WorldWideScience

Sample records for beam irradiation effectively

  1. Ion beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Shukushima, Satoshi; Ueno, Keiji

    1995-01-01

    We studied the optical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H + , H 2 + and He + ions. The examined aromatic polymers were polyetherether ketone(PEEK), polyetherimide(PEI), polyether sulfon(PES), polysulfon(PSF), and polyphenylene sulfide(PPS). The optical densities at 300nm of PES and PSF greatly increased after the irradiation. The optical densities at 400nm of all the examined polymer lineally increased with the irradiation dose. The PEEK film which had been irradiated with 1 MeV H + was not deformed above melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the aromatic polymers for the same absorption energy. (author)

  2. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    In this paper, the effects of electron beam irradiation on the gas sensing performance of tin dioxide thin films toward H2 are studied. The tin dioxide thin films were prepared by ultrasonic spray pyrolysis. The results show that the sensitivity increased after electron beam irradiation. The electron beam irradiation effects on tin ...

  3. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  4. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  5. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    WINTEC

    Effects of electron beam irradiation on tin dioxide gas sensors. 85 tron irradiation dose. Under low irradiation dose, <300 kGy, the sensitivity of SnO2 thin film shifts slightly, from 300–. 850 kGy, the sensitivity increases greatly, at 850 kGy and it reaches 24⋅8. Then the sensitivity reaches maximum and remains stable while ...

  6. Effects of electron beam irradiation on cut flowers and mites

    Energy Technology Data Exchange (ETDEWEB)

    Dohino, Toshiyuki; Tanabe, Kazuo [Yokohama Plant Protection Station (Japan)

    1994-08-01

    Two spotted spider mite, Tetranychus urticae KOCH were irradiated with electron beams (2.5MeV) to develop an alternative quarantine treatment for imported cut flowers. The tolerance of eggs increased with age (1-5-day-old). Immature stages (larva-teleiochrysalis) irradiated at 0.4-0.8kGy increased tolerance with their development. Mated mature females irradiated at 0.4kGy or higher did not produce viable eggs, although temporary recovery was observed at 0.2kGy. Adult males were sterilized at 0.4kGy because non-irradiated virgin females mated with yielded female progeny malformed and sterilized. Various effects of electron beam irradiation were observed when nine species of cut flowers were irradiated in 5MeV Dynamitron accelerator. Chrysanthemum and rose were most sensitive among cut flowers. (author).

  7. Effect of electron beam irradiation on fisheries water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Jamaliah Shariff; Suhairi Alimon

    2012-01-01

    This paper studies about water obtained from fish pond of fisheries research centre. Usual water quality parameters such as pH, COD, Turbidity and Ammonia content were analyzed before and after irradiation. Electron beam irradiation was used to irradiate the water with the dose 100 kGy, 200 kGy and 300 kGy. Only high dose was applied on this water as only a limited amount of samples was supplied. All the parameters indicated a slight increase after irradiation except for the ammonia content, which showed a gradual decrease as irradiation dose increases. Sample condition was changed before irradiation in order to obtain more effective results in the following batch. The water sample from fisheries was diluted with distilled water to the ratio of 1:1.This was followed with irradiation at 100 kGy, 200 kGy and 300 kGy. The results still showed an increase in all parameters after irradiation except for ammonia content. For the following irradiation batch, the pH of the sample was adjusted to pH 4 and pH 8 before irradiation. For this sample the irradiation dose selected was only 100 kGy. A higher value of ammonia was observed for the sample with pH 4 after irradiation. Other parameters were almost the same as the first two batches. (author)

  8. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  9. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  10. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  11. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  12. Electron beam irradiation effects on xanthan gum, rheological aspects

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Vieira, F.F.

    2003-01-01

    Food ingredients to be used for food processing should be decontaminated in order to prevent food spoilage and food-borne diseases. Xanthan gum is a well-known microbial polysaccharide produced by Xanthomonas campestris used in the hydrocolloid market. This paper describes the application of electron beam (EB) irradiation to xanthan gum as used as ingredient by the food or cosmetics industry in order to establish their radiosensitivity. Viscosity of 1% xanthan gum solutions prepared with the irradiated powder decreased with the increase of the EB irradiation dose. The radiation-induced viscosity detriment of this additive must be considered for practical applications. (author)

  13. Effect of electron beam irradiation on the structure and optical ...

    Indian Academy of Sciences (India)

    developed as a suitable phosphor material for the application in near ultraviolet excited colour LEDs. Keywords. Nickel oxide; chemical precipitation; electron beam irradiation; band ... cations such as gas sensors,3 catalysts4–6 anode material in. Li ion batteries,7,8 nanoscale optoelectronic devices such as electrochromic ...

  14. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    WINTEC

    Electron beam; irradiation; gas sensor; tin dioxide. 1. Introduction. The theory, fabrication and application of semiconducting gas sensors, has been well developed in the last thirty years. However, their limited selectivity and sensitivity are still problematic. The usual methods to improve gas sensing properties of SnO2 gas ...

  15. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    Science.gov (United States)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  16. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    Science.gov (United States)

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of electron beam irradiation on nutritional ingredient of Tegillarca granosa meat

    International Nuclear Information System (INIS)

    Li Chao; Yang Wenge; Xu Dalun; Ou Changrong; Shi Huidong

    2011-01-01

    The influences of 0, 1, 3, 5, 7 and 9 kGy electron beam irradiation on the contents of protein and amino acid and the composition of amino acids and fatty acids in Tegillarca granosa meat were investigated. The results showed that the electron beam had no significant effect on contents of moisture, ash and protein. Fat was sensitive to electron beam irradiation, which decreased with the increasing of irradiation dose. The composition of amino acids remained stable with different doses. The values of EAA/TAA and EAA/NEAA were kept in accordance with FAO/WHO protein model. Besides, electron beam irradiation made no effect on the limiting amino acid (the first and second limiting amino acids were Met + Cys and Val, respectively). The relative content of PUFA increased significantly 1 ∼ 7 kGy irradiation. Electron beam irradiation produced a notable impact on the essential fatty acid, induced the increase of linoleic acid, linolenic acid and arachidonic acid at the doses of 5 ∼ 9 kGy. After the irradiation of 9 kGy, the increments of relative contents of the three essential fatty acids reached 94.61%, 41.37% and 89.91%, respectively. Electron beam irradiation had positive effect on EPA with the doses of 3, 5 and 9 kGy. However, DHA was sensitive to electron beam irradiation, whose relative content decreased with the increasing of irradiation dose and undetected at the dose of 9 kGy. According to the research of decontamination effect, the recommended dose of electron beam irradiation on Tegillarca granosa ws fixed at 3 ∼ 5 kGy. (authors)

  18. Effects of ion beam irradiation on Oncidium lanceanum orchids

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan

    2006-01-01

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12 C 5+ ions, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as molecular characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, after 4 months of irradiation, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Some morphological changes were seen on in vitro plantlets derived from PLBs irradiated at doses of 1.0 and 2.0 Gy. Most of the regenerated seedlings have been transferred to glasshouse for further morphological selection. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses of irradiation. (Author)

  19. Effects of ion beam irradiation on Oncidium lanceanum

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan; Nurul Aliaa Idris; Mohd Nazir Basiran

    2006-01-01

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12 C 5+ ion, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as morphological characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Most of the regenerated seedlings have been transferred to glass house for morphological screening. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses

  20. Effect of electron beam irradiation on pathogenicity and pathogenic enzyme activity of botrytis cinerea

    International Nuclear Information System (INIS)

    Chen Zhaoliang; Wang Haihong; Qiao Yongjin

    2013-01-01

    In order to define the effect of electron beam irradiation on pathogenicity of Botrytis cinerea mycelia, the disease parameters of strawberry fruits inoculated with mycelia of B. cinerea irradiated by electron beam with different dose were tested in vivo, the production and activity of pectinase and cellulase secreted by B. cinerea irradiated by electron beam were also tested by DNS method. The results showed that pathogenicity of irradiated B. cinerea decreased significantly. The disease incidence and disease index of strawberry inoculated by irradiated B. cinerea after 3 days and 5 days was only 15.00% and 11.39 compared to control (91.67% and 77.78), respectively. The activity of pectinase and cellulase of B. cinerea irradiated by electron beam with above 2.0 kGy were inhibited obviously. The activity of PMG of irradiated B. cinerea decreased by 37.65% and 57.46% compared with control 3 days and 5 days cultured at 20℃, and the activity of CX and BG decreased by over 60% than that of control. The hardness of strawberry treated by enzyme solution which producted by B. cinerea irradiated by electron beam at 2.0 kGy was higher than that of control strawberry and it mainted disease resistance well. Electron beam can inhibited the pathogenic enzyme activity and pathogenicity of B. cinerea obviously. So it can control gray mold of postharvest strawberry effectively. (authors)

  1. The effects of electron beam irradiation on sterilization and preservation of chilled pork

    International Nuclear Information System (INIS)

    Bai Yanhong; Mao Duobin; Zhao Dianbo; Zhang Xiaoyan; Li Quanshun; Yang Gongming

    2009-01-01

    S The effects of electron beam irradiation on the sterilization and preservation of chilled pork were studied. The aim of this investigation was to provide academic and technical basis for application of electron beam irradiation on meat industry. The response surface analysis was used with electron beam energy(X 1 ) and dose(X 2 ) as factors and colony form unit(Y) as responses. The results have been shown that the model of sterilization of chilled pork by electron beam irradiation can be expressed Y=3.78-0.24X 1 -0.13X 2 -0.16X 1 X 2 -0.18X 1 2 +0.15X 1 2 (R 2 =0.9755). It has been found there is a interaction between electron beam energy and absorbed doses, and the significance sequence of factors is absorbed dose>interaction> electron beam energy. When absorbed doses are in range from 3.23 kGy to 4.0 kGy and electron beam energy is in range from 2.3 MeV to 3.8 MeV, the colony form unit would drop 2 logarithm units. The shelf life of samples treated with electron beam irradiation is longer by about 12 d than that of control samples when the samples are stored at 4 degree C. When the samples are stored at 7∼10 degree C, shelf life of samples treated with electron beam irradiation is longer by about 9 d than that of control samples. The results showed that electron beam irradiation has the effects of sterilization and preservation on chilled pork. This study has been confirmed that the application of electron beam irradiation is very useful for meat industry. (authors)

  2. Effects of Electron Beam Irradiated Natural Casings on the Quality Characteristics of Emulsion Sausage

    International Nuclear Information System (INIS)

    Kim, Hyunwook; Kim, Hackyoun; Hwang, Koeun; Choi, Sunmi; Kim, Cheonjei; Choi, Jihun; Choi, Yunsang; Lee, Juwoon

    2011-01-01

    The effects of electron beam irradiated hog and sheep casings (1, 3, and 8 KGy) on the physicochemical properties and shelf stability of emulsion sausage were evaluated. There were no significantly differences in ph, instrumental color, and sensory evaluation among all the samples tested (p>0.05). The cooking yields for the irradiated treated samples were larger than the yields obtained for the non-irradiated samples for both the hog and sheep casing. However, the results on the purge loss after storage for 5 weeks were contradictory. The hardness of the sausage was lower when the irradiated natural casings were used. The irradiated natural casings accelerated lipid oxidation. The volatile basic nitrogen values were lower in samples treated with electron beam irradiation. The natural casings irradiated up to a dose of 3kGy not only had different total aerobic bacteria counts during the initial storage period but also displayed higher TAB counts at the final storage period

  3. Effects of Electron Beam Irradiated Natural Casings on the Quality Characteristics of Emulsion Sausage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunwook; Kim, Hackyoun; Hwang, Koeun; Choi, Sunmi; Kim, Cheonjei; Choi, Jihun; Choi, Yunsang [Konkuk Univ., Seoul (Korea, Republic of); Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    The effects of electron beam irradiated hog and sheep casings (1, 3, and 8 KGy) on the physicochemical properties and shelf stability of emulsion sausage were evaluated. There were no significantly differences in ph, instrumental color, and sensory evaluation among all the samples tested (p>0.05). The cooking yields for the irradiated treated samples were larger than the yields obtained for the non-irradiated samples for both the hog and sheep casing. However, the results on the purge loss after storage for 5 weeks were contradictory. The hardness of the sausage was lower when the irradiated natural casings were used. The irradiated natural casings accelerated lipid oxidation. The volatile basic nitrogen values were lower in samples treated with electron beam irradiation. The natural casings irradiated up to a dose of 3kGy not only had different total aerobic bacteria counts during the initial storage period but also displayed higher TAB counts at the final storage period.

  4. Dose rate and irradiation time effects on the shape of Au nanomaterials under proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, Yeong-Joon; Song, Jae Hee

    2007-01-01

    A synthetic route is presented for the high yield production of Au nanomaterials via a simple proton beam irradiation process. We were able to prepare Au nanomaterials under a proton beam at low concentration of cetyltrimethylammonium bromide at room temperature. It was observed that the size and shape of the prepared gold nanocrystals were easily controlled by the dose rate and irradiation time of the proton beam. When the dose rate of the proton beam was kept constant, a shape transition of Au crystals from particles to nanorods/nanowires and then again to particles was observed as the duration time was increased. When the total dose was kept constant by varying the dose rate and duration time of the proton beam, there was an apparent change in the feature size and shape of the Au nanomaterials produced under proton beam irradiation. Once the dose rate reached a proper value, very similar feature shapes of gold nanocrystals were produced, as long as the total dose was constant

  5. Effect of ammonia and electron beam irradiation on lignocelulosic materials

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Gennari, S.M.; Castagnet, A.C.G.

    1986-01-01

    Reports on some of the effects produced on sugarcane bagasse and eucaliptus wood saccharification by combining irradiation and NH 3 treatment. The samples irradiated at 10 5 Gy, 2x10 5 Gy and 5x10 5 Gy with an electron accelerator were treated with anhydrous gaseous ammonia. Cellulase complex from T. reesei was used for hydrolysis assays. Bromatological analysis and 'in vitro' digestibility tests were performed. The combination of EBI and ammonia treatments produced and increase in the saccharification yield, 'in vitro' digestibility and protein content for the two kinds of sample. (Author) [pt

  6. Retting effect of kenaf bast fiber by electron beam irradiation

    International Nuclear Information System (INIS)

    Shin, Hye Kyoung; Kangm Hyo Kyoung; Jeun, Joon Pyo; Kang, Phil Hyun

    2010-01-01

    Kenaf (Hibiscus cannabinus) retting were separated from a kenaf bast fiber by a combination of Electron beam irradiation (EBI) and NaOH solution treatment. The methods were based on a 6% NaOH solution treatment after various doses of EBI. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the retted kenaf fibers decreased as the EBI dose increased. Specifically, the lignin in the retted kenaf fiber treated with 300 kGy of EBI was almost completely removed. The morphology of retted kenaf fibers were characterized by SEM image, and the studies showed that the fibrillated degree of retted kenaf fibers treated with various EBI doses and was increased as EBI dose increased. The retted kenaf fibers treated with the EBI at 300 kGy was uniformly fibrillated with 10 ∼ 30 μm diameters

  7. Retting effect of kenaf bast fiber by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyoung; Kangm Hyo Kyoung; Jeun, Joon Pyo; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    Kenaf (Hibiscus cannabinus) retting were separated from a kenaf bast fiber by a combination of Electron beam irradiation (EBI) and NaOH solution treatment. The methods were based on a 6% NaOH solution treatment after various doses of EBI. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the retted kenaf fibers decreased as the EBI dose increased. Specifically, the lignin in the retted kenaf fiber treated with 300 kGy of EBI was almost completely removed. The morphology of retted kenaf fibers were characterized by SEM image, and the studies showed that the fibrillated degree of retted kenaf fibers treated with various EBI doses and was increased as EBI dose increased. The retted kenaf fibers treated with the EBI at 300 kGy was uniformly fibrillated with 10 {approx} 30 {mu}m diameters.

  8. Effects of electron beam irradiation on binary polyamide-6 blends with metallocene copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, C. [Dep. de Mecanica, Universidad Simon Bolivar, Apdo. 89000, Caracas 1081 (Venezuela)], E-mail: crosales@usb.ve; Lopez-Quintana, S.; Gobernado-Mitre, I. [CIDAUT, Centre for Automotive Research and Development, Tech. Park Boecillo, 47151 Boecillo, Valladolid (Spain); Merino, J.C.; Pastor, J.M. [CIDAUT, Centre for Automotive Research and Development, Tech. Park Boecillo, 47151 Boecillo, Valladolid (Spain); Departamento de Fisica de la Materia Condensada, E.T.S.I.I. Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2007-12-15

    The effect of electron beam irradiation on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends with grafted copolymers was investigated. High toughness materials were obtained with ethylene-polypropylene-diene grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 deg. C with the irradiation doses used.

  9. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, T.M.

    2011-01-01

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  10. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Hee-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Kwang-Won [Department of Orthopaedic Surgery, Eulji University School of Medicine, Daejeon 302-799 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2008-12-15

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  11. Comparison of the effects of gamma ray and e-beam irradiation on the quality of minced beef during storage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Nam; Han, In Jun; Kim, Wang Geun; Song, Beom Seok; Kim, Jae Hun; Choi, Jong Il; Yoon, Yo Han; Byun, Myung Woo; Hwang, Han Joon; Lee, Ju Woon [Korea Atomic Energy Research Institte, Jeongeup (Korea, Republic of); Park, Jin Gyu [Korea University, Seoul (Korea, Republic of)

    2009-06-15

    This study was conducted to compare the microbiological and physicochemical qualities of minced beef irradiated with gamma ray of e-beam at the absorbed doses from 5 to 20 kGy. The total bacterial counts of minced beef were decreased depending upon the irradiation doses, but sterilizing effect of gamma irradiation was higher than that of e-beam irradiation. The contents of malondialdegyde of minced beef were increased depending upon irradiation doses as well as storage periods (p< 0.05). Volatile basic nitrogen in minced beef was constantly increased during storage, but the increasing rate were retarded by irradiation. The hunter's color values(L*, a* and b*) of gamma or e-beam irradiated minced beef were decreased as irradiation dose increasing. Meanwhile, the quality changes of gamma irradiated samples were faster than e-beam irradiated samples.

  12. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  13. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  14. Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics

    International Nuclear Information System (INIS)

    Aytac, Ayse; Deniz, Veli; Sen, Murat; Hegazy, El-Sayed; Gueven, Olgun

    2010-01-01

    The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied.

  15. The effect of electron beam irradiation on lipid oxidation in sausages

    Directory of Open Access Journals (Sweden)

    atefeh yousefi

    2017-09-01

    Full Text Available Introduction: Irradiation treatment is one of the best techniques to extend the shelf-life of meat, without emerging the nutritional properties and sensory quality of irradiated meat products.  However electron -beam  may cause transformations in foods but has been known as to the most easily-applied irradiation technique in food industries. Electron-beam irradiation is an environment friendly, low cost and time effective alternative to other decontamination technologies. Lipid oxidation could produce of irradiated meat. This study aimed at evaluating the state of lipid oxidation of irradiated sausages. Its findings could help the control, improve food safety and quality properties to food industries. Methods: Sausages were purchased in a local supermarket, minced sausages blended for thiobarbituric acid reactive substances (TBARS analysis and divided into 25 g pieces. The samples including one control group and four case groups. Packaged sausage were exposed at doses of 0 (control, 1, 2, 3 and 5 kGy and analyzed on various days 0, 5, 10 and 30. Results: Thiobarbituric acid reactive substances (TBARS has increased as time goes on (P<0.05. A significant relationship was observed on different Doses. But, the maximum of TBARS was observed in 3 kGy. Conclusion: Utilizing of Electron-beam irradiation in low doses does not have significant difference on lipid oxidation. Irradiating of meat products by addition of antioxidants can minimize or avoid the development of rancidity.

  16. Effects of tissue inhomogeneities on dose patterns in cylinders irradiated by negative pion beams

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.

    1975-10-01

    Effects of the presence of inhomogeneities in tissue irradiated by negative pion beams are investigated. Soft-tissue targets are considered with embedded regions of bone and cavities of air. The absorbed dose is calculated as a function of position in the targets for parallel and converging beams and for two parallel beams that enter the target from opposite sides. Isodose contours are calculated and displayed in each case. While these studies show expected trends, they indicate that specific calculations are needed for other beam parameters and target geometries. The contributions of neutrons to the dose contours can be seen from several calculations made both with and without neutrons

  17. The combined effects of e-beam irradiation and microwaves on starch, flour and ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Martin, D.; Minea, R.; Tirlea, A.; Badea, M.

    1998-01-01

    The influences of both microwave field and electron beam irradiation, separately and combined, mainly on physical parameters of corn starch, wheat flour and black pepper were studied. These treatments have been used to achieve the hygienic and microbiological quality requirements of these materials and for their dehydration. The electron-beam irradiation has been carried out by using an ALIN-7 linear accelerator with the following parameters: electron mean energy 6 MeV, mean bean current 10 μA, pulse period 3.5 μs. repetition frequency 100 Hz. For microwave experiments, a special designed microwave applicator consisting of a special cavity, a power controlled generator with a 2.45 GHz standard frequency CW magnetron of 850 W maximum output power was used. The experiments were carried out in 5 variants: microwave treatment solely; electron beam irradiation solely; microwave treatment followed by electron beam irradiation; electron beam irradiation followed by microwave treatment; simultaneous microwave and electron beam treatment. The samples were treated by microwaves at 4 different power values from 250 W to 550 W for 5 different exposure times. The electron beam irradiation took place within the dose range of 1 - 10 kGy, at the same dose rate of approximately 2 kGy/min. The influence of these two physical fields on some common properties (r.h., pH), spectrophotometric (UV-VIS spectra), viscometric (rheograms) and microbiological (CFU/g) properties of the food materials was evaluated. A direct relationship between the variables was observed. The microwave effects are mainly thermal effects, although a non-thermal effect was also observed. The main microbiocidal action is due to the electron beam effect, although the microwave treatment affects sometimes significantly both the microbial population and its sensitivity to irradiation. The combined treatment indicates the presence of a synergistic effect of microwaves and electron-beams, which is of non

  18. Effect of electron beam irradiation on the structure and optical ...

    Indian Academy of Sciences (India)

    tron microscopy, UV–visible and photoluminescence (PL) spectroscopy. The present investigation found that non- stoichiometry, defects and particle size variation caused by EB irradiation have a great influence on optical band gap, blue shift and band modification of absorption and PL spectra. Moreover, EB irradiation can ...

  19. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    International Nuclear Information System (INIS)

    Visakh, P.M.; Nazarenko, O.B.; Sarath Chandran, C.; Melnikova, T.V.; Nazarenko, S.Yu.; Kim, J.-C.

    2017-01-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose. - Highlights: • The effects of electron beam irradiation on aluminum/epoxy composites were studied. • Changes in thermal and mechanical properties were analyzed. • Irradiation improved the thermal and mechanical properties of aluminum/epoxy composites up to dose of 100 kGy. • The aluminum/epoxy composites appeared more stable to irradiation than the neat epoxy polymer.

  20. Effect of electron beam irradiation on post harvest quality of Agaricus bisporus

    International Nuclear Information System (INIS)

    Zhang Juanpin; Xing Zengtao; Bai Bing; Song Weiguo

    2011-01-01

    The effects of electron beam irradiation on fresh-keeping of Agaricus bisporus was studied after sporecarp samples were irradiated at 1.0, 2.0, 3.0 and 4.0 kGy and then stored at 4 degree C for 14d. The contents of water-soluble vitamins, amino acids and sugars were measured. Results showed that the contents of water-soluble sugars, amino acids, and aneurin, lactochrome, nicotinic acid in sporecarp did not significantly change after irradiation. However, asoribic acid was sensitive to irradiation, and the content was significantly reduced 31.1% at the dose of 4.0 kGy. It is concluded that 2 kGy irradiation can effectively prolong the shelf life, and almost no significant effect on the nutrient components of Agaricus bisporus. (authors)

  1. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour.

    Science.gov (United States)

    Zhao, Yue; Sun, Na; Li, Yong; Cheng, Sheng; Jiang, Chengyao; Lin, Songyi

    2017-10-01

    The effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour (WPF) were evaluated. The WPF was irradiated by 0-15.0kGy of the EBI. Scanning electron microscopy and X-ray diffraction analysis revealed that the EBI irradiation could not change the amorphous structure of WPF but resulted in puncture pores and fragmentation on microcosmic surface of WPF. Besides, low-field nuclear magnetic resonance results showed the EBI irradiation had effects on increasing denaturation temperature of WPF to 70°C, and the particle size of WPF hydrolysates (WPFHs) irradiated by EBI at dose of 5.0kGy significantly (Pthermal stability of WPF and didn't affect the physical stability of the WPFHs. Therefore, these results provided a theoretical foundation that the EBI applies on improving the properties of protein in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The prophylactic effect of neck irradiation combined with intra-oral electron beam irradiation for early tongue cancer

    International Nuclear Information System (INIS)

    Kawamori, Jiro; Kamata, Rikisaburo; Sanuki, Eiichi

    1993-01-01

    Between 1967 and 1988, 102 patients with Stage T1-2N0 squamous cell carcinoma of the tongue were treated with uneven fractional irradiation therapy (intra-oral electron beam irradiation with and without prophylactic ipsilateral upper neck irradiation at the Dept. of Radiology, Nihon University School of Medicine. Of 102 primary lesions, 89 cases were controlled with this therapy. In this study, these 89 cases were investigated in order to analyze the prophylactic effect of upper neck irradiation. Of the 89 patients, 42 received only intra-oral electron beam irradiation, while the remaining 47 received a combination of intra-oral electron beam irradiation and prophylactic irradiation to the ipsilateral upper neck. Twenty three of the 89 (25.8%) developed metastasis to the neck after the radiotherapy. A breakdown of these 23 cases reveals that 3/21 (14.3%) received 40-50 Gy to the neck, 9/26 (34.6%) received 20-40 Gy to the neck, and 11/42 (26.2%) received no irradiation to the neck (p<0.05 between first and second groups, and between first and third groups). The neck metastasis was classified into one of three categories based on the region in which it first appeared (ipsilateral upper neck, ipsilateral lower neck or contralateral neck). The first metastasis was seen in the ipsilateral upper neck, in the ipsilateral lower neck and in the contralateral neck in 17, 4 and 2 patients, respectively. In 1/19 who had received 40-50 Gy, in 5/21 who had received 20-40 Gy and in 11/42 who had not received neck irradiation the first metastasis appeared in the ipsilateral upper neck. The five year survival rate was 94%, 75% and 85% in the patients receiving 40-50 Gy, 20-40 Gy and no neck irradiation, respectively. These results suggest that prophylactic irradiation of 40-50 Gy to the ipsilateral upper neck might decrease the incidence of neck metastasis and slightly prolong survival time. (author)

  3. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  4. Effects of electron beam irradiation on fluoroelastomer properties

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Leitao Junior, Claudio B.; Carvalho, Alvaro A.S.; Pino, Eddy S.; Machado, Luci D.B.

