be explained by point defect recombination at dislocations and grain boundaries occurring for sequential irradiation

  3. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    Science.gov (United States)

    Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-07-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.

  4. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137Cs) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  5. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  6. Effect of the High-Energy Electron Beam Irradiation on the Morphology and Mechanical Properties of PE/EVA Blends

    International Nuclear Information System (INIS)

    The main objective of the present work was to study the effect of electron beam irradiation on the morphology and mechanical properties of PE/EVA blends. The melt compounding of the blends were carried out in an internal mixer. The small amount of the prepared blend samples were rapidly quenched in liquid nitrogen and the remained were compression molded into sheets. Sheets and quenched samples were then irradiated by a 10 MeV electron beam accelerator using different dose levels. The morphological studies for both, sheeted and quenched blends were performed on cryogenically fractured surfaces by using SEM technique. The mechanical properties of the sheeted samples were evaluated according to ASTM D638. The results of mechanical properties showed that, increasing in irradiation dose increases the tensile strength and decreases the elongation at break in all blend compositions. On the other hand, it was found that, for PE/EVA blends the extent of tensile strength increase, and elongation at break decrease, are more appreciable in compare to the neat PE and EVA. These results suggest that, the blend interface is more susceptible for irradiation induced crosslinking. This is because of more affinity of PE and EVA macroradicals to termination with together in compare to own macroradicals.The results of morphological studies showed that, irradiation can stabilize the blend morphology especially in co-continues regions, where the morphology is more unstable due to the heat coarsening

  7. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    Science.gov (United States)

    Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun

    2010-06-01

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  8. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joo [Department of Food Science and Technology, Chung-Ang University, Ansung, Gyunggi-do 456-756 (Korea, Republic of); Ham, Jun-Sang [Animal Products Processing Division, National Livestock Research Institute, RDA, Suwon 441-706 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Keehyuk [Department of Culinary Nutrition, Woosong University, Daejeon 300-718 (Korea, Republic of); Ha, Sang-Do [Department of Food Science and Technology, Chung-Ang University, Ansung, Gyunggi-do 456-756 (Korea, Republic of); Jo, Cheorun, E-mail: cheorun@cnu.ac.k [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2010-06-15

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens (Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10{sup 2} to 10{sup 3} Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10{sup 1} CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D{sub 10} values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  9. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    International Nuclear Information System (INIS)

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens (Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 102 to 103 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (101 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  10. Comparative effects of gamma and electron beam irradiation on the antioxidant potential of Portuguese chestnuts (Castanea sativa Mill.)

    OpenAIRE

    Carocho, Márcio; Antonio, Amilcar L.; Barros, Lillian; Bento, Albino; Botelho, M. Luísa; Kałuska, Iwona; Ferreira, Isabel C. F. R.

    2012-01-01

    Chestnuts (Castanea sativa Mill.) are widely consumed all over the world, and have been recently studied for their antioxidant potential. The present study reports the effect of e-beam and gamma radiation (doses of 0, 0.5, 1 and 3 kGy) on the antioxidant potential of Portuguese chestnuts. Irradiation might be an alternative preservation method, since Methyl Bromide, a widely used fumigant, was banished by the European Union in 2010 due to its toxicity. The antioxidant activity ...

  11. Effect of electron beam irradiation on the properties of crosslinked rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Banik, Indranil; Bhowmick, Anil K. E-mail: anilkb@rtc.iitkgp.ernet.in

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature (T{sub g}) and storage modulus increased, while the elongation at the break and the loss tangent (tan {delta}){sub T{sub g}} decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy. (author)

  12. The positive charging effect of dielectric films irradiated by a focused electron beam

    International Nuclear Information System (INIS)

    Space charge and surface potential profiles are investigated with numerical simulation for dielectric films of SiO2 positively charged by a focused electron beam. By combining the Monte Carlo method and the finite difference method, the simulation is preformed with a newly developed comprehensive two-dimensional model including electron scattering, charge transport and trapping. Results show that the space charge is distributed positively, like a semi-ellipsoid, within a high-density region of electrons and holes, but negatively outside the region due to electron diffusion along the radial and beam incident directions. Simultaneously, peak positions of the positive and negative space charge densities shift outwards or downwards with electron beam irradiation. The surface potential, along the radial direction, has a nearly flat-top around the center, abruptly decreases to negative values outside the high-density region and finally increases to zero gradually. Influences of electron beam and film parameters on the surface potential profile in the equilibrium state are also shown and analyzed. Furthermore, the variation of secondary electron signal of a large-scale integration sample positively charged in scanning electron microscopic observation is simulated and validated by experiment.

  13. Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes

    Energy Technology Data Exchange (ETDEWEB)

    Linggawati, A. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Mohammad, A.W., E-mail: wahabm@eng.ukm.my [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Leo, C.P. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, S.P.S., Penang (Malaysia)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hybrid nylon-66 membranes were prepared using APTEOS and modified by EB irradiation. Black-Right-Pointing-Pointer APTEOS increase the formation of cellular pores. Black-Right-Pointing-Pointer EB irradiation causes the growth of dense layer. Black-Right-Pointing-Pointer 10 wt% of APTEOS and irradiation at 70 kGy shows satisfactory separation of salt. - Abstract: Nylon-66 contains functional groups which form hydrogen bonds with inorganic silica networks and allow the creation of hybrid membranes. As a typical semicrystalline polymer, nylon-66 can be crosslinked through electron beam (EB) irradiation to form nanofiltration membranes. The effects of {gamma}-aminopropyltriethoxylsilane (APTEOS) and EB irradiation on the physical and separation properties of nylon-66 membranes were studied in this work. Hybrid nylon-66 membranes were prepared by adding an APTEOS solution (5 wt%, 10 wt% and 20 wt%) into nylon-66 which was dissolved in formic acid. Before air drying, membranes were irradiated at 60 kGy, 70 kGy and 80 kGy. More cellular pores were formed in nylon-66 membranes with the addition of APTEOS. However, increased irradiation dose caused the formation of a dense layer in nylon-66 membranes. Crosslinked silica in nylon-66 membranes was confirmed by FT-IR and DMA, while XRD results showed that there was a high degree of crystallinity in some membranes after irradiation. With improvements in membrane pore size and the ratio of membrane thickness to porosity, nylon-66 membrane with 10 wt% of APTEOS irradiated at 70 kGy exhibited satisfactory permeability, excellent removal of neutral solutes and improved rejection of divalent ions.

  14. Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes

    International Nuclear Information System (INIS)

    Highlights: ► Hybrid nylon-66 membranes were prepared using APTEOS and modified by EB irradiation. ► APTEOS increase the formation of cellular pores. ► EB irradiation causes the growth of dense layer. ► 10 wt% of APTEOS and irradiation at 70 kGy shows satisfactory separation of salt. - Abstract: Nylon-66 contains functional groups which form hydrogen bonds with inorganic silica networks and allow the creation of hybrid membranes. As a typical semicrystalline polymer, nylon-66 can be crosslinked through electron beam (EB) irradiation to form nanofiltration membranes. The effects of γ-aminopropyltriethoxylsilane (APTEOS) and EB irradiation on the physical and separation properties of nylon-66 membranes were studied in this work. Hybrid nylon-66 membranes were prepared by adding an APTEOS solution (5 wt%, 10 wt% and 20 wt%) into nylon-66 which was dissolved in formic acid. Before air drying, membranes were irradiated at 60 kGy, 70 kGy and 80 kGy. More cellular pores were formed in nylon-66 membranes with the addition of APTEOS. However, increased irradiation dose caused the formation of a dense layer in nylon-66 membranes. Crosslinked silica in nylon-66 membranes was confirmed by FT-IR and DMA, while XRD results showed that there was a high degree of crystallinity in some membranes after irradiation. With improvements in membrane pore size and the ratio of membrane thickness to porosity, nylon-66 membrane with 10 wt% of APTEOS irradiated at 70 kGy exhibited satisfactory permeability, excellent removal of neutral solutes and improved rejection of divalent ions.

  15. Effects of electron beam irradiation on the property behaviour of poly(ether-block-amide) blended with various stabilisers

    International Nuclear Information System (INIS)

    Radiosterilisation can induce modifications and/or degradation to transpire in poly(ether-block-amide) (PEBA) following irradiation. The current investigation utilises combined synergistic mixtures of stabilisers to minimise these effects, by melt blending them with the PEBA material. Hindered amine stabilisers (HAS), primary antioxidants and secondary antioxidants were the stabilisers incorporate to reduce/eliminate the effects of 50 kGy electron beam irradiation dose on the material. Results were discussed by comparing the stabilising efficiency of mixtures on the PEBA material in contrast to the control sample. Dynamic frequency sweeps demonstrated the formation of crosslinks, where the degree of crosslinking was dependent on the combination of stabilisers mixed in the base material (PEBA). The storage modulus displayed that PEBA blended with Irganox 565 had very slight changes in contrast to all other samples following irradiation. However, since this sample is a phenol containing system, severe discolouration was observed in comparison to other samples due to the oxidation of the hindered phenol. Overall, this study provides compelling evidence that a combined synergistic mixture of Irganox 565 (multifunctional phenolic antioxidant) and Tinuvin 783 (hindered amide light stabiliser) with PEBA, resulted in the best radiation stability. - Highlights: • PEBA was melt blended with various stabilisers. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • The incorporation of stabilisers into the PEBA material resulted in discolouration. • PEBA blended with Irganox 565 and Tinuvin 783 improved the radiation resistance

  16. Effects of Electron Beam Irradiation on the Magnetic Properties of Nickel Ferrite (NiFe2O4) Nanoparticles

    International Nuclear Information System (INIS)

    The effects of electron beam irradiation on the magnetic properties of Nickel Ferrite (NiFe2O4) nanoparticles in doses of 0, 100 and 200 kGy was analyzed. The values of saturation magnetization (MS) results at room temperature increased from 31.33, 35.12 and 39.36 emu/ g respectively. Xray diffraction (XRD) analysis of the samples showed that the crystallite size of the particles decreased from 13.16 nm to 7.52 nm with increasing doses of irradiation. The lattice parameter of the cubic structure decreases with increasing irradiation doses, due to ionisation of Fe2+ to Fe3+ producing a closed packing in the cubic crystal structure. (author)

  17. The effect of electron beam irradiation on properties of virgin and glass fiber-reinforced polyamide 6

    Science.gov (United States)

    Porubská, Mária; Janigová, Ivica; Jomová, Klaudia; Chodák, Ivan

    2014-09-01

    Crosslinking of virgin polyamide 6 (PA-6) and PA-6 filled with 30 wt% glass fibers (GF) was investigated. The crosslinking was initiated by electron irradiation applying dose ranging from 50 to 500 kGy. The gel point was determined to be 200 kGy for both materials. The results obtained indicate that the GF presence may retard gel formation in the PA-matrix. The irradiation of unfilled PA-6 resulted in an increase in tensile strength at break and Young's moduli (a minimum 50% gel content is needed), tensile properties at yield were not affected by crosslinking. Thermal resistance, as measured by the heat deflection temperature and Vicat softening temperature, was affected only marginally. Considering these effects, electron beam irradiation is found to be more beneficial for the virgin PA than for the corresponding PA/GF composite.

  18. Effects of electron beam irradiation on passivation layer of flexible display for flexibility improvement

    International Nuclear Information System (INIS)

    One approach is the optimization of single layers by using special coating processes (e. g. atomic layer deposition). The other approach is the deposition of multilayer stacks. Atomic layer deposition (ALD) is attractive technique that deposit nanometer-scale thin films with precise thickness control, excellent step coverage, and a self-limiting process availability. Films favricated by atomic layer deposition are defect-free, dense, and conformal. In previous studies, we investigated the water vapor permeation barrier properties of aluminum oxide (Al2O3) and titanium oxide (TiO2) films fabricated by plasma enhanced atomic layer deposition (PEALD). In the present work, aluminum oxide (Al2O3) and titanium oxide (TiO2) thin films were deposited on poly ether sulfon (PES) and Si(100) by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (Water Vapor Transmission Rate) characteristics, e-beam irradiated onto Al2O3/TiO2 thin films. Nanoscale defects were created by e-beam irradiation, the WVTR value was two orders of magnitude smaller than that or maintained WVTR characteristics

  19. The effect of electron beam irradiation on properties of virgin and glass fiber-reinforced polyamide 6

    International Nuclear Information System (INIS)

    Crosslinking of virgin polyamide 6 (PA-6) and PA-6 filled with 30 wt% glass fibers (GF) was investigated. The crosslinking was initiated by electron irradiation applying dose ranging from 50 to 500 kGy. The gel point was determined to be 200 kGy for both materials. The results obtained indicate that the GF presence may retard gel formation in the PA-matrix. The irradiation of unfilled PA-6 resulted in an increase in tensile strength at break and Young's moduli (a minimum 50% gel content is needed), tensile properties at yield were not affected by crosslinking. Thermal resistance, as measured by the heat deflection temperature and Vicat softening temperature, was affected only marginally. Considering these effects, electron beam irradiation is found to be more beneficial for the virgin PA than for the corresponding PA/GF composite. - Highlights: • Effect of EB irradiation on virgin and glass-fiber reinforced PA-6 up to 500 kGy. • Gel content, tensile properties and thermal resistance examination. • Comparison of the irradiation effect on both materials

  20. High energy electron-beam irradiation effects in Si-SiOx structures

    Science.gov (United States)

    Nesheva, D.; Dzhurkov, V.; Šćepanović, M.; Bineva, I.; Manolov, E.; Kaschieva, S.; Nedev, N.; Dmitriev, S. N.; Popović, Z. V.

    2016-02-01

    Homogeneous SiOx films (x=1.3, 200 nm and 1000 nm thick) and composite a-Si-SiOy films (y ∼ 1.80) containing amorphous Si nanoparticles have been prepared on crystalline (c-Si) substrate. A part of the films was irradiated at temperature below 50°C by 20 MeV electrons with two different fluences (7.2x1014 and 1.44x1015 el.cm-2). Atomic force microscopy (AFM), Raman spectroscopy and capacitance (conductance) - voltage (C(G)-V) measurements on Al/c-Si/SiOx/Al or Al/c-Si/(a-Si-SiOy)/Al structures were used to get information about the irradiation induced changes in the surface morphology, the phase composition in the film bulk and at the Si-SiOx interface. The AFM results show that the electron irradiation decreases the film surface roughness of the films annealed at 250°C. The Raman scattering data imply appearance of amorphous silicon phase and some structural changes in the oxide matrix of the homogeneous SiOx films. In the composite films electron beam stimulated decrease of the defects at the a-Si/SiOy interface has been assumed. The initial C(G)-V results speak about electron induced formation of electrically active defects in the SiOy matrix of the composite films.

  1. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    Science.gov (United States)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.; Sunahara, A.

    2016-03-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code.

  2. Single- and dual-beam in situ irradiations of high-purity iron in a transmission electron microscope: Effects of heavy ion irradiation and helium injection

    International Nuclear Information System (INIS)

    In order to study the effects of 14 MeV neutron irradiation on materials used in the first walls of future fusion reactors, high-purity iron was ion-irradiated with and without helium in the JANNuS facility. Thin foils of high-purity iron were dual-beam irradiated in situ in a transmission electron microscope using 1 MeV Fe+ and 15 keV He+ ions. Several important results regarding dislocation loops and helium bubbles were obtained. For example, it was demonstrated that dislocation loops with a0 〈0 1 0〉 type Burgers vectors are glissile and can move and eliminate at the surface of the thin foil at 500 °C. A comparison of irradiations with and without helium showed that helium atoms reduce the mobility of dislocation loops in pure iron irradiated at 500 °C. Also, we demonstrated that the heterogeneous formation of bubbles inside dislocation loops found previously is also present for helium implantation rates of ∼80 atomic parts per million (appm) He/displacements per atom (dpa)

  3. Ion-beam irradiation of Co/Cu nanostructures: Effects on giant magnetoresistance and magnetic properties

    International Nuclear Information System (INIS)

    We have studied the effects of ion irradiation at low doses (14 ions/cm2) on the structural properties, giant magnetoresistance (GMR), and interlayer magnetic coupling in Co/Cu multilayers. X-ray analysis combined with magnetic and resistivity measurements reveal that intermixing is promoted by ion irradiation while the periodic structure and crystallographic properties of the multilayers are not significantly altered. The GMR ratio of a multilayer decreases monotonically with ion dose. However, thermal annealing on an irradiated multilayer results in sharp recovery of the reduced GMR, and can be associated with a backdiffusion process in metastably intermixed regions. Hence, using ion irradiation and subsequent annealing, the GMR of a single multilayer can be altered reversibly over a wide range. The variation of GMR upon irradiation (or annealing) is accompanied by significant suppression (or improvement) of the antiferromagnetic interlayer coupling. The correlation between GMR and AF coupling, as well as the role of enhanced electron scattering at interfaces during these processes are discussed

  4. Electron beam irradiation technology for environmental conservation

    International Nuclear Information System (INIS)

    This paper reviews research and development of application of electron beam (EB) irradiation technology for treatment of flue gas and waste water, and for disinfection of sewage sludge. Feasibility studies on EB purification of flue gases have been performed with pilot-scale experiments in Japan, the USA and Germany, and is being carried out in Poland for flue gases from iron-sintering furnaces or coal burning boilers. Based on results obtained by experiments using simulated flue gas, pilot scale test for treatment of flue gas of low-sulfur containing coal combustion has recently started in Japan. Organic pollutants in waste water and ground water have been found to be decomposed by EB irradiation. Synergetic effect of EB irradiation and ozone addition was found to improve the decomposition efficiency. Electron beam irradiation technology for disinfection of water effluent from water treatment plants was found to avoid formation of chlorinated organic compounds which are formed in using chlorine. Efficient process for composting of sewage sludge disinfected by EB irradiation has been developed by small scale and pilot scale experiments. In the new process, disinfection by EB irradiation and composing can be done separately and optimum temperature for composting can be, therefore, selected to minimize period of composting. (author)

  5. Effect of dose rate on inactivation of microorganisms in spices by electron-beams and gamma-rays irradiation

    International Nuclear Information System (INIS)

    Total aerobic bacteria in spices used in this study were determined to be 1 x 106 to 6 x 107 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6-9 kGy of EB (electron-beams) or γ-irradiation were required to reduce the total aerobic bacteria to below 103 per gram. However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These differences of radiation sensitivities between EB and γ-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. However, components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and γ-rays. (author)

  6. Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films

    International Nuclear Information System (INIS)

    Graphical abstract: The specular FIR reflectivity of the W1, W2, W3 and W4 mirrors before and after 8 keV Hydrogen ion beam irradiation. Highlights: ► Mirror like W thin films were obtained via PLD. ► The maximum thickness of the Tungsten thin film was ∼324 nm. ► Effect of H-ion beam irradiation on the quality of PLD W mirror is reported. ► Post exposure reflectivity of Tungsten thin films was hardly changed by 2%. - Abstract: The optical quality of the First Mirrors (FMs) of a fusion device (burning plasma experiments, ITER) deteriorates due to the erosion by charge exchange neutrals, re-deposition of the eroded material and the lattice damage by the bombardment of the high energetic particles. This degradation of the optical quality of the plasma facing components in such a harsh environment is a serious concern for the reliability of the spectroscopic based optical diagnostics using FM of a fusion device. In this paper, the effect of 8 keV Hydrogen ion beam irradiation onto the FIR reflectivity of Tungsten thin film mirror is presented. The Tungsten thin films were prepared via Pulsed Laser Deposition (PLD) technique. The Tungsten mirrors were subjected to X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for characterization. The specular reflectivities of the Tungsten mirrors before and after exposure to ion beam were recorded with Fourier Transform of Infra-Red (FTIR) technique. The ion penetration depth and straggle into Tungsten thin film and stainless steel (SS) substrate were estimated by Transport of Ions in Matter (TIRM) simulation code. The changes in post exposure IR reflectivity were interpreted in terms of these parameters.

  7. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Mahmoudabad, S.R., E-mail: ebrahimiyazd@yahoo.com [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Taghinejad-Roudbaneh, M. [Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, P.O. Box 51589, Tabriz (Iran, Islamic Republic of)

    2011-12-15

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely (P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly (P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly (P<0.001) by irradiation. EB-irradiation increased linearly (P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS. - Highlights: > Effects of electron beam (EB) irradiation on nutritive value of some oilseeds were evaluated. > EB-irradiation eliminated completely phytic acid of seeds at a dose of 30 kGy. > EB-irradiation decreased trypsin inhibitor activity of soybean. > Free gossypol content of whole cottonseed was reduced linearly by EB-irradiation. > EB-irradiation increased escape protein and crude protein digestibility of seeds.

  8. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    International Nuclear Information System (INIS)

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely (P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly (P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly (P<0.001) by irradiation. EB-irradiation increased linearly (P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS. - Highlights: → Effects of electron beam (EB) irradiation on nutritive value of some oilseeds were evaluated. → EB-irradiation eliminated completely phytic acid of seeds at a dose of 30 kGy. → EB-irradiation decreased trypsin inhibitor activity of soybean. → Free gossypol content of whole cottonseed was reduced linearly by EB-irradiation. → EB-irradiation increased escape protein and crude protein digestibility of seeds.

  9. Effect of electron beam irradiation on physical, physicochemical, and functional properties of liquid egg yolk during frozen storage

    International Nuclear Information System (INIS)

    Raw yolk of 1-d-old eggs was either subjected to linear electron beam irradiation at approximately 2.5 kGy dosage or not processed. Both irradiated and nonprocessed egg yolk samples were stored at -15 C after irradiation. Testing was conducted on 0, 1, 7, 15, 30, and 60 d of storage. Development of storage modulus (G') was delayed in irradiated samples after 7 d, which suggests that less structure was developed in irradiated egg yolk than in nonprocessed egg yolk during storage. Irradiated samples retained more soluble protein within the first 7 d and showed slightly improved emulsion capacity over that from nonprocessed samples. However, irradiated egg yolk was less bright than nonprocessed samples. No differences were observed in SDS-PAGE patterns of soluble proteins and delipidized low density lipoprotein (LDL). The LDL isolated from irradiated liquid egg yolk showed no difference in N-terminal amino acids compared to that of nonprocessed egg yolk, indicating no detectable cleavage of LDL. However, the denaturation temperature of irradiated samples at Day 0 shifted about 1 C lower than that of the nonprocessed sample. Results indicated that electron beam irradiation did not cause significant physical, chemical or functional changes of egg yolk, or cleavage of egg yolk protein. Therefore, electron beam irradiation could serve as a preservation method for liquid egg yolk

  10. Electron-beam irradiation inactivation of Salmonella: Effects on innate immunity and induction of protection against Salmonella enterica serovar Typhimurium challenge of chickens

    Science.gov (United States)

    Our laboratories are investigating the use of high-energy (10 MeV) Electron-Beam (E-beam) irradiation for its potential use in vaccine development. Ionizing radiation inactivates microorganisms by “direct and indirect” effects on nucleic acids and other cellular components. Though the cells are in...

  11. Discussion on effect of neutron irradiation on cryogenic temperature strength of electron beam welded joint of high manganese steel

    International Nuclear Information System (INIS)

    For the development of fusion reactor materials, this study has been conducted to discuss the effect of neutron irradiation on strength of materials suitable for nuclear fusion reactor. The materials used were two kinds of high manganese steel A-T (18Mn-6.8Cr-4.7Si) and B-T (22Mn-6.4Cr-4.4Si-0.18N). Cryogenic temperature strength of two kinds of high manganese steel and its electron beam welded joint are investigated under various irradiated condition. Results obtained from tensile tests with miniature specimens are as follows. (1) At cryogenic temperature high manganese steel A-T exhibits a faint serration, B-T shows a clear serration. (2) Ultimate tensile strength and 0.2% proof stress of base metal and electron beam welded joint of A-T and B-T increase with increasing of neutron fluence. (3) Elongation of base metal and electron beam welded joint of A-T and B-T decreases with increasing of neutron fluence. (author)

  12. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  13. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    International Nuclear Information System (INIS)

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results

  14. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Directory of Open Access Journals (Sweden)

    Hélène Riquier

    2015-03-01

    Full Text Available Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  15. Effects of electron beam irradiation combined with hot water immersion treatment for shelf life extension of bananas

    International Nuclear Information System (INIS)

    A study of the effects of minimal processing treatments, both individually or in combinations, was carried out in order to extend the shelf life and to improve the quality of bananas. Pre climacteric bananas at light full three-quarter grade, were either treated with hot water immersion for 1-30 min at 45-55 degree C, or irradiated with electron beams (2.0 MeV, Van de Graaff accelerator), to a dose of 0.1-1.5 kGy. All fruit was stored at 21 ± 1 degree C and relative humidity of 85-95 %. There was no significant delay in ripening of fruit treated with hot water immersion at the above temperatures. Some damage to fruit particularly peel scalding at ends occurred at the higher temperatures (>50 degree C). The 50 degree C, 5 minutes immersion was selected for further study. Irradiation to 0.1-0.3 kGy delayed the ripening (up to 3 days) without affecting fruit quality. Doses greater than 0.4 kGy resulted in extensive discoloration and fruit splitting. No significant differences could be detected organoleptically between bananas irradiated at 0.15 kGy and the control. Results of the physico-chemical attributes of the bananas were reported for fruits at colour stage 5 and after 10 and 15 days of storage. The combination treatment of hot water immersion and irradiation at the above settings further extended the shelf life of the banana fruits

  16. Investigation of Time Effect on Resistivity Variation of 10 MeV Electron Beam Irradiated LDPE and HDPE

    International Nuclear Information System (INIS)

    Charges occur in both the physical and/or chemical nature and concentration of defects in the crystalline region, and traps at chain fold-amorphous interfaces. In this work attempt has bean made to investigate the time effect on the variation of surface and volume resistivity of the LDPE and HDPE samples were irradiated under the 10 MeV electron beam of Rhodotron accelerator. In fact, the aim was to investigate these variations during about one mount after irradiation which is changing due to the charge storage in the polyethylene. The samples were prepared in sheet form with the thickness of 0.6±0.1 mm and irradiated at the dose range of 70 to 370 kGy. All the samples were kept at room temperature in laboratory. The results show an increment at about 25 days after irradiation in surface resistivity and decreasing later on for all the samples. The results of volume resistivity measurements didn't show any significant variation

  17. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene

    Science.gov (United States)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Higginbotham, Clement L.

    2012-08-01

    Radiation is currently being exploited to modify polyethylene in order to improve properties for various applications such as hip replacements. This paper thoroughly examines the effects of high energy electron beam irradiation (10 MeV) on low density polyethylene (LDPE) material. ASTM (American Society for Testing and Materials) testing specimens were manufactured from LDPE and subjected to a broad range of doses ranging between 25 and 400 kGy at room temperature in an air atmosphere. Extensive characterisation techniques such as modulated differential scanning calorimetry (MDSC) and the Fourier transform infrared spectroscopy (FTIR) were conducted on the non-irradiated and irradiated samples. While considering the semicrystalline nature of LDPE during the MDSC experiment, the melting temperature (Tm) and the temperature crystallinity (Tc) were calculated. This revealed that the Tm and the Tc decreased in temperature as the irradiation dose increased. The FTIR analysis was implemented to evaluate the presence of polar species such as carbonyl groups and trans-vinylene double bond groups. The IR spectra illustrated that the concentration of characteristic bands for trans-vinylene bonds increased with increasing radiation dose indicating the formation of carbonyl bond groups. Furthermore, the results demonstrated an occurrence of oxidative degradation due to the formation of carbonyl groups at 1718 cm-1.

  18. Effects of electron beam irradiation on the photoelectrochemical properties of TiO2 film for DSSCs

    International Nuclear Information System (INIS)

    ABSTRACT: TiO2 has been widely utilized for various industrial applications such as photochemical cells, photocatalysts, and electrochromic devices. The crystallinity and morphology of TiO2 films play a significant role in determining the overall efficiency of dye-sensitized solar cells (DSSCs). In this study, the preparation of nanostructured TiO2 films by electron beam irradiation and their characterization were investigated for the application of DSSCs. TiO2 films were exposed to 20–100 kGy of electron beam irradiation using 1.14 MeV energy acceleration with a 7.46 mA beam current and 10 kGy/pass dose rates. These samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS) analysis. After irradiation, each TiO2 film was tested as a DSSC. At low doses of electron beam irradiation (20 kGy), the energy conversion efficiency of the film was approximately 4.0% under illumination of simulated sunlight with AM 1.5 G (100 mW/cm2). We found that electron beam irradiation resulted in surface modification of the TiO2 films, which could explain the observed increase in the conversion efficiency in irradiated versus non-irradiated films. - Highlights: ► The surface of TiO2 particles was modified by electron beam irradiation. ► The aggregation between each TiO2 particle was observed in the SEM images. ► Ti3+ state was enhanced due to the excess electron injection via electron beam irradiation. ► The power conversion efficiency of DSSCs was enhanced.