    2005-01-01

    Fluoroelastomer is a polymer usually used as a sealing material due to some excellent properties comparing to other elastomers, such as good resistance to high temperatures and to the attack of chemical substances. The fluoroelastomer used in this work was a commercial product obtained from two monomers, vinylidene and hexafluoropropylene, containing also carbon black and inorganic fillers. The aim of this work was to study the effect of the ionizing radiation of electron beam (EB) on the tensile, hardness and thermal properties of this sealing material obtained by a conventional curing process. The overall doses applied were 10, 25, 50, 75, 100, 125, 150, 175, 200 and 250 kGy. Tension tests showed that the tensile stress at break increases 34 % in the range of radiation dose applied. On the other hand, the total strain decreases considerably, from 347 % to 109 %, with the increase of the radiation dose. Hardness Shore A values increase 15 % in the range of radiation dose studied. Thermogravimetric curves showed that there are no considerable variations on the onset temperatures for all samples in the range of radiation doses applied. These results indicate that EB radiation produces modifications on the fluoroelastomer mechanical properties, but without promoting considerable chain scission. The modifications on the mechanical properties can be related to a better adhesion, induced by radiation, between the fluoroelastomer and the fillers. (author)

  5. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    Polymethyl methacrylate (PMMA) was prepared by solution polymerization method. Different concentrations (10, 20 and 40%) of Ni powder were dispersed in PMMA and the composite films were prepared by casting method. These films were irradiated with 120 MeV Ni 10 + ions at a fluence of 5 × 1012 ions/cm2. Electrical ...

  6. The Effect of Pretreatment by using Electron Beam Irradiation on Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    A. Kristiani

    2016-04-01

    Full Text Available Oil palm empty fruit bunch (OPEFB is a potential type of lignocellulosic biomass for second-generation bioethanol production. The pretreatment process is an important process in the series of processes to produce bioethanol. This research aims to study the effects of pretreatment process by using electron beam irradiation to OPEFB’s characterization as raw materials for the hydrolysis reaction to produce monomer sugars which will be fermented into ethanol. The untreated and treated OPEFB are characterized in terms of their physical and chemical properties. Analysis results of the compositional analysis by using NREL/TP-510-42618 method show that after pretreatment by using electron beam irradiation, OPEFB's total lignin content is changed little while its cellulose and hemicellulose contents tend to decrease with increasing irradiation dose. X-ray diffraction (XRD analysis shows that there is a decrease of crystallinity compared to untreated OPEFB, except for 200-kGy irradiated OPEFB. The highest decrease of crystallinity was shown by 300-kGy irradiated OPEFB. Further, crystallite sizes of treated OPEFBs are not significantly different from the untreated, except for the 200-kGy irradiated OPEFB. Irradiation pretreatment also increases specific surface area, pore volume, and pore size. The IR spectra analysis show the absorption of cellulose, hemicellulose, and lignin.

  7. Effect of electron beam irradiation on conidial germination activity and pathogenicity of Botrytis cinerea

    International Nuclear Information System (INIS)

    Zhang Ting; Qiao Yongjin; Chen Zhaoliang

    2011-01-01

    Conidia of Botrytis cinerea were irradiated by electron beam at 0.5, 1.0, 2.0 and 3.0 kGy. The influence of electron beam on the activities of conidial germination and pathogenicity at the temperatures of 5 ℃ and 25 ℃ were tested, respectively. The results showed that the electron beam could inhibit germination of conidia and the length of germ tube of Botrytis cinerea, and delay the germination time. It could also decrease the pathogenicity obviously and higher irradiation dose showed stronger effects. Compared with control, the complete germination time of conidia extended to 5 and 9 d at the cultivate temperatures of 25 ℃ and 5 ℃, after 2 kGy of irradiation, and the germination rate was reduced 46.57% and 33.68%, respectively. The inhibition rates of germ tube were 25.12% and 74.29% when cultured 24 h. The pathogenicity of Botrytis cinerea to strawberry was reduced significantly. After 2.0 kGy irradiation and cultivate at 25 ℃ for 2 d, the disease index was 4.17 and it decreased to 15.28 after cultivation of 5 ℃ for 15 d. Electron beam treatment could inhibit the spore germination and germ tube elongation of Botrytis cinerea significantly, delayed the germination time, and reduced its pathogenicity, the higher the dose, the effect was more obvious. (authors)

  8. Gamma and electron beam irradiation effects on SiR-EPDM blends

    Directory of Open Access Journals (Sweden)

    R. Deepalaxmi

    2014-07-01

    Full Text Available Ethylene Propylene Diene Monomer (EPDM is widely used as Cable Insulation Material (CIM due to its good mechanical strength. Silicone Rubber (SiR is used in high temperature environments due to its good di-electric properties/hydrophobicity. The blending of SiR-EPDM may result in the improvement in their specific properties. The SiR-EPDM blend of equal composition (50:50 was prepared. When such blends are used as Cable Insulation Materials (CIM, they should perform their safety functions throughout their installed life in Nuclear Power Plants (NPP. The CIM will be exposed to Gamma irradiation at the installed locations. The short time accelerated testing was carried out, in order to forecast long-term performance of CIM. Electron beam irradiation is widely used in cable manufacturing industries to improve the performance of the polymeric materials. In the current study, on the purpose to investigate the effect of gamma/electron beam irradiation on the 50–50 composition of SiR-EPDM blend, blend was exposed to 25 Mrad dose of gamma/electron beam irradiation. The electrical and mechanical parameters like Volume Resistivity (VRY, Surface Resistivity (SRY, Tensile Strength (TS, Elongation at Break (EB, Hardness (H of the virgin, gamma/electron beam irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier Transform Infrared Spectroscopy (FTIR. To determine the elemental composition of the materials at the surface, Energy Dispersive X-ray Analysis (EDAX has been done. Scanning Electron Microscopy (SEM analysis has been done to study the morphological changes. The occurrence of cross-linking is found to be the mechanism for ageing in gamma/electron beam irradiated SiR-EPDM blends.

  9. The effects of electron beam irradiation on additives present in food-contact polymers

    International Nuclear Information System (INIS)

    Crowson, Andrew.

    1991-09-01

    A range of additives (Irganox 1010, Irganox 1076, Irganox 1330, Irgafos 168 and Tinuvin 622) has been incorporated into a variety of food-contact polymers including polypropylene and low density polyethylene. Samples of these stabilized polymers were subjected to electron-beam or gamma irradiation to receive doses of 1,5,10,25 and 50 kGy. The effects of electron-beam irradiation on the amount of extractable antioxidant in polymers were determined. Using hplc techniques it was found that there was a dose-related reduction in the amount of extractable antioxidant similar to that caused by gamma irradiation. The magnitude of this reduction was found to be dependent upon the nature of both the antioxidant and the polymer type. Electron-beam irradiation was also found to cause a dose-related reduction in the levels of the antioxidants Irganox 1010 and Irganox 1076 migrating from polymers into a food simulant. This effect was similar to that caused by gamma irradiation. (author)

  10. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  11. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Michiko; Miyahara, Makoto [National Inst. of Health Sciences, Tokyo (Japan)

    2002-10-01

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D{sub 10}) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  12. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria.

    Science.gov (United States)

    Miyahara, Michiko; Miyahara, Makoto

    2002-01-01

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the D10 value of B. cereus at 4 degrees C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 degrees C. The gamma irradiation of the bacteria without incubation at 4 degrees C before irradiation was more effective than that of the bacteria with incubation overnight at 4 degrees C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 degrees C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation.

  13. Effects of electron beam irradiation on inorganic exchanger AMP

    International Nuclear Information System (INIS)

    Rao, K.L.N.; Mathew, C.; Deshpande, R.S.; Jadhav, A.V.; Pande, B.M.; Shukla, J.P.

    1996-01-01

    The heteropolyacid salt inorganic exchanger ammonium molybdophosphate (AMP) was subjected to an electron dose upto 2 MGy to assess any possible radiation damage. The breakthrough and total exchange capacity of AMP for Cs + from simulated fission product solutions were determined for both control and irradiated samples. The scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX) were deployed to examine any marked microscopic changes taking place in this exchanger. (author). 3 refs., 3 figs

  14. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  15. Effect of electron beam irradiation on the thermal properties of polycarbonate / polyester blend

    International Nuclear Information System (INIS)

    Zarie, K.A.

    2007-01-01

    The effect of electron beam irradiation on the thermal properties of Bayfol (polycarbonate/polyester blend) solid state nuclear track detector (SSNTD) was investigated. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) to obtain the activation energy of thermal decomposition for Bayfol detector. The thermogravimetric analysis (TGA) indicated that the Bayfol samples were decomposed in one main break down stage. Samples of 250 μm thickness sheets were exposed to electron beam irradiations in the dose range 20-600 KGy. The variation of melting temperatures with the electron dose was determined using differential thermal analysis (DTA). The results indicated that the electron irradiation in the dose range 200-600 KGy decreases the melting temperature of the Bayfol samples and this is most suitable for applications requiring the molding of this polymer at lower temperatures

  16. Comparative effectiveness of gamma-rays and electron beams in food irradiation

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1991-01-01

    Ionizing radiations which can be used for the treatment of foods are gamma-rays from Co-60 and Cs-137, accelerated electrons from a machine at an energy of 10 MeV or lower and X-rays from a machine at an energy of 5 MeV or lower. The Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food held in 1980 concluded that the foods irradiated at overall average doses up to 10 kGy with the radiation listed above are wholesome for human consumption. While most of the commercial food irradiations are conducted with gamma-rays from Co-60, accelerated electrons are increasingly utilized for treating foods. An important difference between gamma-rays and accelerated electrons is the penetration capacity in materials. The penetration capacity of gamma-rays is much higher than that of accelerated electrons. Another important difference is the dose rate. The dose rates of gamma-rays from commercial Co-60 sources are 1-100 Gy/min, while those of electron beams from electron accelerators are 10 3 -10 6 Gy/s. Ideally a comparison of the effect of different types of ionizing radiation should be carried out at the same dose rate but this has been difficult due to the design of irradiators. It is very difficult to draw a definite conclusion on the difference in the effectiveness in food irradiation between gamma-rays and electron beams based on published data. This chapter deals with as many reports as possible on the comparative effectiveness of gamma-rays and electron beams and on the effect of dose rate on chemical reactions and living organisms, whether or not they demonstrate any dependency of the effect of irradiation on dose rate and type of radiation. (author)

  17. Irradiation effect of electronic beam on older larvae of Lasioderma serricorne (Fabricius)

    International Nuclear Information System (INIS)

    Chen Yuntang; Guo Dongquan; Zhang Jianwei; Yang Baoan

    2010-01-01

    Cigarette beetle [ Lasioderma serricorne (Fabricius) ] is an important pest of stored tobacco distributing over the world, and it is also one of the most serious pests in the tobacco warehouse. The larvae is the most serious detriment in the four states of cigarette beetle. The objective of this study was to control the damage on tobacco from cigarette beetle. The irradiation effects of electronic beam on the older larvae of cigarette beetle in tobacco were studied. The results showed that the older larvae irradiated by the doses higher than 480 Gy could prevent the development to adults; and no new generation was found after 300 Gy irradiation for older larvae. Thus 300Gy irradiation could prevent the reproduction of cigarette beetle for the older larvae in the tobacco. (authors)

  18. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( Pcanola meal at doses of 45 kGy decreased ( Pcanola meal at doses of 15 and 30 kGy was improved ( Pcanola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  19. Effect of ion beam irradiation on morphological and flowering characteristics of chrysanthemum

    International Nuclear Information System (INIS)

    Shakinah Salleh; Zaiton Ahmad; Affrida Abu Hassan; Thohiroh Lee Abdullah

    2012-01-01

    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture industry and the lack of new local owned varieties led to this mutation breeding research. The objective of this study was to compare the effectiveness of ion beam irradiation in generating mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. Reagan Red. Ion beams has become a new physical mutagens for mutation breeding. The ray florets and nodal explants were irradiated with ion beam at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy. The 50 % of in vitro shoot regeneration (RD 50 ) for ray florets explants was 2.0 Gy and for nodal explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0 times higher than the nodal explants. The regenerated plant lets were planted in the greenhouse at MARDI, Cameron Highlands for morphological screening. Overall performance of survival plant lets derived from in vitro nodal and ray florets explants was recorded. The characters studied include plant morphology and flowering characteristic. The ray florets explants were found to be more sensitive to ion beam irradiation and generated more mutations as compared to nodal explants. (author)

  20. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Iqbal, M. Z.; Kumar Singh, Arun; Iqbal, M. W.; Seo, Sunae; Eom, Jonghwa

    2012-01-01

    We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO 2 substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 μC/cm 2 ) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

  1. Effect of electron beam irradiation on forensic evidence. 2. Analysis of writing inks on porous surfaces.

    Science.gov (United States)

    Ramotowski, Robert S; Regen, Erin M

    2007-05-01

    The effect of electron beam irradiation on a series of different writing inks is described. As the anthrax-tainted letters were discovered in October 2001, the U.S. government began to experiment with the use of the electron beam irradiation process for destroying such biological agents. Plans initially considered a large-scale countrywide use of this technology. However, over time the scope of this plan as well as the radiation dosage were reduced, especially when some adverse consequences to mailed items subjected to this process were observed. Little data existed at the time to characterize what level of damage might be expected to occur with common items sent through the mail. This was especially important to museums and other institutions that routinely ship valuable and historic items through the mail. Although the Smithsonian Institution initiated some studies of the effect of electron beam irradiation on archived materials, little data existed on the effect that this process would have on forensic evidence. Approximately 97 different black, blue, red, green, and yellow writing inks were selected. Writing ink types included ballpoint, gel, plastic/felt tip, and rollerball. All noncontrol samples were subjected to standard mail irradiation conditions used by the U.S. Postal Service at the time this experiment was performed. A video spectral comparator and thin-layer chromatography (TLC) analysis were used to evaluate both the control and the irradiated samples. Some published studies reported changes in the presence/absence of dye bands in the chromatograms of irradiated writing inks. Some of these studies report the formation of additional dye bands on the chromatogram while others report missing dye bands. However, using standard testing guidelines and procedures, none of the 97 irradiated inks tested were found to show any significant optical or chemical differences from the control samples. In addition, random testing of some of the ink samples using a

  2. Electron beam irradiation effects on the mechanical, thermal and surface properties of a fluoroelastomer

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Pino, Eddy Segura; Rossi, Marcelo Rabello; Machado, Luci Diva Brocardo

    2007-01-01

    Fluoroelastomer can be used as a sealing material for different purposes. The aim of this work is the evaluation of the effects of the ionizing radiation of an electron beam (EB) on the mechanical, thermal and surface properties of a commercial fluoroelastomer containing carbon black and inorganic fillers. The material was irradiated with overall doses between 10 and 250 kGy. Tensile strength (stress and strain at break), hardness (Shore A) and compression set were evaluated. Thermal behavior was evaluated by thermogravimetric analysis and differential scanning calorimetry. Surface modifications were inspected using scanning electron microscopy (SEM) and optical microscopy. The experiments have shown that EB irradiation promotes beneficial changes in the fluoroelastomer tensile strength behavior while compression set remain constant and the glass transition temperature increases. The SEM micrographs have shown compactness in the irradiated samples, although optical observations showed no surface morphology changes

  3. Investigations of the effect of electron-beam irradiation on bacteria in sewage sludge

    International Nuclear Information System (INIS)

    Osterstock, G.

    1976-01-01

    The effect of electron beams on bacteria was investigated in 2 experimental facilities. A 400 kV electron accelerator was used to irradiate sludge quantities of 10 l and 180 l. The total bacterial count, number of coliform bacteria and, in injected sludge, the relative bacteria density of salmonella were investigated. A dose of 0.5 to 0.75 Mrad was required to reduce coliform bacteria to below the detectable level in 0.1 ml. With a dose of 1.5 Mrad salmonella were reduced by 6 orders of magnitude on the average. In addition, the dependence of the reduction in bacteria on the dose rate as well as on mixing of the irradiation material was investigated. Substantial reproduction of bacteria in digested sludge was found in all cases after the irradiation. (author)

  4. Investigations of the effect of electron-beam irradiation on bacteria in sewage sludge

    International Nuclear Information System (INIS)

    Osterstock, G.

    1976-01-01

    The effect of electron beams on bacteria was investigated in 2 experimental facilities. A 400 kV electron accelerator was used to irradiate sludge quantities of 10 l and 180 l. The total bacterial count, the number of coliform bacteria and, in injected sludge, the relative bacteria density of salmonella were investigated. A dose of 0.5 to 0.75 Mrad was required to reduce coliform bacteria to below the detectable level in 0.1 ml. With a dose of 1.5 Mrad salmonella were reduced by 6 orders of magnitude on the average. In addition, the dependence of the reduction in bacteria on the dose rate as well as on mixing of the irradiated material was investigated. Substantial reproduction of bacteria in digested sludge was found in all cases after the irradiation. (orig./MG) [de

  5. Effects of electron beam irradiation on ethylene-octene copolymers (octene rubber)

    International Nuclear Information System (INIS)

    Harris C Raj Kumar; Mansor Ahmad; Khairul Zaman Mohd Dahlan

    2002-01-01

    The effect of electron irradiation on a ethylene-octene copolymer was investigated. The optimal blending speed, blending temperature and hot press temperature were first optimized to 40 rpm, 185 degree C and 180 degree C, respectively. The ethylene octene copolymer was then irradiated with electron beam from doses in the range of 20 kGy up to 200 kGy. The physical changes occurred were examined from the point of tensile strength tests, elongation at break, tensile modulus, hardness (Shore A) and gel content, and compared with a set of un-irradiated sample. Almost all the tests signify that cross-linking was the predominant reaction rather than chain scission, especially in gel content test. The hardness test was inconclusive as there were no significant changes that occurred. (Author)

  6. Effect of low dose electron beam irradiation on the alteration layer formed during nuclear glass leaching

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@gmail.com [CEA Marcoule, DEN, DTCD, SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M. [CEA Marcoule, DEN, DTCD, SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [NIMBE, CNRS, CEA, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Jollivet, P. [CEA Marcoule, DEN, DTCD, SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Panczer, G. [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Charpentier, T. [NIMBE, CNRS, CEA, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN, DTCD, SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2016-12-15

    This investigation concerns borosilicate glass leaching mechanisms and the evolution of alteration layer under electron beam irradiation. A simple glass doped with rare earth elements was selected in order to access mechanistic and structural information and better evaluate the effects of irradiation. It was fully leached in initially pure water at 90 °C and at high glass surface area to solution volume ratio (S/V = 20 000 m{sup −1}) in static conditions. Under these conditions, the system quickly reaches the residual alteration rate regime. A small particle size fraction (2–5 μm) was sampled in order to obtain a fairly homogeneous altered material enabling the use of bulk characterization methods. External irradiations with 10 MeV electrons up to a dose of 10 MGy were performed either before or after leaching, to investigate respectively the effect of initial glass irradiation on its alteration behavior and the irradiation stability of the alteration layer. Glass dissolution rate was analyzed by regular leachate samplings and the alteration layer structure was characterized by Raman, luminescence (continuous or time-resolved), and {sup 29}Si MAS NMR and EPR spectroscopy. It was shown that the small initial glass evolutions under irradiation did not induce any modification of the leaching kinetic nor of the structure of the alteration layer. The alteration process seemed to “smooth over” the created defects. Otherwise, the alteration layer and initial glass appeared to have different behaviors under irradiation. No Eu{sup 3+} reduction was detected in the alteration layer after irradiation and the defect creation efficiency was much lower than for initial glass. This can possibly be explained by the protective role of pore water contained in the altered material (∼20%). Moreover, a slight depolymerization of the silicon network of the altered glass under irradiation with electrons was evidenced, whereas in the initial glass it typically

  7. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo

    2015-07-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.

  8. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  9. Electron-beam irradiation effects on mechanical properties of PEEK/CF composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao

    1989-01-01

    Carbon fibre-reinforced composite (PEEK/CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and electron-beam irradiation effects on the mechanical properties at low and high temperatures were studied. The flexural strength and modulus of the unirradiated PEEK/CF were almost the same as those of carbon fibre-reinforced composites with epoxide resin. The mechanical properties at room temperature were little affected by irradiation up to 180 MGy, but in the test at 77K the strength of the specimens irradiated over 100 MGy was slightly decreased. The mechanical properties of the unirradiated specimen decreased with increasing testing temperature, but the high-temperature properties were improved by irradiation, i.e. the strength measured at 413K for the specimen irradiated with 120 MGy almost reached the value for the unirradiated specimen measured at room temperature. It was apparent from the viscoelastic measurement that the improvement of mechanical properties at high temperature resulted from the high-temperature shift of the glass transition of the matrix PEEK caused by radiation-induced cross-linking. (author)

  10. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  11. Effects of electron beam irradiation on physicochemical properties of corn flour and improvement of the gelatinization inhibition.

    Science.gov (United States)

    Xue, Peiyu; Zhao, Yue; Wen, Chengrong; Cheng, Sheng; Lin, Songyi

    2017-10-15

    The properties and viscosity-reduction mechanism of corn flour irradiated by electron beam have not been understood properly. Here, we investigate the effects of electron beam irradiation (EBI) on the gelatinization and physicochemical properties of corn flour irradiated by 0-5.40kGy of electron beam. The total starch and crude fiber contents of corn flour decreased significantly (Pflour particle surfaces, and the irradiated parts of the particles would gradually peel off and afford smooth surfaces, spherical structures, and smaller sizes. Molecular chains of corn flour broke owing to EBI. After irradiation, the pasting peak viscosity decreased dramatically (Pflour was completely inhibited. Thus, EBI can be used to inhibit the gelatinization of corn flour, which may be beneficial for industrial and food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of Electron Beam Irradiation on Binary Polyamide-6 Blends with Metallocene Copolymers

    International Nuclear Information System (INIS)

    Rosales, C.

    2006-01-01

    A versatile way to produce new materials with high Izod impact strength and reduced heat deformations is the irradiation of compatibilized blends. The effect of electron beam irradiation and different types of dispersed phase grafted copolymers on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends were investigated. Two metallocene copolymers (mEPDM and mPOE) grafted in-situ with maleic anhydride and two commercial maleated copolymers (EPDM-g-MA and mEPR-g-MA) were employed in binary blends with PA6 as matrix. The blends were prepared by extrusion with a composition of 80 wt. % of PA-6. The influence of the radical or functional groups generated in the grafting and the irradiation processes (25, 50, 100 and 200 kGy) was found by ATR-FTIR. The blends exhibited the characteristic thermal behavior of immiscible systems. All compatibilizers employed influenced the melting and crystallization behavior of the blend components without irradiation and an improvement in interface adhesion was clearly observed by SEM micrographs. The sizes of the dispersed phase in the non-irradiated reactive blends were in agreement with the viscosity ratios of the blend components. High toughness materials were obtained with ethylene-polypropylene-diene (mEPDM) grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 degree with the irradiation doses. However, the toughness of the blends with grafted metallocene polyethylenes was affected by the irradiation doses employed. Therefore, the gel content and tensile properties of the samples depended on the chain scission, crosslinking and/or grafting reactions of the blend components

  13. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  14. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shanwei [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Libin, E-mail: libinzhou@impcas.ac.cn [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Li, Wenjian; Du, Yan [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Yu, Lixia; Feng, Hui; Mu, Jinhu [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Yuze [College of Life Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, Gansu Province 730070 (China)

    2016-09-15

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M{sub 1} populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD{sub 50}) for a large-scale mutant screening. Among 2472 M{sub 2} plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M{sub 2} populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  15. Study on interaction of swift cluster ion beam with matter and irradiation effect (Joint research)

    International Nuclear Information System (INIS)

    Saito, Yuichi; Shibata, Hiromi

    2010-07-01

    This review covers results of the 'Study of interaction on swift cluster ion beam with matter and irradiation effect' supported by the Interorganization Atomic Energy Research Program from 2006FY to 2008FY. It is composed of a research abstract for each sub-group with viewgraphs which were presented at the group meeting held on March 2009 or 'Meeting of High LET radiation -From fundamental study among physics, chemistry and biology to medical applications-' sponsored by Japan Society of Radiation Chemistry, cosponsored by this research group. (author)

  16. Effect of electron beam irradiation on mechanical properties of gelatin/Brazil nut shell fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida L. del, E-mail: patyoko@yahoo.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria Aparecida [Faculdade de Tecnologia da Zona Leste (FATEC), Sao Paulo, SP (Brazil); Rosa, Ricardo de [Amazon Brazil Nuts, Sao Paulo, SP (Brazil)

    2010-07-01

    The use of natural fiber as polymeric matrix reinforcement has attracted interest, as fibers are renewable, of low cost, biodegradable and possesses non-toxic properties. In the present paper, Brazil nuts (Bertholletia excelsa) shell fiber (10% w/w) were mixed with gelatin (25% w/w), glycerin as plasticizer and acrylamide as copolymer to investigate the resultant mechanical properties effects upon ionizing radiation. The samples were irradiated at 40 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The results showed that samples of gelatin with 10% of Brazil nuts shell fiber and irradiated at 40 kGy presented promising results for mechanical performance. (author)

  17. Effect of electron beam irradiation on mechanical properties of gelatin/Brazil nut shell fiber composites

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida L. del; Colombo, Maria Aparecida; Rosa, Ricardo de

    2010-01-01

    The use of natural fiber as polymeric matrix reinforcement has attracted interest, as fibers are renewable, of low cost, biodegradable and possesses non-toxic properties. In the present paper, Brazil nuts (Bertholletia excelsa) shell fiber (10% w/w) were mixed with gelatin (25% w/w), glycerin as plasticizer and acrylamide as copolymer to investigate the resultant mechanical properties effects upon ionizing radiation. The samples were irradiated at 40 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The results showed that samples of gelatin with 10% of Brazil nuts shell fiber and irradiated at 40 kGy presented promising results for mechanical performance. (author)

  18. Effect of Ion Beam Irradiation on Silicon Carbide with Different Microstructures

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2006-01-01

    SiC and SiC/SiC composites are one of promising candidates for structural materials of the next generation energy systems such as the gas-cooled reactors and fusion reactors. This anticipation yields many material issues, and radiation effects of silicon carbide are recognized as an important research subject. Silicon carbide has diverse crystal structures (called polytypes), such as α-SiC (hexagonal structure), β-SiC (cubic structure) and amorphous SiC. Among these polytypes, β-SiC has been studied as matrix material in SiC/SiC composites. Near-stoichiometric β-SiC with high crystallinity and purity is considered as suitable material in the next generation energy system and matrix material in SiC/SiC composites because of its excellent radiation resistance. Highly pure and crystalline β-SiC and SiC/SiC composites could be obtained by the chemical vapor deposition (CVD) and Infiltration (CVI) process using a gas mixture of methyltrichlorosilane (CH 3 SiCl 3 , MTS) and purified H 2 . SiC produced by the CVD method has different grain size and microstructural morphology depended on the process conditions such as temperature, pressure and the input gas ratio. In this work, irradiation effects of silicon carbide were investigated using ion beam irradiation with emphasis on the influence of grain size and grain boundary. MeV ion irradiation at low temperature makes amorphous phase in silicon carbide. The microstructures and mechanical property changes of silicon carbide with different structures were analyzed after ion beam irradiation

  19. Study of the electron beam irradiation effect on some properties of aromatic aliphatic copolyester films

    International Nuclear Information System (INIS)

    Poveda, Patricia Negrini Siqueira

    2008-01-01

    Biodegradable and green plastics are the new tendency in the world. The effect of the electron beam irradiation in aromatic aliphatic copolyester and the blend with corn starch films (Ecoflex R and Ecobras R ) were studied by tensile strength at break, elongation at break, Scanning Electronic Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), crosslinking degree and biodegradability. The measurements in both, the machine direction and the transverse direction were made for mechanical tests. It was found that, the electron irradiation caused an increase in the strength at break of the blend with corn starch film, when doses of up to 10 kGy were applied. A significant decrease of the elongation at break of the blend with corn starch was observed at doses of 10 kGy and 40 kGy. It was not found important change in tensile properties for aromatic aliphatic copolyester. Structural changes of the samples (crosslinking or degradation) by SEM were not observed. The FT-IR identified the characteristic peaks of each involved functional group (copolyester and corn starch). However, it was not found bands of oxidation of the samples. In the DSC, changes in the melting temperature of the irradiated Ecoflex R and Ecobras R samples, was not identified when compared with the samples of reference. However, it was verified a reduction in the melting enthalpy of the Ecobras R samples after irradiation. The Ecobras R material presented crosslinking, when submitted to doses of 10 kGy and 40 kGy. The Ecoflex R material did not present crosslinking when submitted to these doses. The biodegradability of the materials was evaluated by two methods of test: soil simulated and enzymatic. In both methods, the irradiated samples presented faster biodegradation than the references not irradiated. (author)

  20. Effects of electron beam irradiation on elasticity of CFRTP (CF/PEEK)

    International Nuclear Information System (INIS)

    Takei, Hiroaki; Nishi, Yoshitake; Salvia, Michelle; Vautrin, Alain; Tonegawa, Akira

    2011-01-01

    Homogeneous low voltage electron beam irradiation (HLEBI) improved the elasticity indicated by both flexural modulus (E f ) and the maximum slope value ((dσ/dε) max ) of the bending stress-strain curve of carbon fiber reinforced thermoplastic polyetheretherketone (CFRTP) composite sheets with 0.50 mm thickness, although the penetration depth estimated was from 0.14 to 0.21 mm on both side surfaces. HLEBI remarkably enhanced both E f and (dσ/dε) max . The E f at middle cumulative probability (P E ) of 0.50 for CFRTP irradiated at 0.30 MGy (kJg -1 ) was 3.3 GPa, which was 27% higher (2.6 GPa) than for CFRTP before irradiation. Moreover, (dσ/dε) max at middle cumulative probability (P E =0.50) was more than 4.9 GPa for CFRTP irradiated at 0.30 MGy. The interfacial friction force, as well as the strengthening of both carbon fiber and polyetheretherketone probably contributed to the HLEBI effects to enhance both E f and (dσ/dε) max in the CFRTP. (author)

  1. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2013-01-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  2. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B., E-mail: maiara.sferreira@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  3. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei

    2012-01-01

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production. - Highlights: ► The effect of E-beam irradiated natural casings on sausage quality was evaluated. ► The use of irradiated casings improved shelf stability of sausage. ► Natural casings irradiated below 3 kGy are suitable for sausage production.

  4. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    Science.gov (United States)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  5. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    Science.gov (United States)

    Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei

    2012-05-01

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.

  6. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-01-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  7. Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy

    Science.gov (United States)

    Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas

    2018-01-01

    Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.

  8. Effects of electron beam irradiation on tribological and physico-chemical properties of Polyoxymethylene copolymer (POM-C)

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Shahinur; Shaislamov, Ulugbek; Yang, Jong-Keun [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Kim, Jong-Kuk [Plasma Processing Laboratory, Division of Surface Technology, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Kyungnam 641-010 (Korea, Republic of); Yu, Young Hun [Department of Physics, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Choi, Sooseok [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Lee, Heon-Ju, E-mail: hjlee@jejunu.ac.kr [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of)

    2016-11-15

    Highlights: • Electron beam dose irradiation effect on tribology of POM-C was investigated. • Raman and FTIR-ATR spectra confirm the chemical structural modification. • 1 MeV, 100 kGy dose irradiation induced well suited carbonization and hydrophobicity. • Well suited carbonization and hydrophobicity reduced friction coefficient. - Abstract: Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 kGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using pin on disk tribometer, Raman spectroscopy, FTIR-ATR, gel content analysis, SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), surface profiler and contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in decrease of the friction coefficient of POM-C block due to well suited carbonization, cross-linking, free radicals formation and partial physical modification. It also showed the lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation dose at 200 kGy resulted in increase of friction coefficient due to less effective cross-linking, but the irradiation doses at 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The degree of improvement for tribological attribute relies on the electron beam surface dose delivered (energy and dose rate).

  9. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    International Nuclear Information System (INIS)

    Engohang-Ndong, Jean; Uribe, R.M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-01-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50–70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application. - Highlights: • Use of electron beam irradiation for the treatment of municipal sewage sludge. • Irradiation at 4.5 kGy is required to eliminate risks of bacterial infection. • Irradiation at 14.5 kGy is required to eliminate risks of helminth infection. • Electron beam technology is not effective for controlling volatile organic compounds. • Electron beam treatment of sludge is less expensive than traditional techniques

  10. Effect of Electron Beam Irradiation on the Structure and Optical Properties of Poly (vinyl alcohol)

    International Nuclear Information System (INIS)

    Abutalib, M.M.

    2011-01-01

    Samples from of the polymeric material poly (vinyl alcohol) PVA have been exposed to electron beam in the dose range 5-100 kGy. The modifications induced in PVA samples due to electron beam irradiation have been studied through different characterization techniques such as X-ray diffraction XRD, Fourier Transform Infrared spectroscopy FTIR and color difference studies. The FTIR spectroscopy indicated that the degradation is the dominant mechanism at the dose range 5-60 kGy. Above 60 and up to 100 kGy, crosslinking is achieved. The crosslinking reported by FTIR spectroscopy destroyed the degree of ordering in the PVA samples as revealed by XRD. Additionally, the non irradiated PVA samples showed significant color sensitivity towards electron beam irradiation that appeared in the increase of the green and blue color components. This was accompanied by a net increase in the darkness of the samples

  11. Dose effects on damage of thymidylic acid and its components irradiated by A N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1996-08-01

    Research into damage of DNA components is an important field in mechanism study to the low energy ion beam irradiation. It was found that the UV difference spectra of irradiated thymine (T) had two positive peaks caused by the changes of π electron conjugation of the pyrimidine ring, and that the residual activity of T sample irradiated by a N + ion beam was not influenced by treatments of acid and alkali as well as heat. In addition, the residual activities of irradiated thymidine (dTR) and thymidine 5'-phosphate (5'-dTMP) with and without treating of strong acid and strong alkali were also measured. With UV absorption spectrophotometry, the yield of T released from the irradiated samples of dTR and 5'-dTMP and the residual concentration of these target molecules were deduced, and it was found that the yield of T increased when the solution of the irradiated dTR sample was treated by heat but decreased when this solution was treated by acid and alkali for these treatments splitting T-S or T-S-P. On the other hand, the yield of inorganic phosphate released from the irradiated 5'-dTMP was investigated and found that it was increased by the treatment of alkali and that the increase degree was depended on the time scale of the treatment. Moreover, G(Pi) of the irradiated 5'-dTMP non-linearly decreased with increasing dose. (10 figs.)

  12. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  13. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  14. A variable electron beam and its irradiation effect on optical and ...

    Indian Academy of Sciences (India)

    A low energy electron accelerator has been constructed and tested. The electron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been irradiated by ...

  15. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Taghinejad-Roudbaneh, M., E-mail: mtaghinejad@iaut.ac.i [Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.O. Box 51589, Tabriz (Iran, Islamic Republic of); Ebrahimi, S.R. [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Azizi, S. [Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, P.O. Box 57155-1177, Urmia (Iran, Islamic Republic of); Shawrang, P. [Nuclear Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2010-12-15

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  16. Investigation of natural diamond detector priming effect during electron beam irradiation

    International Nuclear Information System (INIS)

    The internal polarization effect, produced in a PTW natural diamond detector under electron beam irradiation, was investigated as a function of the applied electric field. It emerged that a space-charge distribution was created in the sensitive volume by positive and negative trapped charge carriers both for positive and negative external polarizations. Analyzing the behaviour of measured photocurrents under different conditions, an average internal electric field equal to 90% of the applied electric field was obtained. The detector's internal polarization produced a decrease in the charge collection efficiency between 50% and 70% within the range of the applied electric fields utilized (0.19-3.85 kV cm -1 ). In the end, a new method for the suppression of the internal polarization is compared with other methods reported in literature

  17. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  18. Effect of electron beam irradiation on viscosity/temperature characteristics of cellulose derivatives

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.; Yamasaki, M.C.R.

    1991-11-01

    The direct relationship between intrinsic viscosity and molecular weight of polymers allowed to attend the aggregation, cross-linking and degradation processes induced by electron beam irradiation on carboxymethylcellulose and hydroxiethylcellulose in aqueous solutions. The changes in viscosity were related to irradiation doses from 2.5x10 4 Gy to 25x10 4 Gy at 5 0 C, 25 0 C, 50 0 C and 75 0 C measured at different intervals after irradiation. The results showed the viscosity decrease characteristics as a function of those parameters for each one of the polymers. (author)

  19. Effectiveness of electron beam irradiation in the control of some soilborne pathogens

    International Nuclear Information System (INIS)

    Orlikowski, L.B.; Ptaszek, M.; Migdal, W.; Gryczka, U.

    2011-01-01

    Electron beam (EB) irradiation was tested against Botrytis cinerea, Pythium ultimum and Phytophthora citricola the most dangerous pathogens causing stem and root rot of seedlings, cuttings and older plants. In the laboratory trials cultures of 3 species were irradiated with doses 0 (control), 1.5, 3.0, 4.5 and 6.0 kGy whereas peat was treated with 10, 15 and 25 kGy. P. citricola was the most sensitive species for irradiation. In greenhouse trials 15 kGy irradiation of peat protected chrysanthemum cuttings against B. cinerea and P. ultimum as well as rhododendron young plants against P. citricola. Irradiation of peat did not influence the growth and development of the tested plants. (authors)

  20. Irradiation of Gemstones using Electron Beam

    International Nuclear Information System (INIS)

    Sarada Idris; Mohd Suhaimi Jusoh; Siti Aiasah Hashim

    2011-01-01

    Gemstone irradiation treatment using radiation is one of the studies conducted in the ALURTRON. The purpose of radiation is to study the effects of radiation on the gems. Through studies conducted on freshwater pearls and stones such as Topaz, Kunzite, TOURMALINE, Aquamarine, Quartz and so on, electron beam irradiation method can highlight the jewel colors but also to reduce the effects of haze on gemstones. The dose of radiation used is 25 kGy to 200 kGy. (author)

  1. Effects of electron beam irradiation on the microbial growth and quality of beef jerky during storage

    Science.gov (United States)

    Kim, Hyun-Jin; Chun, Ho-Hyun; Song, Hyeon-Jeong; Song, Kyung-Bin

    2010-11-01

    Electron beam irradiation was applied to improve the microbial safety of beef jerky during storage. Beef jerky samples were irradiated at doses of 1, 3, 5, and 10 kGy and stored at 20 °C for 60 d. Microbiological data indicated that the populations of total aerobic bacteria significantly decreased with increasing irradiation dosage. In particular, the populations of total aerobic bacteria were significantly decreased by 1.76 log CFU/g at 10 kJ/m 2, compared to the control. Color measurements showed reduced Hunter L and a values of beef jerky for all the treatments during storage, and the Hunter L, a, and b values of beef jerky were not significantly different among the treatments. Sensory evaluation results also showed that electron beam irradiation did not affect sensory scores in overall during storage. Therefore, the results suggest that electron beam irradiation could be useful in improving the microbial safety without impairing the quality of beef jerky during storage.

  2. Effects of electron beam irradiation on the microbial growth and quality of beef jerky during storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Jin; Chun, Ho-Hyun; Song, Hyeon-Jeong [Department of Food Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Song, Kyung-Bin, E-mail: kbsong@cnu.ac.k [Department of Food Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2010-11-15

    Electron beam irradiation was applied to improve the microbial safety of beef jerky during storage. Beef jerky samples were irradiated at doses of 1, 3, 5, and 10 kGy and stored at 20 {sup o}C for 60 d. Microbiological data indicated that the populations of total aerobic bacteria significantly decreased with increasing irradiation dosage. In particular, the populations of total aerobic bacteria were significantly decreased by 1.76 log CFU/g at 10 kJ/m{sup 2}, compared to the control. Color measurements showed reduced Hunter L and a values of beef jerky for all the treatments during storage, and the Hunter L, a, and b values of beef jerky were not significantly different among the treatments. Sensory evaluation results also showed that electron beam irradiation did not affect sensory scores in overall during storage. Therefore, the results suggest that electron beam irradiation could be useful in improving the microbial safety without impairing the quality of beef jerky during storage.

  3. Dose Rate Effects on The Radiation Oxidation of Polyethylene: Electron Beam vs Gamma Irradiation

    International Nuclear Information System (INIS)

    Faucitano, A.

    2006-01-01

    The yields and spatial distribution of the oxidation products stemming from the oxidation of LLPE films induced by 60-Co gamma and by irradiation with 300 kev, 0.3 mA electrons in the dose range 0.04 kGy/h - 0.6 kGy/h (gamma) and at 1.5 kGy/hr ( e-beam) have been determined by applying a methodology involving FTIR microscopy (carbonyl products, resolution 10 μ), iodometric analysis (peroxides). The FTIR and EPR spectroscopies coupled with the multilayer technique (resolution 25 μ) were also employed for carrying on measurements of the film depth profiles of peroxyl radicals and their alky radicals precursors, radical decay kinetics, 'free' and ' bound' hydroperoxides and alcools. With gamma radiations the products yields are enhanced following the decrease of the dose rate from 0.7 to 0.04 kGy/h without substantial effect on the film depth distributions which appear rather uniform. Using e-beam (dose rate 1.5 kGy/h) a low level concentration limit is attained confined within the first 50 μ which is about 1 order of magnitude smaller as compared to gamma. The mechanistic implications inherent to the experimental results as well as the practical consequences related to the use of radiooxidation as a tool for inducing graft copolymerization reactions are discussed

  4. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  5. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S.; Rezende, Maira L.; Rosa, Derval S.

    2009-01-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras R ) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex R ) film in both methods studied. (author)

  6. Effect of electron beam irradiation on structural and thermal properties of gamma poly (vinylidene fluoride) (γ-PVDF) films

    Science.gov (United States)

    Tan, Zhongyang; Wang, Xuemei; Fu, Chao; Chen, Chunhai; Ran, Xianghai

    2018-03-01

    In this study, we successfully prepared the pure PVDF film containing almost exclusive γ-phase (γ-PVDF) using 15 wt% solution in N, N-dimethylformamide. These γ-PVDF films were irradiated by 3.0 MeV electron beam in vacuum at room temperature up to 358 kGy. The effect of the irradiation on the chemical structural and thermal properties of pristine and irradiated γ-PVDF films were detailedly investigated by FTIR, XRD and DSC, respectively. DSC results show that two single and different melting endotherms from the successive heating curves correspond to γ-phase and α-phase, respectively. FTIR results show that the characteristic absorption peaks corresponding to γ-phase do not shift, and the C˭C bond formation is not significantly observed in the irradiated γ-PVDF films until above 30 kGy. XRD results show that the crystal form of γ-PVDF is not influenced significantly by irradiation. All PVDF films exhibit a single melting endotherm, irrespective of the irradiation dose. Two superpositioned crystallization peaks were observed for PVDF films only irradiated at high dose of 232 and 358 kGy, which can be related to the fractionated crystallization of irradiated PVDF. The dependences of thermal characteristics on the irradiation dose were detailedly investigated by DSC in this study.

  7. Effect of triple ion beam irradiation on mechanical properties of high chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Futakawa, Masatoshi; Nanjyo, Yoshiyasu; Kiuchi, Kiyoshi; Anegawa, Takefumi

    2003-01-01

    A high-chromium austenitic stainless steel has been developed for an advanced fuel cladding tube considering waterside corrosion and irradiation embrittlement. The candidate material was irradiated in triple ion (Ni, He, H) beam modes at 573 K up to 50 dpa to simulate irradiation damage by neutron and transmutation product. The change in hardness of the very shallow surface layer of the irradiated specimen was estimated from the slope of load/depth-depth curve which is in direct proportion to the apparent hardness of the specimen. Besides, the Swift's power low constitutive equation (σ=A(ε 0 + ε) n , A: strength coefficient, ε 0 : equivalent strain by cold rolling, n: strain hardening exponent) of the damaged parts was derived from the indentation test combined with an inverse analysis using a finite element method (FEM). For comparison, Type304 stainless steel was investigated as well. Though both Type304SS and candidate material were also hardened by ion irradiation, the increase in apparent hardness of the candidate material was smaller than that of Type304SS. The yield stress and uniform elongation were estimated from the calculated constitutive equation by FEM inverse analysis. The irradiation hardening of the candidate material by irradiation can be expected to be lower than that of Type304SS. (author)

  8. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend

    Science.gov (United States)

    Balaji, Anand Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2017-12-01

    The irradiation stability of ethylene-propylene diene terpolymer (EPDM)/ polypropylene (PP) blends is studied in an attempt to develop radiation compatible PP/EPDM blends suitable for medical applications. The PP/EPDM blends with mixing ratios of 80/20, 50/50/ 20/80 were prepared in an internal mixer at 165 °C and a rotor speed of 50 rpm followed by compression molding. The blends and the individual components were irradiated using 3.0 MeV electron beam (EB) accelerator at doses ranging from 0 to 100 kGy in air and room temperature. Later, the PP/EPDM blends were subjected to gel content, thermal stability, crystallization and dynamic mechanical properties before and after irradiation. Results revealed that the irradiation-induced crosslinking in the PP/EPDM blend increases with the increasing irradiation dose and the EPDM content in the blend. However, the thermal stability of the blends did not show any significant changes upon irradiation. The dynamic mechanical analysis shows that the EPDM rich blend has higher compatibility than PP dominant blends. A further improvement in the blend compatibility found to be achieved upon irradiation.

  9. Electron Beam Irradiation Effect on the Mechanical, Thermal and Surface Properties of Fluoroelastomer

    International Nuclear Information System (INIS)

    Machado, L. D. B.

    2006-01-01

    Fluoroelastomer is a polymer used as a sealing material due to some excellent properties comparing to other elastomers, such as resistance to high temperatures and to aggressive chemical substances. The aim of this work was to evaluate the effect of the ionizing radiation of electron beam (EB) on the mechanical, thermal and surface properties of this elastomeric material. The fluoroelastomer studied in this work was a commercial product obtained by a conventional curing process, containing carbon black and other inorganic fillers. This material was irradiated with energetic electrons and the overall doses were 10, 25, 50, 75, 100, 125, 150, 175, 200 and 250 kGy. The evaluated mechanical properties were tensile strength (stress and strain at break), hardness (Shore A) and compression set. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were used to evaluate the thermal behavior of the irradiated material. Surface modification on the fracture specimens was verified with scanning electron microscopy (SEM) and using an optical microscope on line to a computer. Tensile strength tests have shown that the tensile stress at break increases 34 % and total strain decreases considerably, from 347 % to 109 %, in the range of radiation dose applied. Shore A hardness values increase 15 % in the range of radiation dose studied. The compression set data showed that the values remain stable independent of the radiation dose applied. Thermogravimetric curves showed that there are no large variations on the onset temperatures for all samples in the range of radiation doses applied. On the other hand, DCS curves showed a progressive increase of the glass transition temperature, from 3.3 degree for non-irradiated sample to 12.9 degree for sample irradiated with 250 kGy. SEM micrographs showed a more homogeneous morphological aspect of the fracture surfaces with the increase of the applied dose. The results have shown that EB radiation, in the studied

  10. Effect of Electron Beam Irradiation on the Properties of Polypropylene / EPDM Blends

    International Nuclear Information System (INIS)

    Abou Zeid, M.A.

    2008-01-01

    Blends of polypropylene (PP) / ethylene propylene diene rubber (EPDM) were prepared in a laboratory internal mixer at various ratios. The films obtained were subjected to various doses of electron beam irradiation. The physico-mechanical, thermal and morphological properties were evaluated. The results obtained indicated a marked improvement in mechanical properties on increasing irradiation dose up to 20 kGy while the increase of EPDM content in the blend leads to a decrease in mechanical properties . Also, the thermal stability of PP has been improved by blending with EPDM

  11. Comparison of the effect of X-ray and electron beam irradiation on the thiamine content in chicken drumsticks

    International Nuclear Information System (INIS)

    Calenberg, S. van; Cleemput, O. van; Huyghebaert, A.; Mondelaers, W.

    1998-01-01

    The effect of irradiation with X-rays and electron beams on the thiamine content of chicken drumsticks in function of the storage time at refrigerator temperature was examined. A measurement of the total colony count was used as an indication of the preservation time. The irradiation dose applied ranged from 0 to 7 kGy at dose rates of 0.05 and 5 kGy/min for X-rays and electron beams respectively. It was concluded that differences in the thiamine breakdown between the two types of irradiation increased as the dose increased. In the worst case, at the X-ray treatment of 7 kGy, the mean loss in thiamine was 46.06%

  12. Effects of Electron Beam Irradiation on Zearalenone and Ochratoxin A in Naturally Contaminated Corn and Corn Quality Parameters

    Directory of Open Access Journals (Sweden)

    Xiaohu Luo

    2017-02-01

    Full Text Available Zearalenone (ZEN and ochratoxin A (OTA are secondary toxic metabolites widely present in grains and grain products. In this study, the effects of electron beam irradiation (EBI on ZEN and OTA in corn and the quality of irradiated corn were investigated. Results indicated that EBI significantly affected ZEN and OTA. The degradation rates of ZEN and OTA at 10 kGy in solution were 65.6% and 75.2%, respectively. The initial amounts significantly affected the degradation rate. ZEN and OTA in corn were decreased by the irradiation dose, and their degradation rates at 50 kGy were 71.1% and 67.9%, respectively. ZEN and OTA were more easily degraded in corn kernel than in corn flour. Moisture content (MC played a vital role in ZEN and OTA degradation. High MC was attributed to high ZEN and OTA degradation. The quality of irradiated corn was evaluated on the basis of irradiation dose. L* value changed, but this change was not significant (p > 0.05. By contrast, a* and b* decreased significantly (p < 0.05 with irradiation dose. The fatty acid value increased significantly. The pasting properties, including peak, trough, breakdown, and final and setback viscosities, were also reduced significantly (p < 0.05 by irradiation. Our study verified that EBI could effectively degrade ZEN and OTA in corn. Irradiation could also affect corn quality.

  13. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  14. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Rakvin, B.; Maltar-Strmecki, N.; Nakagawa, K.

    2007-01-01

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, T M , was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  15. Radiosensitizing effect of nitric oxide in tumor cells and experimental tumors irradiated with gamma rays and proton beams

    International Nuclear Information System (INIS)

    Policastro, Lucia L.; Duran, Hebe; Molinari, Beatriz L.; Somacal, Hector R.; Valda, Alejandro A.

    2003-01-01

    Nitric oxide (NO) has been reported to be a radiosensitizer of mammalian cells under hypoxic conditions. In a previous study, we demonstrated an enhancement in radiation response induced by NO in mouse tumor cells under aerobic conditions, with an increasing effect as a function of malignancy. The aim of the present study was to evaluate the effect of NO in tumor cells and in experimental tumors irradiated with γ rays and proton beams. Irradiations were performed with a 137 Cs γ source and with proton beams generated by the TANDAR accelerator. Tumor cells were treated with the NO donor DETA-NO and the sensitizer enhancement ratio (SER) was calculated using the α parameter of the survival curve fitted to the linear-quadratic model. Tumor cells irradiated with protons were radio sensitized by DETA-NO only in the more malignant cells irradiated with low LET protons (2.69±0.08 keV/μm). For higher LET protons there were no radiosensitizing effect. For human tumor cells pre-treated with DETA-NO and irradiated with γ rays, a significantly greater effect was demonstrated in the malignant cells (MCF-7) as compared with the near normal cells (HBL-100). Moreover, a significant decrease in tumor growth was demonstrated in mice pre-treated with the NO donor spermine and irradiated with γ rays and low LET protons as compared with mice irradiated without pre-treatment with the NO donor. In conclusion, we demonstrated a differential effect of NO as a radiosensitizer of malignant cells, both with γ rays and low LET protons. This selectivity, coupled to the in vivo inhibition of tumor growth, is of great interest for the potential use of NO releasing agents in radiotherapy. (author)

  16. Effect of dietary poly unsaturated fatty acids on total brain lipid concentration and anxiety levels of electron beam irradiated mice

    International Nuclear Information System (INIS)

    Suchetha Kumari; Bekal, Mahesh

    2013-01-01

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 poly unsaturated fatty acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore this study was undertaken to establish the role of Omega-3 poly unsaturated fatty acids on total brain lipid concentration, lipid peroxidation and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on total brain lipid concentration, lipid peroxidation and anxiety level were investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of EBR and also the flax seed extract and fish oil were given orally to the irradiated mice. Irradiated groups show significant elevation in anxiety levels when compared to control group, indicating the acute radiation effects on the central nervous system. But the oral supplementation of dietary PUFA source decrees the anxiety level in the irradiated group. The analysis of lipid peroxidation showed a significant level of changes when compared between control and radiation groups. Dietary PUFA supplementation showed a significant level of decrease in the lipid peroxidation in the irradiated groups. The observation of total lipids in brain shows decrease in concentration in the irradiated groups, the differences in the variables follow the similar patterns as of that the MDA levels. This study suggests that the dietary intake of PUFAs may help in prevention and recovery of the oxidative stress caused by radiation. (author)

  17. Effect of intense pulsed ion beams irradiation on the oxidation behavior of gamma sup ' -based superalloy

    CERN Document Server

    Zhang Hong Tao; Han Bao Xi; Yan Sha; Zhao Wei Jiang; Han Ya Fan

    2002-01-01

    Intense pulsed ion beams (IPIB) with three different power densities (25, 37.5 and 50 MW/cm sup 2) are employed for the surface treatment of gamma sup ' -based superalloy IC6. The influence of IPIB irradiation on the oxidation behavior of IC6 at 1100 degree sign C for up to 100 h is investigated. It is found that the phase states of IC6 are dramatically changed after IPIB irradiation and the oxidation behavior of the irradiated coupons depends greatly on the power density of IPIB. IPIB irradiation with a power density of 25 or 37.5 MW/cm sup 2 significantly reduces the oxidation rate with respect to the unirradiated coupon. The improvement of the oxidation resistance can be attributed to a change in the oxidation products from a three-layered scale of Ni-rich oxides for the unirradiated coupon to a two-layered scale of Mo- and Al-rich oxides. In contrast, IPIB irradiation with a power density of 50 MW/cm sup 2 proves to be detrimental, causing a higher oxidation rate. The oxidation mechanism for IPIB irradiat...