  19. Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

    International Nuclear Information System (INIS)

    Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10−2 – 10−4 S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O+1 with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs

  20. Effects of electron beam irradiation on the photoelectrochemical properties of TiO2 film for DSSCs

    Science.gov (United States)

    Kim, Hyun-Bin; Park, Dong-Won; Jeun, Joon-Pyo; Oh, Seung-Hwan; Nho, Young-Chang; Kang, Phil-Hyun

    2012-08-01

    iO2 has been widely utilized for various industrial applications such as photochemical cells, photocatalysts, and electrochromic devices. The crystallinity and morphology of TiO2 films play a significant role in determining the overall efficiency of dye-sensitized solar cells (DSSCs). In this study, the preparation of nanostructured TiO2 films by electron beam irradiation and their characterization were investigated for the application of DSSCs. TiO2 films were exposed to 20-100 kGy of electron beam irradiation using 1.14 MeV energy acceleration with a 7.46 mA beam current and 10 kGy/pass dose rates. These samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS) analysis. After irradiation, each TiO2 film was tested as a DSSC. At low doses of electron beam irradiation (20 kGy), the energy conversion efficiency of the film was approximately 4.0% under illumination of simulated sunlight with AM 1.5 G (100 mW/cm2). We found that electron beam irradiation resulted in surface modification of the TiO2 films, which could explain the observed increase in the conversion efficiency in irradiated versus non-irradiated films.

  1. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    Science.gov (United States)

    Ebrahimi-Mahmoudabad, S. R.; Taghinejad-Roudbaneh, M.

    2011-12-01

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely ( Pphytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly ( P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly ( P<0.001) by irradiation. EB-irradiation increased linearly ( P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS.

  2. Microorganisms inactivation by electron beam irradiation and microwave heating

    International Nuclear Information System (INIS)

    The comparative results obtained by applying separate beam irradiation, separate microwave heating and combined electron beam irradiation and microwave heating (successive and simultaneous) to reduction of viable cells of Staphylococcus intermedius and Pseudomaonas aeruginosa are presented. Simultaneous irradiation results in a more dramatic reduction of microorganisms than by either microwave or electron beam irradiation alone. The tests demonstrated that irradiation time and the upper limit of required absorbed dose which ensures a complete sterilization effect of the studied microorganisms could be reduced of about six times by additional use of microwave energy to electron beam irradiation. Experiments were carried out using an electron linear accelerator ALIN-10 of 6 MeV and 180 W maximum output power and 2.45 GHz microwave source of controlled power up to 0.85 kW. (authors)

  3. A study on the effects of electron beam irradiation on tooth extraction wound healing in rats

    International Nuclear Information System (INIS)

    The wound of the upper jaw 3 days after the first molar tooth extraction in female rats was exposed to 1,500 rads (Group 2) and 2,000 rads (Group 3) of the 10 MeV electron beams, and its pathohistological changes were compared with those of rats with the tooth extraction alone (control group). In the control group, the tooth extraction wound was covered with epithelium 10 days later and new bones were formed 17 days later. Wound healing with the epithelium was seen in all irradiated rats 24 days later. The formation of the new teeth was seen 24 days later in the Group 2 and 38 days later in Group 3. Cell infiltration under the epithelial layers was still observed in some of the Group 3, although the wound was covered with epithelium, and the new bone covering the extraction wound was formed 38 days later. Healing was prolonged in Group 3, as compared with that in Group 2. (Namekawa, K.)

  4. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene

    International Nuclear Information System (INIS)

    Radiation is currently being exploited to modify polyethylene in order to improve properties for various applications such as hip replacements. This paper thoroughly examines the effects of high energy electron beam irradiation (10 MeV) on low density polyethylene (LDPE) material. ASTM (American Society for Testing and Materials) testing specimens were manufactured from LDPE and subjected to a broad range of doses ranging between 25 and 400 kGy at room temperature in an air atmosphere. Extensive characterisation techniques such as modulated differential scanning calorimetry (MDSC) and the Fourier transform infrared spectroscopy (FTIR) were conducted on the non-irradiated and irradiated samples. While considering the semicrystalline nature of LDPE during the MDSC experiment, the melting temperature (Tm) and the temperature crystallinity (Tc) were calculated. This revealed that the Tm and the Tc decreased in temperature as the irradiation dose increased. The FTIR analysis was implemented to evaluate the presence of polar species such as carbonyl groups and trans-vinylene double bond groups. The IR spectra illustrated that the concentration of characteristic bands for trans-vinylene bonds increased with increasing radiation dose indicating the formation of carbonyl bond groups. Furthermore, the results demonstrated an occurrence of oxidative degradation due to the formation of carbonyl groups at 1718 cm−1. - Highlights: ► Crosslinking is present in low density polyethylene (LDPE) after being exposed to radiation. ► Trans-vinylene double bond groups in LDPE significantly increases with radiation. ► Post irradiation effects causes oxidation to form on the surface of the LDPE samples. ► Melting temperature and temperature crystillinity decrease with an increase in radiation.

  5. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    International Nuclear Information System (INIS)

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  6. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Pomarico Neto, Walter, E-mail: hgomes@cnen.gov.br, E-mail: pbrito@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: abrusqui@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Mourao, Gerson Barreto; Orlando, Eduardo Adilson; Miyagusku, Luciana, E-mail: marciamh@ital.sp.gov.br, E-mail: eduardo.orlando@ital.sp.gov.br [Instituto de Tecnologia dos Alimentos (ITAL), Campinas, SP (Brazil)

    2013-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  7. Development and application of creation technology of new crops by radiation. Induction effect of mutation of flower color of chrysanthemum by 12C5+ ion beam irradiation

    International Nuclear Information System (INIS)

    Dose-effect of cultured explant of chrysanthemum by 12C5+ ion beam irradiation and mutation of flower color induced by redifferentiation individuals were studied. The inductive effect of mutation by ion beam was compared with that of γ-ray. Damage of cultured explant by ion beam irradiation was observed at first at 5 Gy. LD50, LD75 and LD100 were shown by 10 Gy, 20 Gy and 30 Gy dose, respectively. Callus formation and individuals redifferentiation were obtained in explant by dose to 20 Gy. 5-15 Gy seemed to be suitable dose of 12C5+ ion beam to explant of chrysanthemum. On damage by γ-ray, LD50 and LD100 were observed by 45 Gy and 80 Gy, respectively. On the basis of LD50, the biological effect of ion beam was about 4.5 times as large as that of γ-ray. In the case of ''Taihei'', the stock seed, more large amount of multi color variant was induced by ion-beam, especially, it was remarkable such a case as flower used as explant. Ion beam 12C5+ irradiation induced mutation to multicolors. Both irradiations induced mutation more to flower than to leaf. (S.Y.)

  8. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    Science.gov (United States)

    Thomé, Lionel; Velisa, Gihan; Miro, Sandrine; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis; Trocellier, Patrick; Serruys, Yves

    2015-03-01

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (Sn) and Electronic (Se) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (Sn&Se), whereas single low-energy irradiation (Sn alone) or even sequential (Sn + Se) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between Sn and Se in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery Sn/Se effects may preserve the integrity of nuclear devices.

  9. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Thomé, Lionel, E-mail: thome@csnsm.in2p3.fr; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Velisa, Gihan [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Miro, Sandrine; Trocellier, Patrick; Serruys, Yves [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  10. Radiation-induced effects in the electron-beam irradiation of dietary flavonoids

    Science.gov (United States)

    Tamba, M.; Torreggiani, A.

    2004-09-01

    The harmful effects of oxidative processes in living organisms can be reduced by the dietary intake of flavonoids, a class of phenolic compounds ubiquitous in plants and widely found in a number of fruits, vegetables and beverages. Many fruits and vegetables are treated by irradiation to solve preservation problems and a radical-induced degradation of nutrients, including polyphenols, may occur. The free radical chemistry of two abundant flavonoids in food, catechin and quercetin, have been investigated by using pulse radiolysis technique. The central role of the phenoxyl-type radical and the strong influence of the state of protonation of the compounds on the pathway of formation and decay of the corresponding oxidized radicals has been evidenced from the spectral properties and chemical reactivity of the radicals derived from the attack of several oxidizing species ( ṡOH, N 3ṡ SO 4-ṡ).

  11. Application of electron beam irradiation, (1). Development and application of electron beam processors

    International Nuclear Information System (INIS)

    This paper deals with characteristics, equipment (principle and kinds), present conditions, and future issues in the application of electron beam irradiation. Characteristics of electron beams are described in terms of the following: chemical and biological effects of radiation; energy and penetrating power of electron beams; and principle and kinds of electron beam accelerator. Industrial application of electron beam irradiation has advantages of high speed procedure and producibility, less energy, avoidance of poisonous gas, and extreme reduction of organic solvents to be used. The present application of electron beam irradiation cen be divided into the following: (1) hardening of resin or coated membrane; (2) improvement of macromolecular materials; (3) environmental protection; (4) sterilization; (5) food sterilization. The present equipment for electron beam irradiation is introduced according to low energy, medium energy, and high energy equipment. Finally, future issues focuses on (1) the improvement of traceability system and development of electron dosimetric techniques and (2) food sterilization. (N.K.)

  12. The effects of external beam irradiation on the growth of flat bones in children: Modeling a dose-volume effect

    International Nuclear Information System (INIS)

    Purpose: To model the effects of external beam irradiation on the developing flat bones of pediatric patients undergoing radiation therapy (RT) for tumors involving the musculoskeletal system. Methods and Materials: Patients with image-guided RT plans including areas adjacent to facial or pelvic flat bones underwent retrospective contouring of nontumor involved flat bones ipsilateral and contralateral to the treatment side. Radiation dose-volume information and bone volume data (initial and the most recent follow-up) were analyzed in 15 paired flat bones from 10 patients (ages 1.0-17.0 years). The models to predict bone growth after completion of RT (v post) were based on initial bone volume (v pre), the patient's age, time to follow-up (t), and the dose-volume parameter (vInt35+ ). Results: We developed a dose effects model as follows: Log (vpost / vpre ) = βtimet + βagegroupt + βdoset vInt35 . The dose-volume parameter vInt35 predicted significantly for alterations in growth in younger patients, but not for older patients. The predictability of the fitted model for relative change in bone growth improved in the younger age group with the addition of the dose-volume term vInt35 (correlation coefficient of r = 0.5510 to r = 0.6760 with the addition vInt35 ). Conclusions: Our model accurately predicted flat bone growth and is notable for the inclusion of radiation dose-volume information, which is now available in the image-guided RT era. Further refinement of this model in a prospective patient population is underway

  13. Blood irradiation with accelerator produced electron beams

    International Nuclear Information System (INIS)

    Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time. (author)

  14. Effect of High-energy Proton Beam Irradiation on the Behaviour of Graphite Collimator Materials for LHC

    CERN Document Server

    Ryazanov, A; Chugunov, O; Latushkin, S; Prichodko, K; Semenov, E; Unezhev, V; Assmann, R; Aberle, O; Bertarelli, A; Schmidt, R; CERN. Geneva. ATS Department

    2010-01-01

    The results of experimental investigations of the physical-mechanical property changes of graphite collimator materials for LHC (CERN) irradiated at the cyclotron of RRC-KI by protons with energies up to 30 MeV are presented here. The numerical calculations of radiation damage accumulation in the collimator materials under proton beam irradiation in the energy interval from 20 MeV up to 35 MeV and up to irradiation doses of 1019 proton/cm2 have been made, to derive the irradiation conditions at the RRC KI cyclotron. Comparative investigations of physical-mechanical properties of irradiated and non irradiated graphite collimator materials were performed, including analysis of the degradation of main physical properties of these materials (coefficient of thermal conductivity, changes of electrical resistivity, thermal expansion coefficient, changes of density, changes of mechanical properties of these materials: strength analysis, elastic modulus changes, stress to rupture, yield stress, ultimate tensile stress...

  15. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2013-01-01

    Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA

  16. Feasibility test to control algal bloom using electron beam irradiation

    International Nuclear Information System (INIS)

    Efforts were made to assess the feasibility to control algal growth using electron beam irradiation. Fresh water algae (e.g. Chlorella sp., Scenedesmus sp., Microcystis sp., Anabaena sp., Oscillatoria sp.) and sea water red algae (e.g. Procentrium minimum, Lingulodinium polyedra, Cochlodinium polykrikoides, Scrippsiella trochoidea, Procentrium micans) were cultured in laboratory and irradiated at different dose of 1.0-10kGy by ELV-4 model electron beam accelerator. The results indicated that in spite of low dose, electron beam irradiation have a great effect on the algal photosynthetic activity; especially for sea water red algae, approximately 40% reduction in chlorophyll-a concentration was observed right after electron beam irradiation at 1.0kGy. Decrease in photosynthetic activity of sea water red algae was more pronounced than that of fresh water algae. With regard to fresh water algae, blue green algae(e.g. Microcystis sp., Oscillatoria sp.) was more vulnerable to electron beam exposure than green algae(e.g. Chlorella sp., Scenedesmus sp.). It is interesting to observe that complete bioflocculation marked by cell aggregation and rapid settling of fresh water algae occurred within 2 days after electron beam irradiation. Continuous mixing was one of the important factors to induce algal bioflocculation. Algal removal and settleable matter production were found to be proportional to irradiation dose and mixing intensity. It is likely that electron beam irradiation damages cell contents including chlorophyll-a, releasing extracellular biopolymer that can be used for inducing bioflocculation. (author)

  17. Quality comparison between gamma-irradiated or electron beam irradiated pork patties

    International Nuclear Information System (INIS)

    This study was conducted to evaluate the microbial safety, hardness and sensory properties of pork patties irradiated with gamma ray or electron beam at the absorbed dose from 5 to 20 kGy. Minced pork was prepared in 24 hours after butchery for manufacturing of pork patties. It was produced by methods of our previous study and then packaged to vacuum condition. Gamma (430 kCi, Co-60) and electron beam (2.5 MeV, electron accelerator) were used for food irradiation, and the absorbed doses used were up to 20 kGy under room temperature. The microbiological and sitological characteristics of the samples were observed during accelerated storage at 30 deg. C for 10 d. The results of the total aerobic bacteria in pork patties during the accelerated storage showed that the sterilization effect of gamma irradiation was superior to that of electron beam irradiation. The hardness and sensory properties such as colour, chewiness, taste, and overall acceptability of pork patties were decreased depending upon irradiation dose. Gamma irradiated samples have lower hardness and sensory scores than those of electron beam irradiated samples. In conclusion, gamma irradiation on pork patties was appeared more effective than E-beam irradiation. However, further studies to reduce the quality deterioration of gamma-irradiated pork patties should be continuously conducted

  18. The effect of a metal hip prosthesis on the radiation dose in therapeutic photon beam irradiations

    International Nuclear Information System (INIS)

    Prostate and cervical cancer patients are often treated with external X-ray beams of bi-lateral incidence. Such treatment may incur some dose effect that cannot be predicted precisely in commercial treatment planning systems (TPS) for patients having undergone total hip replacement. This study performs a Monte Carlo (MC) simulation and an analytical calculation (convolution superposition algorithm which is implemented in ADAC TPS) of a 6 MV, 5x5 cm2 X-ray beam incident into water with the existence of hip prosthesis, e.g. Ti6Al4V and CoCrMo alloy. The results indicate that ADAC TPS cannot precisely account for the scatter and backscatter radiation that a metal hip prosthesis causes. For percent depth dose (PDD) curves, the maximum underdosage of ADAC TPS up to 5 mm above the interface between dense material and water is 5%, 20% and 27% for PDDBone, PDDTi and PDDCo, respectively. The dose re-buildup, which occurs behind the hip region, becomes more and more obvious for denser medium existed in water. Increasing inhomogeneity also enhances the underdosage of ADAC for greater depth (>10 cm), as the figures of nearly 2% in PDDBone, PDDTi and 4-5% in PDDCo reveal. Overestimating the attenuated power of high-density non-water material in ADAC TPS causes this underdosage. For dose profiles, no significant differences were found in ProfileBone at any depth. ProfileTi reveals that MC slightly exceeds ADAC at off-axis position 1.0-2.0 cm. ProfileCo reveals this more obviously. This finding means that scatter radiation from these denser materials is significant and cannot be predicted precisely in ADAC

  19. Search for the effect of E-beam irradiation on some steroids

    Energy Technology Data Exchange (ETDEWEB)

    Marciniec, B. E-mail: bmarcin@amp.edu.pl; Ogrodowczyk, M.; Dettlaff, K

    2005-03-01

    Seven steroid derivatives (hydrocortisone, hydrocortisone acetate, prednisolone, prednisolone acetate, methylprednisolone acetate, dexamethasone and fludrocortisone acetate) irradiated in the solid phase 10 MeV electrons, were studied by chromatographic methods (TLC and HPLC). Before the irradiation the derivatives contained different amounts of the following impurities: cortisone, cortisone acetate, prednisolone, prednisolone acetate and prednisone. After irradiation with a dose of upto 200 kGy radiolytic products were identified: cortisone, cortisone acetate, prednisone, prednisolone and methylprednisone acetate. All the identified radiolytic products were formed as a result of oxidation of the substituent at C{sub 11}, and in some cases the oxidation was accompanied by cleavage of the ester bond. The content of impurities before irradiation did not exceed 0.8%, while after the irradiation the content of the products of radiolysis depended on the kind of the derivative and the dose, and varied from 0.6% for a dose of 25 kGy to 4.03% for a dose of 200 kGy. For some derivatives, a linear relationship was found between the loss of a given steroid content and the dose. The studied steroid derivatives are characterised by high radiochemical stability and their sterilisation by irradiation does not lead to loss of the active substance below 97%, i.e. the lower limit admissible by the pharmacopoeias.

  20. Search for the effect of E-beam irradiation on some steroids

    Science.gov (United States)

    Marciniec, B.; Ogrodowczyk, M.; Dettlaff, K.

    2005-03-01

    Seven steroid derivatives (hydrocortisone, hydrocortisone acetate, prednisolone, prednisolone acetate, methylprednisolone acetate, dexamethasone and fludrocortisone acetate) irradiated in the solid phase 10 MeV electrons, were studied by chromatographic methods (TLC and HPLC). Before the irradiation the derivatives contained different amounts of the following impurities: cortisone, cortisone acetate, prednisolone, prednisolone acetate and prednisone. After irradiation with a dose of upto 200 kGy radiolytic products were identified: cortisone, cortisone acetate, prednisone, prednisolone and methylprednisone acetate. All the identified radiolytic products were formed as a result of oxidation of the substituent at C 11, and in some cases the oxidation was accompanied by cleavage of the ester bond. The content of impurities before irradiation did not exceed 0.8%, while after the irradiation the content of the products of radiolysis depended on the kind of the derivative and the dose, and varied from 0.6% for a dose of 25 kGy to 4.03% for a dose of 200 kGy. For some derivatives, a linear relationship was found between the loss of a given steroid content and the dose. The studied steroid derivatives are characterised by high radiochemical stability and their sterilisation by irradiation does not lead to loss of the active substance below 97%, i.e. the lower limit admissible by the pharmacopoeias.

  1. Study of electron beam irradiation effects on morphologic properties of the PET/PP/PE/EVA polymeric blend

    International Nuclear Information System (INIS)

    Amidst the pollutants, plastics and especially the 'PET bottles' packaging type, which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) have been causing big damage to the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by mechanical recycling 'PET bottles' after consumption, with the objective of finding a solution for this environmental problem. It was also studied the different ionizing radiation dose effects (25, 50, 75, 100, 150, 200, 300, 400 and 500 kGy) on the blend properties using an electron beam accelerator. The morphologic properties of the non-irradiated and irradiated polymeric blend were evaluated by the Light Microscopy (LM) and Scanning Electron Microscopy (SEM). The analysis of the results appeared to be a not mixing and compatible blend. The use of the ionizing radiation improved the homogeneity of the blend. These modifications have been randomized and irregular, depending directly on the dose of applied radiation. (author)

  2. Radical formation of irradiated α-alanine and N-acetyl alanine with heavy ion beams. Effects of the irradiation temperature

    International Nuclear Information System (INIS)

    The characteristics of irradiation with C290 MeV/u ion beams were investigated using X-band electron spin resonance (ESR) spectroscopy for a polycrystalline powder of L-α-alanine at from 77K to 310K. The formed main radicals at 190K∼310K were the deamino radical and the decarboxyl radical. Because of the first-derivative ESR, decarboxyl radical showed an expanded spectral width and a lower peak height because of its amino hydrogen and nitrogen than that of the same amount of deamino radical. The ESR of irradiated L-α-alanine predominantly indicates the spectrum of the deamino radical. On the irradiated, L-α-alanine at from 77K to 310K ESR showed 1:4:6:4:1 lines at 220K and at room temperature, which indicate that the methyl group of the radical was rotating. On the other hand, at 77K ESR the spectrum showed nearly 1:5:5:5:1 lines, like the teeth of a saw, on samples irradiated at 270K∼350K (range IV), and 1:4:6:4:1 lines for those irradiated at 180K∼260K (range II and III), respectively. It is considered that the radical conformation of the deamino radical is planar (most stable conformation) on an irradiated sample in range IV, and a pyramidal structure on the irradiated sample in ranges II and III. (author)

  3. The effect of high-energy electron-beam irradiation on microstructural modification of a high-speed steel roll

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the microstructural modification in a high-speed steel (HSS) roll irradiated with an accelerated high-energy electron beam. The HSS roll samples were irradiated at the beam travel speeds of 2.5 to 25 mm/s using an electron accelerator (1.4 MeV). The microstructure was examined with a scanning electron microscope (SEM) capable of in situ fracture testing and simultaneous measurement of the apparent fracture toughness. Irradiation changed the matrix phase from tempered martensite to a mixture of retained austenite and martensite. Coarse primary carbides were partially or completely dissolved, depending on the heat input. Irradiation greatly improved the fracture properties because of the presence of retained austenite, which could retard crack propagation, although hardness was decreased. Occasional interior quench cracks were found in the heat-affected region. Appropriate processing methods, such as pre- or postirradiation, were suggested. A heat transfer analysis of the irradiated surface layer was also carried out to elucidate the influence of the irradiation parameters on the microstructure

  4. Bony regeneration effect of electron-beam irradiated hydroxyapatite and tricalcium phosphate mixtures with 7 to 3 ratio in the caravel defect model of rat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Eo, Mi Young; Kang, Ji Young; Myoung, Hoon; Lee, Jong Ho [Seoul National Univ., Seoul (Korea, Republic of); Cho, Hye Jin [Korea Basic Science Institute, Daejeon (Korea, Republic of); Yea, Kwon Hae; Lee, Byung Cheol [Korea Atomic Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    The aim of this study is to evaluate the effect and potential of electron beam irradiation treatment to the new bone formation in the rat calvarial bony defects by using of 7 to 3 ratios of hydroxyapatite and tricalcium phosphate mixed with type I collagen. We used 1.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator with different irradiation dose, such as 1, 30, 60 kGy. And 10.0 MeV high frequency superconductive linear accelerator was also used. In six different experimental groups, the defect of every three rate was filled with E-beam irradiated bony mixtures, which different energy and dose, and that of rats without E-beam irradiated bony mixtures can be compared with out previous results. The other three rats were used as sham group. Rats were sacrificed after 4, 8, and 16 weeks, and grafted healing specimens were studied by clinical and radiographic findings, histomorphologic staining with hematoxylin and eosin. The large particular size of HLA was changed to small particles after E-beam irradiation, to which small particle of TEPC was engaged to small sexed HLA with organic collagen components in Seam findings. Abundant endothelial cells with preciosity were found around inner portions of grafted healing bone and many couplings of osteoblast with osteoclast in Tem findings were found in every experimental groups.

  5. Ion beam irradiation effect on thermoelectric properties of Bi2Te3 and Sb2Te3 thin films

    International Nuclear Information System (INIS)

    Thermoelectric energy harvesting is a very promising application in nuclear power plants for self-maintained wireless sensors. However, the effects of intensive radiation on the performance of thermoelectric materials under relevant reactor environments such as energetic neutrons are not fully understood. In this work, radiation effects of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric thin film samples prepared by E-beam evaporation are investigated using Ne2+ ion irradiations at different fluences of 5 × 1014, 1015, 5 × 1015 and 1016 ions/cm2 with the focus on the transport and structural properties. Electrical conductivities, Seebeck coefficients and power factors are characterized as ion fluence changes. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of the samples are obtained to assess how phase and microstructure influence the transport properties. Carrier concentration and Hall mobility are obtained from Hall effect measurements, which provide further insight into the electrical conductivity and Seebeck coefficient mechanisms. Positive effects of ion irradiations from Ne2+ on thermoelectric material property are observed to increase the power factor to 208% for Bi2Te3 and 337% for Sb2Te3 materials between fluence of 1 and 5 × 1015 cm2, due to the increasing of the electrical conductivity as a result of ionization radiation-enhanced crystallinity. However, under a higher fluence, 5 × 1015 cm2 in this case, the power factor starts to decrease accordingly, limiting the enhancements of thermoelectric materials properties under intensive radiation environment

  6. Effect of electron beam irradiation on polymer electrolytes: Change in morphology, crystallinity, dielectric constant and AC conductivity with dose

    International Nuclear Information System (INIS)

    Polymer electrolyte (PEO:Li2SO4) films were exposed to 8 MeV electron beam (EB) with various doses to investigate the radiation effect on dielectric permittivity (real and imaginary) and AC conductivity by using PC based Impedance Analyzer in the frequency range of 40–1 MHz at different temperatures. The change in chemical interaction, morphology, and thermal properties was analyzed with the help of Fourier Transform InfraRed (FT-IR), Scanning Electron Micrographs (SEM) and Differential Scanning Calorimeter (DSC) techniques respectively for before and after irradiation. The chemical change was confirmed from the FT-IR result which showed that peak intensities corresponding to C–H, C=C, and –C–O–C– bonds decrease with increase in EB dose clearly indicating that the degradation of polymer chain or segments (i.e., –CH2–CH2–). The DSC result showed that the melting temperature of unirradiated film is 69.42 °C which reduced to 67.55 °C for 30 kGy dose suggesting an exothermic behaviour. The SEM images give that surface roughness and crack depths increase with increasing dose. The XRD result reveals a decreased ∼30% crystallite size for 30 kGy dose compared with unirradiated film. Further, it is seen that dielectric permittivity and frequency dependent conductivity were found to increase with increasing irradiation dose. The maximum AC conductivity was observed to be 1.88×10−4 s/cm for 30 kGy and the estimated change in charge carrier concentration also showed high for 30 kGy dose. The AC conductivity obeys Power's law. The frequency exponent (s) parameter shows temperature dependent behaviour which decreases after irradiation. - Highlights: • 8 MeV EB irradiation effect on dielectric constant and AC conductivity of polymer electrolyte films was observed. • Occurrence of chain scission due to breaking of bonds was confirmed by FT-IR analysis. • AC conductivity increases with dose due to more number of free charges involved in

  7. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures

    Science.gov (United States)

    Rao, Gayathri S.

    2011-12-01

    Apart from its compelling performance in conventional nanoelectronic device geometries, graphene is an appropriate candidate to study certain interesting phenomenon (e.g. the Veselago lens effect) predicted on the basis of its linear electron dispersion relation. A key requirement for the observation of such phenomenon in graphene and for its use in conventional field-effect transistor (FET) devices is the need to minimize defects such as consisting of -- or resulting from -- adsorbates and lattice non-uniformities, and reduce deleterious substrate effects. Consequently the investigation of the origin and interaction of defects in the graphene lattice is essential to improve and tailor graphene-based device performance. In this thesis, optical spectroscopic studies on the influence of low-energy electron irradiation on adsorbate-induced defectivity and doping for substrate supported and suspended graphene were carried out along with spectroscopic and transport measurements on graphene FETs. A comparative investigation of the effects of single-step versus multi-step, low-energy electron irradiation (500 eV) on suspended, substrate supported graphene and on graphene FETs is reported. E-beam irradiation (single-step and multi-step) of substrate-supported graphene resulted in an increase in the Raman ID/IG ratio largely from hydrogenation due to radiolysis of the interfacial water layer between the graphene and the SiO2 substrate and from irradiated surface adsorbates. GFETs subjected to single and multi-step irradiation showed n-doping from CNP (charge neutrality point) shift of ˜ -8 and ˜ -16 V respectively. Correlation of this data with Raman analysis of suspended and supported graphene samples implied a strong role of the substrate and irradiation sequence in determining the level of doping. A correspondingly higher reduction in mobility per incident electron was also observed for GFETs subjected to multi-step irradiation compared to single step, in line with

  8. Effect of O2+, H2++ O2+, and N2++ O2+ ion-beam irradiation on the field emission properties of carbon nanotubes

    International Nuclear Information System (INIS)

    The effect of O2+, H2++ O2+, and N2++ O2+ ion-beam irradiation of carbon nanotubes (CNTs) films on the chemical and electronic properties of the material is reported. The CNTs were grown by the chemical vapor deposition technique (CVD) on silicon TiN coated substrates previously decorated with Ni particles. The Ni decoration and TiN coating were successively deposited by ion-beam assisted deposition (IBAD) and afterwards the nanotubes were grown. The whole deposition procedure was performed in situ as well as the study of the effect of ion-beam irradiation on the CNTs by x-ray photoelectron spectroscopy (XPS). Raman scattering, field-effect emission gun scanning electron microscopy (FEG-SEM), and field emission (FE) measurements were performed ex situ. The experimental data show that: (a) the presence of either H2+ or N2+ ions in the irradiation beam determines the oxygen concentration remaining in the samples as well as the studied structural characteristics; (b) due to the experimental conditions used in the study, no morphological changes have been observed after irradiation of the CNTs; (c) the FE experiments indicate that the electron emission from the CNTs follows the Fowler-Nordheim model, and it is dependent on the oxygen concentration remaining in the samples; and (d) in association with FE results, the XPS data suggest that the formation of terminal quinone groups decreases the CNTs work function of the material.

  9. Electron beam irradiation, oxygen, and temperature effects on nucleotide degradation in stored aquaculture hybrid striped bass fillets

    International Nuclear Information System (INIS)

    Skinless fillets from commercially-grown aquaculture hybrid striped bass (Morone saxatilis x M. chrysops) were electron beam-irradiated in the presence of air or vacuum-packaged and stored at 4C and -20C for 14 days. A mean low dose level of 2.0 or 3.0 kGy (+/- 0.5 kGy) and high dose level of 20 kGy (+/- 4 kGy) were used for irradiated samples. Hypoxanthine (Hx) concentrations, Ki-values ([(INO + Hx)/(IMP + INO + Hx)] x 100), and H-values ([(Hx)/(IMP + INO + Hx)] x 100) indicated that irradiation did not influence the rate of nucleotide degradation compared with nonirradiated controls at either refrigerated or frozen temperatures. Vacuum packaging or freezing of stored samples resulted in lower H-values and Hx contents compared with nonirradiated controls regardless of irradiation treatment

  10. Surface finish of micro punch with ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    XU Jie; WANG Chun-ju; GUO Bin; SHAN De-bin; Y.SUGIYAMA; S.ONO

    2009-01-01

    Ion beam irradiation was adopted for surface treatment of the micro punch manufactured by precision machining. Ar plasma was used for the ion irradiation process, which was generated by the electron cyclotron resonance(ECR) equipment. The surface finish processes of micro punch were carried out at irradiation angles of 45°and 10°, respectively. The surface roughness and topography were measured to estimate the quality of surface finish. The results show that the ion irradiation is very effective to reduce the surface roughness, which can be improved more significantly at irradiation angle of 10°than at 45°. The technology of surface finish with ion beam irradiation is suitable for the surface treatment of micro die.

  11. Ion-beam irradiation effects on reactively sputtered CrN layers

    OpenAIRE

    Mirjana Novaković; Maja Popović; Nataša Bibić

    2011-01-01

    This paper presents a study of microstructural changes induced in CrN layers by irradiation with 120 keV argon ions. The layers were deposited on (100) Si wafers, at different nitrogen partial pressures (2×10^-4, 3.5×10^-4 and 5×10^-4 mbar), to a total thickness of 260–280 nm. During deposition the substrates were held at 150°C. After deposition the samples were irradiated with argon ions to the fluences of 1×10^15 and 1×10^16 ions/cm2, under the vacuum of 7×10^-6 mbar. Characterisation of th...

  12. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  13. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  14. Ion-beam irradiation effects on reactively sputtered CrN thin films

    International Nuclear Information System (INIS)

    The present study deals with CrN/Si bilayers irradiated at room temperature (RT) with 120 keV Ar ions. The CrN layers were deposited by d.c. reactive sputtering on Si(1 0 0) wafers, at different nitrogen partial pressures (2 x 10-4, 3.5 x 10-4 and 5 x 10-4 mbar), to a total thickness of 240-280 nm. The substrates were held at room temperature (RT) or 150 oC during deposition. After deposition the CrN/Si bilayers were irradiated up to fluences of 1 x 1015 and 1 x 1016 ions/cm2. Structural characterization was performed with Rutherford backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (XTEM) and grazing angle X-ray diffraction (XRD). For the highest nitrogen pressure (5 x 10-4 mbar) a pure stoichiometric CrN phase was achieved. The results showed that Ar ion irradiation resulted in the variation of the lattice constants, micro-strain and mean grain size of the CrN layers. The observed microstructural changes are due to the formation of the high density damage region in the CrN thin film structure.

  15. Enhancement of etch rate for preparation of nano-sized ion-track membranes of poly(vinylidene fluoride): Effect of pretreatment and high-LET beam irradiation

    International Nuclear Information System (INIS)

    We investigated how pretreatment and high-LET beam irradiation affected the ion-track dissolution rate in poly(vinylidene fluoride) (PVDF) films by SEM observations and conductometric analysis in order to develop the preparation methodology of nano-sized ion-track membranes. PVDF thin films irradiated with four types of ion beams were exposed to a 9 mol/dm3 KOH aqueous solution after their storage in air at 120 deg. C. This heating treatment was found to enhance the etch rate in the latent track, both in the inner core and outer halo regions, without changing that in the bulk, probably due to the formation of parasitic oxidation products facilitating the introduction of the etching agent to improve the etchability. Additionally, the irradiation of heavier higher-LET ions, causing each track to more activated sites (like radicals), was preferable for achieving effective etching.

  16. Effects of electron-beam irradiation to the hydroxyapatite and tricalcium phosphate mixtures for the development of new synthetic bone substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Eo, Mi Young; Kang, Ji Young; Park, Jung Min; Seo, Mi Hyun; Myoung, Hoon; Lee, Jong Ho [Seoul National Univ., Seoul (Korea, Republic of); Han, Young Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    The aim of this study is to evaluate the effect and potential of electron beam irradiation treatment to new bone formation and healing in rat calvarial bone defects using hydroxyapatite and tricalcium phosphate mixtures. We used 1.0-2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator with different irradiation dose such as 1, 30, 60 kGy. Structural changes in this synthetic bone material were analyzed in vitro, such as SEM, elementary and FE-SEM, ATR-IR, and CSR. And after sterilization with ethylene oxide, we use it as a bone graft material, in vivo. Bilateral, standardized truenesses circular calvarial defects, 7.0 mm in diameter, were created in male Sprague-Dawley rats. In each experimental group, the defect was filled with electron beam irradiated synthetic bony mixtures. Rate were sacrificed 2, 4 and 8 weeks post-op. for radiographic, histomorphologic, immunohistochemical staining, TEM, and elementary analysis.

  17. Quality comparison between gamma-irradiated and E-beam irradiated pork patties

    International Nuclear Information System (INIS)

    This study compared the effects of gamma and electron beam (e-beam) irradiation on the quality of pork patties. Pork patties (diameter: 100 mm, thickness: 10 mm) were vacuum-packaged and irradiated by gamma ray (60Co with a 490 kCi source) and e-beam (2.5 MeV) at five, ten, 15, and 20 kGy at room temperature. During accelerated storage at 30 deg C for 10 d, determination of total bacterial populations, hardness, and sensory evaluation was conducted at appropriate sampling intervals. The results of total bacterial populations showed that the gamma-irradiated (GR) samples had lower (P < 0.05) total bacterial counts than e-beam-irradiated (EB) samples during storage at 30 deg C for 10 d, regardless of irradiation dose. The hardness and sensory properties such as colour, chewiness, taste, and overall acceptability of pork patties were decreased depending upon irradiation dose. GR samples had lower hardness and sensory scores than those of EB samples. In conclusion, gamma irradiation on pork patties should be useful in decreasing bacterial populations when compared with e-beam irradiation. However, further studies should be conducted to reduce the quality deterioration of GR pork patties. (author)

  18. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    International Nuclear Information System (INIS)

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed

  19. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Jeynes, J.C.G.; Merchant, M.J.; Kirkby, K.; Kirkby, N. [Surrey Ion Beam Center, Faculty of Engineering and Physical Science, University of Surrey, Guildford Surrey, GU2 7XH (United Kingdom); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  20. 150 MeV Nickel ion beam irradiation effects on polytetrafluoroethylene (PTFE) polymer

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) films were irradiated under vacuum and at room temperature with 150 MeV Ni11+ ions and fluences ranging from 5 x 1010 to 5 x 1012 ions/cm2. Ion induced modifications in optical, chemical and structural properties were studied by means of Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and X-ray diffractometer (XRD). FTIR analysis indicated the defluorination of the PTFE due to the rupture of C-C and C-F bonds. UV-vis measurements indicated the decrease in the band gap Eg of pristine sample from 2.16 to 1.73 eV at a highest fluence of 5 x 1012 ions/cm2. The diffraction pattern of PTFE revealed an increase in the crystallinity at lower fluences while it decreased as the ion fluence was increased.

  1. Evaluation of the effects of electron-beam irradiation on the puncture resistance by Lasioderma serricorne in flexible packaging of granola

    International Nuclear Information System (INIS)

    Lasioderma serricorne is a beetle that infests stored and industrialized dry foods such as cereal bars, granola, flour and pasta, amongst others, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by L. serricorne in BOPP/PP structure, used commercially as granola packaging after electron-beam irradiation. The irradiations were performed using a 1.5 MeV electron beam accelerator, dose rate of 11.22 kGy/s, at room temperature in presence of air, doses up to 120 kGy. After irradiation the BOPP/PP samples were subjected to tests of puncture resistance by L. serricorne, tensile strength, friction coefficient, penetration and seal strength. Results showed decreases in the original mechanical properties of the structure according to the radiation doses applied and effective resistance against punctures by L. serricorne (p<0.05). The results indicate that the irradiated and non-irradiated BOPP/PP structure, in the conditions studied in this work, is resistant against L. serricorne, however the decreases observed in the mechanical properties of the irradiated structure may turn it inappropriate for packaging granola. (author)

  2. Evaluation of the effects of electron-beam irradiation on the puncture resistance by Lasioderma serricorne in flexible packaging of granola

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Vitor M.; Alves, Juliana N.; Nogueira, Beatriz R.; Moura, Esperidiana A.B., E-mail: vmiranda@ipen.b, E-mail: julianaabc@ig.com.b, E-mail: bia.ribnog@gmail.co, E-mail: eabmoura@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ortiz, Angel V., E-mail: angel.ortiz@unipacnet.com.b [UNIPAC Embalagens Ltda., Sao Paulo, SP (Brazil); Potenza, Marcos R., E-mail: potenza@biologico.sp.gov.b [Instituto Biologico de Sao Paulo/APTA, Sao Paulo, SP (Brazil)

    2009-07-01

    Lasioderma serricorne is a beetle that infests stored and industrialized dry foods such as cereal bars, granola, flour and pasta, amongst others, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by L. serricorne in BOPP/PP structure, used commercially as granola packaging after electron-beam irradiation. The irradiations were performed using a 1.5 MeV electron beam accelerator, dose rate of 11.22 kGy/s, at room temperature in presence of air, doses up to 120 kGy. After irradiation the BOPP/PP samples were subjected to tests of puncture resistance by L. serricorne, tensile strength, friction coefficient, penetration and seal strength. Results showed decreases in the original mechanical properties of the structure according to the radiation doses applied and effective resistance against punctures by L. serricorne (p<0.05). The results indicate that the irradiated and non-irradiated BOPP/PP structure, in the conditions studied in this work, is resistant against L. serricorne, however the decreases observed in the mechanical properties of the irradiated structure may turn it inappropriate for packaging granola. (author)

  3. Waste treatment by microwave and electron beam irradiation

    International Nuclear Information System (INIS)

    Comparative results obtained by applying separate and combined (successive and simultaneous) electron beam (EB) and microwave (MW) irradiation to waste treatment, such as food residuals (minced beef, wheat bran and wheat flour) and sewage sludge performed from a food industry wastewater treatment station (vegetable oil plant), are presented. The research results demonstrated that the simultaneous EB and MW irradiation produces the biggest reduction of microorganisms. The tests also demonstrated that the irradiation time and the upper limit of required EB absorbed dose, which ensures a complete sterilization effect, could be reduced by a factor of two by an additional use of MW energy to EB irradiation

  4. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. PMID:24863239

  5. Molecular dynamics simulations of electron and ion beam irradiation of multiwalled carbon nanotubes: The effects on failure by inner tube sliding

    International Nuclear Information System (INIS)

    Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous studies to investigate the low-energy electron and ion (Ar and CF3) beam irradiation of triple-walled carbon nanotubes that consist entirely of either chiral or armchair tubes. Effective incident energies of 50 eV/ion and 50 keV/electron are considered. The approach is classical molecular dynamic simulations using reactive empirical bond-order potentials and the primary knock-on atom approach to model the effects of electron irradiation. The results indicate that these various irradiation processes produce local damage to the nanotubes that includes crosslinking, that the degree of damage depends to some degree on the chirality of the nanotubes, and that the radial distribution of crosslinks depends significantly on the irradiating particle. Importantly, the effect of these crosslinks, and their radial distribution along the circumference of the nanotube, on the tendency of multiwalled nanotubes to fail by the sword-in-sheath mechanism is examined

  6. Microbial quality evaluation and effective decontamination of nutraceutically valued lotus seeds by electron beams and gamma irradiation

    Science.gov (United States)

    Bhat, Rajeev; Sridhar, K. R.; Karim, A. A.

    2010-09-01

    Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B 1, B 2, G 1 and G 2) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants ( P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.

  7. Microbial quality evaluation and effective decontamination of nutraceutically valued lotus seeds by electron beams and gamma irradiation

    International Nuclear Information System (INIS)

    Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B1, B2, G1 and G2) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants (P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.

  8. Effect of oxidant addition on the elimination of 2-naphthalenesulfonate in aqueous solutions by electron beam irradiation

    Science.gov (United States)

    Alkhuraiji, Turki S.; Karpel Vel Leitner, Nathalie

    2016-09-01

    Aromatic sulfonated compounds and naphthalene derivatives are major chemical compounds used in the industry. Electron beam irradiation of aqueous solutions of 2-naphthalenesulfonate (90 μM) was investigated under various experimental conditions. The results obtained demonstrate that the 2-NS concentration decreased dramatically on increasing the absorbed dose in the range 0-1000 Gy. The effectiveness of the radiolytic system was demonstrably enhanced by the addition of oxidants (S2O82- or H2O2). 2-NS removal was higher with S2O82- than with H2O2. For the EB, EB/H2O2, and EB/S2O82- systems, the absorbed doses for 90% elimination of 2-NS (D90) were 700, 480, and 274 Gy, respectively. 2-NS is poorly mineralized by EB but more than 35% mineralization was reached for 15 kGy when oxidants (820 μM S2O82- or 935 μM H2O2) were added. In all systems, the mineralization yield was markedly higher when air (i.e. dissolved oxygen increase) was introduced between successive doses. For 50% 2-NS removal, seven sulfonated transformation products were identified using LC/MS analyses. For the highest absorbed doses the sulfonate group in 2-NS was converted to sulfate ions in the radiolytic systems.

  9. Microbial quality evaluation and effective decontamination of nutraceutically valued lotus seeds by electron beams and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Rajeev, E-mail: rajeevbhat1304@gmail.co [Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800 (Malaysia); Sridhar, K.R. [Microbiology and Biotechnology, Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574199, Karnataka (India); Karim, A.A. [Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2010-09-15

    Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B{sub 1}, B{sub 2}, G{sub 1} and G{sub 2}) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants (P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.

  10. Effect of water and oxygen contents on the decomposition of gaseous trichloroethylene in air under electron beam irradiation

    International Nuclear Information System (INIS)

    An electron beam (EB) treatment of gaseous trichloroethylene (TCE) in air was studied as a purification method of off-gases containing gaseous chloroethylenes. The model air containing TCE at input concentrations of 5-75 ppmv, detected mostly in actual off-gases, was irradiated with 1-MeV EBs in a gas-flow vessel at 10 L/min under the conditions of atmospheric pressure, 298 K, and different H2O contents. The decomposition of 75 ppmv TCE was also examined in humid air under different O2 contents of 1x103 - 2.1x105 ppmv. In the existence of H2O and O2 contents with ≥ 3x102 ppmv and ≥ 5x103 ppmv, respectively, the decomposition ratios of TCE were enhanced and TCE was decomposed into 83.0±1.5% of dichloroacetyl chloride (DCAC) and 17.5±0.6% of carbonyl chloride (COCl2) independently of the input TCE concentrations based on the carbon balance. Trichloroethylene of 5-75 ppmv was effectively decomposed by the OH radical through Cl-radical chain oxidation under the above-mentioned air conditions. (author)

  11. Plastics and elastomers: electron-beam irradiation effects. January 1977-October 1988 (Citations from the Rubber and Plastics Research Association data base). Report for January 1977-October 1988

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the effects that electron-beam irradiation has on polymers. Block copolymer stabilization, mechanical properties of radiation-crosslinked polymers, graft polymerization, electrical conductivity of radiated polymers, and apparatus utilization are among the topics discussed. The effects of curing in such areas as lithography, adhesives, protective coatings, and cable insulation are also included. (This updated bibliography contains 334 citations, 14 of which are new entries to the previous edition.)

  12. External beam and HDR intracavitary irradiation: an effective tool in the primary treatment of cervical cancer - excellent 10 year results and low side effects

    International Nuclear Information System (INIS)

    Introduction: The purpose of this paper is to present our 15 years experience in the primary treatment of cervical cancer with a combination of external beam irradiation and high dose rate brachytherapy. Survival data will be presented and the safe use of intrauterine HDR applications will be demonstrated. Material and Methods: From August 1980 to December 1990, 303 patients with cancer of the uterine cervix underwent primary irradiation in a combination of external beam and HDR intracavitary treatment at the Department of Radiation Oncology at the Sisters of Mercy Hospital in Linz, Austria. All patients were classified according to the FIGO rules: Stage I 54 patients, stage II 171, stage III 75 and stage IV 3 patients. 8 patients were lost to follow up. The mean follow up time of survivors is 110 months. Results and Discussion: A complete remission could be achieved in 282 patients, which is 93%; persistent tumour was found in 21 patients at the first follow up check 3 to 5 months after completion of irradiation. The actuarial overall survival probability for all patients at 5 and 10 years is 62 % and 42 % respectively, the disease specific survival probability is 68 % and 64 %. The local control rate at 5 and 10 years is 73 % and 72 % respectively. According to stage, disease specific survival lies at 90 % for stage I, 69 % for stage II, and 48 % for stage III and IV at 5 years, and at 10 years 87 %, 66 % and 41 % respectively. The actuarial local control probability for stages I, II, and III/IV is 90 %, 74 %, and 60 % respectively at 5 yr, and 88 %, 74 %, and 56 % at 10 yr. (Kaplan-Meier calculations). From all 303 patients 34 suffered from 40 severe and moderate side effects (glossary of Chassagne and Sismondi). The rate for grade II complications is 10 % and for grade III 3 %. Conclusion: Intrauterine HDR brachycurietherapy in addition to external beam irradiation for primary treatment of invasive carcinoma of the uterine cervix provides the same treatment

  13. Detoxification of the veterinary antibiotic chloramphenicol using electron beam irradiation.

    Science.gov (United States)

    Cho, Jae Young; Chung, Byung Yeoup; Hwang, Seon Ah

    2015-07-01

    Electron beam irradiation has shown potential as an alternative process for the treatment of industrial effluents that contain toxic organic chemicals. This study investigated the effectiveness of electron beam in degrading chloramphenicol (CAP) in aqueous solution. The degradation efficiency was 32.4% at 1 kGy, 86.9% at 5 kGy, and 100% at 10 kGy. The total organic carbon (TOC) of CAP in aqueous solution declined 4.6% at 1 kGy, 12.1% at 5 kGy, and 17.1% at 10 kGy of irradiation with electron beam. The CAP degradation products after irradiation were CAP1 ([M + H] m/z 307.1), CAP2 ([M + H] m/z 291.1), and CAP3 ([M + H] m/z 321.1). The degradation products were tested for microbial toxicity against Escherichia coli, Pseudomonas putida, and Bacillus subtilis and did not show any toxic antimicrobial effects caused by the CAP degradation products after irradiation with electron beam. The results of this study suggest that electron beam irradiation is the best technology for the comprehensive treatment of veterinary antibiotics at wastewater treatment plants. PMID:25616384

  14. Molecular characterization of microbial mutations induced by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Hiroyuki [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan); Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)], E-mail: ichida@riken.jp; Matsuyama, Tomoki [Cellular Biochemistry Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Ryuto, Hiromichi [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Hayashi, Yoriko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Fukunishi, Nobuhisa [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Koba, Takato [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2008-03-01

    A positive selection system for gene disruption using a sucrose-sensitive transgenic rhizobium was established and used for the molecular characterization of mutations induced by ion beam irradiations. Single nucleotide substitutions, insertions, and deletions were found to occur in the sucrose sensitivity gene, sacB, when the reporter line was irradiated with highly accelerated carbon and iron ion beams. In all of the insertion lines, fragments of essentially the same sequence and of approximately 1188 bp in size were identified in the sacB regions. In the deletion lines, iron ions showed a tendency to induce larger deletions than carbon ions, suggesting that higher LET beams cause larger deletions. We found also that ion beams, particularly 'heavier' ion beams, can produce single gene disruptions and may present an effective alternative to transgenic approaches.

  15. Ion beam irradiation effect on polymers. LET dependence on the chemical reactions and change of mechanical properties

    International Nuclear Information System (INIS)

    High-energy ions of H, He, C, O, Ne, Ar with 10-460 MeV from an AVF cyclotron accelerator were used to irradiate polymer films of 100x100 mm2 area by beam scanning. The changes of mechanical properties and also the chemical reactions such as chain scission or double bond formation were investigated. The linear energy transfer (LET) dependence of the changes of polymer properties was found to be very small when compared with adsorbed dose and was the same as that under gamma ray or electron beam irradiation. It means that the probability and also the mechanisms of chemical reaction should be almost the same even if LET was different. The ion energy would be dispersed widely in the polymer material, where the chemical reaction proceeds rather homogeneously. The chemical reaction sites are not so concentrated in a local area under high LET radiation, and the concentration in the local area might be the same as under low LET radiation. If the track model along the ion path is applied, the diameter may be a few 100 nm for C5+ (220 MeV) ion irradiation and is proportional to the square root of LET

  16. A Study on the Effects of High-energy Electron Beam Irradiation on the Properties of AZO Thin Films

    International Nuclear Information System (INIS)

    AZO films have, nowadays, attracted much attention because of low cost and wide availability of constituent raw materials, comparable high optical transmittance, non-toxicity, high stability against H2 plasma, and low electrical resistivity with respect to indium tin oxide. However, it has been reported that the substrate temperature higher than 300 .deg. C is required to realize the high-quality AZO films. Unfortunately, this high temperature process is often incompatible with a low temperature requirement for the fabrication of TTFTs with high efficiency on a plastic substrate. Recently, it was demonstrated that the optical properties as well as the electrical properties of GaN and undoped Zeno had been changed remarkably by treatment with high-energy electron beam irradiation at RT. These results suggest that HEEBI can be used as a low T process for the fabrication of ZnO based TTFTs on a plastic substrate. We investigated the effects of HEEBI on the electrical, optical, and structural properties of AZO films grown on the SiO2/Si substrate with an RAF magnetron sputtering technique. Effect of HEEBI on the properties of AZO thin films prepared with O2 fraction of 0.3: Hall and Pull results revealed the n-type conductivity was preserved in HEEBI treated films with low dose up to 1015 and converted to p-type conductivity with further increase in dose as a result of formation of Oi and Vzn acceptor defects, as confirmed by XPS results. AVM results indicated that as the dose of irradiation is increased, the increase of the surface roughness, the decrease of conducting path in the films, and the increase of the number of absorption sites for O occur. It was suggested that the high dose of 1016 plays a key role in realizing a p-type channel AZO film. XRD results showed that worse crystallinity with a smaller grain size as well as higher compressive stress due to in-diffusion of O was observed in HEEBI treated AZO films with a higher dose, which are evident in AVM and

  17. OMEGA: a 24 beam uv irradiation facility

    International Nuclear Information System (INIS)

    We report the recent completion of the uv upconversion (351 nm) of all 24 beams of the OMEGA laser which provides a unique short wavelength symmetrical irradiation facility for direct drive laser fusion experiments. Details of the characterization of illumination uniformity and initial implosion experiments will be described

  18. Effects of electrical characteristics of InGaP solar cell on low energy electron beam irradiation

    International Nuclear Information System (INIS)

    The solar cell used for a satellite has commonly triple-junction, whose top-subcell is made of InGaP. The electrons can recoil the atoms in the crystal lattice of the cells at energies above the threshold energies. Theoretically obtained threshold energies for recoil atoms of the InGaP cell by an electron are about 120 - 320 keV. The research using low energy electron beams is important to investigate the mechanism of the degradation of the cell by the defects. The InGaP solar cell was irradiated with electron beams by the Cockcroft Walton electron accelerator in a vacuum and at an ambient temperature. The energies and the fluences of the electron beams are from 60 to 500 keV and from 3 × 1014 to 3 × 1016 cm-2. Degradation of the open-circuit voltage of solar cell energy at less than 100 keV was observed. This degradation was not predicted on the theory. This result suggests that defects were caused by not only the recoil but also the absorbed dose by electron. At an electron energy of more than 400 keV the RF of the short-circuit current (Isc) has been found to increase at a fluence below about 3 × 1014. For the higher fluence the RF of Isc has gradually decreased. This phenomenon can be attributed to the increase of carrier concentration due to the irradiation. (author)

  19. Protective effects of melatonin against 12C6+ beam irradiation-induced oxidative stress and DNA injury in the mouse brain

    Science.gov (United States)

    Wu, Z. H.; Zhang, H.; Wang, X. Y.; Yang, R.; Liu, B.; Liu, Y.; Zhao, W. P.; Feng, H. Y.; Xue, L. G.; Hao, J. F.; Niu, B. T.; Wang, Z. H.

    2012-01-01

    The purpose of this experiment was to estimate the protective effects of melatonin against radiation-induced brain damages in mice induced by heavy ion beams. Kun-Ming mice were randomly divided into five groups: normal control group, irradiation control group, and three different doses of melatonin (5, 10, and 20 mg/kg, i.p.) treated groups. Apart from the normal control group, the other four groups were exposed to whole-body 4.0 Gy carbon ion beam irradiation (approximately 0.5 Gy/min) after i.p. administration of normal saline or melatonin 1 h before irradiation. The oxidative redox status of brain tissue was assessed by measurement of malondiadehyde (MDA) levels, total superoxide dismutase (T-SOD), cytosolic superoxide dismutase (Cu/ZnSOD, SOD1) and mitochondrial superoxide dismutase (MnSOD, SOD2) activities at 8 h after irradiation. DNA damages were determined using the Comet assay and apoptosis and cell cycle distribution were detected by flow cytometric analyses. A dramatic dose-dependent decrease in MDA levels, tail moment, rates of tailing cells, and apoptosis, and a dose-dependent increase in T-SOD and SOD2 activities, in brain tissues in the melatonin-treated groups were detected compared with the irradiation only group. Furthermore, flow cytometric analysis demonstrated that the percentage of brain cells in the G0/G1 phase decreased significantly, while those in the S and G2/M stage increased dramatically, with mice pretreated with melatonin compared to the irradiation control group. These data indicate that melatonin has protective effects against irradiation-induced brain injury, and that its underlying protective mechanisms may relate to modulation of oxidative stress induced by heavy ionirradiation.

  20. Effects of combined treatments of electron-beam irradiation and addition of leek (Allium tuberosum) extract on reduction of pathogens in pork jerky.