  18. Mutation induced with ion beam irradiation in rose

    Science.gov (United States)

    Yamaguchi, H.; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  19. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    Science.gov (United States)

    Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-07-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.

  20. Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam

    Science.gov (United States)

    Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian

    2017-09-01

    The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.

  1. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joo [Department of Food Science and Technology, Chung-Ang University, Ansung, Gyunggi-do 456-756 (Korea, Republic of); Ham, Jun-Sang [Animal Products Processing Division, National Livestock Research Institute, RDA, Suwon 441-706 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Keehyuk [Department of Culinary Nutrition, Woosong University, Daejeon 300-718 (Korea, Republic of); Ha, Sang-Do [Department of Food Science and Technology, Chung-Ang University, Ansung, Gyunggi-do 456-756 (Korea, Republic of); Jo, Cheorun, E-mail: cheorun@cnu.ac.k [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2010-06-15

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens (Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10{sup 2} to 10{sup 3} Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10{sup 1} CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D{sub 10} values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  2. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    Science.gov (United States)

    Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun

    2010-06-01

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  3. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun

    2010-01-01

    The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens (Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.

  4. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  5. The effect of triple ion beam irradiation on cavity formation on pure EFDA iron

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, M., E-mail: marcelo.roldan@ciemat.es [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain); Fernández, P.; Vila, R. [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain); Gómez-Herrero, A. [National Centre of Electronic Microscopy, Complutense University, 28040, Madrid (Spain); Sánchez, F.J. [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain)

    2016-10-15

    Pure EFDA Iron was irradiated under triple ions beam (Fe + He + H) at 350 °C, 450 °C and 550 °C respectively to a nominal 40 dpa with a uniform He concentration of ∼14 appm He/dpa and H content of ∼50 appm H/dpa at depth between 1 and 2 μm. Cavity characteristics (size, morphology, distribution and population) at each irradiation temperature have been thoroughly studied by TEM using FIB lamellae, showing bubble formation at all irradiation temperatures with several differences between one to another experimental condition. At 350 °C homogeneous distribution of small cavities with sizes in the range of 2–4 μm was observed. However, irradiations at 450 °C and 550 °C led to non-homogeneous distribution of cavities with a wide range of sizes. Additionally, it was detected at these temperatures, preferential nucleation of bubbles within the ferritic grains exhibiting rounded and faceted shapes. Faceted cavities with sizes larger than 16 nm were detected at 450 °C and 550 °C.

  6. Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation

    Science.gov (United States)

    Guobao, FENG; Wanzhao, CUI; Lu, LIU

    2018-03-01

    A series of synthetic variations of material intrinsic properties always come with charging phenomena due to electron beam irradiation. The effects of charging on the dielectric constant will influence the charging dynamic in return. In this paper, we propose a numerical simulation for investigating the dynamic characteristics of charging effects on the dielectric constant due to electron beam irradiation. The scattering process between electrons and atoms is calculated considering elastic and inelastic collisions via the Rutherford model and the fast secondary electron model, respectively. Internal charge drift due to E-field, density gradient caused diffusion, charges trap by material defect, free electron and hole neutralization, and variation in the internal dielectric constant are considered when simulating the transport process. The dynamics of electron and hole distributions and charging states are demonstrated during E-beam irradiation. As a function of material nonlinear susceptibility and primary energy, the dynamics of charging states and dielectric constants are then presented in the charging process. It is found that the variation in the internal dielectric constant is more with respect to the depth and irradiation time. Material with a larger nonlinear susceptibility corresponds a faster charging enhancement. In addition, the effective dielectric constant and the surface potential have a linear relationship in the charging balance. Nevertheless, with shrinking charging affect range, the situation with a higher energy primary electron comes with less dielectric constant variation. The proposed numerical simulation mode of the charging process and the results presented in this study offer a comprehensive insight into the complicated charging phenomena in electron irradiation related fields.

  7. Electron beam irradiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1992-01-01

    This paper reviews research and development of application of electron beam (EB) irradiation technology for treatment of flue gas and waste water, and for disinfection of sewage sludge. Feasibility studies on EB purification of flue gases have been performed with pilot-scale experiments in Japan, the USA and Germany, and is being carried out in Poland for flue gases from iron-sintering furnaces or coal burning boilers. Based on results obtained by experiments using simulated flue gas, pilot scale test for treatment of flue gas of low-sulfur containing coal combustion has recently started in Japan. Organic pollutants in waste water and ground water have been found to be decomposed by EB irradiation. Synergetic effect of EB irradiation and ozone addition was found to improve the decomposition efficiency. Electron beam irradiation technology for disinfection of water effluent from water treatment plants was found to avoid formation of chlorinated organic compounds which are formed in using chlorine. Efficient process for composting of sewage sludge disinfected by EB irradiation has been developed by small scale and pilot scale experiments. In the new process, disinfection by EB irradiation and composing can be done separately and optimum temperature for composting can be, therefore, selected to minimize period of composting. (author)

  8. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  9. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    International Nuclear Information System (INIS)

    Yanagawa, T; Sakagami, H; Nagatomo, H; Sunahara, A

    2016-01-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code. (paper)

  10. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    International Nuclear Information System (INIS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiationпј€1–7 kGyпј‰ and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC. - Highlights: • E-beam irradiation generated three novel volatile compounds. • E-beam irradiation increased the relative proportions of alcohols, aldehydes, and ketones. • E-beam irradiation coupled to microwave heating increased aldehyde levels and generated five heterocyclic compounds. • E-beam irradiation at 5 and 7 kGy decreased the levels of unsaturated fatty acids, but did not affect trans fatty acid levels.

  11. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Mahmoudabad, S.R., E-mail: ebrahimiyazd@yahoo.com [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Taghinejad-Roudbaneh, M. [Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, P.O. Box 51589, Tabriz (Iran, Islamic Republic of)

    2011-12-15

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely (P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly (P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly (P<0.001) by irradiation. EB-irradiation increased linearly (P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS. - Highlights: > Effects of electron beam (EB) irradiation on nutritive value of some oilseeds were evaluated. > EB-irradiation eliminated completely phytic acid of seeds at a dose of 30 kGy. > EB-irradiation decreased trypsin inhibitor activity of soybean. > Free gossypol content of whole cottonseed was reduced linearly by EB-irradiation. > EB-irradiation increased escape protein and crude protein digestibility of seeds.

  12. Ion-beam irradiation of Co/Cu nanostructures: Effects on giant magnetoresistance and magnetic properties

    International Nuclear Information System (INIS)

    Cai, M.; Veres, T.; Schiettekatte, F.; Roorda, S.; Cochrane, R.W.

    2004-01-01

    We have studied the effects of ion irradiation at low doses ( 14 ions/cm 2 ) on the structural properties, giant magnetoresistance (GMR), and interlayer magnetic coupling in Co/Cu multilayers. X-ray analysis combined with magnetic and resistivity measurements reveal that intermixing is promoted by ion irradiation while the periodic structure and crystallographic properties of the multilayers are not significantly altered. The GMR ratio of a multilayer decreases monotonically with ion dose. However, thermal annealing on an irradiated multilayer results in sharp recovery of the reduced GMR, and can be associated with a backdiffusion process in metastably intermixed regions. Hence, using ion irradiation and subsequent annealing, the GMR of a single multilayer can be altered reversibly over a wide range. The variation of GMR upon irradiation (or annealing) is accompanied by significant suppression (or improvement) of the antiferromagnetic interlayer coupling. The correlation between GMR and AF coupling, as well as the role of enhanced electron scattering at interfaces during these processes are discussed

  13. Charging effects of PET under electron beam irradiation in a SEM

    International Nuclear Information System (INIS)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M; Fakhfakh, S; Belhaj, M

    2008-01-01

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  14. Charging effects of PET under electron beam irradiation in a SEM

    Energy Technology Data Exchange (ETDEWEB)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M [GRESPI/LASSI, Faculte des Sciences BP 1039, 51687 Reims Cedex 2 (France); Fakhfakh, S [LaMaCop, Faculte des sciences de SFAX, Route Soukra Km 3, BP 802, CP 3018 Sfax (Tunisia); Belhaj, M [INSAT, Departement de Physique et Instrumentation, Centre Urbain Nord BP 676-1080 Tunis Cedex (Tunisia)], E-mail: omar.jbara@univ-reims.fr

    2008-12-21

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  15. A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Christopher J. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.com [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalagangotri 74199, DK, Karnataka (India); Okram, G.S. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Babu, P.D. [UGC-DAE Consortium for Scientific Research, R5 Shed, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-01-01

    In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO{sub 3} cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation. - Highlights: • Pure and irradiated compounds follow SPH model in high temperature range. • Colossal thermoelectric power is observed at low temperatures. • High temperature TEP data follows SPH model. • Curie temperature decreases with electron irradiation. • Magnetization shows increased magnetic moment due to electron beam irradiation.

  16. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    International Nuclear Information System (INIS)

    Riquier, Hélène; Abel, Denis; Wera, Anne-Catherine; Heuskin, Anne-Catherine; Genard, Géraldine; Lucas, Stéphane; Michiels, Carine

    2015-01-01

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results

  17. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  18. Effects of electron beam irradiation combined with hot water immersion treatment for shelf life extension of bananas

    International Nuclear Information System (INIS)

    Russly Abdul Rahman

    1996-01-01

    A study of the effects of minimal processing treatments, both individually or in combinations, was carried out in order to extend the shelf life and to improve the quality of bananas. Pre climacteric bananas at light full three-quarter grade, were either treated with hot water immersion for 1-30 min at 45-55 degree C, or irradiated with electron beams (2.0 MeV, Van de Graaff accelerator), to a dose of 0.1-1.5 kGy. All fruit was stored at 21 ± 1 degree C and relative humidity of 85-95 %. There was no significant delay in ripening of fruit treated with hot water immersion at the above temperatures. Some damage to fruit particularly peel scalding at ends occurred at the higher temperatures (>50 degree C). The 50 degree C, 5 minutes immersion was selected for further study. Irradiation to 0.1-0.3 kGy delayed the ripening (up to 3 days) without affecting fruit quality. Doses greater than 0.4 kGy resulted in extensive discoloration and fruit splitting. No significant differences could be detected organoleptically between bananas irradiated at 0.15 kGy and the control. Results of the physico-chemical attributes of the bananas were reported for fruits at colour stage 5 and after 10 and 15 days of storage. The combination treatment of hot water immersion and irradiation at the above settings further extended the shelf life of the banana fruits

  19. Investigation of Time Effect on Resistivity Variation of 10 MeV Electron Beam Irradiated LDPE and HDPE

    International Nuclear Information System (INIS)

    Ziaie, F.

    2006-01-01

    Charges occur in both the physical and/or chemical nature and concentration of defects in the crystalline region, and traps at chain fold-amorphous interfaces. In this work attempt has bean made to investigate the time effect on the variation of surface and volume resistivity of the LDPE and HDPE samples were irradiated under the 10 MeV electron beam of Rhodotron accelerator. In fact, the aim was to investigate these variations during about one mount after irradiation which is changing due to the charge storage in the polyethylene. The samples were prepared in sheet form with the thickness of 0.6±0.1 mm and irradiated at the dose range of 70 to 370 kGy. All the samples were kept at room temperature in laboratory. The results show an increment at about 25 days after irradiation in surface resistivity and decreasing later on for all the samples. The results of volume resistivity measurements didn't show any significant variation

  20. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds

    Science.gov (United States)

    Ebrahimi-Mahmoudabad, S. R.; Taghinejad-Roudbaneh, M.

    2011-12-01

    This study was completed to determine effects of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on anti-nutritional factors, ruminal degradation and in vitro crude protein (CP) digestibility of whole cottonseed (WCS), soybean (SB) and canola seeds (CS). EB-irradiation eliminated completely ( P<0.001) phytic acid of WCS, SB and CS at a dose of 30 kGy. EB-irradiation decreased linearly ( P<0.001) the total glucosinolate content of CS. Trypsin inhibitor activity of 15, 30 and 45 kGy EB-irradiated SB was decreased by 19, 73 and 88%, respectively. Free gossypol content of WCS was reduced linearly ( P<0.001) by irradiation. EB-irradiation increased linearly ( P<0.001) CP digestibility of feeds. In conclusion, EB-irradiation was an effective processing method for improving the nutritive value of WCS, SB and CS.

  1. A variable electron beam and its irradiation effect on optical and ...

    Indian Academy of Sciences (India)

    cost ... duction of low energy electron beam with a beam target chamber. ... target samples. The beam trajectory as estimated using SIMION-6 software [20] has been found to give satisfactory focusing action at the voltages within +5 V and.

  2. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Pomarico Neto, Walter

    2013-01-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  3. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation

    Science.gov (United States)

    Merrem, A.; Bartzsch, S.; Laissue, J.; Oelfke, U.

    2017-05-01

    Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.

  4. A study on the effects of electron beam irradiation on tooth extraction wound healing in rats

    International Nuclear Information System (INIS)

    Suzuki, Akiyoshi

    1983-01-01

    The wound of the upper jaw 3 days after the first molar tooth extraction in female rats was exposed to 1,500 rads (Group 2) and 2,000 rads (Group 3) of the 10 MeV electron beams, and its pathohistological changes were compared with those of rats with the tooth extraction alone (control group). In the control group, the tooth extraction wound was covered with epithelium 10 days later and new bones were formed 17 days later. Wound healing with the epithelium was seen in all irradiated rats 24 days later. The formation of the new teeth was seen 24 days later in the Group 2 and 38 days later in Group 3. Cell infiltration under the epithelial layers was still observed in some of the Group 3, although the wound was covered with epithelium, and the new bone covering the extraction wound was formed 38 days later. Healing was prolonged in Group 3, as compared with that in Group 2. (Namekawa, K.)

  5. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate

    Science.gov (United States)

    Hooshangi, Zhila; Feghhi, Seyed Amir Hossein; Sheikh, Nasrin

    2015-03-01

    Engineering plastics like Poly (butylene terephthalate) due to their desirable properties have various industrial applications. Neat PBT is highly combustible, so it is necessary to improve significantly its fire retardancy to meet the fire safety requirements. The combustion performance of PBT can be improved by addition of appropriate flame retardant additives. In this study we have investigated the effect of halogen free flame retardants, i.e. melamine and aluminum phosphate, and instantaneously electron beam radiation-induced crosslinking in the presence of Triallyl cyanurate on various properties of PBT. The results of gel content showed that a dose range of 200-400 kGy leads to high cross linked structure in this polymer. Also mechanical experiments showed that its structure became rigid and fragile due to irradiation. Radiation crosslinking of this polymer made its dielectric loss coefficient ten times lower than non-irradiated polymer, but had no effect on its dielectric constant. Moreover the addition of the fire retardant additives as impurity decreased the dielectric loss coefficient. TGA analysis in nitrogen exhibited that irradiation increases char formation and use of the fire retardant additives leads to reduction of onset temperature and formation of higher char quantity than pure PBT. According to the results of UL-94, irradiated samples burned with lower speed and less dripping in vertical and horizontal positions than pure polymer. Finally irradiation of the polymers containing fire retardant additives with a dose of 400 kGy led to self-extinguishing and non-dripping and reach to V-0 level in the UL-94 V.

  6. Effects of electron beam irradiation on the property behaviour of poly(ether-block-amide) blended with various stabilisers

    Science.gov (United States)

    Murray, Kieran A.; Kennedy, James E.; Barron, Valerie; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2015-05-01

    Radiosterilisation can induce modifications and/or degradation to transpire in poly(ether-block-amide) (PEBA) following irradiation. The current investigation utilises combined synergistic mixtures of stabilisers to minimise these effects, by melt blending them with the PEBA material. Hindered amine stabilisers (HAS), primary antioxidants and secondary antioxidants were the stabilisers incorporate to reduce/eliminate the effects of 50 kGy electron beam irradiation dose on the material. Results were discussed by comparing the stabilising efficiency of mixtures on the PEBA material in contrast to the control sample. Dynamic frequency sweeps demonstrated the formation of crosslinks, where the degree of crosslinking was dependent on the combination of stabilisers mixed in the base material (PEBA). The storage modulus displayed that PEBA blended with Irganox 565 had very slight changes in contrast to all other samples following irradiation. However, since this sample is a phenol containing system, severe discolouration was observed in comparison to other samples due to the oxidation of the hindered phenol. Overall, this study provides compelling evidence that a combined synergistic mixture of Irganox 565 (multifunctional phenolic antioxidant) and Tinuvin 783 (hindered amide light stabiliser) with PEBA, resulted in the best radiation stability.

  7. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  8. The effect of carbon beam on the survival of hematopoietic stem cells in irradiated mice

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Kojima, Eiichi; Tanaka, Kaoru

    1993-01-01

    The new cyclotron for heavy ion radiotherapy will be completed in the very near future at NIRS. High LET radiations having different qualities are known to produce differences in biological effectiveness. It is necessary to determine the biological effectiveness of this new radiation source in both normal and tumor tissues. In this paper, the effects of 200 kVp x-rays and a 135 MeV/u carbon 12 beam on hematopoietic stem cells (CFU-S and GM-CFC) are described. The rationale for this experimental approach is that the sensitivity of hematopoietic stem cells and the committed stem cells to radiation is often the treatment limiting-factor for radiotherapy. (author)

  9. Influences of molecular weight on curing effect of epoxy resin irradiated by electron beam

    International Nuclear Information System (INIS)

    Sui Gang; Liang Ji; Li Dan; Zhang Zuoguang; Chen Huijuan

    2004-01-01

    The influences of molecular weight on electron beam (EB) curing in epoxy resins were studied. The rate of radiation reaction in epoxy resin systems decreases with the increasing molecular weight. Under the low radiation dose, the curing thickness and curing degree is small for samples with high molecular weight. The effect of molecular weight decreases with the increasing radiation dose. The glass transition temperature (Tg) and the storage modulus (E') are under the control of curing degree in samples, and the molecular weight will play a role on the samples with similar curing degree. After heat treatment, the Tg and E' of epoxy resins cured by radiation will increase. The molecular weight is directly associated with effect of heat treatment

  10. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  11. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    Science.gov (United States)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  12. Hansan ramie fibers irradiated by electron beam

    International Nuclear Information System (INIS)

    Choi, Haeyoung; Lee, Jeong Sun

    2010-01-01

    Material is inexpensive, abundant Light weight: fuel efficient Environment: Co 2 reduction, renewable Performance: acceptable Spec. But it is variability, Irregular hollow fiber shape, limited planting counting Environment: odor, degradation of mechanical properties Performance: poor fiber-matrix bonding, water absorption, difficulty in quality control. Hansan ramie fibers were irradiated by electron beam to make surface modification for better bonding in the manufacture of composite. EB irradiation on cellulose changed the surface morphology property. - Impurities on the surface of ramie and lignin were removed by electron beam irradiation. The electron beam irradiation with high energy reduced α-cellulose and increased β-cellulose. - The reduction of α-cellulose indicates the degradation of cellulose chain, which usually lead to decrease of fiber strength properties. When ramie fibers were irradiated by electron beam with 3kGy, α-cellulose was not decreased significantly and the impurity and lignin were separated from the ramie fiber. The best mechanical properties were obtained when ramie fibers were obtained when ramie fibers were irradiated by electron beam with 3kGy

  13. Effect of Electron Beam Irradiation of the Characteristics of Jute Fibers and the Interfacial Properties of Jute/PLA Green Composites

    International Nuclear Information System (INIS)

    Ji, Sang Gyu; Cho, Dong Hwan; Lee, Byung Cheol

    2010-01-01

    Cellulose-based natural fibers such as jute, knife and hemp have promising potential as a replacement for glass fibers in a polymer composite system because of their many advantages like natural abundance, low cost, light weight, biodegradability, carbon dioxide reduction in nature and acceptable mechanical properties. However, natural fibers need an appropriate surface treatment modifying their surface characteristics in order to effectively improve the interfacial properties as well as the mechanical and thermal properties. Electron beam irradiation technique is particularly interesting as it may offer the possibility to modify the surfaces and to enhance the properties of polymer materials such as fibers, films and composites. In addition, electron beam processing has a merit because it is a dry, solvent free and eco-friendly method with a fast throughput rate. In the present study, Jute fibers were irradiated at different dosages of electron beam from 10 to 100 kGy. The result was compared with raw jute fibers un-irradiated, showing the effect on the interfacial shear strength between jute fibers and PLA in terms of single fiber tensile property, fiber surface topology, and chemical composition occurring in jute fibers upon irradiation. It has been found that the surface topology and chemical characteristics of jute fibers significantly depended on the electron beam dosage irradiated, directly influencing the interfacial shear strength and interlaminar shear strength of jute-PLA green composites. It was concluded that electron beam irradiation played a contributing role not only in physically modifying the jute fiber surfaces but also in improving the interfacial properties between jute fibers and poly in the green composite, exhibiting the most effectiveness at a low electron beam energy of 10 kGy

  14. Mechanical response of proton beam irradiated nitinol

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Naveed [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Ghauri, I.M., E-mail: ijaz.phys@gmail.co [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Mubarik, F.E.; Amin, F. [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2011-01-01

    The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase ({sigma}{sub RS}) and martensitic phase ({sigma}{sub MS}) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses {sigma}{sub RS} and {sigma}{sub MS} and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.

  15. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Science.gov (United States)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  16. The effect of a metal hip prosthesis on the radiation dose in therapeutic photon beam irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.-Y.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw; Lin, J.-P.; Liu, M.-T

    2002-07-01

    Prostate and cervical cancer patients are often treated with external X-ray beams of bi-lateral incidence. Such treatment may incur some dose effect that cannot be predicted precisely in commercial treatment planning systems (TPS) for patients having undergone total hip replacement. This study performs a Monte Carlo (MC) simulation and an analytical calculation (convolution superposition algorithm which is implemented in ADAC TPS) of a 6 MV, 5x5 cm{sup 2} X-ray beam incident into water with the existence of hip prosthesis, e.g. Ti6Al4V and CoCrMo alloy. The results indicate that ADAC TPS cannot precisely account for the scatter and backscatter radiation that a metal hip prosthesis causes. For percent depth dose (PDD) curves, the maximum underdosage of ADAC TPS up to 5 mm above the interface between dense material and water is 5%, 20% and 27% for PDD{sub Bone}, PDD{sub Ti} and PDD{sub Co}, respectively. The dose re-buildup, which occurs behind the hip region, becomes more and more obvious for denser medium existed in water. Increasing inhomogeneity also enhances the underdosage of ADAC for greater depth (>10 cm), as the figures of nearly 2% in PDD{sub Bone}, PDD{sub Ti} and 4-5% in PDD{sub Co} reveal. Overestimating the attenuated power of high-density non-water material in ADAC TPS causes this underdosage. For dose profiles, no significant differences were found in Profile{sub Bone} at any depth. Profile{sub Ti} reveals that MC slightly exceeds ADAC at off-axis position 1.0-2.0 cm. Profile{sub Co} reveals this more obviously. This finding means that scatter radiation from these denser materials is significant and cannot be predicted precisely in ADAC.

  17. Comparing Effects Of GAMMA And Electron Beam Irradiation On Microbiological And Biochemical Characters Of Selected Egyptian Aromatic Herbs

    International Nuclear Information System (INIS)

    FARAG, S.A.; YUSSEF, B.M.; SHAMS EL DIEEN, N.M.; ABDALLA, M.

    2009-01-01

    Selected Egyptian aromatic herbs (AH) which face demand for exporting abroad, such as spearmint (Mentha viridis Linn.), rosemary (Rosmarinus officinalis L.) and marjoram (Origanum majorana L.), were exposed to gamma and electron beam (EB) irradiation at different doses (5 and 10 kGy). The evaluation of irradiation efficiency was based on microbiological and biochemical studies including changes in volatile compounds and antioxidative activity. The microbiological assay revealed presence of high load levels in raw AH with log of total bacteria of rosemary (6.862 cfu.g-1) and spearmint (6.762 cfu.g -1 ) while marjoram was the lowest one (5.771 cfu.g -1 ). The highest levels of the log of total molds and yeast counts were observed in marjoram (5.097 cfu.g -1 ) while the less levels were observed in rosemary and spearmint. Using gamma irradiation was more effective than EB in decontamination of microbes either in reducing numbers to safe levels at 5 kGy or completely elimination at high dose (10 kGy) in all tested samples. Some specific bacteria were present in AH such as Enterococcus faecalis, Bacillus cereus and Clostridium perfringens at different levels whereas the log of E. faecalis was detected only in marjoram and spearmint with heavy load as 4.554 and 3.427 cfu.g -1 , respectively, while rosemary was less than 2 cfu.g -1 . Irradiation with both sources at 5 kGy reduced the count by about 2 log cycles in marjoram and 1 log cycle in spearmint. No colonies of the same microbe were detected at high dose (10 kGy) in all herbs with exception of marjoram. The log of B. cereus contamination was higher in spearmint than marjoram then rosemary. Irradiation of AH at 5 kGy reduced these values whereas high dose (10 kGy) caused complete elimination of B. cereus.GLC analysis of AH volatile oils showed presence of 22 compounds in spearmint included mainly carvon specific smells of spearmint besides monoterpens as α- -pinen (1.6%), Β-pinen (2.06%), limonene (4.75%). Also

  18. Study of electron beam irradiation effects on morphologic properties of the PET/PP/PE/EVA polymeric blend

    International Nuclear Information System (INIS)

    Rossini, Edvaldo L.; Silva, Leonardo G. Andrade e; Wiebeck, Helio

    2009-01-01

    Amidst the pollutants, plastics and especially the 'PET bottles' packaging type, which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) have been causing big damage to the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by mechanical recycling 'PET bottles' after consumption, with the objective of finding a solution for this environmental problem. It was also studied the different ionizing radiation dose effects (25, 50, 75, 100, 150, 200, 300, 400 and 500 kGy) on the blend properties using an electron beam accelerator. The morphologic properties of the non-irradiated and irradiated polymeric blend were evaluated by the Light Microscopy (LM) and Scanning Electron Microscopy (SEM). The analysis of the results appeared to be a not mixing and compatible blend. The use of the ionizing radiation improved the homogeneity of the blend. These modifications have been randomized and irregular, depending directly on the dose of applied radiation. (author)

  19. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Jeynes, J.C.G.; Merchant, M.J.; Kirkby, K.; Kirkby, N. [Surrey Ion Beam Center, Faculty of Engineering and Physical Science, University of Surrey, Guildford Surrey, GU2 7XH (United Kingdom); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  20. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  1. Radical formation of irradiated α-alanine and N-acetyl alanine with heavy ion beams. Effects of the irradiation temperature

    International Nuclear Information System (INIS)

    Minegishi, Atsuko; Nagasaki, Jun; Mori, Wasuke; Amano, Chikara; Takagi, Shinji; Murakami, Takeshi; Kanai, Tatsuaki; Furusawa, Yoshiya; Iwata, Yoshiyuki

    2003-01-01

    The characteristics of irradiation with C290 MeV/u ion beams were investigated using X-band electron spin resonance (ESR) spectroscopy for a polycrystalline powder of L-α-alanine at from 77K to 310K. The formed main radicals at 190K∼310K were the deamino radical and the decarboxyl radical. Because of the first-derivative ESR, decarboxyl radical showed an expanded spectral width and a lower peak height because of its amino hydrogen and nitrogen than that of the same amount of deamino radical. The ESR of irradiated L-α-alanine predominantly indicates the spectrum of the deamino radical. On the irradiated, L-α-alanine at from 77K to 310K ESR showed 1:4:6:4:1 lines at 220K and at room temperature, which indicate that the methyl group of the radical was rotating. On the other hand, at 77K ESR the spectrum showed nearly 1:5:5:5:1 lines, like the teeth of a saw, on samples irradiated at 270K∼350K (range IV), and 1:4:6:4:1 lines for those irradiated at 180K∼260K (range II and III), respectively. It is considered that the radical conformation of the deamino radical is planar (most stable conformation) on an irradiated sample in range IV, and a pyramidal structure on the irradiated sample in ranges II and III. (author)

  2. A variable electron beam and its irradiation effect on optical and ...

    Indian Academy of Sciences (India)

    Abstract. A low energy electron accelerator has been constructed and tested. The elec- tron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been ...