    Science.gov (United States)

    Kang, Mingu; Kim, Hyun-Joo; Jayasena, Dinesh D; Bae, Young Sik; Yong, Hae In; Lee, Mooha; Jo, Cheorun

    2012-12-01

    This study investigated the combined effect of electron-beam irradiation and addition of leek (Allium tuberosum R.) extract on pork jerky inoculated with selected foodborne pathogens. Prepared pork jerky samples (control and samples with 1.0% leek extract) were inoculated with pathogens and subsequently irradiated at 0, 0.5, 1, 2, 3, and 4 kGy doses. In comparison with the control, samples with 1.0% leek extract showed significant reduction in the numbers of Escherichia coli, Listeria monocytogenes, and Salmonella Typhimurium. No viable counts were detected for Salmonella Typhimurium in both control and leek-extract samples, and for E. coli and L. monocytogenes in the leek-extract sample exposed to 3 kGy irradiation dose. The D(10) values for E. coli, L. monocytogenes, and Salmonella Typhimurium observed in the irradiated samples with leek extract were 0.39, 0.34, and 0.32 kGy, while the D(10) values in those without leek extract were 0.65, 0.65, and 0.39 kGy, respectively. Therefore, our results clearly showed that irradiation combined with leek extract was effective in reducing pathogens, suggesting that a low dose of irradiation combined with the addition of a natural antimicrobial agent can enhance the microbial safety and shelf-life of pork jerky. PMID:23199493

  1. Irradiance correlations in retro-reflected beams.

    Science.gov (United States)

    Mahon, Rita; Ferraro, Mike S; Goetz, Peter G; Moore, Christopher I; Murphy, James; Rabinovich, William S

    2015-11-01

    Communications links that utilize modulating retro-reflectors can make use of turbulence-induced fade information available at the remote data-signal terminal in order to optimize the data transfer rate. Experiments were conducted to measure the irradiance in both the direct and the retro-reflected beams. Both on-axis and off-axis components were recorded in order to further study the enhancement in the scintillation index observed in the retro-reflected beam. Measurements were made over a 1.8 km terrestrial range at AP Hill, Virginia. The degree of correlation of the received irradiance between the direct and double-passage beams is found to approach 90% on-axis and 70% outside of the Fresnel zone radius. The scintillation index in the retro-reflected beam is enhanced on-axis due to reciprocal optical paths. The measured scintillation indices, and the correlation of the retro-reflected beam with the direct beam, are compared with a point source, point scatterer, and point receiver model in the strong scintillation approximation. PMID:26560628

  2. Postharvest quality of cut roses following electron-beam irradiation

    International Nuclear Information System (INIS)

    Cut Rosa x hybrida L. 'Royalty' flowers were used to determine the efficacy of electron-beam irradiation for increasing postharvest quality and decreasing petal infection by Botrytis cinerea Pers. In an experiment for determining the injury threshold, roses received electron-beam irradiation of 0, 0.5, 1, 2, and 4 kGy. Irradiation dosages greater than or equal to 4 kGy caused necrosis on petal tissue and decreased postharvest life at 20 degrees C. In a second experiment to evaluate postharvest quality, roses were irradiated at 0, 0.25, 0.5, 0.75, and 1 kGy. Dosages of 0.25 and 0.5 kGy slowed the rate of flower bud opening for 2 days but did not decrease postharvest quality when compared with nonirradiated roses. Roses that received irradiation dosages of 0.75 and 1 kGy showed unacceptable quality. In a third experiment, roses that had or had not been inoculated with B. cinerea were irradiated at 0, 0.25, 0.5, and 0.75 kGy. Irradiation did not control B. cinerea populations, and rose quality decreased as dosage increased. In a fourth experiment to determine the effect of irradiation on B. cinerea, conidia on water-agar plates exposed to dosages less than or equal to 1, 2, and 4 kGy germinated at rates of approximately 90%, 33%, and 2%, respectively, within 24 h

  3. The effects of electron beam irradiation on the thermal properties, fatigue life and natural weathering of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber blends

    International Nuclear Information System (INIS)

    Research highlights: → Addition of TMPTA helps to align polymer chains through crosslinking. → Improvement in fatigue life of irradiated blends due to formation of irradiation-induced crosslinks. → Excessive crosslinking caused reduction of tensile properties of irradiated SBR/NBRr blends. -- Abstract: The effects of electron beam (EB) irradiation on the thermal properties, fatigue life and natural weathering of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber (SBR/NBRr) blends were investigated. The SBR/NBRr blends were prepared at 95/5, 85/15, 75/25, 65/35, or 50/50 blend ratios with and without the presence of a 3 part per hundred rubber (phr) of polyfunctional monomer, trimethylolpropane triacrylate (TMPTA). Results indicate that the crystallisation temperature (Tc) observed in polymeric blends is due to the alignment of polymer chains forming a semi-crystalline phase. Addition of TMPTA helps to align polymer chains through crosslinking. More crosslinking occurred between polymer blends with the help of TMPTA, upon irradiation. The improvement in fatigue life can also be associated with the stabilisation of SBR/NBRr blends upon irradiation and irradiation-induced crosslinking, which was accomplished with relatively low radiation-induced oxidative degradation in the presence of TMPTA. The tensile properties of both blends decreased over the periods of environmental exposure due to the effect of polymer degradation. After 6 months, the irradiated SBR/NBRr blends could not retain better retention [mainly with 25, 35 or 50 phr of recycled acrylonitrile-butadiene rubber (NBRr) particles] due to the samples becoming brittle over the long period of outdoor exposure.

  4. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  5. Effects of dose-depended electron beam irradiation and cold storage on the nutrient content of the crab meat

    International Nuclear Information System (INIS)

    Exposure of meat to radiation would help to prevent the pathogenic microbial growth and thus qualified for longer shelf life. However, high doses of radiation may adversely affect the nutrient value and original quality of the meat. The present study was conducted with a view to assess the nutrient value of the meat derived from the mud crab, Scylla serrata after subjecting dose depended electron beam irradiation and subsequent cold storage at -8℃ and -20° C. For this purpose, three sets of healthy, wild captured intermolt crabs were used each set comprising four crabs. Three crabs from each set were irradiated at doses 0.5 kGy, 1 kGy, and 2 kGy respectively with a dose rate of 3.8 kGy per hour. The remaining one (from all three sets) was considered as non-irradiated control. The optimization of radiation dosage required to maintain the nutrient value of crab meat during the shelf life is also discussed

  6. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  7. Irradiation application of electronic beam accelerator NBL-1010

    International Nuclear Information System (INIS)

    The application of electronic beam accelerator NBL-1010 in semiconductor denature, gem coloring, waster treatment, chemical synthesize of radiation, degrading of agricultural waster, sterilization of one-off medical treatment, sterilization of herbs, food preservation, crystal coloring and preservation of commodities was studied for its effects equaled with cobalt gamma irradiation

  8. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    OpenAIRE

    Min-Jung Jung; Mi-Seon Park; Young-Seak Lee

    2015-01-01

    Activated carbons (ACs) were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs). The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. Th...

  9. Ion beam irradiated optical channel waveguides

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Pelli, S.; Veres, M.; Himics, L.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    Vol. 8988. Washington: SPIE International, 2014, s. 898814. ISBN 978-0-8194-9901-1. ISSN 0277-786X. [Conference on Integrated Optics - Devices, materials, and Technologies XVIII. San Francisco (US), 03.02.2014-05.02.2014] R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * Er-doped tungsten-tellurite glass * bismuth germanate * SRIM simulation * phase contrast microscopy * micro Raman spectroscopy * focused ion beam Subject RIV: BH - Optics, Masers, Lasers

  10. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  11. Temperature measurements during high flux ion beam irradiations.

    Science.gov (United States)

    Crespillo, M L; Graham, J T; Zhang, Y; Weber, W J

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au(3+) ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. PMID:26931879

  12. Temperature measurements during high flux ion beam irradiations

    Science.gov (United States)

    Crespillo, M. L.; Graham, J. T.; Zhang, Y.; Weber, W. J.

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm-2 s-1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.

  13. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  14. Effect of two virus inactivation methods. Electron beam irradiation and binary ethylenimine treatment on determination of reproductive hormones in equine plasma

    International Nuclear Information System (INIS)

    Ionizing irradiation and binary ethylenimine treatment have previously been shown to be effective for in-vitro inactivation of virus in biological material. In the present study the 2 methods were tested for possible effects on measurable concentrations of reproductive hormones in equine plasma (luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P4), and oestradiol-17 β (E2)). The inactivation methods were electron beam irradiation with a dose from 11 to 44 kGy or treatment with binary ethylenimine (BEI) in concentrations of 1 and 5 mmol/L. Generally, there was a close correlation (r>0.8, p2 the effect of irradiation and BEI treatment was depressive and dose-dependant. For P4 the effect of irradiation was also depressive and dose-dependant. However, the highest dose of BEI resulted in an increase of measured P4 concentration, which may be attributed to changes in the plasma matrix due to the treatment. Although the treatments affected measured hormone concentrations, the close correlation between pre-treatment and post-treatment measurements means that the diagnostic value will remain unchanged. (au)

  15. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine...... response model developed by J. Hansen and K. Olsen has been implemented in the Monte Carlo code FLUKA, and calculations were compared with experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for mono energetic beams. Measured depth...

  16. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  17. Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems)

    Science.gov (United States)

    Vahdat, Ali; Bahrami, S. Hajir; Arami, M.; Bahjat, A.; Tabakh, F.; Khairkhah, M.

    2012-07-01

    In this study, three different reactive dyes (C.I. Reactive Red 4, C.I. Reactive Blue 2 and C.I. Reactive Yellow 4) and their blend solutions were irradiated with 10 MeV electron beam. Effect of absorbed dose, dye structure and primary solution concentrations on the pH value changes, degree of decoloration and chemical oxygen demand (COD) removal of solutions were investigated. Results show that this method is effective in decomposition and decoloration of the dyes solutions. This method can be applied in mineralization of wastewater containing different dyes.

  18. Screening of Mutation High-Yielding Biocontrol Bacterium BJ1 by Ion Beam Irradiation and Effect of Controlling Fusarium oxysporum cucunerinum Disease

    International Nuclear Information System (INIS)

    BJ1 of Bacillus subtilis is an important biocontrol factor in control of fungus disease. In order to improve the antagonistic ability of the strain,and obtain high-efficiency strains, 12C6+ of different doses and linear energy transfer (LET) was used to irradiate the biocontrol bacterium BJ1. The optimum dose and LET of ion beam irradiation for the BJ1 are 200-400 Gy and 60 keV/μm,respectively. The antagonistic ability is increased by 2%-21%. The control effect of mutation to Fusarium oxysporum f. sp. cucunerinum is increased by 17.48% over that of BJ1, and mutation also has better plant growth-promoting effect. (authors)

  19. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    Directory of Open Access Journals (Sweden)

    Min-Jung Jung

    2015-01-01

    Full Text Available Activated carbons (ACs were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs. The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. These results were attributed to the transformation and degradation of the nanocrystallinity of the AC surfaces due to the e-beam irradiation. The specific capacitance of the ACs treated with the e-beam at radiation doses of 200 kGy increased by 24% compared with the untreated ACs, and the charge transfer resistance of the ACs was decreased by the e-beam irradiation. The enhancement of the electrochemical properties of the e-beam irradiated ACs can be attributed to an increase in their specific surface area and surface crystallinity.

  20. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    International Nuclear Information System (INIS)

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 108/g. Turmeric finger which was irradiated by electron beam at 10kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10kGy and 20kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers

  1. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    International Nuclear Information System (INIS)

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 108/g. Turmeric finger which was irradiated by electron beam at 10 kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10 kGy and 20 kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers. (author)

  2. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    Energy Technology Data Exchange (ETDEWEB)

    Yasumoto, Kyoden; Fujino, Masayuki; Supriyadi (Kyoto Univ., Uji (Japan). Research Inst. for Food Science); Suzuki, Tetsuya; Hayashi, Toru

    1991-08-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10{sup 8}/g. Turmeric finger which was irradiated by electron beam at 10 kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10 kGy and 20 kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers. (author).

  3. Effects of N+2 ion irradiation during AlN film growth by dual ion-beam deposition

    International Nuclear Information System (INIS)

    We report on the composition, chemical state, and structure of the AlN films grown with concurrent N2+ ion bombardment during film growth using a dual ion-beam deposition system. The AlN films prepared at various bombarding ion-beam conditions were characterized by RBS, XPS, and TEM. The analytical results of RBS spectra performed using rump code represented that the composition ratio (N/Al) of the AlN films grown with concurrent N2+ ion bombardment could be controlled from N/Al 1, depending on both the energy and the flux of N+2 ions incident on the growing film, and the value of N/Al ratio reached to 1.6 at higher energy and flux. XPS analysis also showed a good agreement with these RBS results. TEM diffraction patterns indicated that film orientation varied from a c-axis normal to the film surface to a c-axis parallel to the film surface as the energy of the irradiated N+2 ion increased from 200 eV to 500 eV. This preferential growth was explained in terms of ion channeling

  4. Beam transfer line for food irradiation microtron at CAT

    International Nuclear Information System (INIS)

    A 10 MeV microtron is being developed at CAT for irradiation of food products. A beam transfer line comprising a 90 deg bending magnet, a quadrupole doublet and a rectangular scanning magnet has been designed to irradiate food products from the upper side. The bending magnet has an edge angle of 22.5 deg. The length of the beam transfer line has been minimized to keep the whole unit as compact as possible. The beam optics has been optimized keeping in view the requirement of a small beam pipe aperture (25mm radius) and a large range of circular as well as elliptical beam sizes on the food product. The speed of the conveyor belt has been assumed to be very small. The results of the beam optics chosen and the variation of the linear charge density on a food product during the scanning are presented in this paper. The effects of path length variation within the scanning magnet and beam size variation during a scanning are also discussed

  5. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    Science.gov (United States)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  6. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    Science.gov (United States)

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  7. Verification of micro-beam irradiation

    Science.gov (United States)

    Li, Qiongge; Juang, Titania; Beth, Rachel; Chang, Sha; Oldham, Mark

    2015-01-01

    Micro-beam Radiation Therapy (MRT) is an experimental radiation therapy with provocative experimental data indicating potential for improved efficacy in some diseases. Here we demonstrated a comprehensive micro-beam verification method utilizing high resolution (50pm) PRESAGE/Micro-Optical-CT 3D Dosimetry. A small PRESAGE cylindrical dosimeter was irradiated by a novel compact Carbon-Nano-Tube (CNT) field emission based MRT system. The Percentage Depth Dose (PDD), Peak-to-Valley Dose Ratio (PVDR) and beam width (FWHM) data were obtained and analyzed from a three strips radiation experiment. A fast dose drop-off with depth, a preserved beam width with depth (an averaged FWHM across three beams remains constant (405.3um, sigma=13.2um) between depth of 3.0~14.0mm), and a high PVDR value (increases with depth from 6.3 at 3.0mm depth to 8.6 at 14.0mm depth) were discovered during this verification process. Some operating procedures such as precise dosimeter mounting, robust mechanical motions (especially rotation) and stray-light artifact management were optimized and developed to achieve a more accurate and dosimetric verification method.

  8. Effects of a 2-step culture with cytokine combinations on megakaryocytopoiesis and thrombopoiesis from carbon-ion beam-irradiated human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    To evaluate whether the continuous treatment of two cytokine combinations is effective in megakaryocytopoiesis and thrombopoiesis in hematopoietic stem/progenitor cells exposed to heavy ion beams, the effects of a 2-step culture by a combination of recombinant human interleukin-3 (IL-3)+stem cell factor (SCF)+thrombopoietin (TPO), which just slightly protected against carbon-ion beam-induced damages, and a combination of IL-3+TPO, which selectively stimulated the differentiation of the hematopoietic stem/progenitor cells to megakaryocytes and platelets, were examined. CD34+-hematopoietic stem/progenitor cells isolated from the human placental and umbilical cord blood were exposed to carbon-ion beams (linear energy transfer (LET)=50 keV/μm) at 2 Gy. These cells were cultured under three cytokine conditions. The number of megakaryocytes, platelets and hematopoietic progenitors were assessed using a flow cytometer and a clonogenic assay at 14 and 21 days after irradiation, respectively. However, the efficacy of each 2-step culture was equal or lower than that of using the IL-3+SCF+TPO combination alone and the 2-step culture could not induce megakaryocytes and platelets from hematopoietic stem/progenitor cells exposed to high LET-radiation such as carbon-ion beams. Therefore, additional cytokines and/or hematopoietic promoting compounds might be required to overcome damage to hematopoietic cells by high LET radiation. (author)

  9. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A., E-mail: stanciu@physics.pub.ro

    2015-08-15

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  10. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  11. Hydrodynamics of evaporating aerosols irradiated by intense laser beams

    International Nuclear Information System (INIS)

    An analysis is presented describing the interactions of atmospheric aerosols with a high-intensity laser beam propagating along an atmospheric path. For the case of moderate beam irradiances, diffusive mass transport and conductive energy transport dominate the aerosol-beam interactions. In this regime, the coupled aerosol-beam equations are solved numerically to obtain the spatic-temporal behavior of the propagating beam, and of the irradiated aerosols. For higher beam irradiances, convective transport of mass, energy and momentum away from the irradiated aerosols must be considered. The hydrodynamic equations are solved in the surrounding medium for this regime subject to appropriate ''jump conditions'' at the surface of the irradiated aerosol. Numerical examples illustrative of both regimes are given for the case of irradiated water aerosol droplets. 11 refs., 6 figs

  12. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  13. Polymerization of vinyl stearate multilayers by electron beam irradiation

    International Nuclear Information System (INIS)

    Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -100 and 100C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)

  14. WEBExpIr: Windowless Electron Beam EXPerimental Irradiation

    International Nuclear Information System (INIS)

    Within the European Sixth Framework Programme EUROTRANS the experimental Accelerator Driven System XT-ADS is being developed using the MYRRHA DRAFT-2 as starting point. The aim for the XT-ADS is to demonstrate the feasibility of the ADS concept at reasonable power levels and to serve as a high performance, multi-purpose experimental irradiation device. The design includes a high-power windowless spallation target operating with liquid Lead-Bismuth eutectic (LBE). One crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface under irradiation of a high-power proton beam. As a first step in this programme, WEBExpIr (Windowless Electron Beam Experimental Irradiation) was set up. The main objective of WEBExpIr is to investigate the influence of surface heating caused by the particle beam on the LBE flow in a geometry that forms a realistic representation of the spallation target. In particular, during irradiation, the effects of flow instabilities, shock waves, droplet ejection and excessive metal evaporation are monitored

  15. A variable electron beam and its irradiation effect on optical and electrical properties of CdS thin films

    Indian Academy of Sciences (India)

    M Singh; Y K Vijay; B K Sharma

    2007-10-01

    A low energy electron accelerator has been constructed and tested. The electron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been irradiated by electron beam in the above instrument. The – characteristic is found to be nonlinear before electron irradiation and linear after electron irradiation. The TEP measurement confirms the n-type nature of the material. The TEP and – measurements also confirm the modification of ITO/CdS interface with electron irradiation.

  16. Synthesis of metal nanoparticles under proton beam irradiation

    International Nuclear Information System (INIS)

    Gold nanocrystals were formed by proton beam irradiation. Spherical gold nanoparticles in the range of 27nm were prepared when the HAuCl4-containing mixture was irradiated under proton beam with an average current of 10nA for 30 min. When the reaction mixture was irradiated for 60 min, Au nanomaterials including gold nanoparticles and nanorods were synthesized. Ag nanocrystals were formed by proton beam irradiation. Spherical silver nanoparticles were prepared when the AgNO3-containing solution mixture was irradiated under proton beam. It was observed that the average diameter of the silver nanoparticle was increased from 5 nm to 30 nm, as the beam irradiation was increased. It was also found as the concentration of the silver ion was increased, the diameter of the synthesized Ag nanoparticles was gradually increased

  17. Electron beam irradiation in polymeric systems

    International Nuclear Information System (INIS)

    The electron beam applications in the chemistry of polymers, such as the production of acrylamide polymers, which are of great interest in the treatment of waste industrial waters are given. These products have unique properties: the required dose is smaller by a factor of 10 to 50 as compared to the dose requirement for other polymeric materials and they are used in aqueous solutions in a concentration of one or two magnitude orders smaller than the conventional inorganic flocculants. The acrylamide polymers technologies was first developed at semi-industrial scale with IETI 10000 gamma rays source and then transferred to the ALIN-10 electron linear accelerator. The operation of the ALIN-10 built in the Accelerator Laboratory from the Institute of Atomic Physics is presented. An original feature of this accelerator, using an electron gun of the diode type is its capability to obtain programmed beam single shots and pulse trains. It is particularly useful for the automatic control of irradiation processing in order to provide the maximum efficiency of the electron beam application. The preliminary results obtained by ALIN-10 lead to the assumption that the low output power high energy linacs are economically attractive for the commercial production of acrylamide type polymers. (Author) 7 Figs. 2 Tabs., 10 Refs

  18. Application of electron beam irradiation. 4. Treatment of pollutants by electron beam irradiation

    International Nuclear Information System (INIS)

    Electron beam irradiation is capable of dissolving and removing pollutants, such as sulfur oxides, nitrogen oxides, and organic compounds, by easy production of OH radicals in flue gas and water. This paper deals with current status in the search for techniques for treating flue gas and waste water, using electron beam irradiation. Pilot tests have been conducted during the period 1991-1994 for the treatment of flue gas caused by coal and garbage burning and road tunnels. Firstly, techniques for cleaning flue gas with electron beams are outlined, with special reference to their characteristics and process of research development. Secondly, the application of electron beam irradiation in the treatment of waste water is described in terms of the following: (1) disinfection of sewage, (2) cleaning of water polluted with toxic organic compounds, (3) treatment for eliminating sewage sludge, (4) promotion of sewage sludge sedimentation, (5) disinfection and composting of sewage sludge, and (6) regeneration of activated carbon used for the treatment of waste water. (N.K.)

  19. Results of electron beam irradiation for tongue cancer

    International Nuclear Information System (INIS)

    From 1967 through 1988 183 previously untreated patients with squamous-cell carcinoma of the tongue were treated with electron beam irradiation. The patients were restaged as stage I (38 patients), stage II (64), stage III (58), and stage IV (28). For evaluable patients treated with intra-oral cone irradiation (IOC) alone (n=53) or combined with external irradiation (n=120), the two-year local control rate was 85% for T1, 73% for T2, and 58% for T3. According to clinical features, it was 80% for tumorous type, 68% for small ulceration type, and 53% for large ulceration type. In comparing uneven and even fractionated irradiation procedures, there was no significant difference in two-year local control rate (68% for uneven fractionated irradiation vs. 61% for even fractionated irradiation). When restricting to T2 and T3 patients, it was significantly higher for uneven fractionated irradiation (77% and 63%) than even fractionated irradiation (56% and 40%). In comparing T3 patients categorized as having >1000 mm2 (I) with those as having ≤1000 mm2 (II). the two-year local control rate was 48% for category I and 72% for category II. For T3 patients, it was 43% when associated with ulcer, as compared with 74% without it. The actuarial five-year survival rate was 92% for stage I, 72% for stage II, 67% for stage III, and 12% for stage IV. Delayed radiation ulcer and bone exposure were seen in 22 and 7 patients, respectively. In conclusion, IOC is comparable to internal irradiation and is clinically effective for T1 through T3 (in smaller size) tongue cancer. (N.K.)

  20. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    Science.gov (United States)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  1. Irradiation effects on polycaprolactone

    International Nuclear Information System (INIS)

    The structure and some physical properties of γ-irradiated polycaprolactone (PCL), a semi-crystalline linear saturated polyester, were studied as function of the irradiation dose level. The critical dose level for gel formation is 26 Mrad and above this irradiation dose the number of scission events is similar to the number of crosslinking events. G.p.c. results show that the initial rather narrow molecular weight distribution gradually widens with increasing dose in the pre-gelation region. A significant difference between first and second d.s.c. scans of irradiated PCL is shown and explained. Scission and crosslinking reactions associated with the irradiation process occur preferentially in the non-ordered regions. Small irradiation doses, 2 to 5 Mrad, are shown to have a dramatic effect on the tensile elongation at break by converting ductile PCL samples into brittle materials. (author)

  2. Hardness modification of Al–Mg–Si alloy by using energetic ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, D. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Ishikawa, N. [Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ohmura, T. [Structural Metals Center, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Semboshi, S. [Kansai-Center, Institute of Materials Research, Tohoku University, Sakai, Osaka 599-8531 (Japan); Hori, F. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Iwase, A., E-mail: iwase@mtr.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-05-15

    So far, we have irradiated Al–Mg–Si alloy with 5.4–16 MeV several ions at room temperature, and have found that ion irradiation is a useful tool for controlling the surface hardness for Al–Mg–Si alloys. In the present study, we tried several experiments as some applications of ion beam irradiation for hardness modifications of Al–Mg–Si alloy. Main results are as follows; (1) the combination of ion beam irradiation and the subsequent thermal aging can be used as an effective tool for the hardness modification of Al–Mg–Si alloy, and (2) designated regions and areas of the specimen can be hardened by changing the energy of ion beam and producing the irradiated area and unirradiated area of the surface. Then, we can expand the possibility of the ion beam irradiation as a new process for the three-dimensional hardness modification of Al–Mg–Si alloy.

  3. Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Sakurai, Yoshinori; Kobayashi, Toru; Kinashi, Yuko [Kyoto Univ., Research Reactor Inst., Kumatori, Osaka (Japan); Takahashi, Akihisa; Ohnishi, Ken; Ohnishi, Takeo [Nara Medical Univ., Kashihara (Japan); Takagaki, Masao [Aino Junior Coll., Ibaraki, Osaka (Japan). Hospital

    2002-12-01

    Human head and neck squamous cell carcinoma cells transfected with mutant p53 (SAS/mp53) or with neo vector as a control (SAS/neo) were inoculated subcutaneously into both the hind legs of Balb/cA nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells in the tumors. After administration of sodium borocaptate-{sup 10}B (BSH) or p-boronophenylalanine-{sup 10}B(BPA), the tumors were irradiated with neutron beams. The tumors not treated with {sup 10}B-compound were irradiated with neutron beams or {gamma}-rays. The tumors were then excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (=quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 h after irradiation, tumor cell suspensions obtained in the same manner were used for determining the frequency of apoptosis in Q cells. The MN and apoptosis frequencies in total (P+Q) tumor cells were determined from the tumors that were not pretreated with BrdU. Without {sup 10}B-carriers, in both tumors, the relative biological effectiveness of neutrons was greater in Q cells than in total cells, and larger for low than high cadmium ratio neutrons. With {sup 10}B-carriers, the sensitivity was increased for each cell population, especially for total cells. BPA increased both frequencies for total cells more than BSH. Nevertheless, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. These sensitization patterns in combination with {sup 10}B-carriers were clearer in SAS/neo than in SAS/mp53 tumors. The p53 status of the tumor cells had the potential to affect the response to reactor neutron beam irradiation following {sup 10}B-carrier administration. (author)

  4. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    International Nuclear Information System (INIS)

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and α-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h-1) and electron beam (2.9 kGy.s-1). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and α-tocopherol (A2). (author)

  5. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz, E-mail: hgomes@cnen.gov.b, E-mail: pbrito@cnen.gov.b, E-mail: cvroque@cnen.gov.b, E-mail: abrusqui@cnen.gov.b [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana, E-mail: marciamh@ital.gov.b, E-mail: lucianam@ital.gov.b [Food Technology Institute (ITAL), SP (Brazil). Meat Technology Center

    2011-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and {alpha}-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h{sup -1}) and electron beam (2.9 kGy.s{sup -1}). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and {alpha}-tocopherol (A2). (author)

  6. Au2+ ion-beam irradiation effects on optical properties of CdSe and CdS quantum dots

    International Nuclear Information System (INIS)

    The effects of Au+ ion irradiation on the optical properties of CdS and CdSe quantum dots synthesized by chemical methods are studied. The ion-induced changes are studied using UV/Vis absorption, fluorescence spectroscopy and transmission electron microscopy experimental methods. It is observed that the size of the particle is found to increase with the ion fluence resulting in a shift of optical absorption peak to longer wavelength and confirmed by transmission electron microscopy measurements. The nonlinear optical properties are studied through Z-scan technique. These quantum dots show multiphoton absorption properties with 800 nm wavelength, 110 femtosecond laser pulse excitations. The photoluminescence studies show the emission peak shift to higher wavelength with the ion fluence

  7. The effect of intense pulsed electron beam irradiation on the adhesion of NiCrAlY arc-vacuum coatings of gas turbine engine blades from GhS26NK alloy

    International Nuclear Information System (INIS)

    The present paper reviews the experimental results dedicated to the effect of irradiating conditions with intense pulsed electron beams on the adhesion of NiCrAlY resistant coatings to gas turbine engine blades from GhS26NK alloy. It is shown that intense pulsed electron beam of microsecond duration is high effective instrument for repair of turbine blades from refractory nickel alloys with resistant coatings. (authors)

  8. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour

    International Nuclear Information System (INIS)

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is dedicated to this study

  9. Influence of H charging on ion-beam irradiation effects in Y-Ba-Cu-O superconducting thin films

    International Nuclear Information System (INIS)

    Irradiation studies on H-charged Y-Ba-Cu-O films were performed for the first time. Samples, produced by laser ablation, were charged by H and irradiated successively at low temperature with 7 MeV 15N ions. In situ resistivity measurements were carried out below 100 K after each irradiation step. To determine the H concentration the nuclear reaction 1H(15N, αγ)12C was used. For all samples (with different H concentration) and almost linear correlation between fluence and decrease of the critical temperature (Tt) was found. Changes in Tt with increasing H-concentration show that H makes Y-Ba-Cu-O superconductor films more sensitive to heavy ion irradiation. (author)

  10. Permeation of gases through electron-beam-irradiated polymer films

    International Nuclear Information System (INIS)

    The permeation of CO2, CH4, O2, N2, SF6, and He was measured at 35deg C in electron-beam-irradiated polymer films such as 1,2-polybutadiene (PB), polycarbonate (PC), polydimethylsiloxane (PDMS), poly(ethylene terephthalate) (PET), poly(4-methylpentene-1) (PMP), and polypropylene (PP). The permeability coefficients of the gases in PB decreased and those in PP increased with increasing irradiation dose, while those of PC, PDMS, PET, and PMP were virtually unaffected by irradiation. These results were attributed to the radiation effects of crosslinking in PB and degradation in PP. PC, PDM, PET, and PMP were insensitive to radiation, which accounts for the little change in permeation behavior. The decreases in permeability coefficients of the gases in irradiated PB films were attributed to changes in diffusivity, while solubility was not greatly affected. The dependence of permeability coefficients on crosslinking density of the irradiated PB films was also discussed. Decreases in permeability and diffusion coefficients were interpreted as due to decrease of free-volume content by crosslinking. The diffusion coefficient showed an approximately exponential relationship to the reciprocal of the average molecular weight between crosslinks (M-barc) over a range of M-barc between 200 and 20000. This suggests that the free-volume of the crosslinked polymer may be proportional to M-barc. (author)

  11. Effectiveness of hydrogen peroxide and electron-beam irradiation treatment for removal and inactivation of viruses in equine-derived xenografts.