  3. Proton beam irradiation for ocular melanoma, 2

    International Nuclear Information System (INIS)

    Morita, Shinroku; Nakano, Takashi; Gomi, Hiromichi

    1987-01-01

    Seventy MeV Proton beam irradiation (beam range:38 mm in the water) was applied for the treatment of 6 patients of ocular melanoma between October 1985 and July 1986 at National Institute of Radiological Sciences(NIRS). The Proton beam has more localized and uniform dose distributions than the electron beams, leading to increased delivery of the dose to tumors with out excess exposure to adjacent normal tissues. Since the accurate treatment planning was necessary for the Proton beam therapy, various studies concerned with the diagnosis of tumor localization using X-CT, MRI or ultrasonography and with the methods for fixation of the body or target using holder or plastic shell were performed. The diagnosis of ocular melanoma was established in the all cases through clinical examinations, such as indirect ophthalmoscopy, fundus photography, fluorescein angiography, ultrasonography and so on. The narrow horizontal Proton beam(10 ∼ 24 mm diameter) was straightly irradiated to the tumor, through the several thicked bolus, avoiding an exposure to the lens. The dose of 30 ∼ 60 Gy/3 ∼ 5 fractions/3 ∼ 5 weeks (TDF 90 ∼ 150) was prescribed. Although the follow up studies in order to estimate the tumor response and the complications are not enough to long to evaluate the results, we believe that Proton beam irradiation is considered to be an excellent therapy for the management of ocular melanomas, alternative to enucleation of affected eye. (author)

  4. Estimating the effectiveness of human-cell irradiation by protons of a therapeutic beam of the joint institute for nuclear research phasotron using cytogenetic methods

    Science.gov (United States)

    Zaytseva, E. M.; Govorun, R. D.; Mitsin, G. V.; Molokanov, A. G.

    2011-11-01

    The effectiveness of the impact of therapeutic proton beams in human cells with respect to the criterion of formation of chromosome aberrations in human-blood lymphocytes is estimated. The physical characteristics of radiation (proton LET at the input of the object and in the region of the modified Bragg peak) and the role of the biological factor (the differences in the radiosensitivity of nondividing cells corresponding to the irradiation of normal tissues along the proton-beam path and tumor tissues) are taken into account. The relative biological effectiveness of protons is ˜1 at the beam input of the object and ˜1.2 in the Bragg peak region. Taking into account the higher radiosensitivity of dividing cells in the G 2 phase of the cell cycle, the irradiation effectiveness increases to ˜1.4.

  5. Effects of solvent polarity on mutual polypropylene grafting by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldo, A.B.C.; Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.

    2011-01-01

    Complete text of publication follows. Copolymerization by grafting is a process largely known and the advantages of modifying polymers by radiation includes superimposition of properties related to the backbone and the grafted chains in the absence of an initiator. This process produces low byproduct levels, costs and hazards. Since polypropylene is applied in many industrial and commercial sectors, the grafting process is an alternative to improve some of its physical and chemical properties. The aim of this work was to verify the effect of distinct organic solvents on polypropylene grafting process by mutual irradiation applying absorbed doses from 30 kGy to 100 kGy at dose rates of 2.2 kGy/s and 22.4 kGy/s. All process were performed in atmosphere air presence. Styrene was the monomer grafted on polymer substrate and some non-polar and polar organic solvents, like toluene, xylene, acetone, methanol and its homologous, were used at distinct concentrations. The grafted samples were evaluated by degree of styrene grafting (gravimetric determination) and the Mid-FTIR spectrophotometry. As a general behavior, the degree of grafting increases when absorbed dose values increase in a specific solvent until a maximum dose value (50-70 kGy), after this, the degree of grafting decreases. Moreover, the grafting process have high yields when protic polar solvents are used. These results suggest the grafting process does not have dependence of substrate swelling, that is expected when a non-polar substrate and a non-polar media are in contact. The grafting, in this case, can be related to the free radical generation at protic polar solvents in a first step of process mechanism; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed.

  6. Electron beam irradiation, oxygen, and temperature effects on nucleotide degradation in stored aquaculture hybrid striped bass fillets

    International Nuclear Information System (INIS)

    Karahadian, C.; Brannan, R.G.; Heath, J.L.

    1997-01-01

    Skinless fillets from commercially-grown aquaculture hybrid striped bass (Morone saxatilis x M. chrysops) were electron beam-irradiated in the presence of air or vacuum-packaged and stored at 4C and -20C for 14 days. A mean low dose level of 2.0 or 3.0 kGy (+/- 0.5 kGy) and high dose level of 20 kGy (+/- 4 kGy) were used for irradiated samples. Hypoxanthine (Hx) concentrations, Ki-values ([(INO + Hx)/(IMP + INO + Hx)] x 100), and H-values ([(Hx)/(IMP + INO + Hx)] x 100) indicated that irradiation did not influence the rate of nucleotide degradation compared with nonirradiated controls at either refrigerated or frozen temperatures. Vacuum packaging or freezing of stored samples resulted in lower H-values and Hx contents compared with nonirradiated controls regardless of irradiation treatment

  7. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal

    International Nuclear Information System (INIS)

    Ghanbari, F.; Ghoorchi, T.; Shawrang, P.; Mansouri, H.; Torbati-Nejad, N.M.

    2012-01-01

    This study was conducted to compare effects of electron beam (EB) and gamma ray (GR) treatments at doses of 25, 50 and 75 kGy on ruminal degradation kinetics of crude protein (CP), amino acid (AA), and in vitro digestibility of cottonseed meal (CSM). Ionizing radiations of EB and GR had significant effects (P 0.05). Irradiation processing caused decrement in AA degradation after 16 h of ruminal incubation (P<0.05). EB irradiation was more effective than GR irradiation in lessening the ruminal degradability of AA (P<0.05). EB and GR treatments at a dose of 75 kGy increased in vitro digestibility of CSM numerically. This study showed that EB could cause CP and AA bypass rumen as well as GR. Therefore, ionizing irradiation processing can be used as an efficient method in improving nutritional value of CSM. - Highlights: ► Irradiation was effective on reducing ruminal degradability of cottonseed meal. ► Ionizing radiations, especially electron beam, lessened ruminal degradability of amino acid substantially. ► Irradiation processing could be used as a safe and efficient method in improving nutritional value of cottonseed meal.

  8. Waste treatment by microwave and electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Craciun, G.; Manaila, E.; Ighigeanu, D; Oproiu, C.; Iacob, N.; Togoe, I.; Margaritescu, I.

    2007-01-01

    Comparative results obtained by applying separate and combined (successive and simultaneous) electron beam (EB) and microwave (MW) irradiation to waste treatment, such as food residuals (minced beef, wheat bran and wheat flour) and sewage sludge performed from a food industry wastewater treatment station (vegetable oil plant), are presented. The research results demonstrated that the simultaneous EB and MW irradiation produces the biggest reduction of microorganisms. The tests also demonstrated that the irradiation time and the upper limit of required EB absorbed dose, which ensures a complete sterilization effect, could be reduced by a factor of two by an additional use of MW energy to EB irradiation

  9. Ion beam irradiation effect on thermoelectric properties of Bi2Te3 and Sb2Te3 thin films

    Science.gov (United States)

    Fu, Gaosheng; Zuo, Lei; Lian, Jie; Wang, Yongqiang; Chen, Jie; Longtin, Jon; Xiao, Zhigang

    2015-09-01

    Thermoelectric energy harvesting is a very promising application in nuclear power plants for self-maintained wireless sensors. However, the effects of intensive radiation on the performance of thermoelectric materials under relevant reactor environments such as energetic neutrons are not fully understood. In this work, radiation effects of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric thin film samples prepared by E-beam evaporation are investigated using Ne2+ ion irradiations at different fluences of 5 × 1014, 1015, 5 × 1015 and 1016 ions/cm2 with the focus on the transport and structural properties. Electrical conductivities, Seebeck coefficients and power factors are characterized as ion fluence changes. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of the samples are obtained to assess how phase and microstructure influence the transport properties. Carrier concentration and Hall mobility are obtained from Hall effect measurements, which provide further insight into the electrical conductivity and Seebeck coefficient mechanisms. Positive effects of ion irradiations from Ne2+ on thermoelectric material property are observed to increase the power factor to 208% for Bi2Te3 and 337% for Sb2Te3 materials between fluence of 1 and 5 × 1015 cm2, due to the increasing of the electrical conductivity as a result of ionization radiation-enhanced crystallinity. However, under a higher fluence, 5 × 1015 cm2 in this case, the power factor starts to decrease accordingly, limiting the enhancements of thermoelectric materials properties under intensive radiation environment.

  10. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2014-01-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance

  11. Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: m-kawa@ecei.tohoku.ac.jp; Araki, Rei; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University (Japan)

    2009-04-15

    Indwelling catheters made of silicone elastomers sometimes cause serious infections owing to their poor biocompatibility. It is believed that these infections can be prevented by coating the silicone surface with apatite, which has excellent biocompatibility. If the surface of the silicone elastomer is in advance modified to have an apatite-forming ability, apatite can be coated on the modified silicone surface by soaking it in an aqueous solution such as a simulated body fluid (SBF) supersaturated with respect to apatite. In this study, silicone substrates were irradiated by four types of ion beams (Ar cluster, Ar cluster and monomer (Ar CM), O{sub 2} cluster, and O{sub 2} cluster and monomer (O{sub 2} CM) ion beams) at an acceleration voltage of 7 kV and a dose of 1 x 10{sup 15} ions/cm{sup 2}, and subsequently soaked in CaCl{sub 2} solution. The apatite-forming abilities of the substrates were examined using a metastable calcium phosphate solution whose ion concentration was 1.5 times that of SBF (1.5 SBF). Silicon oxide (SiO{sub x}) clusters were formed on the silicone surface and the hydrophilicity of the substrates was improved by the irradiation, irrespective of the ion species used. The irradiation with O{sub 2} CM ion beams resulted in the highest apatite-forming ability among the analyzed ion beams.

  12. Effect of Electron Beam Irradiation on Degradability Coefficients and Ruminalpostruminal Digestibility of Dry Matter and Crude Protein of some Plant Protein Sources

    Directory of Open Access Journals (Sweden)

    gasem tahan

    2016-06-01

    Full Text Available Effect of electron beam irradiation on degradability coefficients and ruminal- postruminal digestibility of dry matter and crude protein of soybean meal, canola meal and Lathyrus sativus seed, irradiated at doses of 50, 100 and 150 kGy was investigated. Ruminal degradability of dry matter and crude protein was determined by in situ method using two cannulated Holstein heifers. Ruminal- postruminal digestibility of dry matter and crude protein was determined by in situ (nylon bag-in vitro (daisy digestor techniques. Data analyzed using SAS software as randomized completely design and the treatment means were compared using Tukey test. The results indicated that irradiation had no effect on dry matter, ether extract and ash content of feeds. In soybean meal, washout fraction and potentially degradable fraction of dry matter and crude protein was higher and lower at dose of 150 kGy irradiation than other treatments, respectively, and degradation rate constant and ruminal effective degradability of dry matter and crude protein was lower at all doses of irradiation than untreated soybean meal. In canola meal, irradiation at doses of 50 and 100 kGy decreased washout fraction and increased potentially degradable fraction of crude protein compared with untreated canola meal. In Lathyrus sativus seed, only potentially degradable fraction of dry matter and crude protein was lower at dose of 150 kGy irradiation than untreated Lathyrus sativus seed. Ruminal digestibility of crude protein decreased in soybean meal at doses of 100 and 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. Total tract digestibility of crude protein decreased in soybean meal at dose of 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. In Lathyrus sativus seed, ruminal-postruminal digestibility and total tract digestibility of dry matter increased at doses of 100 and 150 kGy irradiation than untreated

  13. Molecular characterization of microbial mutations induced by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Hiroyuki [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan); Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)], E-mail: ichida@riken.jp; Matsuyama, Tomoki [Cellular Biochemistry Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Ryuto, Hiromichi [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Hayashi, Yoriko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Fukunishi, Nobuhisa [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Koba, Takato [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2008-03-01

    A positive selection system for gene disruption using a sucrose-sensitive transgenic rhizobium was established and used for the molecular characterization of mutations induced by ion beam irradiations. Single nucleotide substitutions, insertions, and deletions were found to occur in the sucrose sensitivity gene, sacB, when the reporter line was irradiated with highly accelerated carbon and iron ion beams. In all of the insertion lines, fragments of essentially the same sequence and of approximately 1188 bp in size were identified in the sacB regions. In the deletion lines, iron ions showed a tendency to induce larger deletions than carbon ions, suggesting that higher LET beams cause larger deletions. We found also that ion beams, particularly 'heavier' ion beams, can produce single gene disruptions and may present an effective alternative to transgenic approaches.

  14. Modification of fluoroelastomer by electron beam irradiation

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Montagna, Lea S.; Leitao Junior, Claudio B.; Pino, Eddy S.; Machado, Luci D.B.

    2005-01-01

    Fluoroelastomer is a polymer usually used as a sealing material due to some excellent properties, comparing to other elastomers, such as good chemical and thermal resistance. The fluoroelastomer used in this paper was a commercial product obtained from two monomers, vinylidene and hexafluoropropylene, containing also carbon black and inorganic fillers. Samples were irradiated with electron beam at doses from 10 to 250 kGy. The results obtained showed that electron beam radiation, in the studied conditions, promotes significant changes in the fluoroelastomer mechanical properties ending up in an increase of hardness, tensile strength and stiffness. The modifications on the mechanical properties can be related to a better adhesion between the fluoro elastomer and the fillers, induced by EB radiation. Micrographs obtained by Scanning Electron Microscopy for non-irradiated and irradiated samples confirmed this behavior. (author)

  15. Evaluating the Effect of Electron-Beam Irradiation on Linguatula serrata Destroy Isolated from Animal Products and Determining its Effective Dose

    Directory of Open Access Journals (Sweden)

    S Khalatbari-limaki

    2015-11-01

    Full Text Available Abstract Introduction: Foodborne parasitic diseases are considered common in most parts of the world, which can cause significant health problems. Linguatula serrata is a zoonotic parasite causing human linguatulosis due to consumption of raw and semi-cooked animal offal infected with nymphs of this parasite. Therefore, the main objective of this study was to determine the effect of Electron beam irradiation on death of the Linguatula serrata nymphs isolated from animal products. Methods: Linguatula serrata nymphs were irradiated with E-beam irradiation of 1, 2, 3 and 5 kGy doses 15 nymphs were classified into three groups of 5 for each dose. Death time of the nymphs was recorded by examining their movement under a stereomicroscope and then was compared with that of the control group stored at 4 °C. In order to analyze the study data, T-test and ANOVA were utilized setting the significance level at 0.05. Results: The comparison between treatment and control groups demonstrated a statistically significant difference in death time of the nymphs (P 0.05. Moreover, there was a statistically significant difference between the doses of 1, 2 and 3 kGy with dose of 5 kGy (P 0.05 in regard with their lethality speed. The results showed that minimum destruction dose of Linguatula serrata nymphs was 1 kGy and 5 KGy , resulted in a more rapidly death within the nymphs. Conclusion: Regarding the high sensitivity of Linguatula serrata nymphs to E-beam irradiation, this method can be used to enhance the safety of animal products in future.

  16. Evaluation of the effects of electron-beam irradiation on the puncture resistance by Lasioderma serricorne in flexible packaging of granola

    International Nuclear Information System (INIS)

    Oliveira, Vitor M.; Alves, Juliana N.; Nogueira, Beatriz R.; Moura, Esperidiana A.B.; Ortiz, Angel V.; Potenza, Marcos R.

    2009-01-01

    Lasioderma serricorne is a beetle that infests stored and industrialized dry foods such as cereal bars, granola, flour and pasta, amongst others, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by L. serricorne in BOPP/PP structure, used commercially as granola packaging after electron-beam irradiation. The irradiations were performed using a 1.5 MeV electron beam accelerator, dose rate of 11.22 kGy/s, at room temperature in presence of air, doses up to 120 kGy. After irradiation the BOPP/PP samples were subjected to tests of puncture resistance by L. serricorne, tensile strength, friction coefficient, penetration and seal strength. Results showed decreases in the original mechanical properties of the structure according to the radiation doses applied and effective resistance against punctures by L. serricorne (p<0.05). The results indicate that the irradiated and non-irradiated BOPP/PP structure, in the conditions studied in this work, is resistant against L. serricorne, however the decreases observed in the mechanical properties of the irradiated structure may turn it inappropriate for packaging granola. (author)

  17. Evaluation of the effects of electron-beam irradiation on the puncture resistance by Lasioderma serricorne in flexible packaging of granola

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Vitor M.; Alves, Juliana N.; Nogueira, Beatriz R.; Moura, Esperidiana A.B., E-mail: vmiranda@ipen.b, E-mail: julianaabc@ig.com.b, E-mail: bia.ribnog@gmail.co, E-mail: eabmoura@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ortiz, Angel V., E-mail: angel.ortiz@unipacnet.com.b [UNIPAC Embalagens Ltda., Sao Paulo, SP (Brazil); Potenza, Marcos R., E-mail: potenza@biologico.sp.gov.b [Instituto Biologico de Sao Paulo/APTA, Sao Paulo, SP (Brazil)

    2009-07-01

    Lasioderma serricorne is a beetle that infests stored and industrialized dry foods such as cereal bars, granola, flour and pasta, amongst others, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by L. serricorne in BOPP/PP structure, used commercially as granola packaging after electron-beam irradiation. The irradiations were performed using a 1.5 MeV electron beam accelerator, dose rate of 11.22 kGy/s, at room temperature in presence of air, doses up to 120 kGy. After irradiation the BOPP/PP samples were subjected to tests of puncture resistance by L. serricorne, tensile strength, friction coefficient, penetration and seal strength. Results showed decreases in the original mechanical properties of the structure according to the radiation doses applied and effective resistance against punctures by L. serricorne (p<0.05). The results indicate that the irradiated and non-irradiated BOPP/PP structure, in the conditions studied in this work, is resistant against L. serricorne, however the decreases observed in the mechanical properties of the irradiated structure may turn it inappropriate for packaging granola. (author)

  18. Four-quadrant silicon and silicon carbide photodiodes for beam position monitor applications: electrical characterization and electron irradiation effects

    Science.gov (United States)

    Rafí, J. M.; Pellegrini, G.; Godignon, P.; Quirion, D.; Hidalgo, S.; Matilla, O.; Fontserè, A.; Molas, B.; Takakura, K.; Tsunoda, I.; Yoneoka, M.; Pothin, D.; Fajardo, P.

    2018-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines, as well as other astronomy and space applications. Owing to their lower susceptibility to variable temperature and illumination conditions, there is also special interest in silicon carbide devices for some of these applications. Moreover, radiation hardness of the involved technologies is a major concern for high-energy physics and space applications. This work presents four-quadrant photodiodes produced on ultrathin (10 μm) and bulk Si, as well as on SiC epilayer substrates. An extensive electrical characterization has been carried out by using current-voltage (I-V) and capacitance-voltage (C-V) techniques. The impact of different temperature (from ‑50oC to 175oC) and visible light conditions on the electrical characteristics of the devices has been evaluated. Radiation effects caused by 2 MeV electron irradiation up to 1×1014, 1×1015 and 1×1016 e/cm2 fluences have been studied. Special attention has been devoted to the study of charge build-up in diode interquadrant isolation, as well as its impact on interquadrant resistance. The study of these electrical properties and its radiation-induced degradation should be taken into account for device applications.

  19. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine...

  20. Regression patterns of uveal melanomas after proton beam irradiation

    International Nuclear Information System (INIS)

    Wilkes, S.R.; Gragoudas, E.S.

    1982-01-01

    Forty-four uveal melanomas were evaluated for patterns of tumor regression after proton beam irradiation. All tumors were followed for a minimum of ten months after treatment. Seven lesions completely disappeared, 33 have decreased in size, and 4 remained unchanged. Associated signs of tumor regression were: resolution of the secondary serous retinal detachments, central apical yellow discoloration of the tumor, destruction of the tumor's vasculature, and elimination of fluorescein leakage. This study demonstrated that regression after proton beam irradiation is a relatively slow process, and the effects of radiation could be observed in some cases more than a year after treatment

  1. Damage production in silicon carbide by dual ion beams irradiation

    Science.gov (United States)

    Wang, Xu; Zhang, Yanwen; Han, Dong; Zhao, Yunbiao; Zhao, Ziqiang; Zhang, Ming

    2018-02-01

    Lattice damage and evolution in single crystalline 6H-SiC under Si + He successively dual ion beams irradiation is studied by using Raman spectroscopy, high resolution X-ray diffraction (HRXRD) and nano-indentation tests. Single Si and He ion irradiations are also performed for the comparison. The results of Raman spectra reveal that the damage level increases with the fluence. A normal strain profile along the ion path is generated due to ion irradiation induced dilation of lattices, contributing mainly by interstitial related defects. Moreover, Si and He ion implantation produced different types of defects. The damage and chemical bonding states are significantly changed after He atoms implanted in Si pre-irradiated samples. Si + He dual ion irradiations increase the damage level further, resulting in changes of the damage states because of complex defects interactions. The nano-hardness of irradiated SiC is combined results of hardening effects of some kinds of defects and the breakdown of covalent-bonds. The mechanical properties present significant differences between single Si, He and Si + He successively dual ion beam irradiations, due to defects evolution during the irradiation process.

  2. Postharvest quality of cut roses following electron-beam irradiation

    International Nuclear Information System (INIS)

    Chang, A.Y.; Gladon, R.J.; Gleason, M.L.; Parker, S.K.; Agnew, N.H.; Olson, D.G.

    1997-01-01

    Cut Rosa x hybrida L. 'Royalty' flowers were used to determine the efficacy of electron-beam irradiation for increasing postharvest quality and decreasing petal infection by Botrytis cinerea Pers. In an experiment for determining the injury threshold, roses received electron-beam irradiation of 0, 0.5, 1, 2, and 4 kGy. Irradiation dosages greater than or equal to 4 kGy caused necrosis on petal tissue and decreased postharvest life at 20 degrees C. In a second experiment to evaluate postharvest quality, roses were irradiated at 0, 0.25, 0.5, 0.75, and 1 kGy. Dosages of 0.25 and 0.5 kGy slowed the rate of flower bud opening for 2 days but did not decrease postharvest quality when compared with nonirradiated roses. Roses that received irradiation dosages of 0.75 and 1 kGy showed unacceptable quality. In a third experiment, roses that had or had not been inoculated with B. cinerea were irradiated at 0, 0.25, 0.5, and 0.75 kGy. Irradiation did not control B. cinerea populations, and rose quality decreased as dosage increased. In a fourth experiment to determine the effect of irradiation on B. cinerea, conidia on water-agar plates exposed to dosages less than or equal to 1, 2, and 4 kGy germinated at rates of approximately 90%, 33%, and 2%, respectively, within 24 h

  3. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  4. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    International Nuclear Information System (INIS)

    Siregar, J P; Sapuan, S M; Rahman, M Z A; Zaman, H M D K

    2010-01-01

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 deg. C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  5. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    Energy Technology Data Exchange (ETDEWEB)

    Siregar, J P; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rahman, M Z A [Department of Chemistry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zaman, H M D K, E-mail: januarjasmine@yahoo.com [Radiation Processing Technology Division, Malaysia Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2010-05-15

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 deg. C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  6. Behaviour of some fresh fruits under electron-beam irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.; Stroia, A.L.; Potcoava, A.; Cojocaru, M.; Mihnea, R.; Oproiu, C.

    1994-01-01

    The use of ionizing radiation in preservation of fruits and vegetables is widely recognized. In this paper it is presented a study of the effect of electron-beam irradiation of some fresh, early and perishable fruits, like strawberries, cherries, and sour cherries concerning their shelf-life time extension. The irradiations were performed on common varieties in normal conditions to the IPTRD's electron-beam accelerator (Bucharest-Magurele) having the following parameters: flow current 10 μA, power 60 W and electron mean energy 6.23 MeV. The irradiation doses varied between 0.5-3.0 kGy and the dose rates between 100-1500 Gy/min. It was observed the fruit preservation capability of the treatment and it was analysed the main characteristics as organoleptic properties, weight of dry component, acidity, total and reducing sugars, ascorbic acid content and others. It was evidenced an increase in freshness and shelf-life extension by 5-7 days for strawberries and up to two weeks for cherries without any significant changes in the values of the considered parameters. Otherwise, for the applied doses, the electron-beam irradiation did not produce any significant changes in the values of fruit characteristic parameters. The results lead to the conclusion that the electron-beam irradiation is a good technological solution for fresh fruit processing. (Author) 1 Tab., 7 Refs

  7. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation.

    Science.gov (United States)

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K; Shao, Chunlin

    2015-07-10

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Clarification of leachate from reclaimed ground by electron beam irradiation

    International Nuclear Information System (INIS)

    Yamazaki, Masao; Sawai, Teruko; Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    To decompose organic matters such as humic acid and fulvous acid in the leachate from reclaimed ground, an electron beam irradiation technique was examined because of availability of higher dose rate than a 60 Co γ-ray source. This paper describes results of the above-mentioned preliminary examination. Test water was collected from No.15 dumping site at the Tokyo Bay. Irradiation sample was prepared by filtration with a filter and decarbonation with sulfuric acid. Fulvous acid solution by eliminating humic acid was also served for the examination. Electron beam irradiation of the sample solution was made with a Van de Graaf accelerator by 1.5 MeV, 140 Gy/sec of irradiation condition and with a dynamitron by 2.0 MeV, 25 kGy/pass of the condition. It was clarified that oxygen bubbling velocity during the irradiation did not affect much for the decrease rate of total organic matters (TOC) within 0.5 to 3.0 1/min of an experimental condition. As for radiation doses and TOC decrease, TOC was decreased much for lower dose rate irradiation (Van de Graaf accelerator), lower initial TOC concentration, or addition of hydrogen peroxide. For the combined treatment of radiation and flocculation to aim at irradiation dose decrease, fulvous acid solution was served for the test. Lower dose irradiation with a 60 Co source showed better TOC elimination and it was concluded that combination with flocculation was effective for the dose reduction. It was also found experimentally that TOC decrease behavior by the both radiation source was different due to temperature effect and further study should be made for the development of the practical electron beam irradiation technique. (Takagi, S.)