    Science.gov (United States)

    Cusinato, Riccardo; Pacenti, Monia; Martello, Thomas; Fattori, Paolo; Morroni, Marco; Palù, Giorgio

    2016-06-01

    Bone grafting is a common procedure for bone reconstruction in dentistry, orthopedics, and neurosurgery. A wide range of grafts are currently used, and xenografts are regarded as an interesting alternative to autogenous bone because all mammals share the same bone mineral component composition and morphology. Antigens must be eliminated from bone grafts derived from animal tissues in order to make them biocompatible. Moreover, the processing method must also safely inactivate and/or remove viruses or other potential infectious agents. This study assessed the efficacy of two steps applied in manufacturing some equine-derived xenografts: hydrogen-peroxide and e-beam sterilization treatments for inactivation and removal of viruses in equine bone granules (cortical and cancellous) and collagen and pericardium membranes. Viruses belonging to three different human viral species (Herpes simplex virus type 1, Coxsackievirus B1, and Influenzavirus type A H1N1) were selected and used to spike semi-processed biomaterials. For each viral species, the tissue culture infective dose (TCID50) on cell lines and the number of genome copies through qPCR were assessed. Both treatments were found to be effective at virus inactivation. Considering the model viruses studied, the application of hydrogen peroxide and e-beam irradiation could also be considered effective for processing bone tissue of human origin. PMID:26969529

  12. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  13. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  14. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  15. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  16. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  17. Effect of electron beam irradiation and poly(vinylpyrrolidone addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB composite

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available Biodegradable composites or green composites were prepared by melt blending technique using polycaprolactone and oil palm empty fruit bunch fibre (OPEFB. Since OPEFB is not compatible with PCL a binder, poly(vinyl pyrrolidone, (PVP was used to improve the interaction between PCL and OPEFB. The composites produced were irradiated using electron beam to improve the mechanical properties. The tensile, flexural and impact strengths of PCL/OPEFB composites were improved by addition of 1% by weight of PVP and irradiated with 10 kGy of electron beam. The FTIR spectra indicate a slight increase of frequencies at C=O peaks from 1730 to 1732 cm–1 after irradiation indicates some interaction between C=O and O–H. The surface morphology of the facture surface obtained from tensile test shows no fibre pull out indicating good adhesion between the OPEFB and PCL after addition of PVP.

  18. Cell survival in spheroids irradiated with heavy-ion beams

    International Nuclear Information System (INIS)

    Biological investigations with accelerated heavy ions have been carried out regularly at the Lawrence Berkeley Laboratory Bevalac for the past four years. Most of the cellular investigations have been conducted on cell monolayer and suspension culture systems. The studies to date suggest that heavy charged particle beams may offer some radiotherapeutic advantages over conventional radiotherapy sources. The advantages are thought to lie primarily in an increased relative biological effectiveness (RBE), a decrease in the oxygen enhancement ratio (OER), and better tissue distribution dose. Experiments reported here were conducted with 400 MeV/amu carbon ions and 425 MeV/amu neon ions, using a rat brain gliosarcoma cell line grown as multicellular spheroids. Studies have been carried out with x-rays and high-energy carbon and neon ion beams. These studies evaluate high-LET (linear energy transfer) cell survival in terms of RBE and the possible contributions of intercellular communication. Comparisons were made of the post-irradiation survival characteristics for cells irradiated as multicellular spheroids (approximately 100 μm and 300 μm diameters) and for cells irradiated in suspension. These comparisons were made between 225-kVp x-rays, 400 MeV/amu carbon ions, and 425 MeV/amu neon ions

  19. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Science.gov (United States)

    Lim, D. G.; Seol, K. H.; Jeon, H. J.; Jo, C.; Lee, M.

    2008-06-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  20. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Lim, D.G.; Seol, K.H.; Jeon, H.J. [Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong Gwanak-gu, Seoul 151-921 (Korea, Republic of); Jo, C. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, M. [Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong Gwanak-gu, Seoul 151-921 (Korea, Republic of)], E-mail: moohalee@snu.ac.kr

    2008-06-15

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  1. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    International Nuclear Information System (INIS)

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage

  2. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  3. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers

    International Nuclear Information System (INIS)

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress (∼ 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a0, solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a0 values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  4. Ion beam irradiation effect on thermoelectric properties of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Gaosheng [Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794 (United States); Zuo, Lei, E-mail: leizuo@vt.edu [Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794 (United States); Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Lian, Jie [Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Wang, Yongqiang [Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Chen, Jie [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Longtin, Jon [Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794 (United States); Xiao, Zhigang [Department of Electrical Engineering, Alabama A& M University, Normal, AL 35762 (United States)

    2015-09-01

    Thermoelectric energy harvesting is a very promising application in nuclear power plants for self-maintained wireless sensors. However, the effects of intensive radiation on the performance of thermoelectric materials under relevant reactor environments such as energetic neutrons are not fully understood. In this work, radiation effects of bismuth telluride (Bi{sub 2}Te{sub 3}) and antimony telluride (Sb{sub 2}Te{sub 3}) thermoelectric thin film samples prepared by E-beam evaporation are investigated using Ne{sup 2+} ion irradiations at different fluences of 5 × 10{sup 14}, 10{sup 15}, 5 × 10{sup 15} and 10{sup 16} ions/cm{sup 2} with the focus on the transport and structural properties. Electrical conductivities, Seebeck coefficients and power factors are characterized as ion fluence changes. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of the samples are obtained to assess how phase and microstructure influence the transport properties. Carrier concentration and Hall mobility are obtained from Hall effect measurements, which provide further insight into the electrical conductivity and Seebeck coefficient mechanisms. Positive effects of ion irradiations from Ne{sup 2+} on thermoelectric material property are observed to increase the power factor to 208% for Bi{sub 2}Te{sub 3} and 337% for Sb{sub 2}Te{sub 3} materials between fluence of 1 and 5 × 10{sup 15} cm{sup 2}, due to the increasing of the electrical conductivity as a result of ionization radiation-enhanced crystallinity. However, under a higher fluence, 5 × 10{sup 15} cm{sup 2} in this case{sub ,} the power factor starts to decrease accordingly, limiting the enhancements of thermoelectric materials properties under intensive radiation environment.

  5. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  6. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  7. Space environmental durability of spacecrafts materials using ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. H.; Kim, D. W.; Lee, S. M.; Lee, I. T.; Ok, J. G. [Seoul Nat. Univ., Seoil (Korea, Republic of)

    2006-04-15

    Simulation of space proton effects by ion beam irradiation : due to diverse energy spectrums and fluxes of space protons are distributed in space according to the altitude and location in orbits, hard to simulate simply on the ground. JPL-1991 solar proton event is chosen to simulate the specific proton model. Cyclotrons for radiological treatments are utilized as main facility which can accelerate protons with MeV energy and possible to simulate the fluxes. Specimens are prepared with ITO aluminized polyimide Kapton and VDA Mylar. Mechanical, chemical changes analyses, and visual analysis of crystalline change : for assessment of mechanical properties of irradiated specimens, 50N micro tensile system is used for the ultimate tensile strength and elongation. Additional ESPI equipment can measure the elongation rate, yield strength, and elastic modulus. XPS is used for strength change from the molecular binding energy in crystal. SEM is also used for morphological visula analysis.

  8. WAXD and FTIR studies of electron beam irradiated biodegradable polymers

    International Nuclear Information System (INIS)

    Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, biocompatibility, environmentally friendly characteristics and non-toxicity. Morphology of biodegradable polymers affects the rate of their biodegradation. A polymer that has high degree of crystallinity will degrade at a slower rate due to the inherent increased stability. PCL homopolymer cross-linking degree increases with increasing doses of high energy radiation. On the other hand, the irradiation of PLLA homopolymer promotes mainly chain-scissions at doses below 250 kGy. In the present work, twin screw extruded films of PLLA and PCL biodegradable homopolymers and 50:50 (w:w) blend were electron beam irradiated using electron beam accelerator Dynamitron (E = 1.5 MeV) from Radiation Dynamics, Inc. at doses in the range of 50 to 1000 kGy in order to evaluate the effect of electron beam radiation on the homopolymers and blend. Wide-angle X- ray diffraction (WAXD) patterns of non irradiated and irradiated samples were obtained using a diffractometer Rigaku Denki Co. Ltd., Multiflex model; and FTIR spectra was obtained using a NICOLET 4700, ATR technique, ZnSe crystal at 45o. By WAXD patterns of as extruded non irradiated and irradiated PLLA it was observed broad diffusion peaks corresponding to amorphous polymer. There was a slight increase of the mean crystallite size of PCL homopolymer with increasing radiation dose. PCL crystalline index (CI) was 68% and decreased with radiation dose above 500 kGy. On the other hand. PLLA CI was 10% and increased with radiation dose above 750 kGy. On the other hand, PLLA presence on the 50:50 blend did not interfere on the observed mean crystallite size increase up to 250 kGy. From 500 kGy to 1 MGy the crystallite size of PCL was a little bigger in the blend than the homopolymer. Also it could be observed that the PLLA peak increase at 14.2o was affected by PCL

  9. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    Science.gov (United States)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  10. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  11. Color formation study of irradiated polymers by electron beam

    International Nuclear Information System (INIS)

    Color formation on national and commercial polymers (polymethyl methacrylate, polystyrene and polycarbonate) irradiated by electrons beam was investigated by colorimetry (CIELab), electron spectroscopy resonance (ESR), photoacoustic infrared spectroscopy (FTIR-PAS) and differential exploratory calorimetry (DSC). The heat effect on colorimetric properties was investigated after heating (110 deg C for 1 hour) of irradiated polymers at 150 kGy. The rule of oxygen in colorimetric properties of irradiated polycarbonate was investigated in the air presence and absence (p = 10-3 mmHg). The visual aspect did not agree with colorimetric parameters only for polycarbonate. Yellow color and darkness were induced by radiation for all studied polymers varying only the intensity and behavior in function of post-irradiation time and heating. Polymethyl methacrylate and polystyrene ESR spectra showed that radicals could be responsible by yellow color centers. Wherever, in polycarbonate, color centers were not due radical species. The nature of color centers for any studied polymer was not study by FTIR-PAS because there were no changes in FTIR-PAS spectra neither in function of dose nor heating. Polycarbonate was the most radiosensible and polystyrene was the most radioresistant of all studied polymers in concern of colorimetric properties. (author)

  12. Effects of irradiation

    International Nuclear Information System (INIS)

    The midday depression of CO2 assimilation in leaves of two cultivars of hazelnut. Effect of UV-B radiation on decay kinetics of long-term delayed luminiscence of green algae Scenedesmus quadricuda. Effects of irradiance on biomass allocation and needle photosynthetic capacity in silver fir seedlings originating from different localities. Chlorophyll fluorescence of UV-B irradiated bean leaves subjected to chilling in light. Preliminary studies on susceptibility of selected varieties of oats to high UV-B radiation dose. Influence of light conditions on oxidative stress in maize callus

  13. Enhancement of Charpy impact value by electron beam irradiation of carbon fiber reinforced polymer

    International Nuclear Information System (INIS)

    Influences of electron beam irradiation on Charpy impact value of carbon fiber reinforced polymer (CFRP) have been investigated. The irradiation, which is one of short-time treatments, enhanced the Charpy impact value of CFRP. Furthermore, strengthening of carbon fiber, ductility enhancement of polymer and interface effects on impact test explains the impact value enhancement of CFRP. (author)

  14. Effects of combined electron-beam irradiation and sous-vide treatments on microbiological and other qualities of chicken breast meat

    International Nuclear Information System (INIS)

    The microbiological safety, refrigeration shelf-life, and nutritional quality of chicken breast meat were investigated following combined electron-beam irradiation and cooking under vacuum (sous-vide). Chicken breast meat inoculated with 106 CFU/g of Listeria monocytogenes was irradiated with an electron beam at doses up to 3.1 kGy under vacuum in barrier bags, cooked in a boiling water bath for 3 min 45 s (previously determined to achieve an internal temperature of 71.1oC), and stored at 8oC for up to 5 weeks. Listeria was undetectable in samples treated with combined sous-vide and irradiation at 3.1 kGy, but the organism survived the sous-vide treatment without irradiation and multiplied during storage. A similar study, conducted with uninoculated chicken breast meat, revealed that the product which received both irradiation (3 kGy) and sous-vide treatment had a shelf-life of at least 8 weeks at 8oC, whereas the unirradiated samples treated sous-vide spoiled in 16 days. Listeria was undetectable in combination treated samples, but some of the unirradiated sous-vide samples tested after long storage showed high levels of Listeria. Some loss of thiamine occurred with the combined treatments. (author)

  15. Application of double cantilever beam model to the analysis of creep crack growth under neutron irradiation

    International Nuclear Information System (INIS)

    The effect of neutron irradiation on creep crack growth in an infinite plate is analyzed by use of a double cantilever shear beam model. The model is assumed to consist of a stripe of creep damage zone which includes the crack plane and is in a state of uniaxial tension perpendicular to the crack plane, combined with the shear dominant elastic zone outside the creep damage zone. The creep crack growth in the creep damage zone is modeled by the constitutive equations of irradiation creep and irradiation creep damage proposed by the present authors. By solving differential equations of an elastic shear beam combined with the constitutive equations of irradiation creep and irradiation creep damage, the velocity of creep crack growth, the stress, strain and damage distribution in front of the crack tip, and the effects of neutron irradiation are elucidated. (author). 14 refs., 9 figs

  16. Irradiation effects on zircaloy

    International Nuclear Information System (INIS)

    In a water cooled reactor, the neutron effect on zirconium base alloys which are used in the core, is a twofold one: - indirect effect, by means of modifications to the alloy environment; - direct effect occurence of irradiation defects in the material. The indirect effect results in an increase of the water corrosion, as a consequence of the water radiolysis and in stress-corrosion, due to fission products such as iodine, cesium, cadmium... The paper will describe the consequence of these phenomena and the means used to remedy their harmfull effects. The occurence of irradiation defects has three consequence: - Material strenghening: the yield and ultimate stresses are increased by 45 and 35% respectively for the cold worked and stress-relieved zircaloy while the uniform elongation, rather low before irradiation, practically does not decrease (fluence 5.1021 n/cm2). Yield and ultimate stresses of annealed zircaloy are increased by about 150% while uniform elongation decreases from 8 to 1% in the same conditions. - Material growing it is a change in dimensions in the absence of any applied stress. It depends on the cristallography texture, metallurgical state of the material and irradiation temperature. - Material creeping: in the normal working conditions of a reactor, it is the main source of deformation. It depends on temperature, stress, neutron flux and metallurgical state of the material

  17. Relation between track structure and LET effect on free radical formation for ion beam-irradiated alanine dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Krushev, V.V.; Koizumi, Hitoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Shibata, Hiromi; Tagawa, Seiichi [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Yoshida, Yoichi [Tokyo Univ. (Japan). Faculty of Engineering

    1994-11-01

    The yield and local concentration of free radicals generated from alanine ({alpha}-aminopropionic acid) by irradiation with 3 MeV H{sup +} and He{sup +} ions were examined by means of electron spin resonance (ESR) and ESR power saturation methods at room temperature. The G-value of the radical formation showed a marked dependence on linear energy transfer (LET) of the ions. The G-value for the H{sup +} ion (average LET: 28 eV/nm) was almost the same as that for {gamma}-irradiation and it was smaller by a factor of 1/4.7 for the He{sup +} ion (average LET: 225eV/nm). Combining the local concentration of the free radicals along the ion tracks with the G-values and the reported ion range, the radius of a track filled with free radicals was estimated to be 4 {approx} 5 nm by assuming a simple rod-shaped track with a constant radius and homogeneous distribution of the free radicals in it. The track radius scarcely depends on the LET within the range examined. The radiation energy deposited in the core region of the ion track was concluded to spread over the rod to generate free radicals. (author).

  18. Irradiation of beam extraction equipment of the IHEP proton synchrotron

    International Nuclear Information System (INIS)

    The influence of the beam fast extraction on the slow extraction system septum-magnets irradiation is shown. The real meanings of beam extracting efficiency from U-70 are given. The proposals on lowering the radiating loadings on the equipment are presented. 16 refs.; 5 figs

  19. Sterilization of ground spices by electron beams irradiation

    International Nuclear Information System (INIS)

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  20. Sterilization of ground spices by electron beams irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi [K. Kobayashi and Co., Ltd., Kako, Hyogo (Japan)

    1999-09-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  1. Simultaneous irradiation of laser and ion beams on optical materials

    International Nuclear Information System (INIS)

    A simultaneous irradiation system of laser and ion beams has been developed to investigate ion beam induced luminescence and optical absorption of crystalline α-Al2O3 samples. The luminescence induced by 30 keV Ar+ in visible wavelength region had peaks that were attributed to oxygen vacancies. The optical absorption at 633 nm in wavelength was also measured during the ion irradiation. The amount of optical absorption for the irradiated sample with Q-switched Nd:YAG laser pulses was less than that without the laser pulses. The ion irradiation reduced the threshold level of laser damage on the surface region of the sample, and the laser ablation selectively happened on the ion irradiation region

  2. Influence of 60Co-γ ray and electron beam irradiation on physicochemical characteristic of pork

    International Nuclear Information System (INIS)

    The effects of γ ray and electron-beam irradiation on the physicochemical characteristic of chilled pork were investigated to determine the appropriate irradiation mode. Pork was soaked in antioxidant solution (1 g/L), packaged in vacuum, irradiated at 3 kGy, and refrigerated storage for 30 d. Total bacterial counts, peroxide values, thiobarbituric acid reactive substances, volatiles and off-odor of irradiated pork were analyzed. Total bacterial counts of irradiated pork reduced and were <10 cfu/g at 30 d. Peroxide values, thiobarbituric acid reactive substances and volatiles contents of pork irradiated by y ray were higher than pork irradiated by electron-beam Pork irradiated by γ ray combined with antioxidant was most close to nonirradiated pork in odor, and similarity was 89.68%. Results showed that electron-beam irradiation reduced lipid oxidation and volatiles contents, and γ ray helped to reduce off-odor, furthermore, addition of antioxidant could effectively reduce lipid oxidation and off-odor. (authors)

  3. Characteristics of PVDF Membranes Irradiated by Electron Beam.

    Science.gov (United States)

    Jaleh, Babak; Gavary, Negin; Fakhri, Parisa; Muensit, Nakatan; Taheri, Soheil Mohammad

    2015-01-01

    Polyvinylidene fluoride (PVDF) membranes were exposed vertically to a high energy electron beam (EB) in air, at room temperature. The chemical changes were examined by Fourier Transform Infrared Spectroscopy (FTIR). The surface morphologies were studied by Scanning Electron Microscopy (SEM) and showed some changes in the pore size. Thermogravimetric (TGA) analysis represented an increase in the thermal stability of PVDF due to irradiation. Electron paramagnetic resonance (EPR) showed the presence of free radicals in the irradiated PVDF. The effect of EB irradiation on the electrical properties of the membranes was analyzed in order to determine the dielectric constant, and an increase in the dielectric constant was found on increasing the dose. The surface hydrophilicity of the modified membrane was characterized by water contact angle measurement. The contact angle decreased compared to the original angle, indicating an improvement of surface hydrophilicity. Filtration results also showed that the pure water flux (PWF) of the modified membrane was lower than that of the unirradiated membrane. PMID:25569360

  4. Characteristics of PVDF Membranes Irradiated by Electron Beam

    Directory of Open Access Journals (Sweden)

    Babak Jaleh

    2015-01-01

    Full Text Available Polyvinylidene fluoride (PVDF membranes were exposed vertically to a high energy electron beam (EB in air, at room temperature. The chemical changes were examined by Fourier Transform Infrared Spectroscopy (FTIR. The surface morphologies were studied by Scanning Electron Microscopy (SEM and showed some changes in the pore size. Thermogravimetric (TGA analysis represented an increase in the thermal stability of PVDF due to irradiation. Electron paramagnetic resonance (EPR showed the presence of free radicals in the irradiated PVDF. The effect of EB irradiation on the electrical properties of the membranes was analyzed in order to determine the dielectric constant, and an increase in the dielectric constant was found on increasing the dose. The surface hydrophilicity of the modified membrane was characterized by water contact angle measurement. The contact angle decreased compared to the original angle, indicating an improvement of surface hydrophilicity. Filtration results also showed that the pure water flux (PWF of the modified membrane was lower than that of the unirradiated membrane.

  5. Uniform irradiation system using beam scanning method for cyclotron

    International Nuclear Information System (INIS)

    JAERI AVF-cyclotron is equipped with an ion beam scanner for large area irradiation. The two-dimensional fluence distribution of ion beam obtained using cellulose triacetate film dosimeter was not uniform. This is resulted from the distortion of excitation current for electromagnet of the scanner. So, the beam scanning condition, i.e., the relation between the ion species, the beam profile and the scanning width, was extremely limited to make a good uniformity. We have developed a beam scanning simulator to get fluence distributions by calculation and then compared the simulated distributions with the measured ones. It was revealed that the both of them are in good agreement and the beam scanning condition to get good uniformity was led by using this simulator. On the basis of these results, the power supply of scanner was improved. A good uniformity of beam distribution was available. (author)

  6. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  7. The effect of proton beam irradiation of the pituitary body on gonadotropic functions in patients with protactinemia

    International Nuclear Information System (INIS)

    Proton therapy efficiency in case of prolactin-secretion pituitary body adenomas and the degree of injury of intact cellular elements - the pituitary body gonadotrophs and thyrotrops - is studied. 16 women with hyperprolactinemy amenorrhee in combination with lacorrhee are investigated. Proton therapy is applied to 13 patients with pituitary body endocellar adenomas. The dose absorbed by pituitary body made up 10 Gy in 10 patiets and in one patient - 120 Gy. Application of functional tests with thyroliberin and luliberin allowed one to reveal the domaging effect of proton therapy on the pituitary body thyrotrophs and gonodotrops. Low therapeutic effect is detected in women with prolactin-secretion adenomas

  8. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    International Nuclear Information System (INIS)

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: → Electron beam irradiation inhibited normal development of the leaf miner. → Electron beam irradiation inhibited normal reproduction of the leaf miner. → Electron beam irradiation increased levels of DNA damage. → Electron beam irradiation induced p53 stability.

  9. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Gil-Hah, E-mail: khkim@chungbuk.ac.kr [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-01-15

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: > Electron beam irradiation inhibited normal development of the leaf miner. > Electron beam irradiation inhibited normal reproduction of the leaf miner. > Electron beam irradiation increased levels of DNA damage. > Electron beam irradiation induced p53 stability.

  10. Potentiation of inner ear damage following electron beam irradiation with CDDP administration

    International Nuclear Information System (INIS)

    This study was designed to examine the combined ototoxic effects of cisplatin, an antitumor platinum compound, administration and electron beam irradiation on the inner ear of guinea pigs, histopathologically. One group received saline solution of 4 ml/kg/day and the other group received cisplatin of 2 mg/4 ml/kg/day for five consecutive days. The right temporal bones of all animals of both groups were exposed to the electron beam of 14 Gy/day 3 hours after the daily injection of saline or cisplatin. All animals were sacrificed for inner ear histopathological findings 21 days after the last injection. A combination of cisplatin administration and electron beam irradiation produced a severe potentiation of the outer hair cell damage with no inner hair cell damage. Therefore, in treatment of head and neck carcinomas, it is important to pay attention to inner ear damage caused by combination therapy of cisplatin and electron beam irradiation which involves the inner ear. (author)

  11. Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Mieszczynski, C. [NES and SYN, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kuri, G., E-mail: goutam.kuri@psi.ch [NES and SYN, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Degueldre, C.; Martin, M.; Bertsch, J.; Borca, C.N.; Grolimund, D. [NES and SYN, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Delafoy, Ch. [AREVA NP, 10 Rue Juliette Récamier, 69456 Lyon Cedex 06 (France); Simoni, E. [Institut de Physique Nucléaire, Université Paris-Sud, 91406 Orsay (France)

    2014-01-15

    Microstructural changes in a set of commercial grade UO{sub 2} fuel samples have been investigated using synchrotron based micro-focused X-ray fluorescence (μ-XRF) and X-ray diffraction (μ-XRD) techniques. The results are associated with conventional UO{sub 2} materials and relatively larger grain chromia-doped UO{sub 2} fuels, irradiated in a commercial light water reactor plant (average burn-up: 40 MW d kg{sup −1}). The lattice parameters of UO{sub 2} in fresh and irradiated specimens have been measured and compared with theoretical predictions. In the pristine state, the doped fuel has a somewhat smaller lattice parameter than the standard UO{sub 2} as a result of chromia doping. Increase in micro-strain and lattice parameter in irradiated materials is highlighted. All irradiated samples behave in a similar manner with UO{sub 2} lattice expansion occurring upon irradiation, where any Cr induced effect seems insignificant and accumulated lattice defects prevail. Elastic strain energy densities in the irradiated fuels are also evaluated based on the UO{sub 2} crystal lattice strain and non-uniform strain. The μ-XRD patterns further allow the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated UO{sub 2} pellets.

  12. Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    Microstructural changes in a set of commercial grade UO2 fuel samples have been investigated using synchrotron based micro-focused X-ray fluorescence (μ-XRF) and X-ray diffraction (μ-XRD) techniques. The results are associated with conventional UO2 materials and relatively larger grain chromia-doped UO2 fuels, irradiated in a commercial light water reactor plant (average burn-up: 40 MW d kg−1). The lattice parameters of UO2 in fresh and irradiated specimens have been measured and compared with theoretical predictions. In the pristine state, the doped fuel has a somewhat smaller lattice parameter than the standard UO2 as a result of chromia doping. Increase in micro-strain and lattice parameter in irradiated materials is highlighted. All irradiated samples behave in a similar manner with UO2 lattice expansion occurring upon irradiation, where any Cr induced effect seems insignificant and accumulated lattice defects prevail. Elastic strain energy densities in the irradiated fuels are also evaluated based on the UO2 crystal lattice strain and non-uniform strain. The μ-XRD patterns further allow the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated UO2 pellets

  13. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  14. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  15. The effect of crater creation on the fatigue strength and corrosion resistance of refractory alloys irradiated by high- power pulsed ion beams

    International Nuclear Information System (INIS)

    The influence of high-power pulsed ion-beam (HPPIB) irradiation and various methods of preliminary surface treatment on crater creation was examined with the use of Auger electron spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The crater distribution density, sizes and shape, along with the microhardness and chemical composition inside and out side craters were determined. The targets from refractory alloys treated with HPPIB's under the irradiating conditions (ion energy E=300 keV; pulse duration - τ=50 ns; the ion current density in a pulse j=120-220 A/cm2, the number of pulses n=1-100; 'Temp' accelerator), when crater creation takes place on the surface of refractory alloys, were subjected to the fatigue and corrosion tests. It was determined that crater creation results in the catastrophic fracture of the irradiated samples during a cycle load in air at operating temperature. In this case the nucleation of fracture lies into the locality of formed craters. Furthermore, corrosion tests have shown that titanium alloys irradiated by HPPIBs under the condition of crater creation were subjected to the pitting corrosion mechanism in seawater at thermo cycling from 500 to 20 0C. According to the fatigue and corrosion test results, the dent-shape craters are the most dangerous under the cycle load

  16. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  17. Electron beam irradiation of gemstone for color enhancement

    International Nuclear Information System (INIS)

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  18. Electron beam irradiation of gemstone for color enhancement

    Science.gov (United States)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  19. Electron beam irradiation of gemstone for color enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A' iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); School of Chemicals and Material Engineering, NUST Islamabad (Pakistan); Malaysian Nuclear Agency, Bangi, Selangor (Malaysia)

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  20. Development of useful genetic resources by proton-beam irradiation

    International Nuclear Information System (INIS)

    The aim of this study is to develop new, useful and high-valuable genetic resources through the overproduction of biodegradable plastics and the propagation of wheat using proton-beam irradiation. Useful host strain was isolated through the mutagenization of the Escherichia coli K-12 strain, followed by characterizing the genetic and physiological properties of the E. coli mutant strains. The selected E. coli mutant strain produced above 85g/L of PHB, showed above 99% of PHB intracellular content and spontaneously liberated intracellular PHB granules. Based on the results, the production cost of PHB has been estimated to approximately 2$/kg, leading effective cost-down. Investigated the propagation of wheat and its variation, a selectable criterion of wet pro of was established and genetic analysis of useful mutant was carried out

  1. Effects of homogeneous low energy electron beam irradiation (HLEBI) on adhesive force of peeling of carbon fiber reinforced epoxy polymer (CFRP) and polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    The effects of homogeneous low energy (170 keV) electron beam irradiation (HLEBI) on the adhesion force indicated by peeling resistance (oFp) at each accumulative probability of peeling resistance (Pp) of laminated sheets of carbon fiber reinforced epoxy polymer (CFRP) and polytetrafluoroethylene (PTFE) were investigated. The slight detectable adhesive force of oFp before treatment were 0.3 and 7.6 Nm−1 at low and mid Pp of 0.06 and 0.50, respectively, since the intermolecular attractive force exists at PTFE and epoxy polymers at cross-linking zone. Although additional dose of HLEBI apparently reduced the oFp of laminated sheets irradiated at more than 0.30 MGy as usual radiation damages, small dose of 0.04 to 0.22 MGy-HLEBI increased the adhesive force of peeling (oFp) substantially over the untreated. 0.13 MGy-HLEBI enhanced the oFp up to the largest values of 9.8 and 44.0 Nm−1, respectively, which were more than 30.5 and 5.8 times larger than those before treatment. Based on the 3-parameter Weibull equation, the statistically lowest oFp value at Pp = 0 (Fs) was increased from zero to 9.2 Nm−1 by applying the 0.13 MGy HLEBI. XPS (X-ray photoelectron spectrometry) measurements detected the fluorine (1s) signal on peeled surface of CFRP side indicating the residual PTFE adhered well to the epoxy of CFRP by the HLEBI. Thus, the fracture probably propagated through the PTFE inside near cross-linking zone of interface. This is probably a result of adhesion force of PTFE/CFRP being made stronger than the cohesive force of epoxy polymer. When HLEBI cut the chemical bonds and generated active terminated atoms with dangling bonds of Epoxy and PTFE polymers in cross-linking zone with chemical bonding around adhesive interface, strengthening the adhesive force indicated by oFp was mainly induced by the chemical bonding, as well as intermolecular attractive force in cross-linking polymers. (author)