  9. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  10. Impact of electron beam irradiation on fish gelatin film properties.

    Science.gov (United States)

    Benbettaïeb, Nasreddine; Karbowiak, Thomas; Brachais, Claire-Hélène; Debeaufort, Frédéric

    2016-03-15

    The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  12. The effect of electron beam irradiation and modified pH on the survival and recovery of Escherichia coli

    International Nuclear Information System (INIS)

    Fielding, L.M.; Cook, P.E.; Grandison, A.S.

    1994-01-01

    The severity of radiation processing can be reduced by combining irradiation with other treatments, such as low pH. An exponential phase culture of Escherichia coli was irradiated at doses of 0-2.4 kGy at pH values ranging between 7.0 and 4.0, in an enriched nutrient broth. At pH 4.3 and above there was no significant effect of lowering the pH prior to irradiation. At pH 4.13 and 4.0, a much higher level of cell death occurred compared with irradiation at pH 7.0. This synergistic effect was observed only when the pH was lowered before radiation processing. (Author)

  13. Treatment of supernatant from sewage sludge by elctron beam irradiation

    International Nuclear Information System (INIS)

    Arai, Hidehiko; Sugiyama, Masashi; Shimizu, Ken.

    1988-01-01

    Part of the results was presented on the investigation of treatment of supernatant from sewage sludge by combination of electron beam irradiation and microbiological treatment. Supernatant is electron-beam irradiated after microbiologically treated, and then treated microbiologically again. Based this method, by irradiation of 10 kGy, chemical oxygen demand (COD) in supernatant can be decreased lower than 30 ppm. Moreover, electron-beam irradiation induces remarkable decolorization and deodorization. (author)

  14. Effects of solvent polarity on mutual styrene grafting onto polypropylene by electron beam irradiation

    International Nuclear Information System (INIS)

    Moura, E.; Manzoli, J.E.; Geraldo, A.B.C.

    2012-01-01

    Radiation induced mutual grafting of styrene onto polypropylene has been carried using several grafting solutions with different organic solvents and polarity levels. In the mixture of styrene and protic polar solvents high grafting yields were obtained. This behavior suggests that grafting process does not have dependence on swelling of the substrate, something that is expected when a non-polar substrate and a non-polar media are in contact. In this case, the grafting yield may be related to the free radical generation at protic polar solvent; these reactive specimens start the reaction on substrate surface to allow the accessibility of monomer species to active sites. Some reaction mechanisms are proposed. - Highlights: ► Styrene grafting is performed with high yield when protic polar solvents are used. ► Results are related to effects from electron solvation and dipole interactions. ► Grafting samples performed in n-octanol mixtures had crystallinity changes.

  15. Effect of Electron Beam Irradiation on the Structural Properties of Poly (Vinyl Alcohol) Formulations with Triphenyl Tetrazolium Chloride Dye (TTC)

    International Nuclear Information System (INIS)

    Ali, Z.I.; Said, H.M.; Ali, H.E.

    2005-01-01

    Films of poly (vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the color difference (Δ E) of PVA/TTC films was increased by -10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point (Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation. Keywords: PVA, PVA/TTC composites, Electron beam irradiation, color strength, FTIR, thermal and mechanical characterization

  16. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  17. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    International Nuclear Information System (INIS)

    Yasumoto, K.; Fujino, M.; Supriyadi; Suzuki, T.; Hayashi, T.

    1991-01-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10 8 /g. Turmeric finger which was irradiated by electron beam at 10kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10kGy and 20kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers

  18. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    Energy Technology Data Exchange (ETDEWEB)

    Yasumoto, Kyoden; Fujino, Masayuki; Supriyadi (Kyoto Univ., Uji (Japan). Research Inst. for Food Science); Suzuki, Tetsuya; Hayashi, Toru

    1991-08-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10{sup 8}/g. Turmeric finger which was irradiated by electron beam at 10 kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10 kGy and 20 kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers. (author).

  19. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    International Nuclear Information System (INIS)

    Yasumoto, Kyoden; Fujino, Masayuki; Supriyadi; Suzuki, Tetsuya; Hayashi, Toru.

    1991-01-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10 8 /g. Turmeric finger which was irradiated by electron beam at 10 kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10 kGy and 20 kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers. (author)

  20. Verification of micro-beam irradiation

    Science.gov (United States)

    Li, Qiongge; Juang, Titania; Beth, Rachel; Chang, Sha; Oldham, Mark

    2015-01-01

    Micro-beam Radiation Therapy (MRT) is an experimental radiation therapy with provocative experimental data indicating potential for improved efficacy in some diseases. Here we demonstrated a comprehensive micro-beam verification method utilizing high resolution (50pm) PRESAGE/Micro-Optical-CT 3D Dosimetry. A small PRESAGE cylindrical dosimeter was irradiated by a novel compact Carbon-Nano-Tube (CNT) field emission based MRT system. The Percentage Depth Dose (PDD), Peak-to-Valley Dose Ratio (PVDR) and beam width (FWHM) data were obtained and analyzed from a three strips radiation experiment. A fast dose drop-off with depth, a preserved beam width with depth (an averaged FWHM across three beams remains constant (405.3um, sigma=13.2um) between depth of 3.0~14.0mm), and a high PVDR value (increases with depth from 6.3 at 3.0mm depth to 8.6 at 14.0mm depth) were discovered during this verification process. Some operating procedures such as precise dosimeter mounting, robust mechanical motions (especially rotation) and stray-light artifact management were optimized and developed to achieve a more accurate and dosimetric verification method.

  1. The effect of electron beam irradiation on forensic evidence. 1. Latent print recovery on porous and non-porous surfaces.

    Science.gov (United States)

    Ramotowski, Robert S; Regen, Erin M

    2005-03-01

    The recent use of the postal system as a means of delivering anthrax spores via several contaminated envelopes has led to the selective irradiation of mail. These as yet unsolved attacks and the U.S. Postal Service's decision to irradiate certain types of mail has led to some unexpected complications. The high doses of radiation required to destroy biological agents like anthrax are sufficient to induce damage to other materials present in the envelope. There have been reports of damage to many different items that have been subjected to irradiation, including paper, precious gems, plastic, computer discs, and electronics. However, few studies have examined the effect of such treatments on items of forensic interest. In this paper, the authors focused on the impact of the irradiation process on the ability to visualize latent prints. This experiment involved using several donors, substrates (both porous and non-porous), and visualization reagents. The results indicate that the irradiation process can have a detrimental effect on the success of certain visualization reagents.

  2. Ion irradiation effects on a magnetic Si/Ni/Si trilayer and lateral magnetic-nonmagnetic multistrip patterning by focused ion beam

    Science.gov (United States)

    Dev, B. N.; Banu, Nasrin; Fassbender, J.; Grenzer, J.; Schell, N.; Bischoff, L.; Groetzschel, R.; McCord, J.

    2017-10-01

    Fabrication of a multistrip magnetic/nonmagnetic structure in a thin sandwiched Ni layer [Si(5 nm)/Ni(15 nm)/Si] by a focused ion beam (FIB) irradiation has been attempted. A control experiment was initially performed by irradiation with a standard 30 keV Ga ion beam at various fluences. Analyses were carried out by Rutherford backscattering spectrometry, X-ray reflectivity, magnetooptical Kerr effect (MOKE) measurements and MOKE microscopy. With increasing ion fluence, the coercivity as well as Kerr rotation decreases. A threshold ion fluence has been identified, where ferromagnetism of the Ni layer is lost at room temperature and due to Si incorporation into the Ni layer, a Ni0.68Si0.32 alloy layer is formed. This fluence was used in FIB irradiation of parallel 50 nm wide stripes, leaving 1 µm wide unirradiated stripes in between. MOKE microscopy on this FIB-patterned sample has revealed interacting magnetic domains across several stripes. Considering shape anisotropy effects, which would favour an alignment of magnetization parallel to the stripe axis, the opposite behaviour is observed. Magneto-elastic effects introducing a stress-induced anisotropy component oriented perpendicular to the stripe axis are the most plausible explanation for the observed behaviour.

  3. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  4. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    Directory of Open Access Journals (Sweden)

    Min-Jung Jung

    2015-01-01

    Full Text Available Activated carbons (ACs were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs. The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. These results were attributed to the transformation and degradation of the nanocrystallinity of the AC surfaces due to the e-beam irradiation. The specific capacitance of the ACs treated with the e-beam at radiation doses of 200 kGy increased by 24% compared with the untreated ACs, and the charge transfer resistance of the ACs was decreased by the e-beam irradiation. The enhancement of the electrochemical properties of the e-beam irradiated ACs can be attributed to an increase in their specific surface area and surface crystallinity.

  5. Effect of two virus inactivation methods. Electron beam irradiation and binary ethylenimine treatment on determination of reproductive hormones in equine plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kyvsgaard, N.C.; Nansen, P. [The Royal Veterinary and Agricultural Univ., Danish Centre for Experimental Parasitology, Frederiksberg (Denmark); Hoeier, R.; Brueck, I. [The Royal Veterinary and Agricultural Univ., Dept. of Clinical Studies, Section of Reproduction, Frederiksberg (Denmark)

    1997-12-31

    Ionizing irradiation and binary ethylenimine treatment have previously been shown to be effective for in-vitro inactivation of virus in biological material. In the present study the 2 methods were tested for possible effects on measurable concentrations of reproductive hormones in equine plasma (luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P{sub 4}), and oestradiol-17 {beta} (E{sub 2})). The inactivation methods were electron beam irradiation with a dose from 11 to 44 kGy or treatment with binary ethylenimine (BEI) in concentrations of 1 and 5 mmol/L. Generally, there was a close correlation (r>0.8, p<0.001) between pre- and post-treatment hormone levels. Thus, the different phases of the oestrous cycle could be distinguished on the basis of measured hormone concentrations of treated samples. However, both treatments significantly changed hormone concentrations of the plasma samples. For LH, FSH, and E{sub 2} the effect of irradiation and BEI treatment was depressive and dose-dependant. For P{sub 4} the effect of irradiation was also depressive and dose-dependant. However, the highest dose of BEI resulted in an increase of measured P{sub 4} concentration, which may be attributed to changes in the plasma matrix due to the treatment. Although the treatments affected measured hormone concentrations, the close correlation between pre-treatment and post-treatment measurements means that the diagnostic value will remain unchanged. (au). 17 refs.

  6. An irradiation facility with a horizontal beam for radiobiological studies

    International Nuclear Information System (INIS)

    Czub, J.; Adamus, T.; Banas, D.

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw University. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as the plateau of the Bragg curve as well as in the Bragg peak. The passive beam spread out by a thin scattering foil provides a homogeneous irradiation field over an area of at least 1 x 1 cm 2 . For in vitro irradiation of biological samples the passive beam spreading combined with the x - y mechanical scanning of the irradiated sample was found to be an optimum solution. Using x - y step motor, the homogenous beam of ions with the energy loss range in the cells varied from 1 MeV/μm to 200 keV/μm is able to cover a 6 cm in diameter Petri dish that holds the biological samples. Moreover on-line fluence monitoring based on single-particle counting is performed to determine the dose absorbed by cells. Data acquisition system for dosimetry and ion monitoring based on a personal computer is described. (author)

  7. Commercializing ALURTRONs electron beam irradiation services

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Mohd Sidek Othman; Shari Jahar; Sarada Idris; Naurah Mohd Isa; Muhamad Zahidee Taat

    2010-01-01

    ALURTRON has been the nation's sole electron irradiation service provider for research sectors. The main irradiation is done by utilising the EPS 3000 Cockcroft-Walton type 3.0 MeV, 90 k Watts electron beam machine (EBM). With more than 15 years experience in the operation and maintenance of the EPS, the challenge is now to commercialize the service at a larger and profitable scale. Medical products sterilization at commercial level has been ruled out since the energy is insufficient to penetrate dense and non-homogenous items. Recently, the demand for irradiation of wire and heat shrinkable tubes is showing bigger commercial potential. Therefore, prudent planning considerations need to be taken to ensure profitable return to the agency. Calculations were made to estimate ALURTRON service capacity, based on the existing EBM and its auxiliary systems. Details of the calculation including all the variables are presented. Results indicated that Alurtron should be able to process a minimum of 1000 km of small wires per month, running at 150 m/ min, working in two shifts, 5 days a week. The projected revenue is dependent on the charges imposed on the basis of total length delivered. (author)

  8. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  9. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  10. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  11. Effects of electron beam irradiation on the migration of antioxidants and their degradation products from commercial polypropylene into food simulating liquids.

    Science.gov (United States)

    Bourges, F; Bureau, G; Pascat, B

    1993-01-01

    The influence of electron beam irradiation on migrational behaviour of additives present in food packaging material was studied. The migration experiments were carried out on irradiated and non-irradiated polypropylene pouches containing aqueous food simulating liquids (FSL) for 10 days at 40 degrees C. The controls were irradiated and non-irradiated pouches without FSL contact. After the contact period, the polypropylene and the FSL were analysed. A comparison between the results obtained by the two analyses showed the migration of three products of antioxidant degradation from the polypropylene into the FSL, and a partial decomposition of these migrants in the FSL.

  12. Effect of MgSO4 on expression of NSE and S-100 in rats brain tissue irradiated by 6 MeV electron beam

    International Nuclear Information System (INIS)

    Zhou Juying; Wang Lili; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental administered group. The whole brain of SD rats of experimental control group and experimental-therapeutic group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. The brain tissue were taken on days 1, 7, 14 and 30 after irradiation. Immunohistochemical method was used to detect the expressions of NSE and S-100 in brain tissue. All data were processed statistically with One-ANOVA analysis. Results: The expressions of NSE and S-100 after whole brain irradiation were time-dependent. Compared with blank control group, the expression of NSE in brains of experimental control group decreased significantly (P 4 can inhibit the expression of S-100, but induce the expression of NSE on radiation-induced acute brain injury. MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  13. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    Science.gov (United States)

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. Copyright © 2014. Published by Elsevier B.V.

  14. Long-term results of proton beam irradiated uveal melanomas

    International Nuclear Information System (INIS)

    Gragoudas, E.S.; Seddon, J.M.; Egan, K.

    1987-01-01

    The first 128 consecutive patients with uveal melanomas treated with proton beam irradiation were studied in order to evaluate survival and visual acuity status of patients with relatively long-term follow-up. The median follow-up was 5.4 years, and no patient was lost to follow-up. All tumors showed regression. The most recent visual acuity was 20/40 or better in 35% and 20/100 or better in 58%. Eight eyes were enucleated because of complications. Metastasis developed in 26 patients (20.5%) from 3 months to 7 years after treatment. Results indicate that proton irradiation is quite successful for achieving local control of uveal melanomas. A large proportion of the treated eyes maintained useful vision. Five-year follow-up data indicate that proton irradiation has no deleterious effect on the likelihood of the development of metastasis

  15. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz, E-mail: hgomes@cnen.gov.b, E-mail: pbrito@cnen.gov.b, E-mail: cvroque@cnen.gov.b, E-mail: abrusqui@cnen.gov.b [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana, E-mail: marciamh@ital.gov.b, E-mail: lucianam@ital.gov.b [Food Technology Institute (ITAL), SP (Brazil). Meat Technology Center

    2011-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and {alpha}-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h{sup -1}) and electron beam (2.9 kGy.s{sup -1}). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and {alpha}-tocopherol (A2). (author)

  16. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz; Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana

    2011-01-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and α-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h -1 ) and electron beam (2.9 kGy.s -1 ). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and α-tocopherol (A2). (author)

  17. Permeation of gases through electron-beam-irradiated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Hidetoshi; Muraoka, Michiaki; Tanaka, Kazuhiro; Okamoto, Ken-ichi

    1988-06-01

    The permeation of CO/sub 2/, CH/sub 4/, O/sub 2/, N/sub 2/, SF/sub 6/, and He was measured at 35deg C in electron-beam-irradiated polymer films such as 1,2-polybutadiene (PB), polycarbonate (PC), polydimethylsiloxane (PDMS), poly(ethylene terephthalate) (PET), poly(4-methylpentene-1) (PMP), and polypropylene (PP). The permeability coefficients of the gases in PB decreased and those in PP increased with increasing irradiation dose, while those of PC, PDMS, PET, and PMP were virtually unaffected by irradiation. These results were attributed to the radiation effects of crosslinking in PB and degradation in PP. PC, PDM, PET, and PMP were insensitive to radiation, which accounts for the little change in permeation behavior. The decreases in permeability coefficients of the gases in irradiated PB films were attributed to changes in diffusivity, while solubility was not greatly affected. The dependence of permeability coefficients on crosslinking density of the irradiated PB films was also discussed. Decreases in permeability and diffusion coefficients were interpreted as due to decrease of free-volume content by crosslinking. The diffusion coefficient showed an approximately exponential relationship to the reciprocal of the average molecular weight between crosslinks (M-bar/sub c/) over a range of M-bar/sub c/ between 200 and 20000. This suggests that the free-volume of the crosslinked polymer may be proportional to M-bar/sub c/.

  18. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    Sung, Yong Joo; Shin, Soo-Jeong

    2011-01-01

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1 H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  19. Effects of gamma ray and electron beam irradiation on reduction of microbial load and antioxidant properties of Chum-Hed-Thet (Cassia alata (L.) Roxb.)

    Science.gov (United States)

    Prakhongsil, P.; Pewlong, W.; Sajjabut, S.; Chookaew, S.

    2017-06-01

    Considering the growing demands of herbal medicines, Cassia alata (L.) Roxb. has been reported to have various phytochemical activities. It has also been called in Thai as Chum-Hed-Thet. In this study, C. alata (L.) Roxb. powder were exposed to gamma and electron beam irradiation at doses of 0, 5, 10, 15 and 20 kGy. At the dose of 10 kGy, both of gamma and electron beam irradiation were sufficient in reducing microbial load of irradiated samples as specified in Thai pharmacopoeia (2005). These include the total aerobic microbial count of count of bacteria of 0.05). Therefore, both of radiation by gamma ray or electron beam at 10 kGy was sufficient in elimination of microbial flora and did not significantly affected the total phenolic content and antioxidant activities of C. alata (L.) Roxb.

  20. Effect of electron beam irradiation on thermal and mechanical properties of poly (lactic acid)/poly (ethylene-co-glycidyl methacrylate) blend

    Science.gov (United States)

    Kumar, Ashish; Rao, T. Venkatappa; Chowdhury, S. Ray; Reddy, S. V. S. R.

    2017-06-01

    Physiochemical blend of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyl methacrylate) (PEGMA) has been prepared by using twin-screw Micro compounder. The weight ratio of the blends was fixed at 80:20 (PLA: PEGMA). After that, the multipurpose test specimens -ASTM D638 of resulting blend and pristine PLA were prepared by injection moulding with mould temperature 32˚C. Furthermore, some test Specimens -ASTM D256 also prepared for notch impact test. The prepared samples were exposed to electron beam irradiation at different doses. These samples (un-irradiated and irradiated) were tested for mechanical and thermal properties. A detailed study is made by observing the improvement in the mechanical and thermal properties of the prepared blends with and without electron beam irradiation.

  1. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  2. Method of determining the position of an irradiated electron beam

    International Nuclear Information System (INIS)

    Fukuda, Wataru.

    1967-01-01

    The present invention relates to the method of determining the position of a radiated electron beam, in particular, the method of detecting the position of a p-n junction by a novel method when irradiating the electron beam on to the semi-conductor wafer, controlling the position of the electron beam from said junction. When the electron beam is irradiated on to the semi-conductor wafer which possesses the p-n junction, the position of the p-n junction may be ascertained to determine the position of the irradiated electron beam by detecting the electromotive force resulting from said p-n junction with a metal disposed in the proximity of but without mechanical contact with said semi-conductor wafer. Furthermore, as far as a semi-conductor wafer having at least one p-n junction is concerned, the present invention allows said p-n junction to be used to determine the position of an irradiated electron beam. Thus, according to the present invention, the electromotive force of the electron beam resulting from the p-n junction may easily be detected by electrostatic coupling, enabling the position of the irradiated electron beam to be accurately determined. (Masui, R.)

  3. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Science.gov (United States)

    Lim, D. G.; Seol, K. H.; Jeon, H. J.; Jo, C.; Lee, M.

    2008-06-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  4. Color formation study of irradiated polymers by electron beam

    International Nuclear Information System (INIS)

    Nardi, Daniela Teves

    2004-01-01

    Color formation on national and commercial polymers (polymethyl methacrylate, polystyrene and polycarbonate) irradiated by electrons beam was investigated by colorimetry (CIELab), electron spectroscopy resonance (ESR), photoacoustic infrared spectroscopy (FTIR-PAS) and differential exploratory calorimetry (DSC). The heat effect on colorimetric properties was investigated after heating (110 deg C for 1 hour) of irradiated polymers at 150 kGy. The rule of oxygen in colorimetric properties of irradiated polycarbonate was investigated in the air presence and absence (p = 10 -3 mmHg). The visual aspect did not agree with colorimetric parameters only for polycarbonate. Yellow color and darkness were induced by radiation for all studied polymers varying only the intensity and behavior in function of post-irradiation time and heating. Polymethyl methacrylate and polystyrene ESR spectra showed that radicals could be responsible by yellow color centers. Wherever, in polycarbonate, color centers were not due radical species. The nature of color centers for any studied polymer was not study by FTIR-PAS because there were no changes in FTIR-PAS spectra neither in function of dose nor heating. Polycarbonate was the most radiosensible and polystyrene was the most radioresistant of all studied polymers in concern of colorimetric properties. (author)

  5. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  6. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  7. Electrical properties of irradiated PVA film by using ion/electron beam

    Science.gov (United States)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  8. THE EFFECT OF IRRADIATION DOSE AND AMMONIA CONCENTRATION ON THE APPLICATION OF ELECTRON BEAM FOR TREATMENT GASES POLLUTION OF SO2AND NOX

    Directory of Open Access Journals (Sweden)

    Erizal Erizal

    2010-06-01

    Full Text Available The application of electron beam for treatment gases pollution of SO2 and NOx has been studied.  The simulated SO2 and NOx gases stream produced from diesel fuel burning boiler were flown into electron beam chamber. Irradiation was conducted using 1000 keV electron beam machine at the dose up to 8.8 kGy, while   water vapour and the ammonia gas with variation concentration flew into the system during irradiation. The concentrations of the gases change were observed during processes. After evaluation, it was found that by increasing irradiation dose, the concentration of SO2 and NOx gases removal increases.  The efficiency of gases removal may reach 98 % for SO2 and 88 % for NOX at a dose of 8.8 kGy. By increasing ammonia concentration, the efficiency gas removal increases. Besides, by-products from the irradiation yield were sulfate and nitrate salt compound which are possible to be used as a fertilizer.      Keywords: radiation, electron beam, gas pollution, SO2, NOx, ammonia

  9. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  10. In situ observation of electron beam irradiation effects in oxidized polycrystalline Si{sub 1-x}Ge{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Byul; Bae, Jee-Hwan; Kwak, Kyung-Hwan; Lee, Jae-Wook; Park, Min-Ho [School of Advanced Materials Sci. and Eng. and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Eng., Yonsei University, Seoul 120-749 (Korea, Republic of); Yang, Cheol-Woong [School of Advanced Materials Sci. and Eng. and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)], E-mail: cwyang@skku.edu

    2008-04-01

    This study examined the morphological and compositional changes that occur in oxidized poly-Si{sub 1-x}Ge{sub x} film during electron-beam irradiation in a transmission electron microscope. Before irradiation, the oxide layer was composed of a mixture of SiO{sub 2} and GeO{sub 2} phases. However, during electron-beam irradiation, there were significant changes in the microstructure and elemental distribution. For the oxidized poly-Si{sub 0.6}Ge{sub 0.4} films, the agglomeration of GeO{sub 2} was observed at the surface region. On the other hand, in the case of the oxidized poly-Si{sub 0.4}Ge{sub 0.6} films, the crystallization of GeO{sub 2} occurred in the oxide layer. Ge lattice fringes and twinning were also observed in the oxide layer.

  11. Effect of electron beam irradiation and poly(vinylpyrrolidone addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB composite

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available Biodegradable composites or green composites were prepared by melt blending technique using polycaprolactone and oil palm empty fruit bunch fibre (OPEFB. Since OPEFB is not compatible with PCL a binder, poly(vinyl pyrrolidone, (PVP was used to improve the interaction between PCL and OPEFB. The composites produced were irradiated using electron beam to improve the mechanical properties. The tensile, flexural and impact strengths of PCL/OPEFB composites were improved by addition of 1% by weight of PVP and irradiated with 10 kGy of electron beam. The FTIR spectra indicate a slight increase of frequencies at C=O peaks from 1730 to 1732 cm–1 after irradiation indicates some interaction between C=O and O–H. The surface morphology of the facture surface obtained from tensile test shows no fibre pull out indicating good adhesion between the OPEFB and PCL after addition of PVP.

  12. Electron beam irradiation: novel technology for phytosanitary purposes

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Dwivedi, J.; Gautam, S.; Sharma, Arun

    2015-01-01

    In the WTO regime, flow of agricultural commodities has increased, posing risk of inadvertent introduction of exotic pests. This can be minimized by undertaking quarantine measures. Quarantine/phytosanitary disinfestation treatments demand a very high level of security as the pest tolerance in quarantine is zero. Methyl bromide, a potent fumigant has been restricted in its use due to ozone depleting effect. Also, the conventional chemicals/fumigants being used world over are being restricted globally because of the various associated problems. Therefore, there is a need for an alternative ecofriendly strategy for controlling the pests. Irradiation, an approved technology by International Plant Protection Convention, appears to be a viable, nonchemical, residue-free strategy. Disinfestation of pulses with low energy electron irradiation potentially will have less deleterious effects on commodity quality than irradiation with other sources. Internationally, new radiation generating sources as Electron beam (EB) are being explored to meet import standards of quality and quarantine. The EB has a machine source and can be simply switched on or off. Irradiation of legume seeds viz., blackgram, greengram and soybean infested with pulse beetles (Callosobruchus maculatus and C. chinensis) at different doses at an energy level of 500 keV using the Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore revealed the dose-dependent effects on the insect growth parameters. Adult emergence from seeds infested with different stages was negligible and eggs laid by beetles that survived treatment did not develop into adults at higher doses. The lower doses viz., 170, 340 and 510 Gy on the other hand caused sterility effect on the insect but showed stimulatory effect on the physiological seed parameters . viz., seedling vigour and vigour index. Electron beam irradiation has a great potential for use in the disinfestation for phytosanitary purposes. Nevertheless

  13. Sterilization of ground spices by electron beams irradiation

    International Nuclear Information System (INIS)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi

    1999-01-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  14. Sterilization of ground spices by electron beams irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi [K. Kobayashi and Co., Ltd., Kako, Hyogo (Japan)

    1999-09-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  15. Electron beam irradiated silver nanowires for a highly transparent heater.

    Science.gov (United States)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-07

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  16. 'The future of the electron beam irradiation service business'

    International Nuclear Information System (INIS)

    Yamase, Yutaka

    1998-01-01

    The high energy electron beam has less penetration power in comparison with the gamma ray which has been used from before. However, the dose rate of the electron beam is considerably high in comparison with the gamma ray with more than several thousand times. Therefore, the irradiation of the product can be done in a short time, and there are cheap characteristics further in the irradiation cost as well. And, an electron beam is the technology which is very easy to accept in the country of a nuclear allergy constitution like our country so that it may not use radioactive substance. This time, I'd like to think about the present condition of the electron beam irradiation service business and a future based on the experience of Tsukuba EBcenter until now. (J.P.N.)

  17. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  18. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers

    International Nuclear Information System (INIS)

    Debelle, A.

    2006-09-01

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress (∼ 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a 0 , solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a 0 values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  19. Effects of γ irradiation on the compression and inter-laminar shear properties of G10 for the BESIII beam pipe supporting flange

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lifang, E-mail: zhenglifang@ustb.edu.cn [University of Science & Technology of Beijing, Beijing, 100083 (China); Qiao, Zhiming [University of Science & Technology of Beijing, Beijing, 100083 (China); Shijiazhuang Mechanical Engineering College, Shijiazhuang, 050003 (China); Xu, Xiaohui; Wang, Li [University of Science & Technology of Beijing, Beijing, 100083 (China)

    2017-04-15

    Highlights: • After γ irradiation, the epoxy resin matrix in G10 is destroyed; the connection between it and glass fibers loosens. • The compression strength drops. • The fragmentation and expansion of the resin matrix enhance the mutual sliding friction in G10. • The ILSS increases. - Abstract: Given their excellent electrical insulating performance and mechanical properties, G10 epoxy glass cloth-laminated sheets (G10) are used as spare materials for the supporting flange of the Beijing Spectrometer III beam pipe in the Beijing Electron Positron Collider II (BECPII). However, during BECPII operation, the beam pipe suffers a significant amount of γ and neutron irradiation. Studies have demonstrated that when the G10 is exposed to γ irradiation for a sufficiently long time, the material will become damaged, and its mechanical properties will change. In the present work, the compression strength and inter-laminar shear strength (ILSS) of G10 samples were tested. Results showed that after 20 and 200 kGy γ irradiation, the compression strength decreased by 1.26% and 2.15%, respectively, whereas the ILSS increased by 16.17% and 17.95%, respectively. The micro-structural pattern of the samples was investigated by scanning electron microscopy. The firm mesh structure of the epoxy resin matrix was destroyed, and the bonding interface between the glass fibers and the epoxy resin was damaged after γ irradiation. Some microcracks were observed in the glass fibers after γ irradiation. The epoxy resin before and after the irradiation was analyzed by infrared spectroscopy. Results showed that the degradation reaction was dominant during the irradiation compared with the cross-linking reaction in the epoxy resin, leading to the fracture of the molecular chain. The degree of binding between the epoxy resin also decreased.

  20. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  1. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  2. Uniform irradiation system using beam scanning method for cyclotron

    International Nuclear Information System (INIS)

    Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo

    1994-03-01

    JAERI AVF-cyclotron is equipped with an ion beam scanner for large area irradiation. The two-dimensional fluence distribution of ion beam obtained using cellulose triacetate film dosimeter was not uniform. This is resulted from the distortion of excitation current for electromagnet of the scanner. So, the beam scanning condition, i.e., the relation between the ion species, the beam profile and the scanning width, was extremely limited to make a good uniformity. We have developed a beam scanning simulator to get fluence distributions by calculation and then compared the simulated distributions with the measured ones. It was revealed that the both of them are in good agreement and the beam scanning condition to get good uniformity was led by using this simulator. On the basis of these results, the power supply of scanner was improved. A good uniformity of beam distribution was available. (author)

  3. Gamma and Ion-Beam Irradiation of DNA: Free Radical Mechanisms, Electron Effects, and Radiation Chemical Track Structure

    Science.gov (United States)

    Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava

    2016-01-01

    The focus of our laboratory’s investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ−) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre−), and aqueous (or, solvated) electrons (eaq−)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species. PMID:27695205

  4. E-beam irradiation effect on CdSe/ZnSe QD formation by MBE: deep level transient spectroscopy and cathodoluminescence studies

    International Nuclear Information System (INIS)

    Kozlovsky, V I; Litvinov, V G; Sadofyev, Yu G

    2004-01-01

    CdSe/ZnSe structures containing 1 or 15 thin (3-5 monolayers) CdSe layers were studied by cathodoluminescence (CL) and deep level transient spectroscopy (DLTS). The DLTS spectra consisted of peaks from deep levels (DLs) and an additional intense peak due to electron emission from the ground quantized level in the CdSe layers. Activation energy of this additional peak correlated with an energy of the CdSe-layer emission line in the CL spectra. Electron-beam irradiation of the structure during the growth process was found to influence the DLTS and CL spectra of the CdSe layers, shifting the CdSe-layer emission line to the long-wave side. The obtained results are explained using the assumption that e-beam irradiation stimulates the formation of quantum dots of various sizes in the CdSe layers

  5. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chauhan, S.K.; Prasad, T.V.; Pramod, R.; Verma, V.P.; Petwal, V.; Dwivedi, J.; Bhalla, S.

    2015-01-01

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M 1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  6. Postmastectomy electron-beam chest-wall irradiation in women with breast cancer

    International Nuclear Information System (INIS)

    Gez, Eliahu; Ashaf, Nurit; Bar-Deroma, Rachel; Rosenblatt, Edward; Kuten, Abraham

    2004-01-01

    Purpose: This retrospective study evaluates the results of postmastectomy electron-beam chest-wall irradiation in patients with breast cancer. Methods and materials: From 1980 to 1994, 144 women with localized breast cancer received postmastectomy radiotherapy. The chest wall was irradiated by electron beam, 6 to 12 MeV energy, depending on wall thickness, 2.0 Gy daily, 5 times/week for total dose of 50 Gy. Forty-one patients received 16-Gy boosts to the mastectomy scar. In addition, the supraclavicular and axilla areas were irradiated by anterior field with 6-MV photon beam. Results: Median follow-up was 84 months. Fifteen patients (10%) had local-regional recurrence (LRR) and 57 patients (40%) had systemic relapse (SR). Median time from mastectomy to LRR was 20 months and median time to SR was 33 months. Axillary lymph nodes status influenced both LRR and SR. LRR rate was 0% in N0 and 12% in N1 disease; SR rate was 14% in N0 and 45% in N1 disease. Disease-free and overall survival was 58% and 67% in 10 years and 50% and 55% in 20 years, respectively. No cardiac toxicity was related to left chest-wall irradiation. Conclusion: Postmastectomy electron-beam chest-wall irradiation is as effective as photon-beam irradiation in breast cancer

  7. Mechanical and thermal properties of electron beam-irradiated polypropylene reinforced with Kraft lignin

    Science.gov (United States)

    Sugano-Segura, A. T. R.; Tavares, L. B.; Rizzi, J. G. F.; Rosa, D. S.; Salvadori, M. C.; dos Santos, D. J.

    2017-10-01

    Polypropylene reinforced with Kraft lignin composites (0, 2.5, 5.0 and 10.0 wt% lignin) were submitted to electron beam (EB) irradiation at doses of 0, 50, 100 and 250 kGy. Kraft lignin incorporation maintained Young´s modulus values, even at electron beam doses up to 100 kGy (10 wt% lignin). The yield stress losses were also reduced by the addition of lignin to polypropylene. Fourier transform infrared spectroscopy (FTIR) results showed low formation of carboxyl and hydroxyl groups for composites containing lignin. Dynamic mechanical analysis (DMA) curves indicated a synergistic effect between Kraft lignin and electron beam irradiation on the storage modulus (E´). Several properties evolved as a function of the Kraft lignin content. Synergistic effects between Kraft lignin incorporation and electron beam radiation contribute to applications that require the mechanical and thermal properties of iPP to be maintained, even after high doses of electron beam radiation.

  8. Electron beam irradiation of gemstone for color enhancement

    Science.gov (United States)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  9. Electron beam irradiation of gemstone for color enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A' iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); School of Chemicals and Material Engineering, NUST Islamabad (Pakistan); Malaysian Nuclear Agency, Bangi, Selangor (Malaysia)

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  10. Electron beam irradiation of gemstone for color enhancement

    International Nuclear Information System (INIS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-01-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  11. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  12. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-01-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and the ratio of BOD 5 and COD (BOD 5 /COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV 254 ) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process. - Highlights: • Irradiation pre-treatment did not improve the raw textile wastewater biodegradability. • Irradiation can highly enhance the biodegradability of biological treated effluent. • EB irradiation can be used as a post-treatment after biological process.

  13. Effects of sewage sludge modified by coal gasification slag and electron beam irradiation on the growth of Alhagi sparsifolia Shap. and transfer of heavy metals.

    Science.gov (United States)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng; Li, Xin

    2018-02-10

    A greenhouse experiment was performed to investigate the feasibility of sewage sludge modified by coal gasification slag pretreatment and electron beam irradiation in soil application for cultivation of Alhagi sparsifolia Shap . The results showed that modified sewage sludge had an active effect on the growth of Alhagi sparsifolia Shap . The sandy soil and modified sludge at the volume ratio of 2:1 were optimal, and the growth potential of Alhagi sparsifolia Shap . was highest. In the sandy soil, the values of bioconcentration factor of most heavy metals were below 1.0 except for Zn and Cu. The average bioconcentration factor values of heavy metals in Alhagi sparsifolia Shap . decreased in a sequence of Zn>Cu>Ni> Mn>Co>Pb>Cr>Fe>V>Cd>Mo for all treatments. Alhagi sparsifolia Shap . could decrease the eco-toxicity and bioavailability of Ni, Fe, and Mo in all mixed soil, and Alhagi sparsifolia Shap . could reduce the eco-toxicity and bioavailability of all heavy metals discussed in this study (except for Mn) in the mixed soil of SS:MSS = 2:1.

  14. Development of useful genetic resources by proton-beam irradiation

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Park, Hyi Gook; Jung, Il Lae; Seo, Yong Won; Chang, Chul Seong; Kim, Jae Yoon; Ham, Jae Woong

    2005-08-01

    The aim of this study is to develop new, useful and high-valuable genetic resources through the overproduction of biodegradable plastics and the propagation of wheat using proton-beam irradiation. Useful host strain was isolated through the mutagenization of the Escherichia coli K-12 strain, followed by characterizing the genetic and physiological properties of the E. coli mutant strains. The selected E. coli mutant strain produced above 85g/L of PHB, showed above 99% of PHB intracellular content and spontaneously liberated intracellular PHB granules. Based on the results, the production cost of PHB has been estimated to approximately 2$/kg, leading effective cost-down. Investigated the propagation of wheat and its variation, a selectable criterion of wet pro of was established and genetic analysis of useful mutant was carried out

  15. Spectroscopic investigations on ion beam irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O.; Chipara, M. E-mail: mchipara@unlserve.unl.edu; Enge, W.; Compagnini, G.; Reyes-Romero, J. E-mail: vetr@caracas.c-com.net; Bacmeister, U.; Chipara, M.D

    2000-05-02

    Luminescence investigations on polycarbonate irradiated with accelerated uranium ions are reported. The dependence of luminescence spectra on the penetration length, deposited energy and dose and track radius is investigated. The luminescence spectrum has been assigned to phenyls. It is suggested that most phenyls are located within the latent track. The experimental results are in good agreement with data obtained by electron spin resonance spectroscopy.

  16. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. ATS Department

    2018-01-01

    In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.

  17. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  18. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation*

    Science.gov (United States)

    Ling, Anna Pick Kiong; Ung, Ying Chian; Hussein, Sobri; Harun, Abdul Rahim; Tanaka, Atsushi; Yoshihiro, Hase

    2013-01-01

    Objective: Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. Methods: In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. Results: The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Conclusions: Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics. PMID:24302713

  19. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation.

    Science.gov (United States)

    Ling, Anna Pick Kiong; Ung, Ying Chian; Hussein, Sobri; Harun, Abdul Rahim; Tanaka, Atsushi; Yoshihiro, Hase

    2013-12-01

    Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11 ± 0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics.

  20. In-situ synthesis of Ag nanoparticles by electron beam irradiation

    International Nuclear Information System (INIS)

    Gong, Jiangfeng; Liu, Hongwei; Jiang, Yuwen; Yang, Shaoguang; Liao, Xiaozhou; Liu, Zongwen; Ringer, Simon

    2015-01-01

    Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber at room temperature and the growth mechanism was explored in detail. The sizes of the Ag nanoparticles are controlled by the electron beam current density. Two nanoparticle growth stages were identified. The first growth stage was dominated by the discharging effect, while the second stage was controlled by the heating effect. The nanoparticle synthesis method should be applicable to the synthesis of other metallic nanoparticles. - Highlights: • Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber. • The sizes of the Ag nanoparticles are controlled by the electron beam current density. • The growth mechanism was studied, two growth stages were confirmed. • The first growth stage was dominated by the discharging effect, and the second stage was controlled by the heating effect.

  1. In-situ synthesis of Ag nanoparticles by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jiangfeng, E-mail: jfgong@hhu.edu.cn [Department of Physics, College of Science, Hohai University, Nanjing 210093 (China); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Liu, Hongwei [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia); Jiang, Yuwen; Yang, Shaoguang [National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Liu, Zongwen [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia); School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Ringer, Simon [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2015-12-15

    Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber at room temperature and the growth mechanism was explored in detail. The sizes of the Ag nanoparticles are controlled by the electron beam current density. Two nanoparticle growth stages were identified. The first growth stage was dominated by the discharging effect, while the second stage was controlled by the heating effect. The nanoparticle synthesis method should be applicable to the synthesis of other metallic nanoparticles. - Highlights: • Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber. • The sizes of the Ag nanoparticles are controlled by the electron beam current density. • The growth mechanism was studied, two growth stages were confirmed. • The first growth stage was dominated by the discharging effect, and the second stage was controlled by the heating effect.

  2. Preparation of PbSe nanoparticles by electron beam irradiation

    Indian Academy of Sciences (India)

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and ...

  3. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    at the Co/Si interface for investigation of ion beam mixing at various doses: 8 × 1012, 5 × 1013 and 1 × 1014 cm–2. Formation of different phases of cobalt silicide is identified by the grazing incidence X-ray diffraction. (GIXRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation ...

  4. Aspects of space charge theory applied to dielectric under electron beam irradiation

    International Nuclear Information System (INIS)

    Oliveira, L.N. de.

    1975-01-01

    Irradiation of solid dielectric with electron beams has been used as a power full tool in investigations of charge storage and transport in such materials. Some of the results that have been obtained in this area are reviewed and the formulation of a transport equation for excess charge in irradiated insulators is dicussed. This equation is subsequently applied to various experimental set-ups. It is found that space charge effects play an essential role in the establishment of stationary currents in samples subject to quasi-penetrating electron beams. Such effects may, however, be neglected for low electron ranges. Theoretical results are in good agreement with experimental findings by Spear (1955)

  5. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  6. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

    2013-01-31

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the

  7. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  8. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  9. Evaluation of antimicrobial and antibiofilm activity of electron beam irradiated endodontic sealer

    International Nuclear Information System (INIS)

    Shetty, Veena; Geethashri, A.; Palaksha, K.J.; Shridhar, K.R.; Sanjeev, Ganesh

    2013-01-01

    The complete disinfection of root canal is achieved by endodontic instrumentation, irrigation and medications followed by complete filling of the canal space by appropriate sealer. However careful cleaning and shaping of the canal system do not assure the complete eradication of microorganisms from tubular or lateral canals. Therefore, to avoid the possible growth of microorganisms, the filling endodontic material should have good antimicrobial effect on the pathogens causing root canal failure or pulpo-periapical pathosis. Zinc Oxide- Eugenol (ZOE) is the most commonly used filling material in endodontics. Electron beam (e-beam) radiation is a form of ionizing radiation known to induce physiochemical and biological changes in the irradiated substances. Hence, the present study was carried out to evaluate the effect of e-beam radiation on antimicrobial property of ZOE sealer against root canal pathogens like Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The homogenous paste of Zinc oxide and Eugenol prepared by mixing at the ratio of 3:1 was loaded into the sterile molds of 6 mm diameter. After complete drying of paste, discs were aseptically separated from the mould. The prepared discs were subjected to e-beam irradiation of 250 Gy, 500 Gy, 750 Gy and 1000 Gy at Microtron Centre, Mangalore University. Antimicrobial and antibiofilm properties of control and irradiated sealer were determined by well diffusion method and growing the biofilm according to O'Toole method, respectively. The antimicrobial effect was observed only against S.aureus and C. albicans in non-irradiated ZOE. The ZOE sealer irradiated at 1000 Gy showed the significantly increased (P<0.001) antimicrobial effect against S. aureus and C. albicans. However, the substantially increased antibiofilm activity against C.albicans was noticed in the ZOE irradiated at 250 Gy. This study showed that e-beam irradiation at 1000 Gy and 250 Gy were found to be optimum

  10. The reactivity of plant, murine and human genome to electron beam irradiation

    International Nuclear Information System (INIS)

    Gavrila, L.; Usurelu, D.; Radu, I.; Timus, D.

    2005-01-01

    A broad spectrum of chromosomal rearrangements is described in plants (Allium cepa), mouse (Mus musculus domestics) and in humans (Homo sapiens sapiens), following in vivo and in vitro beta irradiation. Irradiations were performed at EAL, using a 2.998 GHz traveling-wave electron accelerator. The primary effect of electron beam irradiation is chromosomal breakage followed up by a variety of chromosomal rearrangements i.e. chromosomal aberrations represented mainly by chromatid gaps, deletions, ring chromosomes, dicentrics, translocations, complex chromosomal interchanges, acentric fragments and double minutes (DM). The clastogenic effects were associated in some instances with cell sterilization (i.e. cell death)

  11. Development of Irradiation Procedure for Gamma Irradiation Chamber Bio beam GM 8000

    International Nuclear Information System (INIS)

    Shuhaimi Shamsudin; Affrida Abu Hassan; Zaiton Ahmad; Abdul Rahim Harun; Ahmad Zainuri Mohd Dzomir

    2015-01-01

    Bio Beam GM 8000 gamma irradiation chamber obtained a conditional approval to operate on March 27, 2012, and later acquired a full approval on December 13, 2012. The objective for the procurement of this gamma chamber is to develop an acute irradiation facility for biological samples, including plants tissues, insects, pupae, microorganisms, as well as animal and human cells. To ensure a smooth and efficient operation, irradiation procedures were developed and improved over time. This paper discusses the operation and management of the Bio Beam GM 8000 facility, including irradiation procedures and sample preparation, application for services through online e-client system, consultancy, quality assurance and information dissemination to internal as well as external clients. In addition, this paper also discusses the potential, constraints and improvement measures taken to optimize the use of this facility in order to meet its objectives. (author)

  12. 1-Chloronaphthalene decomposition in air using electron beam irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun, Y.; Bulka, S.; Zimek, Z.

    2006-01-01

    A method for the preparation of model gas containing 1-chloronaphthalene can be referred to 1,1-DCE (dichloroethene). A pulsed electron beam (EB) accelerator ILU-6 (2.0 MeV max., 20 kW max.) was used as an irradiation source. The absorbed dose rate inside the irradiation vessel was 10.835 kGy/min. Total absorbed dose was adjusted by changing irradiation time of the Pyrex glass vessels. 1-Chloronaphthalene concentration was analyzed using gas-chromatography. It has been found, that 1-chloronaphthalene can be decomposed in air or N 2 using EB irradiation. Decomposition efficiency of 1-chloronaphthalene in air is higher than that in N 2 . Positive charge transfer reactions and OH radicals' reaction may play a main role in 1-chloronaphthalene decomposition process

  13. Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators.

    Science.gov (United States)

    Hashii, Haruko; Hashimoto, Takayuki; Okawa, Ayako; Shida, Koichi; Isobe, Tomonori; Hanmura, Masahiro; Nishimura, Tetsuo; Aonuma, Kazutaka; Sakae, Takeji; Sakurai, Hideyuki

    2013-03-01

    Radiation therapy for cancer may be required for patients with implantable cardiac devices. However, the influence of secondary neutrons or scattered irradiation from high-energy photons (≥10 MV) on implantable cardioverter-defibrillators (ICDs) is unclear. This study was performed to examine this issue in 2 ICD models. ICDs were positioned around a water phantom under conditions simulating clinical radiation therapy. The ICDs were not irradiated directly. A control ICD was positioned 140 cm from the irradiation isocenter. Fractional irradiation was performed with 18-MV and 10-MV photon beams to give cumulative in-field doses of 600 Gy and 1600 Gy, respectively. Errors were checked after each fraction. Soft errors were defined as severe (change to safety back-up mode), moderate (memory interference, no changes in device parameters), and minor (slight memory change, undetectable by computer). Hard errors were not observed. For the older ICD model, the incidences of severe, moderate, and minor soft errors at 18 MV were 0.75, 0.5, and 0.83/50 Gy at the isocenter. The corresponding data for 10 MV were 0.094, 0.063, and 0 /50 Gy. For the newer ICD model at 18 MV, these data were 0.083, 2.3, and 5.8 /50 Gy. Moderate and minor errors occurred at 18 MV in control ICDs placed 140 cm from the isocenter. The error incidences were 0, 1, and 0 /600 Gy at the isocenter for the newer model, and 0, 1, and 6 /600Gy for the older model. At 10 MV, no errors occurred in control ICDs. ICD errors occurred more frequently at 18 MV irradiation, which suggests that the errors were mainly caused by secondary neutrons. Soft errors of ICDs were observed with high energy photon beams, but most were not critical in the newer model. These errors may occur even when the device is far from the irradiation field. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    Science.gov (United States)

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  15. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Lu Dong; Li Wenjian; Wu Xin; Wang Jufang; Ma Shuang; Liu Qingfang; He Jinyu; Jing Xigang; Ding Nan; Dai Zhongying; Zhou Jianping

    2010-01-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20 Ne 10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  16. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  17. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    Science.gov (United States)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  18. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    Directory of Open Access Journals (Sweden)

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  19. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  20. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    Science.gov (United States)

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-06-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100-130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130-140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization.

  1. Plastic coating on paper by electron beam irradiation

    International Nuclear Information System (INIS)

    Ametani, Kazuo; Tsuchiya, Mitsuaki; Sawai, Takeshi

    1984-01-01

    It has been known long since that the resin system of unsaturated polyester and vinylmonomer mixture cures by irradiation. Ford of USA for the first time industrialized the radiation curing reaction of resins for the coating of automobile parts. Thereafter, accompanying the development and technical advance of the low energy electron beam irradiation apparatus which is suitable to surface treatment such as coating and easy to handle and the development of resins, the electron beam curing method has become to be utilized for coating hardboard and wooden doors, coating automobile tire rims, adhering printing papers and others. The electron beam curing method has advantage such as energy conservation, resource saving and little pollution because solvent is not used, high production rate and small floor space. In glossing industry, for the purpose of developing the techniques to apply electron beam curing method to glazed paper production, the selection of the composition of resins suitable to glazed papers, the irradiating condition and the properties of cured films were examined. The films withstanding bending can be obtained at low dose with urethane group, ester group or the combination of monomers. (Kako, I.)

  2. Interaction of beam and coated metals at high power continuous irradiation

    Science.gov (United States)

    Kim, Yong Hyeon; Baek, Won-Kye; Yoh, Jack J.

    2011-07-01

    The beam-matter interaction with various coating effects has received continued attention in the high power laser community. Previous works suggest that coatings promote target damage when compared to beaming on uncoated surface. Three types of paint coatings (acrylic urethane, silicone alkyd and stealth blend) and a water coat on metals (Al, Ti and STS) are irradiated with a CO 2 laser. Both strain and temperature measurements are provided for assessing the instantaneous response characteristics of each coating on different metals. A selective combination of surface coats with metals has been proven to be effective in either preventing or enhancing damage, both thermal and mechanical, associated with focused beaming on a target.

  3. 10 μ m-thick four-quadrant transmissive silicon photodiodes for beam position monitor application: electrical characterization and gamma irradiation effects

    Science.gov (United States)

    Rafí, J. M.; Pellegrini, G.; Quirion, D.; Hidalgo, S.; Godignon, P.; Matilla, O.; Juanhuix, J.; Fontserè, A.; Molas, B.; Pothin, D.; Fajardo, P.

    2017-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines. Owing to Si absorption, devices thinner than 10 μ m are needed to achieve transmission over 90% for energies above 10 keV . In this work, new segmented four-quadrant diodes for beam alignment purposes are fabricated on both ultrathin (10 μ m-thick) and bulk silicon substrates. Four-quadrant diodes implementing different design parameters as well as auxiliary test structures (single diodes and MOS capacitors) are studied. An extensive electrical characterization, including current-voltage (I-V) and capacitance-voltage (C-V) techniques, is carried out on non-irradiated and gamma-irradiated devices up to 100 Mrad doses. Special attention is devoted to the study of radiation-induced charge build-up in diode interquadrant isolation dielectric, as well as its impact on device interquadrant resistance. Finally, the devices have been characterized with an 8 keV laboratory X-ray source at 108 ph/s and in BL13-XALOC ALBA Synchroton beamline with 1011 ph/s and energies from 6 to 16 keV . Sensitivity, spatial resolution and uniformity of the devices have been evaluated.