  2. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  3. Mechanical properties of electron beam irradiated polyamide 6,6

    International Nuclear Information System (INIS)

    Radiation processing has been applied to improve product quality, energy saving and to manufacture products with special properties as a result of inducing reactions in solid state and at room temperature. This processing brings, many advantages comparing to the conventional chemical processing. Polyamide 6,6 due to its excellent mechanical, thermal and electrical properties and its great performance in multiple industrial applications is considered one of the most important engineering polymer. However, in specific applications, some of its properties need to be improved by means additives or fillers to reach the required properties, which increase its final cost. By these considerations, the aim of this work was to apply the ionizing radiation to improve the natural mechanical properties of polyamide 6,6. Also, to evaluate the irradiation parameters, and the mechanical performance of the irradiated polymer in order to use the cross-linking, induced by ionizing radiation, as substitute of additives and fillers. Therefore, Tensile, impact, hardness and wear properties of EB irradiated Polyamide 6,6 were evaluated under electron beam irradiation. Samples, of polyamide 6,6 without additives, for the mechanical tests, were injection-molded using a Battenfeld injector. These samples were irradiated with electrons at the IPEN irradiation facilities, using a Dynamitron JOB 188 electron accelerator with 1.5 MeV and 37.5 kW, and the doses were 70, 100, 150, and 200kGy. tives. Samples for tensile strength, impact, hardness and wear were injection-molded. These irradiated samples were conditioned at 23 deg. C and 50% humidity for 40 hours before being mechanically tested. The tensile strength, impact, hardness, and wear properties were evaluated according to standards ASTM D-680, ASTM D-256, ASTM D-2240, and ASTM D 1242 respectively. The tensile strength measurements were made with an EMIC Universal Testing Machine, model MEM-10000. The Izod Zwick Impact measurements were

  4. Ocular complications after external-beam irradiation - a literature overview

    International Nuclear Information System (INIS)

    Radiotherapy is one of the treatment methods applied to patients suffering from head and neck cancer. The efficiency of this method is comparable to surgery, yet it allows one to save the organ and avoid its permanent deformation. In the case of radiation not only the tumour is influenced but the surrounding, normal structures as well. Radiation causes deformation of normal structures as early or side effects. The aim of this study is to present plausible ocular complications after external beam irradiation of head and neck cancer, such as radiation- induced cataract, radiation retinopathy, dry-eye syndrome or radiation neuropathy. By the use of basic principles of radiotherapy planning we can avoid or minimize possible ocular complications occurring after irradiation. The treatment of ocular complications is difficult and very often does not give the expected outcome. Therefore, in such cases in order to restore vision surgery is required. This study shows that radiotherapy can be helpful but can increase the risk of occurrence of some ocular complications. (authors)

  5. Aspects of space charge theory applied to dielectric under electron beam irradiation

    International Nuclear Information System (INIS)

    Irradiation of solid dielectric with electron beams has been used as a power full tool in investigations of charge storage and transport in such materials. Some of the results that have been obtained in this area are reviewed and the formulation of a transport equation for excess charge in irradiated insulators is dicussed. This equation is subsequently applied to various experimental set-ups. It is found that space charge effects play an essential role in the establishment of stationary currents in samples subject to quasi-penetrating electron beams. Such effects may, however, be neglected for low electron ranges. Theoretical results are in good agreement with experimental findings by Spear (1955)

  6. Radial smoothing for improving laser-beam irradiance uniformity.

    Science.gov (United States)

    Zhong, Zheqiang; Hou, Pengcheng; Zhang, Bin

    2015-12-15

    Laser-beam irradiation uniformity is a key issue in inertial confinement fusion research. We propose a radial smoothing (RS) approach in which the speckle in a focal plane is smoothed by the radial redistribution through fast focal zooming. This focal zooming is generated by introducing the periodical spherical wavefront modulation to the laser beam, based on an optical Kerr medium and its pump laser with the temporal profile of a Gaussian pulse train. The utilization of RS significantly improves the laser-beam uniformity without obvious impact on the performance of the high-power laser system. PMID:26670528

  7. Intensive irradiation of carbon nanotubes by Si ion beam

    Institute of Scientific and Technical Information of China (English)

    NI Zhichun; LI Qintao; YAN Long; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    Multi-walled carbon nanotubes were irradiated with 40 keV Si ion beam to a dose of 1×1017 cm-2. The multiple-way carbon nanowire junctions and the Si doping in carbon nanowires were realized. Moreover, the formation processes of carbon nanowire junctions and the corresponding mechanism were studied.

  8. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

    2013-01-31

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the

  9. Evaluation of antimicrobial and antibiofilm activity of electron beam irradiated endodontic sealer

    International Nuclear Information System (INIS)

    The complete disinfection of root canal is achieved by endodontic instrumentation, irrigation and medications followed by complete filling of the canal space by appropriate sealer. However careful cleaning and shaping of the canal system do not assure the complete eradication of microorganisms from tubular or lateral canals. Therefore, to avoid the possible growth of microorganisms, the filling endodontic material should have good antimicrobial effect on the pathogens causing root canal failure or pulpo-periapical pathosis. Zinc Oxide- Eugenol (ZOE) is the most commonly used filling material in endodontics. Electron beam (e-beam) radiation is a form of ionizing radiation known to induce physiochemical and biological changes in the irradiated substances. Hence, the present study was carried out to evaluate the effect of e-beam radiation on antimicrobial property of ZOE sealer against root canal pathogens like Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The homogenous paste of Zinc oxide and Eugenol prepared by mixing at the ratio of 3:1 was loaded into the sterile molds of 6 mm diameter. After complete drying of paste, discs were aseptically separated from the mould. The prepared discs were subjected to e-beam irradiation of 250 Gy, 500 Gy, 750 Gy and 1000 Gy at Microtron Centre, Mangalore University. Antimicrobial and antibiofilm properties of control and irradiated sealer were determined by well diffusion method and growing the biofilm according to O'Toole method, respectively. The antimicrobial effect was observed only against S.aureus and C. albicans in non-irradiated ZOE. The ZOE sealer irradiated at 1000 Gy showed the significantly increased (P<0.001) antimicrobial effect against S. aureus and C. albicans. However, the substantially increased antibiofilm activity against C.albicans was noticed in the ZOE irradiated at 250 Gy. This study showed that e-beam irradiation at 1000 Gy and 250 Gy were found to be optimum

  10. Degradation behaviour of fiber reinforced plastic under electron beam irradiation

    International Nuclear Information System (INIS)

    Various mechanical properties of four kinds of glass fiber-reinforced plastics irradiated with electron beams were examined at three temperatures; room temperature, 123 K and 77 K. Dynamic viscoelastic properties were measured, and fractography by means of scanning electron microscopy was observed in order to clarify degradation behaviour. A considerable decrease in interlaminar shear strength (ILSS) at room temperature was observed above 60 MGy. On the other hand, the three-point bending strength at 77 K and the ILSS at 123 K decreased with increasing irradiation. Fractography reveals that the degradation of the interface layer between matrix resin and fiber plays an important role in the strength reduction at 123 K and 77 K. These findings suggest that the interface between matrix resin and fiber loses its bondability at 123 K arid 77 K after electron beam irradiation. (author)

  11. Periodic Microstructures Formation on Plastic Plate by Aerosol Beam Irradiation

    Science.gov (United States)

    Tsukamoto, Masahiro; Abe, Nobuyuki; Morimoto, Junji; Akedo, Jun

    Technology of periodic microstructures formation on plastic plate, the polyethylene terephthalate (PET) plate, was developed with an aerosol beam. The beam was composed of submicron-size anatase titania (TiO2) particles. Formation mechanism depended on an incident angle of the beam to the PET plate. At an incident angles in the range of 0 to 30°C, a TiO2 films were fabricated on the PET plate. Deposition rate of the film decreased as incident angle increased in the range of 0 to 30°C. The film was not produced at 40°C. At 50 and 60°C, the PET plate was etched by the beam irradiation. In the etching area, periodic microstructures were self-organized, whose grooves’ direction was perpendicular to the beam incidence direction.

  12. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  13. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  14. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Science.gov (United States)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  15. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    International Nuclear Information System (INIS)

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  16. The reactivity of plant, murine and human genome to electron beam irradiation

    International Nuclear Information System (INIS)

    A broad spectrum of chromosomal rearrangements is described in plants (Allium cepa), mouse (Mus musculus domestics) and in humans (Homo sapiens sapiens), following in vivo and in vitro beta irradiation. Irradiations were performed at EAL, using a 2.998 GHz traveling-wave electron accelerator. The primary effect of electron beam irradiation is chromosomal breakage followed up by a variety of chromosomal rearrangements i.e. chromosomal aberrations represented mainly by chromatid gaps, deletions, ring chromosomes, dicentrics, translocations, complex chromosomal interchanges, acentric fragments and double minutes (DM). The clastogenic effects were associated in some instances with cell sterilization (i.e. cell death)

  17. Development of useful genetic resources by proton-beam irradiation

    International Nuclear Information System (INIS)

    The aim of this study is a development of new and high-value added genetic resources through the overproduction of biodegradable plastics derived from microorganism and the propagation of wheat using proton-beam irradiation. The usefulness and possible application of proton-beam was investigated using microorganism (Escherichia coli) through proton-beam irradiation. The accumulating pattern of intracellular biodegradable plastic (PHB) was also compared between wild type and newly constructed mutants. The E. coli mutant overproduced PHB up to 10 times compared to its isogenic wild type E. coli strain. Investigated the propagation of wheat and its variation, a selectable criterion of wet proof was established and genetic analysis of useful mutant was carried out

  18. Unraveling the mystery of enhanced cell-killing effect around the Bragg peak region of a double irradiation source 9C-ion beam

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; Y. Furusawa; M. Kanazawa; A. Kitagawa

    2005-01-01

    An enhanced cell-killing effect at the penetration depths around the Bragg peak of a β-delayed particle decay 9C-ion beam has been observed in our preceding radiobiological experiments in comparison with a therapeutic 12C beam under the same conditions, and RBE values of the 9C beam were revealed to be higher than those of the comparative 12C beam by a factor of up to 2. This study is aimed at investigating the biophysical mechanisms underlying the important experimental phenomenon. First of all, a model for calculating the stopping probability density of the experimentally applied 9C beam is worked out, where all determinants such as the initial momentum spread of the 9C beam, the fluence attenuation with penetration depth due to the projectile-target nuclear reaction and the energy straggling effect are taken into account. On the basis of the calculated 9C-ion stopping distribution, it has been found that the area corresponding to the enhanced cell-killing effect of the 9C beam appears at the stopping region of the incident 9C ions. The stopping 9C-ion density in depth, then, is derived from the calculated probability density. Moreover, taking entrance dose 1 Gy for the 9C beam as an example, the average stopping 9C-ion numbers per cell at various depths are deduced. Meanwhile, the mean lethal damage events induced by the 9C and comparative 12C beams at the depths with almost equal dose-averaged LETs are derived from the measured cell surviving fractions at these depths for the 9C and 12C beams. Under the condition of the same absorbed doses, there are indeed good agreements between the average stopping 9C-ion number pre cell and the difference of the mean lethal damage events between the 9C and 12C beams at the depths of similar dose-averaged LETs. It can be inferred that if a 9C ion comes to rest in a cell, the cell would undergo dying. In view of the decay property of 9C nuclide, clustered damage would be caused in the cell by the emitted low-energy particles

  19. Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions

    Science.gov (United States)

    Liu, Meng; He, Tie; Yan, Jie; Ke, Jianlin; Lin, Jufang; Lu, Biao

    2016-07-01

    Titanium deuteride is an important nuclear material used in the field of nuclear technology, and further research is needed into TiD2 films irradiated by pulsed ion beams of the vacuum arc discharge with hydrogen. In the current study, these irradiated TiD2 films have been investigated using scanning electronic microscopy and slow positron annihilation techniques. Both the thermal effect and irradiation defects of TiD2 films were studied, following their irradiation with mixed pulsed ion beams of titanium and hydrogen ions. It is found that the thermal effect is trivial on the irradiated surfaces, and the dominant effect is irradiation defects which can be enhanced by repetitive shots and is characterized by the inner diffusion of irradiation defects.

  20. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    Science.gov (United States)

    Farah, K.; Kuntz, F.; Kadri, O.; Ghedira, L.

    2004-09-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  1. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farah, K. E-mail: k.farah@cnstn.rnrt.tn; Kuntz, F.; Kadri, O.; Ghedira, L

    2004-10-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  2. A study about the effects of gamma radiation and electron beam irradiation in the detection of genetically modified maize (Zea Mays)

    International Nuclear Information System (INIS)

    Cell-220 and electron beam irradiation (Radiation Dynamics Inc. USA) were used (Atomic Energy of Canada, LTD), applying doses of 1, 25 and 50 kGy. After irradiating the samples, the detection results were compared with non-irradiated samples, showing that, when the PCR technique, was used, the irradiation does not affect the perception of the genetically modified maize. (author)

  3. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    Directory of Open Access Journals (Sweden)

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  4. A study on chemical composition of spices irradiated by electron beam

    International Nuclear Information System (INIS)

    Quantitative changes in common organic acids and inorganic acids from spices irradiated by electron beam were studied by Dionex-4000 ion Chromatograph. The results showed that the acids content of either achilli or the five-spice powder irradiated with a dose of 9.94 kGy did not undergo significant changes in comparison with the control samples. The flavour composition in the five-spice powder irradiated by electron beam was also determined by Finnigan MAT-8230B gas chromatograph-mass spectrometer, and compared to the results by heating treatment (120 C, 30 min). The comparison indicated that the effect of electron beam treatment on flavour composition was less than that of heating

  5. A study on chemical composition of spices irradiated by electron beam

    International Nuclear Information System (INIS)

    Quantitative changes in common organic acids and inorganic acids from spices irradiated by electron beam were studied by Dionex-4000i ion chromatograph. The results showed that the acids content of either chilli or the five-spice powder irradiated with a dose of 9.94 kGy did not undergo significant changes in comparison with the control samples. The flavour composition in the five-spice powder irradiated by electron beam was also determined by Finnigan MAT-8230B gas chromatograph-mass spectrometer, and compared to the results by heating treatment (120 deg. C, 30min). The comparison indicated that the effect of electron beam treatment on flavour composition was less than that of heating

  6. Mechanical and thermal properties of commercial multilayer PET/PP film irradiated with electron-beam

    International Nuclear Information System (INIS)

    The effects of electron-beam irradiation on mechanical and thermal properties, for one commercial flexible food packaging multilayer structure, were studied. The laminated poly(ethylene terephthalate) (PET)/ polypropylene (PP) structure was irradiated up to 60 kGy, using a 1.5 MeV electron beam accelerator, at room temperature in the presence of air. Mechanical properties showed significant changes (p < 0.05). In addition, the DSC analysis, after treatment, showed that the fusion enthalpy and crystallinity of the PET/PP structure components presented significant changes (p < 0.05) with the electron-beam radiation doses applied. It was observed an increase in PP crystallinity while the PET crystallinity decreases. Such decrease in PET crystallinity indicates the predominance of a cross-linking process on the irradiated PET layer; responsible for the increase in some mechanical properties of the studied film. (author)

  7. Structural and electrical properties of swift heavy ion beam irradiated Co/Si interface

    Indian Academy of Sciences (India)

    Garima Agarwal; Ankur Jain; Shivani Agarwal; D Kabiraj; I P Jain

    2006-04-01

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the Co/Si interface for investigation of ion beam mixing at various doses: 8 × 1012, 5 × 1013 and 1 × 1014 cm-2. Formation of different phases of cobalt silicide is identified by the grazing incidence X-ray diffraction (GIXRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation. – characteristics at Co/Si interface were undertaken to understand the irradiation effect on conduction mechanism at the interface.

  8. Resistance change of oxide thin film by electron beam irradiation and non volatile memory element application

    International Nuclear Information System (INIS)

    High energy electron beam are able to generate defect during losing kinetic energy in semiconductor materials. In general, electrical behaviors after electron beam irradiation were the energy level and density of defects because of the effect of recombination. The oxygen vacancies were dominantly generated in ZnO layer by 1-2 MeV electron beam. Also, the resistive switching mechanism of ZnO based resistive memory device reported the filament and the oxygen migration of vacancies. In this study, we studied the electrical properties of the ZnO layer with In2O3 quantum-dots (QDs) by 0.2-MeV-electron beam irradiation under 1 Χ 1014, 1 Χ 1015, and 1 Χ 1016e/cm2. Before electron beam irradiation, the In2O3 QDs embedded in ZnO layer on Pt (100 nm)/Ti (50 nm) / glass substrate were fabricated. For formation bottom electrode and improvement of adhesion on the glass substrate, the 50-nm-thick Ti layer was deposited on glass substrate by e-beam evaporator. And then, the Pt layer of 200 nm thickness was deposited on the Ti layer/the glass substrate by direct current sputter. The 100-nm thick ZnO layer was deposited by ultra-high vacuum (UHV) radio frequency sputter at base pressure 1 Χ 10-10 Torr. And then, the In2O3 QDs were created by therma evaporator. The ZnO layer with thickness of 100 nm was also deposited by UHV sputter. Finally, 0.2 MeV electron beams with dose of 1 Χ 1014, 1 Χ 1015, and 1 Χ 1016 e/cm2 were irradiated after confine penetration depth of electron beam through Monte Carlo simulation. Finally, we will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device

  9. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment.

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100-130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130-140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  10. Proton irradiation effect on the properties of epoxide insulation

    International Nuclear Information System (INIS)

    Behaviour of epoxide polymers under the effect of proton irradiation has been studied. EhD-16 epoxide-dian resin was the object of investigation. The samples have been irradiated in a cyclotron with 10 MeV proton beams at a beam current density of 0,05 μA/cm2. At a dose of 105 Gy the compound structure is shown to be affected negligibly irradiation of the polymer at a dose of 107 Gy results in its aonsiderable destruction the sample durability decreasing several hundreds times. Epoxide insulation has shown good radiation stability under proton irradiation up to an absorbed radiation dose of 106 Gy

  11. Biological Effects of Irradiated Fats

    International Nuclear Information System (INIS)

    Rats were fed with a diet containing 20% of irradiated oils. If the oils were irradiated with 2.5 Mrad, there was no indication of detrimental effects during the course of 80 weeks. Oils irradiated with 10 Mrad, however, caused an increase in lethality after a lag period of 9 to 12 months. Irradiation with 50 Mrad caused weight losses after 24 weeks, disturbed liver function, and hypoproteinaemia, with a relative increase in gamma globulins. No animal of this group exceeded a life-span of 75 weeks. Irradiation with 100 Mrad caused immediate toxic symptoms and a high lethality. There is no indication that peroxides are responsible for the toxicity of the irradiated oils. Because of the high content of dimeric products in the irradiated oils, it is assumed that dimerization of fatty acids is the cause of damage. (author)

  12. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  13. The network and properties of the NR/SBR vulcanizate modified by electron beam irradiation

    International Nuclear Information System (INIS)

    A natural rubber/styrene butadiene rubber (NR/SBR) vulcanizate filled with carbon black was modified by high-energy electron beam (EB) irradiation in this work. The crosslinked structure was studied by a special chemical probe method. The influence of EB irradiation on mechanical properties, filler network, and dynamic properties including abrasion resistance, rolling resistance, and wet skid resistance was also investigated. The results revealed that the crosslink structure significantly changed after EB treatment, indicating that the amount of poly- and di-sulfide crosslinked bonds decreased and that of mono-sulfide bonds increased. The polymer–filler interaction was enhanced after EB irradiation. An EB dose of 600 kGy reduced the abrasion loss of the NR/SBR vulcanizate, and one of 300 kGy reduced the rolling resistance by 11.4%. Meanwhile, EB doses below 200 kGy had no obvious effect on the wet skid resistance. This EB-modified NR/SBR vulcanizate can be used to prepare high-performance tires with good abrasion resistance and low rolling resistance. - Highlights: • NR/SBR vulcanizate as a typical tread material is modified by electron beam. • Crosslinked structure of vulcanizate changes upon irradiation. • The interaction between polymer and fillers is enhanced after irradiation. • Rolling resistance and abrasion resistance are improved after irradiation. • Electron beam has no obvious effect on wet skid resistance below 200 kGy

  14. Plastic coating on paper by electron beam irradiation

    International Nuclear Information System (INIS)

    It has been known long since that the resin system of unsaturated polyester and vinylmonomer mixture cures by irradiation. Ford of USA for the first time industrialized the radiation curing reaction of resins for the coating of automobile parts. Thereafter, accompanying the development and technical advance of the low energy electron beam irradiation apparatus which is suitable to surface treatment such as coating and easy to handle and the development of resins, the electron beam curing method has become to be utilized for coating hardboard and wooden doors, coating automobile tire rims, adhering printing papers and others. The electron beam curing method has advantage such as energy conservation, resource saving and little pollution because solvent is not used, high production rate and small floor space. In glossing industry, for the purpose of developing the techniques to apply electron beam curing method to glazed paper production, the selection of the composition of resins suitable to glazed papers, the irradiating condition and the properties of cured films were examined. The films withstanding bending can be obtained at low dose with urethane group, ester group or the combination of monomers. (Kako, I.)

  15. Immunological aspect of the electron-beam irradiation

    International Nuclear Information System (INIS)

    In the present study, sciatic nerve tissues of the cat were emulsified with the complete Freund's adjuvant and injected into the foot-pads of the guinea pig. Frozen and frozen-irradiated feline sciatic nerve tissues were treated in the similar manner, and their encephalitogenicity was comparatively studied. Affected animals became skinny, weak in the hind limbs and sometimes solid their tails. Antigenic mixtures of the fresh peripheral nerves with adjuvant have sensitized 75% (15 out of 20) of guinea pigs, whereas none of the 41 animals manifested any sign of experimental allergic neuritis (EAN) after intradermal Frozen-preserved peripheral nerve-adjuvant mixtures gave rise to EAN in 29% (6 out of 21) of guinea pigs. The present results appear to show that the electron-beam irradiation might have modified the specific chemical structures of the myelin basic protein to completely suppress the encephalitogenicity of the peripheral nerve-tissues. High-voltage cathode irradiations would be capable of depressing the antigenicity of the transplantation immunology when the antigenic determinants have the chemical structures in common with the encephalitogenic antigens. Excessive amount of the irradiation used to result in severe tissue damages, therefore, an optimum dosis of electron-beams should be determined for each tissue destined for grafting. As the frozen peripheral nerve-adjuvant mixtures have been less encephalitogenic, freezing alone might well be considered partially to improve the acceptability of the grafts. Cryopreservation of the irradiated allografts would be worth further studying. (author)

  16. Modification of fluoropolymers by means of electron beam irradiation

    Science.gov (United States)

    Lunkwitz, K.; Lappan, U.; Lehmann, D.

    2000-03-01

    High molecular weight polytetrafluoroethylene (PTFE) is transformed to free-flowing micropowder by treatment with electron beams. In case of irradiation in presence of air carboxylic acid fluoride groups are incorporated which rapidly hydrolyze to carboxylic groups in the surface-near regions due to atmospheric humidity. These polar groups reduce the hydrophobic and oleophobic properties so much that homogeneous compounding with other materials becomes possible. In addition to PTFE, copolymers of tetrafluoroethylene with hexafluoropropylene (FEP) and perfluoropropylvinylether (PFA) were modified. In case of identical irradiation conditions, the concentration of carboxylic groups is much higher in FEP and PFA than in PTFE, which is due to the lower crystallinity of the copolymers. Electron beam irradiation of PTFE was performed in vacuum at elevated temperature above the melting point. The changes in the chemical structure were studied. The concentration of CF 3 branches was found to be much higher as compared to room temperature irradiation. In a practical test PTFE micropowders functionalized by electron irradiation were compounded with epoxy resins, with polyoximethylene and with polyamides. Such compounds are characterized by very good frictional and wearing behaviour in dry-running tests.

  17. Modification of fluoropolymers by means of electron beam irradiation

    International Nuclear Information System (INIS)

    High molecular weight polytetrafluoroethylene (PTFE) is transformed to free-flowing micropowder by treatment with electron beams. In case of irradiation in presence of air carboxylic acid fluoride groups are incorporated which rapidly hydrolyze to carboxylic groups in the surface-near regions due to atmospheric humidity. These polar groups reduce the hydrophobic and oleophobic properties so much that homogeneous compounding with other materials becomes possible. In addition to PTFE, copolymers of tetrafluoroethylene with hexafluoropropylene (FEP) and perfluoropropylvinylether (PFA) were modified. In case of identical irradiation conditions, the concentration of carboxylic groups is much higher in FEP and PFA than in PTFE, which is due to the lower crystallinity of the copolymers. Electron beam irradiation of PTFE was performed in vacuum at elevated temperature above the melting point. The changes in the chemical structure were studied. The concentration of CF3 branches was found to be much higher as compared to room temperature irradiation. In a practical test PTFE micropowders functionalized by electron irradiation were compounded with epoxy resins, with polyoxymethylene and with polyamides. Such compounds are characterized by very good frictional and wearing behaviour in dry-running tests. (author)

  18. Low energy Fe+ beam irradiation to C60 thin film

    International Nuclear Information System (INIS)

    We have developed an electron cyclotron resonance ion source apparatus, which is designed for the production of endohedral fullerene. In this study, we irradiated the Fe+ beam to the C60 thin film. We changed the experimental condition of the dose and the ion energy. We could observe the Fe + C60 peak by analysis of the time-of-flight mass spectrometry. The highest intensity of the Fe + C60 peak was observed at the ion energy of 200 eV. The Fe + C60 peak intensity tended to become high in the case of long irradiation time and large dose.

  19. Irradiation damage and ion mobility in surface analysis by ion or electron beams

    International Nuclear Information System (INIS)

    The electron irradiation of contaminated surface or insulators modifies the surface composition when the current density is on the range of the actual current in micro-Auger analysis. This destructive dose is found to be about 1013 - 1014 electrons/cm2.s for an organic layer analysis or about 1016 - 1017 electrons/cm2.s for oxides, and for sulfur or carbon contaminated surface. The primary electron beam locally rises the surface temperature and ionizes the impurities all along its depth of penetration. Therefore it may induce a thermal diffusion of impurities, a thermal enhancement of the electron stimulated desorption cross section, or an electromigration of negative species as O-, C-. Simultaneous ion etching in ion profiling technique and electron beam irradiation modify the ion etching speed and profiles, and verifies the destructive effect of the electron beam. In AES or in scanning microscopy the secondary electron image contrast is very sensitive to the beam damage

  20. Synergistic effect of combination of Irganox 1010 and zinc stearate on thermal stabilization of electron beam irradiated HDPE/EVA both in hot water and oven

    International Nuclear Information System (INIS)

    Thermo-oxidative stability of HDPE/EVA blends can be considerably increased by combination of a high-molecular weight phenolic antioxidant and zinc stearate. In this work, the post-irradiation thermal stability of HDPE/EVA blends has been studied. High-density polyethylene and its blends with ethylene-vinylacetate copolymer in both pure form and mixed with Irganox 1010 and zinc stearate were exposed to electron beam radiation at doses between 80 and 150 kGy, at room temperature, in air. In order to evaluate the thermal stability of the samples, post-irradiation heat treatments were done in both hot water bath at 95 deg. C and in an oven at 140 deg. C. The mechanical properties and changes in the chemical structure were determined during thermal aging in hot water and oven. The gel content was enhanced by increasing EVA concentration in all applied doses. The stabilized blends have lower gel content than the unstabilized samples. From the results of heat aging treatments it was observed that the thermal stability of the unstabilized blend samples was lower than HDPE. Thermal stability of the samples has been improved by incorporation of Irganox 1010 and zinc stearate. Formation of hydroxyl group was insignificant for stabilized samples during heat aging in both conditions. Also, the changes in the value of oxidation induction time (OIT) for the stabilized samples were negligible after prolonged immersion in hot water

  1. Effect of electron beam on in vitro cultured orchid organs

    International Nuclear Information System (INIS)

    Ionizing radiations have been effective mutagen sources to overcome the limitation of the useful genetic resources in natural environment. The study was conducted to investigate an effect of electron beam on organogenesis, growth patterns and genetic variation in the irradiated orchid organs. The in utero cultured rhizomes of orchids were irradiated with the electron beam in the dose range of 15Gy to 2240Gy under the condition of various beam energy and beam current. Significant decreases in survival, growth and organogenesis were observed by increase of intensity of electron beam irradiation. The irradiation intensity of lethal dose 50 of the in utero cultured orchid was estimated as approximately 500Gy to 1000Gy under 10MeV/n, and 1000Gy was optimal for growth and organogenesis of the cultures under 10MeV/n with 0.05mA treatment, and 15Gy ∼ 48Gy under 2MeV/n and 0.5mA electron beam condition. RAPD and ISSR analyses for the electron beam irradiated organs were performed to analyze genetic variation under the electron beam condition. Both of RAPD and ISSR analyses showed higher polymorphic rate in the electron-beam irradiated C. gangrene and C. Kaner

  2. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Science.gov (United States)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann; Kim, Gil-Hah

    2012-01-01

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.