  4. Improvement of AdCMV-GFP gene transfection efficiency induced by heavy-ion beam irradiation on murine melanoma cells

    International Nuclear Information System (INIS)

    Duan Xin; Min Fengling; Liu Bing; Zhou Qingming; Li Xiaoda; Wang Yanling; Chinese Academy of Sciences, Beijing; Zhang Hong; Qiu Rong; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2007-01-01

    The effect of 12 C 6+ beam irradiation on AdCMV-GFP (a replication deficient recombinant adenoviral vector containing CMV promoter and green fluorescent protein) gene transfection efficiency for murine melanoma cell B16 has been investigated. B16 cells infected with AdCMV-GFP were irradiated by different doses of 12 C 6+ beam. The transfection efficiency was assessed by flow cytometry (FCM). Results show that 12 C 6+ beam irradiation can improve transfection efficiency of AdCMV-GFP on murine melanoma cell B16 in a dose-dependent manner. In addition, the transfection efficiency in pre-tranfection plus irradiation group is higher than that in pre-irradiation plus transfection group at the same dose irradiation dose. (authors)

  5. Improvement of irradiation effects database

    International Nuclear Information System (INIS)

    Yuan Guohuo; Xu Xi; Jia Wenhai

    2003-01-01

    The design method of irradiation effects database is related in this paper. The structure of irradiation effects database is perfected by Delphi, query and calculation of the data have completed, and printing and outputting data report form have fulfilled. Therefore, data storage platform for reliability and vulnerability analyzing of harden irradiation effects of the component and system is offered

  6. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    Science.gov (United States)

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  7. Changes to the chemical structure of isotactic-polypropylene induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: oka.toshitaka@jaea.go.j [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 319-1195 (Japan); Oshima, A. [The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Motohashi, R.; Seto, N.; Watanabe, Y.; Kobayashi, R.; Saito, K. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kudo, H. [School of Engineering, The University of Tokyo, Naka, Ibaraki 319-1188 (Japan); Murakami, T. [Department of Accelerator Physics and Engineering, National Institute of Radiological Sciences, Inage, Chiba 263-8555 (Japan); Washio, M.; Hama, Y. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2011-02-15

    The chemical structures of various ion-beam irradiated isotactic-polypropylene samples were studied. Results of micro-Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy suggest not only the linear energy transfer, but also the fluence is effective in local transformation of the isotactic-polypropylene.

  8. Improvement in properties of plastic teeth by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Yuko, E-mail: sano@meirin-c.ac.jp [Department of Biomaterials, Meirin College, Masago 3-16-10, Nishi-ku, Niigata 950-2086 (Japan); Ishikawa, Shun-ichi [Toushinyoukou Co. Ltd., Masago 3-16-10, Nishi-ku, Niigata 950-2086 (Japan); Seguchi, Tadao [Japan Atomic Energy Agency (Japan)

    2011-11-15

    Improvement of the comfort and esthetics of artificial plastic teeth is desirable for the recently increasing numbers of elderly in society. Plastic teeth made of polycarbonate (PC) were modified by electron beam (EB) irradiation under specific conditions, and the change in the chemical properties of the PC was investigated. The water absorption, glucose attachment, level of bis-phenol-A (BPA) extraction, maltose adhesion, and mucin adhesion on the PC teeth were measured before and after EB irradiation. EB irradiation to a dose of 3.5 kGy at 150 {sup o}C in a nitrogen gas atmosphere reduced the water absorption by 20%, glucose absorption by 40%, maltose adhesion by 20%, and the amount of various amino acids, formed as the hydrolysis products of mucin, adhering on the PC teeth were reduced by 60-99%. The BPA content was lower than the detection limit for analysis of both the original and the EB irradiated PC teeth. - Highlights: > Radiation improvement of polycarbonate for plastic teeth by EB irradiation 3.5 kGy at 150 {sup o}C in inert gas. > Water and glucose absorption and maltose adhesion on PC teeth were much reduced. > Bis-phenol-A content from PC teeth was lower than the detection limit after irradiation.

  9. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  10. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  11. A study about the effects of gamma radiation and electron beam irradiation in the detection of genetically modified maize (Zea Mays)

    International Nuclear Information System (INIS)

    Crede, Ricardo Gandara

    2005-01-01

    Cell-220 and electron beam irradiation (Radiation Dynamics Inc. USA) were used (Atomic Energy of Canada, LTD), applying doses of 1, 25 and 50 kGy. After irradiating the samples, the detection results were compared with non-irradiated samples, showing that, when the PCR technique, was used, the irradiation does not affect the perception of the genetically modified maize. (author)

  12. Physicochemical changes of carboxymethylcellulose powder by gamma and electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Sub; Choi, Jong Il; Kim, Jae Hun; Lee, Ju Woon; Byun, Myung Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Seo, Suk Jin; Kang, Ke Won [Hansbiomed Daeduk Institute, Daejeon (Korea, Republic of); Lee, Kwang Won [Eulji University Hospital, Daejeon (Korea, Republic of)

    2007-08-15

    In this study, the effects of an irradiation on the physicochemical characteristics of the carboxymethylcellulose (CMC) powder were investigated. Viscosity and molecular weight of CMC powder were significantly decreased by irradiation. But, there was no distinguished difference in decrease between the irradiation sources of gamma ray and electron beam. The results from Fourier Transform Infrared Spectroscopy showed that the degradation of CMC powder occurred only at the site of glycosidic bond in cellulose backbone. Also, a thermoanalytical technique such as Differential Scanning Calorimetery and Thermogravimetric analysis was conducted to show the temperature shift of the irradiated samples. Upon examination of granule morphology by Scanning Electron Microscope, cracks were observed on the granule in CMC by irradiation.

  13. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  14. Electron beam irradiation facility for low to high dose irradiation applications

    International Nuclear Information System (INIS)

    Petwal, V.C.; Wanmode, Yashwant; Verma, Vijay Pal; Bhisikar, Abhay; Dwivedi, Jishnu; Shrivastava, P.; Gupta, P.D.

    2013-01-01

    Electron beam based irradiation facilities are becoming more and more popular over the conventional irradiator facilities due to many inherent advantages such as tunability of beam energy, availability of radiation both in electron mode and X-ray mode, wide range of the dose rate, control of radiation from a ON-OFF switch and other safety related merits. A prototype experimental facility based on electron accelerator has been set-up at RRCAT to meet the low-dose, medium dose and high-dose requirements for radiation processing of food, agricultural and medical products. The facility can be operated in the energy range from 7-10 MeV at variable power level from 0.05-3 kW to meet the dose rate requirement of 100 Gy to kGy. The facility is also equipped with a Bremsstrahlung converter optimized for X-ray irradiation at 7.5 MV. Availability of dose delivery in wide range with precision control and measurement has made the facility an excellent tool for researchers interested in electron/X-ray beam irradiation. A precision dosimetry lab based on alanine EPR and radiochromic film dosimetry system have been established to characterize the radiation field and precise dose measurements. Electron beam scattering technique has been developed to achieve low dose requirement for EB irradiation of various seeds such as groundnut, wheat, soybeans, moong beans, black gram etc. for mutation related studies. This paper describes various features of the facility together with the dosimetric measurements carried out for qualification of the facility and recent irradiation experiments carried out using this facility. (author)

  15. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    International Nuclear Information System (INIS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-01-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth. - Highlights: ► Electron beam irradiation is effective against soil-borne pathogens. ► Application of irradiation at dose 1.5 kGy completely inhibited in vitro development of Phytophthora cinnamomi. ► Irradiation of horticultural substrata did not influence the growth of plants.

  16. Technology of irradiation of liquids by electron beams

    International Nuclear Information System (INIS)

    Tofaute, K.

    1979-01-01

    The methods of pretreatment, the technical details of the irradiating equipment, the applied radiation doses and the general requirements of the effectively working system are described. The extent of reinfection is compared in cases of heat-treated and electron-irradiated mud. The latter method gave significantly better results. (L.E.)

  17. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    Lin Min; Lin Jingwen; Chen Yundong; Li Huazhi; Xiao Zhenhong; Gao Juncheng

    1999-01-01

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  18. Beam study of irradiated ATLAS-SCT prototypes

    CERN Document Server

    Akimoto, T; Eklund, L; García, J E; Hara, K; Ikegami, Y; Iwata, Y; Kato, Y; Ketterer, C; Kobayashi, H; Kohriki, T; Kondo, T; Koshino, T; Lacasta, C; Llosa, G; Macina, Daniela; Masuda, H; Matuo, T; Moorhead, G F; Nakano, I; Norimatsu, K; Ohsugi, T; Shinma, S; Takashima, R; Tanaka, R; Tanimoto, N; Terada, S; Ujiie, N; Unno, Y; Vos, M; Yamanaka, K; Yamashita, T

    2002-01-01

    Prototypes of ATLAS-SCT modules with ABCD readout chips were tested in a 4 GeV/c pion beam at KEK's proton synchrotron. Of both SCT module geometries - barrel and forward - three identical modules were placed in the beam. One module of each type had been irradiated to 3x10 sup 1 sup 4 protons/cm sup 2 in the CERN PS previous to the beam test. A method has been developed to reconstruct the time-resolved shaper pulse from the binary hit information, allowing a more detailed study of the timing properties of the ABCD. The present results will be compared to a simulation of the charge collection and Front End electronics response.

  19. Effect of electron beam on in vitro cultured orchid organs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jaihyunk; Bae, Seho; Bae, Changhyu [Sunchon National Univ., Suncheon (Korea, Republic of); Kang, Hyun Suk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    Ionizing radiations have been effective mutagen sources to overcome the limitation of the useful genetic resources in natural environment. The study was conducted to investigate an effect of electron beam on organogenesis, growth patterns and genetic variation in the irradiated orchid organs. The in utero cultured rhizomes of orchids were irradiated with the electron beam in the dose range of 15Gy to 2240Gy under the condition of various beam energy and beam current. Significant decreases in survival, growth and organogenesis were observed by increase of intensity of electron beam irradiation. The irradiation intensity of lethal dose 50 of the in utero cultured orchid was estimated as approximately 500Gy to 1000Gy under 10MeV/n, and 1000Gy was optimal for growth and organogenesis of the cultures under 10MeV/n with 0.05mA treatment, and 15Gy {approx} 48Gy under 2MeV/n and 0.5mA electron beam condition. RAPD and ISSR analyses for the electron beam irradiated organs were performed to analyze genetic variation under the electron beam condition. Both of RAPD and ISSR analyses showed higher polymorphic rate in the electron-beam irradiated C. gangrene and C. Kaner.

  20. Electron-beam chest-wall irradiation in breast cancer patients after mastectomy

    International Nuclear Information System (INIS)

    He Zhenyu; Guo Jun; Wu San'gang; Li Fengyan; Lin Huanxin; Guan Xunxing

    2011-01-01

    Objective: To evaluate the efficacy of electron-beam chest-wall irradiation in patients with breast cancer after mastectomy. Methods: From June 1999 to December 2007, 280 women with localized breast cancer received postmastectomy radiotherapy using electron beam to chest wall. The efficacy and toxicity of these 280 women was compared with 118 women treated during the same period using tangential field with photon beam. Results: The follow-up rate was 93.2%. 140 patients had a minimum followed up time of 5 years and 12 patients had a minimum follow up time of 10 years. The 5-year and 10-year chest wall recurrence rates were 6.8% and 5.0%. 14.8% and 10.1% for patients irradiated with electron and photon (χ 2 =1.12, P=0.290). The corresponding 5-year and 10-year disease-free survival rates were 60.6% and 65.5%, 47.6% and 57.3% (χ 2 =0.97, P=0.325). The 5-year and 10-year overall survival rates were 77.5% and 79.6%, 48.4% and 53.3% (χ 2 =0.37, P=0.545). Grade II or more acute skin toxicity occurred in 10.4% and 16.9% of patients irradiated with electron and photon (χ 2 =3.34, P=0.090). Pulmonary fibrosis developed in 28.8% and 22.1% of patients irradiated with electron and photon (χ 2 =1.27, P=0.300). Conclusion: Electron-beam chest-wall irradiation is as effective as photon-beam irradiation in breast cancer after mastectomy. (authors)

  1. Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance.

    Science.gov (United States)

    Shinde, S K; Kim, D-Y; Ghodake, G S; Maile, N C; Kadam, A A; Lee, Dae Sung; Rath, M C; Fulari, V J

    2018-01-01

    This paper reports the effect of electron beam irradiation on CuO thin films synthesized by the successive ionic layer adsorption and reaction (SILAR) method on copper foil for supercapacitor and biocompatibility application. Pristine and irradiated samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and electrochemical study. Pristine and irradiated CuO films were pure monoclinic phase, with uniform nanostructures over the whole copper foil. After irradiation, CuO samples had formed innovative nanostructures. Biocompatibility of pristine and irradiated CuO samples suggest that CuO sample is non-toxic and ecofriendly. The specific capacitance of pristine and irradiated CuO strongly depends on surface morphology, and CuO electrodes after irradiation showed superior performance than pristine CuO. The highest specific capacitance of the 20kGy irradiated CuO nanoflowers exceeded 511Fg -1 at 10mVs -1 in 1M KOH electrolyte. Irradiated CuO samples also showed lower ESR, and were superior to other report electrical energy storage materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farah, K. E-mail: k.farah@cnstn.rnrt.tn; Kuntz, F.; Kadri, O.; Ghedira, L

    2004-10-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  3. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  4. Blistering of the selected materials irradiated by intense 200 keV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Astrelin, V.T. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk (Russian Federation); Bykov, P.V. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Ivanov, I.A.; Ivanov, A.A. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Jongen, Y. [Ion Beam Applications SA, Louvain-la-Neuve (Belgium); Konstantinov, S.G. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Kudryavtsev, A.M.; Kuklin, K.N.; Mekler, K.I. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V., E-mail: s.v.polosatkin@inp.nsk. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Postupaev, V.V. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Rovenskikh, A.F. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Sinitskiy, S.L. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Zubairov, E.R. [Budker Institute of Nuclear Physics, Lavrent' eva 11, Novosibirsk 630090 (Russian Federation)

    2010-01-01

    Formation of blisters on the surfaces of metal targets made of the selected materials was studied. The targets were irradiated by 100-200 keV, 1-2 mA proton beam up to the doses above 10{sup 24} m{sup -2}. Real-time monitoring of the target surface was performed with a set of in situ optical surface diagnostics that allows detection of the moment of blisters appearance. The overview of experimental setup and the results of testing of different materials are presented. The number and the size of blisters gradually increase during the irradiation. Critical fluence of blistering strongly depends on the target temperature, proton energy and surface machining method. The features of blistering under the proton beam irradiation and the effects of hydrogen diffusion and interaction with the target lattice are discussed.

  5. Extractable proteins from electron beam (EB) irradiated natural rubber (NR) latex

    International Nuclear Information System (INIS)

    Feroza Akhtar; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The protein assay of natural rubber latex (NRL) vulcanized by low energy electron beam (EB, 300 keV, 30 mA) has been carried out using Bicinchoninic acid (BCA) reagent. Extractable protein in irradiated latex film was determined by measuring the absorption of colored solution at 562 nm using UV spectrometer. The effect of various radiation doses on the extractable protein content of NRL was investigated. It was ,found that the quantities of extractable protein increases with radiation dose. When compared with ,gamma-ray irradiated samples the same trend was observed. Electron beam irradiated latex films are leached in 1% (ammonia water for various lengths of time. From the results it was established that within 2 hours of leaching in ammonia water most of the extractable protein (96%) were removed from rubber film

  6. Compaction of PDMS due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Rajta, I.; Kokavecz, J.

    2011-01-01

    that at low fluences the surface topography does not follow the phase change that corresponds to the irradiation pattern. At higher fluences the surface topography follows the irradiation pattern, i.e. the phase change, quite well but not perfectly. The irradiated regions are compacted significantly but their bottom is not flat. Between the irradiated regions, the unirradiated areas show a regular curved surface. This can be explained with the developed stress caused by compaction due to irradiation. During irradiation the irradiated areas start to shrink while the unirradiated areas try to remain unchanged. The topographical transition between the two phases is not a step function, but it is continuous due to the rubbery nature of PDMS. The PBW technique, that utilizes a focused MeV ion beam, is capable of the production of devices in PDMS, which have curved-edge relatively shallow, a couple of microns deep, structures on the surface. The curvature of the surface and the degree of compaction can be adjusted with the applied ion fluence and with the distance of the structures. By choosing the proper irradiation parameters short or even long range symmetrical surface curvatures can be achieved.

  7. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  8. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    Science.gov (United States)

    Nemţanu, Monica R.; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Mazilu, Elena; Setnic, Silvia; Bucur, Marcela; Duliu, Octavian G.; Meltzer, Viorica; Pincu, Elena

    2008-05-01

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation.

  9. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    International Nuclear Information System (INIS)

    Nemtanu, Monica R.; Kikuchi, Irene Satiko; Jesus Andreoli Pinto, Terezinha de; Mazilu, Elena; Setnic, Silvia; Bucur, Marcela; Duliu, Octavian G.; Meltzer, Viorica; Pincu, Elena

    2008-01-01

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation

  10. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Nemtanu, Monica R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerator Laboratory, 409 Atomistilor Street, P.O. Box MG-36, 077125 Bucharest-Magurele (Romania)], E-mail: monica.nemtanu@inflpr.ro; Kikuchi, Irene Satiko; Jesus Andreoli Pinto, Terezinha de [University of Sao Paulo, Faculty of Pharmaceutical Sciences, Department of Pharmacy, Av. Prof. Lineu Prestes, 580-Bloco 13, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Mazilu, Elena; Setnic, Silvia [S.C. Hofigal Export-Import S.A., 2A Intrarea Serelor Street, 75669, Bucharest 4 (Romania); Bucur, Marcela [University of Bucharest, Faculty of Biology, Department of Microbiology, 1-3 Aleea Portocalelor Street, Bucharest 6 (Romania); Duliu, Octavian G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Meltzer, Viorica; Pincu, Elena [University of Bucharest, Faculty of Chemistry, Department of Physical Chemistry, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2008-05-15

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation.

  11. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  12. Possibility of electron beam irradiation degradation of many pesticides in ginseng oral liquid

    International Nuclear Information System (INIS)

    Chen Qiyong; Liu Yang; Ge Hanguang; Wu Ruoxin

    2013-01-01

    This paper is to explore the technological feasibility in degradation of pesticides in ginseng oral liquid under the irradiation of electron beam. Sixteen residual concentration-restricted pesticides in ginseng oral liquid were experimented under the dose of 0 ∼ 15 kGy. Results showed that, when the dose of the irradiation of electron beam increased, the degradation rates of all the pesticides enhanced, and the electron beam radiation showed the most remarkable effect on the degradation of pesticides such as imidacloprid and fenpropathrinwith degradation rates of more than 90% and 50%, respectively. The degradation rates of fonofos, methidathion, diazinon, phosalone and carbaryl were all higher than 30%. No significant degradation was observed in the other 9 pesticides under the same condition. (authors)

  13. In vitro irradiation station for broad beam radiobiological experiments

    International Nuclear Information System (INIS)

    Wéra, A.-C.; Riquier, H.; Heuskin, A.-C.; Michiels, C.; Lucas, S.

    2011-01-01

    The study of the interaction of charged particles with living matter is of prime importance to the fields of radiotherapy, radioprotection and space radiobiology. Particle accelerators and their associated equipment are proven to be helpful tools in performing basic science in all these fields. Indeed, they can accelerate virtually any ions to a given energy and flux and let them interact with living matter either in vivo or in vitro. In this context, the University of Namur has developed a broad beam in vitro irradiation station for use in radiobiological experiments. Cells are handled in GLP conditions and can be irradiated at various fluxes with ions ranging from hydrogen to carbon. The station is mounted on a 2 MV tandem accelerator, and the energy range can be set up in the linear energy transfer (LET) ranges that are useful for radiobiological experiments. This paper describes the current status of the hardware that has been developed, and presents results related to its performance in term of dose-rate, energy range and beam uniformity for protons, alpha particles and carbon ions. The results of clonogenic assays of A549 lung adenocarcinoma cells irradiated with protons and alpha particles are also presented and compared with literature.

  14. Treatment of Synthetic Textile Wastewater by Combination of Coagulation/Flocculation Process and Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Fateme Anvari

    2014-06-01

    Full Text Available Introduction: Textile wastewaters from dyeing and finishing processes are heavily polluted with dyes, textile auxiliaries and chemicals and have a broad range of pH, high COD concentration and suspended particles. In this study, the efficiency of color and turbidity removal from synthetic textile wastewater samples were investigated by combined process of coagulation/ flocculation and electron beam irradiation. Materials and Methods: The experiments have been done on model dye solution samples which prepared from ten dyes that are supplied from Yazd Baff textile factory. Aluminum sulphate was employed to determine the optimum conditions for removal of turbidity by jar-test experiments. Then samples were irradiated by 10 MeV electron beam of Rhodotron TT200 accelerator at different doses of 1, 3 and 6 kGy. Absorption spectra of the samples were measured using UV-Vis spectrophotometer (Perkin Elmer, Lambda 25. The pH and turbidity values of the solutions were measured by a Metrohm 827 model pH meter and 2100AN turbidimeter (Hach company. Results: According to results, the degree of decoloration and turbidity removal of synthetic dye solutions increased dramatically when the alum concentration increased and reached to 64% and 90% respectively at 112 ppm. After irradiation, it is observed that absorbance at 540 nm decreased rapidly by increasing of radiation dose, because of macromolecules degradation and then decreased slowly and degree of decoloration reached to 95%. The amount of pH was decreased by irradiation and then changed very slowly or remained constant with increasing irradiation dose. Conclusion: The above results indicate that combination of coagulation/ flocculation and irradiation of 10 MeV electron beam is so effective for turbidity removal and decoloration. Coagulation process eliminates suspended particles from disperse dyes effectively, while destruction of soluble dye molecules happen by irradiation that increase decoloration

  15. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation.

    Science.gov (United States)

    Ghosh, Somnath; Narang, Himanshi; Sarma, Asitikantha; Krishna, Malini

    2011-11-01

    Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  17. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Kijima, Toshiyuki; Nakase, Yoshiaki

    1993-01-01

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  18. Some results on the evolution of microstructure for pulsed beam irradiation

    International Nuclear Information System (INIS)

    Nair, K.G.M.; Sahu, H.K.; Krishan, K.

    1982-01-01

    Studies relating to the development of microstructure using pulsed electron and cyclotron beams are very useful in understanding damage effects in pulsed fusion reactors. In this paper some exact results are given to link the evolution of microstructure during pulsing with that during continuous irradiation, since the effects in the latter case are relatively well understood. Two pulsing time regimes are considered; pulsing times (a) smaller and (b) larger, than microstructural evolution time constants. In both cases the adiabatic approximation can be used to decouple the point defect variables from the microstructural variables. In case (a) for pulsed electron irradiation and for relatively small pulsing times in cyclotron irradiation the evolution of the microstructure can be exactly simulated by continuous irradiation using an appropriately determined dose rate. A similar analysis is made for case (b) and several effects encountered in continuous irradiation are shown to manifest themselves in pulsed irradiation. A general formalism is developed to determine the equivalent continuous irradiation parameters like dose rate which will simulate the microstructural development under pulsing. The treatment is semiquantitative and based on the analysis of the trajectories in the phase space. (author)

  19. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  20. Control of natural microorganisms in chamomile (Chamomilla recutita L.) by gamma ray and electron beam irradiation.

    Science.gov (United States)

    Al-Bachir, Mahfouz

    2017-01-01

    Microbial contamination levels and corresponding sensitivities to gamma rays (GR) and elec- tron beam (EB) irradiation were tested in chamomile (Chamomile recutta L.). Chamomile powders were treated with 10 and 20 kGy by GR and EB, respectively. Microbiological and chemical analyses were performed on controls and treated samples immediately after irradiation, and after 12 months of storage. The control samples of chamomile exhibited rather high microbiological contamination, exceeding the levels of 4 log10 CFU g-1   (CFU - colony forming units) reported by national and international authorities as the maximum permissible total count level. Irradiation with GR and EB was found to cause a reduction in microbial contamination proportionate to the dose delivered. The sterilizing effect of EB on microorganisms was higher than the GR one. A dose of 10 kGy of GR and EB significantly (p chamomile powder than gamma irradiation.

  1. Electron beam irradiation: a novel technology to enhance the quality of soybean seeds

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Singh, Subadas; Thakur, Manju; Sharma, S.K.; Pramod, R.; Dwivedi, J.; Bapna, S.C.

    2010-01-01

    Soybean seeds, rich in protein and oil, maintain their germinability only for short durations under ambient conditions. Loss of viability of stored seeds often hampers soybean production in harsh environments worldwide. Physiological factors favored by high temperature and high moisture content accelerate the seed deterioration in the tropics. Several chemical and physical treatments are being used to enhance quality. Irradiation is a novel technology for food preservation and is gaining importance all over the world. Low doses of irradiation bring about improvement in quality of food/seeds, which can be beneficial in several ways. Electron Beam (EB) irradiation is a new approach in this area. The objective of present study was to investigate the effect of EB irradiation in enhancing the quality of low vigour soybean seeds

  2. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Bassler, Niels; Grzanka, Leszek

    2017-01-01

    profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis...... and angiogenesis. RESULTS: Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated...... fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy....

  3. External-beam irradiation of carcinoma of the penis

    International Nuclear Information System (INIS)

    Sagerman, R.H.; Yu, W.S.; Chung, C.T.; Puranik, A.

    1984-01-01

    Twenty-four patients with biopsy-proved squamous-cell carcinoma of the penis underwent external-beam radiation therapy between 1966 and 1980. Fifteen were treated for the primary tumor and 9 for metastatic inguinal lymphadenopathy; no patient received prophylactic nodal irradiation. Seven out of 9 tumors in stage I, 2/3 in stage II, and 1/3 in stage IV were controlled for three years. Control of fixed, inoperable groin nodes was poor, and none of these patients survived beyond 1 1/2 years

  4. PtRu/C electrocatalysts prepared using electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Dionísio Furtunato da Silva

    2007-12-01

    Full Text Available PtRu/C electrocatalysts (carbon-supported PtRu nanoparticles were prepared submitting water/ethylene glycol mixtures containing Pt(IV and Ru(III ions and the carbon support to electron beam irradiation. The electrocatalysts were characterized by energy dispersive X ray analysis (EDX, X ray diffraction (XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts showed superior performance for methanol electro-oxidation at room temperature compared to commercial PtRu/C electrocatalyst.

  5. Electron beam irradiation for biological decontamination of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania)]. E-mail: mirela@infim.ro; Nemtanu, Monica [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, Bucharest-Magurele (Romania); Mazilu, Elena [Hofigal SA (Romania); Radulescu, Nora [Hofigal SA (Romania)

    2005-10-15

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  6. Electron beam irradiation for biological decontamination of Spirulina platensis

    Science.gov (United States)

    Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora

    2005-10-01

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  7. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  8. Issues for Bringing Electron Beam Irradiators On-Line

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.J.; Turman, B.N.

    1999-04-20

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined.

  9. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  10. Issues for Bringing Electron Beam Irradiators On-Line

    International Nuclear Information System (INIS)

    Kaye, R.J.; Turman, B.N.

    1999-01-01

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined

  11. Study of the electron beam irradiation effect on some properties of aromatic aliphatic copolyester films; Estudo do efeito da radiacao por feixe de eletrons nas propriedades de filmes de copoliester alifatico aromatico

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Patricia Negrini Siqueira

    2008-07-01

    Biodegradable and green plastics are the new tendency in the world. The effect of the electron beam irradiation in aromatic aliphatic copolyester and the blend with corn starch films (Ecoflex{sup R} and Ecobras{sup R}) were studied by tensile strength at break, elongation at break, Scanning Electronic Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), crosslinking degree and biodegradability. The measurements in both, the machine direction and the transverse direction were made for mechanical tests. It was found that, the electron irradiation caused an increase in the strength at break of the blend with corn starch film, when doses of up to 10 kGy were applied. A significant decrease of the elongation at break of the blend with corn starch was observed at doses of 10 kGy and 40 kGy. It was not found important change in tensile properties for aromatic