  3. Effects of N{sup +}{sub 2} ion irradiation during AlN film growth by dual ion-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sang Hun; Kim, Jae Keun; Lee, Byung Teak [Chonnam National Univ., Kwangju (Korea, Republic of)

    2003-02-01

    We report on the composition, chemical state, and structure of the AlN films grown with concurrent N{sub 2}{sup +} ion bombardment during film growth using a dual ion-beam deposition system. The AlN films prepared at various bombarding ion-beam conditions were characterized by RBS, XPS, and TEM. The analytical results of RBS spectra performed using rump code represented that the composition ratio (N/Al) of the AlN films grown with concurrent N{sub 2}{sup +} ion bombardment could be controlled from N/Al < 1 to N/Al >1, depending on both the energy and the flux of N{sup +}{sub 2} ions incident on the growing film, and the value of N/Al ratio reached to 1.6 at higher energy and flux. XPS analysis also showed a good agreement with these RBS results. TEM diffraction patterns indicated that film orientation varied from a c-axis normal to the film surface to a c-axis parallel to the film surface as the energy of the irradiated N{sup +}{sub 2} ion increased from 200 eV to 500 eV. This preferential growth was explained in terms of ion channeling.

  4. Improvement in properties of plastic teeth by electron beam irradiation

    International Nuclear Information System (INIS)

    Improvement of the comfort and esthetics of artificial plastic teeth is desirable for the recently increasing numbers of elderly in society. Plastic teeth made of polycarbonate (PC) were modified by electron beam (EB) irradiation under specific conditions, and the change in the chemical properties of the PC was investigated. The water absorption, glucose attachment, level of bis-phenol-A (BPA) extraction, maltose adhesion, and mucin adhesion on the PC teeth were measured before and after EB irradiation. EB irradiation to a dose of 3.5 kGy at 150 oC in a nitrogen gas atmosphere reduced the water absorption by 20%, glucose absorption by 40%, maltose adhesion by 20%, and the amount of various amino acids, formed as the hydrolysis products of mucin, adhering on the PC teeth were reduced by 60-99%. The BPA content was lower than the detection limit for analysis of both the original and the EB irradiated PC teeth. - Highlights: → Radiation improvement of polycarbonate for plastic teeth by EB irradiation 3.5 kGy at 150 oC in inert gas. → Water and glucose absorption and maltose adhesion on PC teeth were much reduced. → Bis-phenol-A content from PC teeth was lower than the detection limit after irradiation.

  5. E-beam irradiation for the control of Phytophthora nicotianae var. nicotianae in stonewool cubes

    Directory of Open Access Journals (Sweden)

    Ptaszek Magdalena

    2015-09-01

    Full Text Available Effectiveness of electron beam irradiation was evaluated against Phytophthora nicotianae var. nicotianae, the causal agent of stem base and root rot of tomato. In laboratory trials, irradiation of 7-day-old Phytophthora cultures growing on potato-dextrose-agar (PDA medium with 1 kGy resulted in the disintegration of the pathogen’s hyphae. Increasing the irradiation dose to 3 kGy caused decay of the hyphae. Irradiation of infested stonewool with 5 kGy caused decrease of the pathogen population about 5 times. Application of 20 kGy completely eliminated the pathogen from stonewool. Irradiation of substratum resulted in significant increase of tomato seedlings healthiness, especially when the dose 20 kGy was applied.

  6. Development of applicators for intraoperative electron beam irradiation

    International Nuclear Information System (INIS)

    A set of applicator units for intraoperative electron beam irradiation has been developed, and is utilized for clinical practice. The applicator system includes a lead tube, a lead containing acrylic cone, and attachment devices. The lead tube is attached to a commercially available electron tube, and the acrylic cone is placed at the tip of the lead tube for better visualization of treatment fields. Measurements before clinical applications revealed that the system provides clinically acceptable dose distribution for intraoperative electron beam irradiation. Clinical utilization suggests the following advantages of the applicator: 1) Sterilization is easy. 2) It is inexpensive and easy to handle. 3) Treatment fields are clearly visualized using endoscopy. The acrylic cone is useful to verify relations between treatment fields and outer structures. 4) It is safe since collision inter-locking is available. (author)

  7. PtRu/C electrocatalysts prepared using electron beam irradiation

    OpenAIRE

    Dionísio Furtunato da Silva; Almir Oliveira Neto; Eddy Segura Pino; Michele Brandalise; Marcelo Linardi; Estevam Vitorio Spinacé

    2007-01-01

    PtRu/C electrocatalysts (carbon-supported PtRu nanoparticles) were prepared submitting water/ethylene glycol mixtures containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The electrocatalysts were characterized by energy dispersive X ray analysis (EDX), X ray diffraction (XRD) and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts showed superior performance for methanol electro-oxi...

  8. Formation and microstructural analysis of 3-dimensional titanium oxide structures via large surface electron beam irradiation

    International Nuclear Information System (INIS)

    Recently, in photo electronic devices industry, titanium oxide which was known to have good optical and electrical characteristic's been studied in the microstructural aspect to increase the conversion efficiency, such as making variable architecture, coating the titanium oxide nano-tube with the quantum dots which have higher band gap materials than this, etc. However, the process of making 3-dimensional titanium oxide structure with general deposition system such as hydrothermal growth, CVO, PVD and ALD had more variables and longer time consumption to make nano structures than electron beam irradiation case. Herein, we proceed with making new titanium oxide nano-screen-testing electron beam irradiation. The metal alkoxide composed of the 1 mol of titanium iso-propoxide and the 1 mol of acetylation reacted with water in propylene glycol methyl ether acetate and isopropyl alcohol solvent. After this process which made the bonding among Ti, O and other organics, the polymer solution was deposited on various types of substrate, such as anodized aluminum oxide mail. Kist. ac., Ag nano dots on SiO2 thin film, Au nano dots on SiO2 thin film, etc. The electron beam irradiation was progressed with the vertical accelerator facility of EB tech which was the company in Dijon, Korea The shape, microstructure and chemical composition of the irradiated polymers were characterized using TEM, XRD, Sem and EDS. The three types of Ti-Ox 3-dimensional structure were made; nano dot cluster, spike-like structure and dendrite structure. Each type of these structures was composed of different mircrostructures. Especially, the formation the 3-dimensional structures via electron beam irradiation was not only effected by the electron beam irradiation conditions but also effected by solution concentrate, conductivity and surface energy of substrate

  9. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  10. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    International Nuclear Information System (INIS)

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth. - Highlights: ► Electron beam irradiation is effective against soil-borne pathogens. Application of irradiation at dose 1.5 kGy completely inhibited in vitro development of Phytophthora cinnamomi. ► Irradiation of horticultural substrata did not influence the growth of plants.

  11. An irradiation facility with a vertical beam for radiobiological studies

    CERN Document Server

    Besserer, J; Dellert, M; Gahn, C; Moosburger, M; Pemler, P; Quicken, P; Distel, L; Schuessler, H

    1999-01-01

    A vertical beam facility for radiobiological experiments was designed and constructed at the Munich Tandem-Accelerator Laboratory. The main part of the facility is a 90 deg. dipole magnet bending the beam of protons or heavy particles into a vertical upward direction, which is advantageous for wet-cell irradiation. After collimation the beam is spread out passively by thin scattering foils and dynamically by magnetic coils. A homogeneity of the radiation field better than +-5% has been achieved over the diameter of the exit window of 60 mm. The dose rate can be widely adjusted from single particles to more than 10 sup 1 sup 0 particles (i.e. hundreds of Grays) per second. The dose measurement is based on single-particle counting and on standard dosimeters. The detector system for dosimetry and irradiation control is described. In a first radiobiological experiment the cell survival of chinese hamster cells was measured after irradiation with 22.7 MeV protons and compared with the X-ray result.

  12. Microbeam irradiation effects on transmission diamond detector

    International Nuclear Information System (INIS)

    Response of thin film CVD diamond to the ionized particle irradiation was investigated for the utilization as a transmission detector in the end-station of the microbeam line connecting to the AVF cyclotron at JAEA/Takasaki. A spectroscopy-grade 50 μm-thick film Single Crystalline CVD diamond was characterized using Ion Beam Induced Charge (IBIC) and Transient Ion Beam Induced Current (TIBIC) systems. Significant decrease in IBIC signals was observed temporally during a microbeam irradiation period. Peak degradation was easily recovered in a short time by release of biases thus it seems to be caused by the polarization effect due to charge-capture by defects in the surface layer of diamond. (author)

  13. Effect of electron irradiation on the crystallinity of ramie fiber

    International Nuclear Information System (INIS)

    Background: Ramie fiber is a kind of natural polymer material with abundant resources and low price, which has been widely applied in textile. Ramie textiles possess many good qualities, such as air permeability, sweat conductivity and antibacterial ability, but the high crystallinity of ramie fiber gives rise to bad spinning property, small extensibility and low chromaticity which restrict its further application. Purpose: In order to reduce the crystallinity of ramie fiber, the electron beam was directly utilized to irradiate ramie fiber. Methods: Ramie fiber was irradiated by electrons with the irradiation doses from O to 2 000 kGy, and the irradiated ramie fiber was characterized by XRD and FT-IR. The crystallinity and the crystallinity index of ramie fiber were analyzed, and the irradiation effect was discussed. Results: The crystallinity and the crystallinity index of ramie fiber decrease with the increasing of irradiation doses and the number of -C=O increases with the increasing of irradiation doses. Conclusions: The variation behavior of the crystallinity and the crystallinity index of ramie fiber with electron irradiation dose ranging from 0 to 2000 kGy is got. It is shown that the crystallinity and the crystallinity index of ramie fiber may be effectively reduced by using electron beams irradiation, but also the required crystallinity of ramie fiber in its application can be achieved by controlling the electron beams irradiation doses. (authors)

  14. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    Science.gov (United States)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-07-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and the ratio of BOD5 and COD (BOD5/COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV254) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process.

  15. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation

    Directory of Open Access Journals (Sweden)

    Jeff Gao

    2014-03-01

    Full Text Available Purpose: In this study, we examined some characteristics of secondary electrons produced by gold nanoparticle (NP during proton beam irradiation.Method: By using the Geant4 Monte Carlo simulation toolkit, we simulated the NP at the range from radius (r of 17.5 nm, 25 nm, 35 nm to r = 50 nm. The proton beam energies used were 20MeV, 50MeV, and 100MeV. Findings on secondary electron production and their average kinetic energy  are presented in this paper. Results: Firstly, for NP with a finite size, the secondary electron production increase with decreasing incident proton beam energy and secondary buildup existed outside NP. Secondly, the average kinetic energy of secondary electrons produced by a gold NP increased with incident proton beam energy. Thirdly, the larger the NP size, the more the secondary electron production.Conclusion: Collectively, our results suggest that apart from biological uptake efficiency, we should take the secondary electron production effect into   account when considering the potential use of NPs in proton beam irradiation.-----------------------------------------------Cite this article as: Gao J, Zheng Y. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation. Int J  Cancer Ther Oncol 2014; 2(2:02025.DOI: http://dx.doi.org/10.14319/ijcto.0202.5

  16. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  17. Study of the electron beam irradiation effect on some properties of aromatic aliphatic copolyester films; Estudo do efeito da radiacao por feixe de eletrons nas propriedades de filmes de copoliester alifatico aromatico

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Patricia Negrini Siqueira

    2008-07-01

    Biodegradable and green plastics are the new tendency in the world. The effect of the electron beam irradiation in aromatic aliphatic copolyester and the blend with corn starch films (Ecoflex{sup R} and Ecobras{sup R}) were studied by tensile strength at break, elongation at break, Scanning Electronic Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), crosslinking degree and biodegradability. The measurements in both, the machine direction and the transverse direction were made for mechanical tests. It was found that, the electron irradiation caused an increase in the strength at break of the blend with corn starch film, when doses of up to 10 kGy were applied. A significant decrease of the elongation at break of the blend with corn starch was observed at doses of 10 kGy and 40 kGy. It was not found important change in tensile properties for aromatic aliphatic copolyester. Structural changes of the samples (crosslinking or degradation) by SEM were not observed. The FT-IR identified the characteristic peaks of each involved functional group (copolyester and corn starch). However, it was not found bands of oxidation of the samples. In the DSC, changes in the melting temperature of the irradiated Ecoflex{sup R} and Ecobras{sup R} samples, was not identified when compared with the samples of reference. However, it was verified a reduction in the melting enthalpy of the Ecobras{sup R} samples after irradiation. The Ecobras{sup R} material presented crosslinking, when submitted to doses of 10 kGy and 40 kGy. The Ecoflex{sup R} material did not present crosslinking when submitted to these doses. The biodegradability of the materials was evaluated by two methods of test: soil simulated and enzymatic. In both methods, the irradiated samples presented faster biodegradation than the references not irradiated. (author)

  18. Tailoring the properties of copper nanowires by ion beam irradiation

    Science.gov (United States)

    Kumar, Narinder; Kumar, Rajesh; Kumar, Sushil; Chakarvarti, S. K.

    2016-02-01

    In the present paper, we investigated the change in the properties of copper nanowires under the irradiance of 80 MeV Si7+ ion beam. The nanowires were electrodeposited in the cylindrical pores of the track-etched polycarbonate membranes. The phase, morphology and optical absorbance of the fabricated nanowires were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy, respectively. The XRD study showed a face centered cubic crystal structure of copper nanowires. Further measurements with FESEM revealed that nanowires were continuous, aligned with uniform diameter having high aspect ratio. The XRD spectra of irradiated nanowires indicated an improved crystalinity at low ion fluences while it declines at higher ion fluences. The optical absorbance properties of the irradiated copper nanowires were also examined. The absorption spectra exhibited a peak at 568 nm which was attributed to the surface plasmon resonance. A significant increase in absorbance after irradiation accounts for the possibility of defects formation. The electrical properties measured from I-V characteristics showed an increase in resistivity of irradiated nanowires.

  19. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells.

    Science.gov (United States)

    Hirai, Takahisa; Saito, Soichiro; Fujimori, Hiroaki; Matsushita, Keiichiro; Nishio, Teiji; Okayasu, Ryuichi; Masutani, Mitsuko

    2016-09-01

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. PMID:27425251

  20. Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes

    Science.gov (United States)

    Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong

    2016-09-01

    A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.

  1. Extractable proteins from electron beam (EB) irradiated natural rubber (NR) latex

    International Nuclear Information System (INIS)

    The protein assay of natural rubber latex (NRL) vulcanized by low energy electron beam (EB, 300 keV, 30 mA) has been carried out using Bicinchoninic acid (BCA) reagent. Extractable protein in irradiated latex film was determined by measuring the absorption of colored solution at 562 nm using UV spectrometer. The effect of various radiation doses on the extractable protein content of NRL was investigated. It was ,found that the quantities of extractable protein increases with radiation dose. When compared with ,gamma-ray irradiated samples the same trend was observed. Electron beam irradiated latex films are leached in 1% (ammonia water for various lengths of time. From the results it was established that within 2 hours of leaching in ammonia water most of the extractable protein (96%) were removed from rubber film

  2. Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20-80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%-10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.

  3. Critical properties of the high-energy electron-beam-irradiated superconductor weak links

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Hoon; Lee, Soon Gul [Korea University, Sejong (Korea, Republic of)

    2014-11-15

    We have studied the effects of high-energy electron-beam irradiation on the superconducting transition properties of an YBCO bicrystal junction, a focused ion-beam (FIB)-patterned YBCO nanobridge, a MgB{sub 2} intergrain nanobridge, and a BaKFeAs multigrain microbridge. We used one sample for each junction type and repeated the irradiation-and-measurement process at 6 accumulated-dose steps: 0, 3 x 10{sup 14}, 10{sup 15}, 3 x 10{sup 15}, 10{sup 16}, and 10{sup 17} e/cm{sup 2}. A uniform electron beam with a 1-MeV kinetic energy was irradiated indiscrimately over the samples. We measured the resistive transition temperature, the normal-state resistance, and the critical current. The irradiation effect was significant for all the samples except the BaKFeAs microbridge. The critical current data for the YBCO bicrystal junction and the MgB{sub 2} intergrain nanobridge had a maximum at 3 x 10{sup 15} e/cm{sup 2}, and the YBCO nanobridge showed a monotonic decrease. For all the samples, the normal state resistance increased monotonically with increasing dose by up to ∼20% at 10{sup 16} e/cm{sup 2}, and the change in T{sub c} was negligible. The results showed that the YBCO and MgB{sub 2} weak links were susceptive to irradiation, indicating the possibility of controlling the critical current of those junctions by using high-energy electron-beam irradiation.

  4. In vitro irradiation station for broad beam radiobiological experiments

    Science.gov (United States)

    Wéra, A.-C.; Riquier, H.; Heuskin, A.-C.; Michiels, C.; Lucas, S.

    2011-12-01

    The study of the interaction of charged particles with living matter is of prime importance to the fields of radiotherapy, radioprotection and space radiobiology. Particle accelerators and their associated equipment are proven to be helpful tools in performing basic science in all these fields. Indeed, they can accelerate virtually any ions to a given energy and flux and let them interact with living matter either in vivo or in vitro. In this context, the University of Namur has developed a broad beam in vitro irradiation station for use in radiobiological experiments. Cells are handled in GLP conditions and can be irradiated at various fluxes with ions ranging from hydrogen to carbon. The station is mounted on a 2 MV tandem accelerator, and the energy range can be set up in the linear energy transfer (LET) ranges that are useful for radiobiological experiments. This paper describes the current status of the hardware that has been developed, and presents results related to its performance in term of dose-rate, energy range and beam uniformity for protons, alpha particles and carbon ions. The results of clonogenic assays of A549 lung adenocarcinoma cells irradiated with protons and alpha particles are also presented and compared with literature.

  5. In vitro irradiation station for broad beam radiobiological experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wera, A.-C., E-mail: anne-catharine.wera@fundp.ac.be [NAmur Research Institute for LIfe Sciences (NARILIS), Research Centre for the Physics of Matter and Radiation (PMR), University of Namur-FUNDP (Belgium); Riquier, H., E-mail: helene.riquier@fundp.ac.be [NAmur Research Institute for LIfe Sciences (NARILIS), Unite de Recherche de Biologie Cellulaire (URBC), University of Namur-FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium); Heuskin, A.-C., E-mail: anne-catherine.heuskin@fundp.ac.be [NAmur Research Institute for LIfe Sciences (NARILIS), Research Centre for the Physics of Matter and Radiation (PMR), University of Namur-FUNDP (Belgium); Michiels, C., E-mail: carine.michiels@fundp.ac.be [NAmur Research Institute for LIfe Sciences (NARILIS), Unite de Recherche de Biologie Cellulaire (URBC), University of Namur-FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium); Lucas, S., E-mail: stephane.lucas@fundp.ac.be [NAmur Research Institute for LIfe Sciences (NARILIS), Research Centre for the Physics of Matter and Radiation (PMR), University of Namur-FUNDP (Belgium)

    2011-12-15

    The study of the interaction of charged particles with living matter is of prime importance to the fields of radiotherapy, radioprotection and space radiobiology. Particle accelerators and their associated equipment are proven to be helpful tools in performing basic science in all these fields. Indeed, they can accelerate virtually any ions to a given energy and flux and let them interact with living matter either in vivo or in vitro. In this context, the University of Namur has developed a broad beam in vitro irradiation station for use in radiobiological experiments. Cells are handled in GLP conditions and can be irradiated at various fluxes with ions ranging from hydrogen to carbon. The station is mounted on a 2 MV tandem accelerator, and the energy range can be set up in the linear energy transfer (LET) ranges that are useful for radiobiological experiments. This paper describes the current status of the hardware that has been developed, and presents results related to its performance in term of dose-rate, energy range and beam uniformity for protons, alpha particles and carbon ions. The results of clonogenic assays of A549 lung adenocarcinoma cells irradiated with protons and alpha particles are also presented and compared with literature.

  6. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    International Nuclear Information System (INIS)

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation

  7. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Nemtanu, Monica R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerator Laboratory, 409 Atomistilor Street, P.O. Box MG-36, 077125 Bucharest-Magurele (Romania)], E-mail: monica.nemtanu@inflpr.ro; Kikuchi, Irene Satiko; Jesus Andreoli Pinto, Terezinha de [University of Sao Paulo, Faculty of Pharmaceutical Sciences, Department of Pharmacy, Av. Prof. Lineu Prestes, 580-Bloco 13, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Mazilu, Elena; Setnic, Silvia [S.C. Hofigal Export-Import S.A., 2A Intrarea Serelor Street, 75669, Bucharest 4 (Romania); Bucur, Marcela [University of Bucharest, Faculty of Biology, Department of Microbiology, 1-3 Aleea Portocalelor Street, Bucharest 6 (Romania); Duliu, Octavian G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Meltzer, Viorica; Pincu, Elena [University of Bucharest, Faculty of Chemistry, Department of Physical Chemistry, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2008-05-15

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation.

  8. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  9. Stereotactic breast irradiation with kilovoltage x-ray beams

    Science.gov (United States)

    Garnica-Garza, H. M.

    2016-01-01

    The purpose of this work is to determine, using Monte Carlo simulation and a realistic patient model, the characteristics of the resultant absorbed dose distributions when breast tumors are irradiated using small-field stereotactic body radiation therapy (SBRT) with kilovoltage x-ray beams instead of the standard megavoltage energies currently in use. The Rensselaer Polytechnic Institute (RPI) female phantom was used to model a pair of small-field SBRT breast treatments: in one treatment the tumor at depth and another one with the tumor located close to the breast surface. Each treatment consisted of 300 circular beams aimed at the tumor from a plurality of positions. The PENELOPE Monte Carlo code was used to determine the absorbed dose distribution for each beam and subsequently an optimization algorithm determined each beam weight according to a set of prescription goals. Both kilo- and megavoltage beam treatments were modeled, the latter to be used as a reference. Cumulative dose-volume histograms for eleven structures were used to compare the kilovoltage and reference treatments. Integral dose values are also reported. Absorbed dose distributions for the target volumes as well as the organs at risk were within the parameters reported in a clinical trial for both treatments. While for the ipsilateral healthy breast tissue the megavoltage treatment does offer an advantage in terms of less volume irradiated to intermediate doses, for the contralateral structures, breast and lung, the low penetration ability of the kilovoltage treatment results in a lower maximum dose. Skin dose is higher for the kilovoltage treatment but still well within the tolerance limits reported in the clinical trial.

  10. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  11. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  12. Disruption and erosion on plasma facing materials with Oarai hot-cell electron beam irradiating system (OHBIS)

    International Nuclear Information System (INIS)

    To evaluate the effects of neutron irradiation on erosion behavior of plasma facing materials by plasma disruption, thermal shock tests with neutron irradiated specimens of 2-directional carbon fiber reinforced carbon composites (CFCs) were carried out at the electron beam facility ('OHBIS', Oarai Hot cell electron Beam Irradiating System) in the hot laboratory of the JMTR (Japan Materials Testing Reactor). The test conditions on CFCs were 800 MW m-2 x 25 ms and 500 MW m-2 x 40 ms. Neutron irradiation condition of CFCs in JMTR was the total fast neutron fluence of 3-6 x 1020 ncm-2 (E>1 MeV) at about 563 K. As results of these experiments, the weight loss of neutron irradiated specimens increased almost linearly with neutron fluence, and was about two times larger than that of the un-irradiated specimen. (author)

  13. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  14. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  15. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  16. The influence of electron beam irradiation on the chemical and structural properties of medical grade Polyurethane

    CERN Document Server

    Shin, Sukyoung

    2015-01-01

    Thermo plastic polyurethane (TPU) provides excellent bio-compatibility, flexibility and good irradiation resistance; however, extremely high irradiation doses can alter the structure and function of macromolecules, resulting in oxidation, chain scission and cross-linking. In this study, the effects of e-beam irradiation on the medical grade thermo plastic polyurethane were studied. The changes in the chain length and their distribution as well as the changes in molecular structure were studied. The GPC (Gel Permeation Chromatography) results show that the oxidative decomposition is followed by a decrease in molecular mass together with an increase in polydispersity. This indicates a very inhomogeneous degradation, which is a consequence of the specific course and of the intensity of oxidative degradation. This was confirmed by means of mechanical property measurements. Overall, this study demonstrated that the medical grade TPU was affected by radiation exposure, particularly at high irradiation doses.

  17. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  18. Proton irradiation damage of an annealed Alloy 718 beam window

    International Nuclear Information System (INIS)

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2—0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34—120 °C with short excursion to be ~47—220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2—0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  19. Ion irradiation effects on metallic nanocrystals

    International Nuclear Information System (INIS)

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  20. Ion irradiation effects on metallic nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C. (ASRP); (ANSTO); (ANU)

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  1. Measurement of volatile evolution from polyurethane induced by accelerated ion beam irradiation

    International Nuclear Information System (INIS)

    Irradiation of polymer samples using an accelerated beam of He2+ ions passed through a 10μm thick window of havar foil has been performed. Such irradiation simulates the effects of large α radiation doses, on a vastly reduced time-scale. Analysis of volatiles evolved during irradiation is performed by a residual gas analyser (RGA), which is located close to the sample chamber. Presented in this paper are the results obtained during a radiation study on polyester/MDI based polyurethane materials. During high dose rate irradiation a number of high mass species were observed. A comparison between two similar polyurethanes formulated with slightly different polyesters indicated some differences. They were, however, too minor to link to specific degradation mechanisms. The dominant degradation products evident to the RGA at low dose rates were H2 , CO and CO2 . A series of polyurethane samples previously conditioned by γ irradiation at doses between 0 and 5MGy were irradiated in the ion beam. Identification of differences in trends in the rates of volatile evolution between these samples indicated the precise vacuum conditions at the time of irradiation had a major influence. There was also an indication that the surface of the sample had a small effect on rates of volatile evolution. Comparative plots of CO and CO2 evolution for a series of 1MGy irradiations indicated variations in behaviour between samples with different γ doses. Evolution during the first 1MGy was inhibited for the unirradiated sample, the extent of inhibition diminished with increasing γ dose and was no longer evident in a sample with 1.5MGy γ dose. H2 does not show an equivalent inhibition. Evidence for a low dose crosslinking reaction is put forward as a reason for the inhibition. Chemical reaction mechanisms are postulated and used to explain differences in the behaviour observed

  2. Superconducting superheated grains irradiated with an electron beam

    International Nuclear Information System (INIS)

    Superconducting superheated grains are potentially Cryogenic detectors for low energy neutrinos. A conventional read-out electronic chain has been realized and tested in order to perform real-time read-out of the transition for tin grains as small as 10 μm. Now a convincing irradiation of superheated superconducting grains with an electron beam has been realized. Individual signals of transiting grains are signed and shown to be caused by minimum ionizing electron deposited energy (kinetic energy of the electrons is 2.2 MeV)

  3. External-beam irradiation of carcinoma of the penis

    International Nuclear Information System (INIS)

    Twenty-four patients with biopsy-proved squamous-cell carcinoma of the penis underwent external-beam radiation therapy between 1966 and 1980. Fifteen were treated for the primary tumor and 9 for metastatic inguinal lymphadenopathy; no patient received prophylactic nodal irradiation. Seven out of 9 tumors in stage I, 2/3 in stage II, and 1/3 in stage IV were controlled for three years. Control of fixed, inoperable groin nodes was poor, and none of these patients survived beyond 1 1/2 years

  4. Total body irradiation (sweeping beam technique) prior bone marrow transplantation

    International Nuclear Information System (INIS)

    There are given the principle and basic informations about Sweeping beam technique with gantry rotation on LINAC ORION 6. The whole process of treatment is presented here: CT - determination of reference points and reference slices (AP, PA) Simulator - localization of lung shielding (AP, PA) Linac - determination of some physical parameters - simulation of radiation technique Treatment planning - calculation of treatment time and number of sweeps - determination of lung shielding Model laboratory - preparation of lung shielding blocks - blocks position and fixation Radiation therapy - verification of shielding blocks - patient irradiation (AP, PA) Dosimetry in-vivo - determination of patient's doses At the end the presentation of physical results with group of 55 patients is reported

  5. PtRu/C electrocatalysts prepared using electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Dionísio Furtunato da Silva

    2007-12-01

    Full Text Available PtRu/C electrocatalysts (carbon-supported PtRu nanoparticles were prepared submitting water/ethylene glycol mixtures containing Pt(IV and Ru(III ions and the carbon support to electron beam irradiation. The electrocatalysts were characterized by energy dispersive X ray analysis (EDX, X ray diffraction (XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts showed superior performance for methanol electro-oxidation at room temperature compared to commercial PtRu/C electrocatalyst.

  6. Sensor properties of electron beam irradiated fluorinated graphite

    Science.gov (United States)

    Sysoev, Vitalii I.; Gusel'nikov, Artem V.; Katkov, Mikhail V.; Asanov, Igor P.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    A graphene-like material was recovered through the reduction of initially nonconductive C2F graphite fluoride by irradiation with an electron beam with a kinetic energy of 500 eV. The surface conductivity increased by four orders of magnitude, and Raman scattering revealed a narrowing and redshift of the G mode peak. The samples were tested as a sensor material for detecting NO2 and NH3 molecules. After 25-min exposure to 1% NH3 and 0.5% NO2 at room temperature, the relative response of the sensor materials was 6 and 4%, respectively.

  7. Electron beam irradiation for biological decontamination of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania)]. E-mail: mirela@infim.ro; Nemtanu, Monica [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, Bucharest-Magurele (Romania); Mazilu, Elena [Hofigal SA (Romania); Radulescu, Nora [Hofigal SA (Romania)

    2005-10-15

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  8. Study of albumin adsorption on ion beam irradiated polymer surfaces

    International Nuclear Information System (INIS)

    The process of adsorption of human serum albumin has been studied for poly-hydroxy-methylsiloxane and poly-ethylene-terephtalate surfaces modified by 5 keV Ar+ irradiation. The adsorption kinetics of albumin has been investigated as a function of the modifications induced by irradiation of the two polymer surfaces. Fluorescence spectroscopy, X-ray photoelectron spectroscopy and contact angle technique, respectively, have been used to determine the adsorption kinetics and to characterize the chemical composition and the surface free energy of the irradiated surfaces. Two basic classes of adsorption kinetics were found in connection with two different adsorption mechanisms. The irradiation-induced effects have been seen to be able to change the type of the adsorption process from one class to the other one as a function of the total surface free energy modification

  9. Nanostructure fabrication using electron beam irradiation of organometallic compounds

    CERN Document Server

    Bedson, T R

    2001-01-01

    Nanoelectronics- the quest to fabricate quantum devices- is the motivation for this thesis. The place of nanolithography is discussed amongst conventional microfabrication methods, together with the materials currently employed in lithography. The experimental methods, equipment and new resist materials (films of nanoparticles) are then explored in the work described. A summary of the results obtained by the research is presented, followed by the detailed results in the form of a series of published and submitted papers. A systematic study of the response of ferrocene adsorbed onto graphite at 160K to low energy electron beams, that results in varying behaviour depending on the energy of irradiation, is first described. Following are studies of the characteristics of passivated gold nanoclusters when used as a monolayer negative tone resist in direct electron beam writing. Fabrication of lines with widths as narrow as 26 nm has been achieved. Measurements of the linewidth as a function of electron dose allow ...

  10. Issues for Bringing Electron Beam Irradiators On-Line

    International Nuclear Information System (INIS)

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined

  11. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde;

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first...... ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and...... particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which...

  12. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  13. Beam-beam effect seen through forced vibration

    International Nuclear Information System (INIS)

    In electron accelerator, tune is measured by giving beam transverse forced vibration caused by RF frequency. It is well known that beam-beam parameter can be measured if beam-beam interaction exists. Generally, small value is chosen as the amplitude of forced vibration, and many researches were done in this case. In this report, we discuss effect of resonance caused by beam-beam interaction in case of amplitude of forced vibration being big. (author)

  14. Hardness enhancement and crosslinking mechanisms in polystyrene irradiated with high energy ion-beams

    International Nuclear Information System (INIS)

    Surface hardness values several times larger than steel were produced using high energy ion beams at several hundred keV to MeV. High LET is important for crosslinking. Crosslinking is studied by analyzing hardness variations in response to irradiation parameter such as ion species, energy, and fluence. Effective crosslinking radii at hardness saturation are derived base on experimental data for 350 keV H+ and 1 MeV Ar+ irradiation of polystyrene. Saturation value for surface hardness is about 20 GPa

  15. Cell adhesion behavior on the silicone rubber surface modified by using ion beam irradiation

    International Nuclear Information System (INIS)

    In this study we studied cell adhesion and proliferation on the surface of a silicone rubber modified by ion beam irradiation. The surface property of the irradiated silicone rubber was characterized by water contact angle and FT-IR analyses. It was observed that human (HEK293) fibroblast cells exhibit strong adhesion to the irradiated silicone surface. This enhanced adhesion of mammalian cells can be attributed to the increase in the hydrophilicity of the silicone surface by ion beam irradiation

  16. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 1016 ions/cm2, cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 1017 ions/cm2, the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  17. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Manaila

    2016-06-01

    Full Text Available The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  18. Modification of a tool hard alloys by high power ion beams irradiation and following thermal annealing

    International Nuclear Information System (INIS)

    Perspective technological decision of the tool materials wear resistance increasing problem is offered. The method combines surface hardening by high power ion beams irradiation and following high temperature annealing. In this paper structure and phase changes in the near-surface layers of the hard alloys W-Co under high power pulsed ion beams irradiation and its evolution in the course of high temperature annealing have been investigated. As a result of thermal effect in near-surface of the area the layer with high strength is formed.This layer defines tribological properties of a material. It excludes fragile destruction of a tool material and promotes increase of wear resistance. The kinetic of wear of modified tool alloys during cutting is established. New method of modification provides the improvement of wear resistance of toll at cutting steel, nickel and titanium alloys. Distinctive features of the thermal annealing: availability of many phases outside of dependence on regimes of the preliminary ion beam irradiation; the low density of defects of a W-phase in comparison with the irradiated samples only (extended mosaic structure, low dislocation density and defects of packing, the reduced micro distortions of a crystal lattice); high degree of perfection of a crystal structure of a Co-phase

  19. Target and structural materials under dual-beam irradiation

    International Nuclear Information System (INIS)

    The European Spallation Source (ESS) is planned to have a beam power of 5 MW (3.75 mA of 1.334 GeV protons). This is by a factor 30 higher than the available most powerful spallation source ISIS at Rutherford-Appleton Lab. (RAL) in Great-Britain. This causes a damage rate of approx. 10 dpa (displacements per atom) per month in target materials (W or Ta) or structural materials. The problem of radiation damage by high energy protons in different alloys has been recently reviewed. At HMI, simulation irradiation using heavy ions and helium or hydrogen ions at the dual-beam facility are being out. Here, we report on some preliminary results obtained on tantalum as target material and on ferritic/martensitic steels (HT9 type steels or comparable steels), which are proposed to be used as structural materials. Goal of these investigations is to correlate the results with those obtained at spallation irradiated specimens and to investigate the unexplored field of simultaneous production of damage, helium and hydrogen at high levels. (author) 4 figs., 1 tab., 9 refs

  20. Irradiation effects in glasses

    International Nuclear Information System (INIS)

    The deposition of irradiation energy can alter the physical properties of glasses through bond-breaking (energetic photons; fast particles) and atomic displacements (Coulombic and collisional: n0, e, ions). These processes can alter UV-visible optical properties via electron-hole trapping and IR-spectra as a result of network damage. The movement of network atoms results in volume dilatation which change the hardness, refractive index, and dissolution rates. All of these changes can be realized with ion implantation and, in addition, implantation of chemically active species can lead to compound formation in the implanted regions. For this reason, emphasis will be placed on the implantation-induced surface modifications of glasses (mostly silicates). The paper includes crystallization, surface stress, refractive index changes and optoelectronic application and chemical reactivity

  1. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams

    International Nuclear Information System (INIS)

    The Dual Radiation Action Theory of Kellerer and Rossi (DRA), along with presently available microdosimetric techniques, is applied to the detrmination of radiation quality variation within tissue equivalent phantoms irradiated by collimated fast neutron beams. The neutron beams investigated were produced by the bombardment of 22.5 and 16 MeV d+ on beryllium and by the T(d,n)4He reaction (15-MeV neutrons). Microdosimetric spectra were obtained at points of varying depth and lateral distance from the central axis within a tissue equivalent phantom, including points within the penumbra. From the microdosimetric spectra the parameter RQ, a first approximation to RBE derived from DRA theory, is calculated for each point. All RQ values are calculated for the same level of effect. For these three different beams the results show that the RQ values for the total radiation spectrum of neutron and gamma radiation remain fairly constant with depth and with lateral distance from the beam axis at 2 and 10 cm depths. The largest central axis variation in RQ is 8% for the d(16)+Be beam. The largest variation between a penumbra and an on-axis RQ value is 4% at 2 cm depth in the d(22.5)+Be beam. The results for the d(22.5)+Be beam disagree with previously reported radiobiological results while the 15 MeV beam results are in good agreement

  2. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams

    International Nuclear Information System (INIS)

    The Dual Radiation Action Theory of Kellerer and Rossi (DRA), along with presently available microdosimetric techniques, is applied to the determination of radiation quality variation within tissue equivalent phantoms irradiated by collimated fast neutron beams. The neutron beams investigated were produced by the bombardment of 22.5 and 16 MeV d + on beryllium and by the T(d,n)4He reaction (15-MeV neutrons). Microdosimetric spectra were obtained at points of varying depth and lateral distance from the central axis within a tissue equivalent phantom, including points within the penumbra. From the microdosimetric spectra the parameter RQ, a first approximation to RBE derived from DRA theory, is calculated for each point. All RQ values are calculated for the same level of effect. For these three different beams the results show that the RQ values for the total radiation spectrum of neutron and gamma radiation remain fairly constant with depth and with lateral distance from the beam axis at 2 and 10 cm depths. The largest central axis variation in RQ is 8% for the d(16) + Be beam. The largest variation between a penumbra and an on-axis RQ value is 4% at 2 cm depth in the d(22.5) + Be beam. The results for the d (22.5) + Be beam disagree with previously reported radiological results while the 15 McV beam results are in good agreement

  3. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  4. Exquisite wild mushrooms as a source of dietary fiber: analysis in electron-beam irradiated samples

    OpenAIRE

    Fernandes, Ângela; João C. M. Barreira; Antonio, Amilcar L.; Morales, Patricia; Férnandez-Ruiz, Virginia; Martins, Anabela; Oliveira, M.B.P.P.; Ferreira, Isabel C. F. R.

    2015-01-01

    In the present study, electron-beam irradiation was applied to dried samples of Boletus edulis and Macrolepiota procera to evaluate the effects on their fiber composition. Both species presented an important percentage of dietary fiber, soluble and insoluble in different ratios. These high fiber levels are an interesting feature, allowing considering mushrooms as an alternative source of dietary fibers in the highly competitive market of fiber-enriched food products. In B. edulis samples, ins...

  5. Experience with E-beam process dosimetry at the Whiteshell irradiator

    International Nuclear Information System (INIS)

    Currently a quality assurance (QA) programme at the Whiteshell Irradiator is being established, designed to encompass the Good Manufacturing Practices regulations of the US Food and Drug Administration. The paper reports on preliminary experiences in implementing this programme. Robust devices are being developed that can measure on-line electron energy and current density by intercepting the electron beam. These measurements, combined with continuous automated recording of the operating parameters of the Whiteshell industrial electron accelerator I-10/1 (10 MeV, 1 kW) throughout the entire radiation process cycle, provide a high degree of assurance that all the product units receive the correct dose. Also, daily measurements of absorbed dose and electron energy with a standard irradiation geometry are used to demonstrate that the irradiator performance remains under control over long time of periods. To hold the surface dose constant during a production run, the speed of the conveyor in the beam path is slaved to the beam current to counteract fluctuations in the beam current. Dosimeters are presently calibrated in a Gamma-Cell 220 60Co irradiator manufactured by Nordion International, Canada. However, a graphite calorimeter is being developed as an in-house reverence standard for use in calibrating routine dosimeters in electron fields. Several types of products have been qualified at Whiteshell for processing with 10 MeV electrons: medical disposables, Petri dishes, sample bottles, and rubber/metal laminates. On occasion, substantiating dose-mapping results with computer modelling has been found to be helpful in qualifying the process. Experience at the Whiteshell Irradiator suggests that an effective QA programme is very relevant to radiation processing and must be an integral part of each electron radiation facility. (author). 4 refs, 4 figs

  6. Investigation of heat release in the targets during irradiation by ion beams

    CERN Document Server

    Dalkarov, O D; Rusetskii, A S

    2015-01-01

    The DD-reaction is investigated and the heat emission off the targets during their irradiation with ion beams is studied at the HELIS ion accelerator at LPI. The heat emission is observed to be significantly higher in the case of irradiation of the Ti/TiO2:Dx-targets by a D+ beam, as compared to the H+ and Ne+ beams. Furthermore, it depends on the concentration of deuterium in the target and current density of the deuteron beam.

  7. Irradiation uniformity of spherical targets by multiple uv beams from OMEGA

    International Nuclear Information System (INIS)

    Direct-drive laser fusion demands extremely high levels of irradiation uniformity to ensure uniform compression of spherical targets. The assessment of illumination uniformity of targets irradiated by multiple beams from the OMEGA facility is made with the aid of multiple beams spherical superposition codes, which take into account ray tracing and absorption and a detailed knowledge of the intensity distribution of each beam in the target plane. In this report, recent estimates of the irradiation uniformity achieved with 6 and 12 uv beams of OMEGA will be compared with previous measurements in the IR, and predictions will be made for the uv illumination uniformity achievable with 24 beams of OMEGA

  8. Movement of basal plane dislocations in GaN during electron beam irradiation

    International Nuclear Information System (INIS)

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can be moved by irradiation and only until they meet the latter pinning sites

  9. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Maria-Daniela Stelescu

    2014-01-01

    Full Text Available A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica. The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  10. Radiation synthesis of chitosan stabilized gold nanoparticles comparison between e− beam and γ irradiation

    International Nuclear Information System (INIS)

    Gold nanoparticles were synthesized via radiolytic reduction of Au(III) salts induced by e− beam or γ-irradiation, using chitosan as a stabilizer. The effect of irradiation dose, chitosan concentration and the conditioning of HAuCl4–chitosan solutions were studied. UV–visible absorption measurements reveal that the size of Au clusters formed immediately after irradiation is correlated with the extent of chitosan scission chain of chitosan and fall with the increase of dose absorbed. This effect is more pronounced with solution conditioned under Argon (Ar). Au clusters coalesce to form stable nanoparticles after two weeks. - Highlights: • This paper underlines the potential of ionizing radiations in the synthesis of AuNps. • The size of the nanoparticles, and their stability are controlled by the ratio [GLA]/[Au(III)] • This paper compares results obtained with e− beam and γ irradiation for the AuNps synthesis. • This paper points the influence of dose rate on the size of preformed Au clusters

  11. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    Science.gov (United States)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Yunus, Wan Md Zin Wan

    2007-12-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 °C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate.

  12. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    International Nuclear Information System (INIS)

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate

  13. Thermal and mechanical properties of e-beam irradiated butt-fusion joint in high-density polyethylene pipes

    Science.gov (United States)

    Vijayan, Vipin; Pokharel, Pashupati; Kang, Min Kwan; Choi, Sunwoong

    2016-05-01

    The effects of electron beam irradiation on the thermal and mechanical properties of a butt-fusion joint in high density polyethylene (HDPE) pipes were investigated. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infra-red spectroscopy of welded samples revealed the changes of crystallinity due to the cross linking effect of electron beam irradiation. The suppression of the degree of crystallinity with increasing the irradiation dose from 0 kGy to 500 kGy indicated that the e-beam radiation induced cross-links among the polymer chains at the weld zone. The cross-link junction at the joint of HDPE pipe prevented chain folding and reorganization leading to the formation of imperfect crystallites with smaller size and also less in content. Tensile test of the welded samples with different dose of e-beam irradiation showed the increased values of the yield stress and Young's modulus as a function of irradiation dose. On the other hand, the elongation at break diminished clearly with increasing the irradiation doses.

  14. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  15. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Okonogi Noriyuki

    2012-10-01

    Full Text Available Abstract Background Proton-beam therapy (PBT provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Methods Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT was proposed. This technique requires the following two adjustments: (A blocking a part of the PTV by multi-leaf collimator(s (MLCs; and (B fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility. After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. Results The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the

  16. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    International Nuclear Information System (INIS)

    Proton-beam therapy (PBT) provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV) is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility) were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC) axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT) was proposed. This technique requires the following two adjustments: (A) blocking a part of the PTV by multi-leaf collimator(s) (MLCs); and (B) fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility). After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the imaging plate correlated with the results of the

  17. Thermal Evolution of Solid Targets Irradiated by Pulsed Plasma Beams

    International Nuclear Information System (INIS)

    Thermal evolution of various targets irradiated with high intensity pulsed ion or plasma beams was determined by computer simulation i.e. by solving numerically one dimensional heat flow equation. The calculations were carried out using computer code ETLIT based on finite difference method, elaborated specially for this purpose. The surface temperature, melt depth and liquid duration were computed as functions of pulse energy density, pulse duration, melting temperature and thermal diffusivity of a given material. In particular the examples are shown for such materials as: Cu, Al, Zn, Fe, Ti, Mo, W, and Al2O3. Various practical aspects of the obtained results arc discussed, with a special attention given to less or no intuitively predictable dependencies. (author)

  18. Pt Ru/C electrocatalysts prepared using electron beam irradiation

    International Nuclear Information System (INIS)

    Pt Ru/C electrocatalysts (carbon-supported Pt Ru nanoparticles) were prepared submitting water/ethylene glycol solutions containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The water/ethylene glycol ratio (v/v) was evaluated as synthesis parameters. The Pt Ru/C electrocatalysts were prepared with a nominal Pt:Ru atomic ratio of 50:50 and were characterized by energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) and tested for methanol electro-oxidation using cyclic voltammetry and chronoamperometry. The obtained Pt Ru/C electrocatalysts showed the typical fcc structure of platinum-ruthenium alloys and the electrocatalytic activity depends on the water/ethylene glycol ratio used in the preparation

  19. Irradiation effects upon activities of fission product iodine

    International Nuclear Information System (INIS)

    This report describes the experimental study of the irradiation effects upon activities of fission product iodine made in the period from June, 1981 to March, 1982. Chemical transport of iron was studied under irradiation of cesium iodide by electron beam. Deposited ion was identified on the high temperature surface, which can be taken to certify the appropriateness of the model of the iodine-including chemical transport of stainless-steel cladding components to fuel in the LMFBR fuel pins. (author)

  20. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  1. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  2. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    International Nuclear Information System (INIS)

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively. - Highlights: • The post-irradiation behaviour of three different PEs, LDPE, LLDPE and HDPE, was studied. • In order to investigate influence of different irradiation media on post-irradiation behaviour, samples

  3. Irradiation-Assisted Stress-Corrosion Cracking of Nitinol During eBeam Sterilization

    Science.gov (United States)

    Smith, Stuart A.; Gause, Brock; Plumley, David; Drexel, Masao J.

    2012-12-01

    Medical device fractures during gamma and electron beam (eBeam) sterilization have been reported. Two common factors in these device fractures were a constraining force and the presence of fluorinated ethylene propylene (FEP). This study investigated the effects of eBeam sterilization on constrained light-oxide nitinol wires in FEP. The goal was to recreate these fractures and determine their root cause. Superelastic nitinol wires were placed inside FEP tubes and constrained with nominal outer fiber strains of 10, 15, and 20%. These samples were then subjected to a range of eBeam sterilization doses up to 400 kGy and compared with unconstrained wires also subjected to sterilization. Fractures were observed at doses of >100 kGy. Analysis of the fracture surfaces indicated that the samples failed due to irradiation-assisted stress-corrosion cracking (IASCC). This same effect was also observed to occur with PTFE at 400 kGy. These results suggest that nitinol is susceptible to IASCC when in the presence of a constraining stress, fluorinated polymers, and irradiation.

  4. Hydrogel coating of RVNRL film by electron beam irradiation

    International Nuclear Information System (INIS)

    The tackiness properties of Radiation Vulcanized Natural Rubber Latex (RVNRL) film surfaces coated by various monomers have been investigated in order to understand the suitable hydrogels which reduce the tackiness of the film. In this context , different types of monomers namely, N-vinyl-2-pyrrolidone (NVP), N,N-dimethyl amino ethyl amide (DMAEA), acrylic acid (AAc), N-butyl acrylate (n-BA) and 2-hydroxyethyl methacrylate (HEMA) as well as monomer mixtures have been tried with varying degrees of success. It was found that coating the RVNRL with 80% HEMA/20% n-BA by irradiation at 80 kGy using low Energy Electron Beam gave remarkable reduction in surface tackiness of the RVNRL film. Several other attempts were made such as priming with acid and aluminum sulfate, mixing the aluminum sulfate into the monomer and dipping the partially wet RVNRL film into the monomer to enhance the wettability of he monomers with the film. Studies on surface topography revealed that the decrease in tackiness with coating is due to the increase of the surface roughness at 80 kGy, irradiation dose

  5. Verification of nose irradiation using orthovoltage x-ray beams

    International Nuclear Information System (INIS)

    Determination of dose distributions from superficial and orthovoltage irradiations of basal cell carcinoma of the nose has been performed using a nose shaped phantom constructed from paraffin wax. EBT type radiochromic film was used for dose measurements. A 2 cm diameter 50 kVp anterior field was used to irradiate the nose phantom, with sheets of film placed at 7 mm, 14 mm and 23 mm physical depth. The percentage depth doses at these points were measured to be 84% ± 1.6%, 66% ± 2.7% and 50% ± 1.2% respectively, compared to the expected percentage depth doses of 72%, 52% and 34%, measured in full scatter conditions. This discrepancy is believed to be due to the steep drop off at the sides of the nose phantom, resulting in reduced attenuation at the edges of the beam, which in turn results in an increase in the scatter contribution to the dose at depth on the central axis. Measured dose profiles from this technique showed a reasonably uniform distribution. A second technique using a 250 kVp tangent-like field to irradiate the tip of the nose was also tested. Radiochromic film was placed against the edges of the phantom for dose measurement. The dose at the surface was measured to be 27% ± 1.5% less than the expected dose. It is believed that this discrepancy is due to a combination of the lack of backscatter from the phantom, and a small offset between the phantom and the treatment cone. Dose measurements and profiles showed that this technique results in a variation in dose across the treated volume of 7%. However, the difficulty in predicting the delivered dose prohibited it from clinical use

  6. Luminescence imaging of water during proton-beam irradiation for range estimation

    International Nuclear Information System (INIS)

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy

  7. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  8. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation

    International Nuclear Information System (INIS)

    Blister formation in tungsten has been studied by mixed carbon and hydrogen ion beam irradiation. The beam ion energies were 1.0 keV and 300 eV, and the fluence was in the range of 1024-1025 ions m-2. It was found that a little amount of carbon impurity in the beam affected blister formation. A large number of blisters with various sizes were observed on the surface of tungsten at 653 K when the carbon concentration was more than 0.35%. When the carbon concentration was 0.11%, no blisters larger than 1.0 μm were observed. When the carbon concentration was 2.35%, a carbon layer developed on the tungsten surface, and again, no blisters were observed. The effect of target temperature on blister formation was also investigated: the sizes and numbers of the blisters were the largest when the tungsten was irradiated at 653 K; when the sample was irradiated at 388 or 873 K, no blisters larger than 1.0 μm were observed

  9. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    Science.gov (United States)

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding. PMID:27075598

  10. Magnetic modification at sub-surface of FeRh bulk by energetic ion beam irradiation

    Science.gov (United States)

    Koide, T.; Uno, H.; Sakane, H.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2015-05-01

    Ferromagnetic layered structure has been made at sub-surface of the antiferromagnetic FeRh bulk samples by high energy He ion beam irradiation. In accordance with the Transport of Ions in Matter simulation, such ion beam can effectively deposit the elastic collision energy in several μm regions in the depth from the surface. Measurement with a superconducting quantum interference device reveals the irradiated samples to be ferromagnetic. Assuming that only the part the energy deposited can be modified to be ferromagnetic, the corresponding irradiation induced magnetization is consistent with the data that we previously reported. On the other hand, the X-ray magnetic circular dichroism (XMCD) spectra for the irradiated samples are totally unchanged as those for the unirradiated samples. Since XMCD signal in total emission yield method is considered to be surface sensitive with a typical probing depth of several nm, the surface magnetic state is maintained to be antiferromagnetic. By utilizing these phenomena, three-dimensional magnetic patterning of FeRh can be realized, which may potentially be used for future magnetic exchange device application such as nano-scale sensors and memories.

  11. Magnetic modification at sub-surface of FeRh bulk by energetic ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Uno, H.; Sakane, H. [S. H. I. Examination and Inspection, Ltd., Saijo, Ehime 799-1393 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-05-07

    Ferromagnetic layered structure has been made at sub-surface of the antiferromagnetic FeRh bulk samples by high energy He ion beam irradiation. In accordance with the Transport of Ions in Matter simulation, such ion beam can effectively deposit the elastic collision energy in several μm regions in the depth from the surface. Measurement with a superconducting quantum interference device reveals the irradiated samples to be ferromagnetic. Assuming that only the part the energy deposited can be modified to be ferromagnetic, the corresponding irradiation induced magnetization is consistent with the data that we previously reported. On the other hand, the X-ray magnetic circular dichroism (XMCD) spectra for the irradiated samples are totally unchanged as those for the unirradiated samples. Since XMCD signal in total emission yield method is considered to be surface sensitive with a typical probing depth of several nm, the surface magnetic state is maintained to be antiferromagnetic. By utilizing these phenomena, three-dimensional magnetic patterning of FeRh can be realized, which may potentially be used for future magnetic exchange device application such as nano-scale sensors and memories.

  12. Ciliary body and choroidal melanomas treated by proton beam irradiation. Histopathologic study of eyes

    International Nuclear Information System (INIS)

    Proton beam irradiation resulted in clinical and/or histopathological regression of large ciliary body and choroidal melanomas in three eyes. Enucleations were performed 6 1/2 weeks, five months, and 11 months after irradiation for angle-closure glaucoma from total retinal detachment, increase in retinal detachment, and neovascular glaucoma, respectively. A direct relationship was found between the length of the interval from irradiation to enucleation and the degree of histologic changes. Vascular changes in the tumors included endothelial cell swelling and decreased lumen size, basement membrane thickening, collapse of sinusoidal vessels, and thrombosis of vessels. Although apparently unaltered tumor cells remained, degenerative changes occurred in some melanoma cells, including lipid vacuoles in cytoplasm, pyknotic nuclei, and balloon cell formation. Patchy areas of necrosis and proteinaceous exudate were present. Pigment-laden macrophages were found near tumor vessels and all had a substantial chronic inflammatory infiltrate. The effect of proton beam irradiation on tumor vessels probably plays an important role in uveal melanoma regression

  13. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    Science.gov (United States)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  14. Nanostructure fabrication using electron beam irradiation of organometallic compounds

    International Nuclear Information System (INIS)

    Nanoelectronics- the quest to fabricate quantum devices- is the motivation for this thesis. The place of nanolithography is discussed amongst conventional microfabrication methods, together with the materials currently employed in lithography. The experimental methods, equipment and new resist materials (films of nanoparticles) are then explored in the work described. A summary of the results obtained by the research is presented, followed by the detailed results in the form of a series of published and submitted papers. A systematic study of the response of ferrocene adsorbed onto graphite at 160K to low energy electron beams, that results in varying behaviour depending on the energy of irradiation, is first described. Following are studies of the characteristics of passivated gold nanoclusters when used as a monolayer negative tone resist in direct electron beam writing. Fabrication of lines with widths as narrow as 26 nm has been achieved. Measurements of the linewidth as a function of electron dose allow a quantitative measure of the sensitivity, for comparison with established negative tone resists. The experimental results are compared with Monte Carlo simulations of the electron scattering process. It is concluded that, in the case of such monolayer films, exposure of the clusters is dominated by electrons scattered in the substrate, so that the properties of the resist depend intimately on the nanocluster/substrate combination. (author)

  15. Biodegradability enhancement of textile wastewater by electron beam irradiation

    Science.gov (United States)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-06-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5/COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process.

  16. Defect formation in spinel crystals under electron and gamma beam irradiation

    International Nuclear Information System (INIS)

    There were investigated the optical absorption centers formation in magnesium aluminate spinel crystals at the action of high energy gamma or electron beams. It was revealed that at gamma irradiation the most probably the hole centers are formed to compare with that in electron irradiation. At electron beam irradiation the temperature of sample was raised which leads to thermal annealing of unstable radiation-induced centers

  17. Electron beam irradiation induced degradation of polyvinyl alcohol in aqueous solution

    International Nuclear Information System (INIS)

    Background: Polyvinyl alcohol (PVA) has been widely used in the industry of textile, however, its aqueous solution was difficult to be biodegraded under natural conditions. Purpose: In this study, the PVA in aqueous solution was degraded by electron beam irradiation. Methods: Radioactive ray from electron accelerator was used for degradation of PVA aqueous solution. The effects of different radiation dose and pH on the CODCr and BOD5 values of PVA aqueous solution were investigated. The precipitation generated from acidic irradiated PVA aqueous solution was used for infrared spectroscopy analysis. Results: CODCr values of neutral and alkaline PVA aqueous solution were not significantly changed in the radiation dose range of 0-30 kGy. Acidic PVA aqueous solution after 20-30 kGy dose irradiation produced precipitation obviously. The CODCr values were significantly reduced by 97%-98%. Infrared spectrum analysis showed that precipitation was cross-linked PVA. With radiation dose increasing, BOD5 values of different pH of PVA aqueous solution was gradually reduced, the acidic BOD5 values were minimal under the same radiation dose. The B/C values of neutral and alkaline PVA aqueous solution irradiated by the dose range of 0-30 kGy was no significantly changed. However, the B/C values of acidic PVA aqueous solution increased obviously after 20-30 kGy irradiation, and it increased 14-16 times. Conclusions: This study indicated that under the acidic circumstance, the CODCr values of PVA aqueous solution decreased significantly, PVA in aqueous solution was removed efficiently by electron beam irradiation, and the potential of biodegradation was also improved. (authors)

  18. Simulating transient effects of pulsed beams on beam intercepting devices

    International Nuclear Information System (INIS)

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices =BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo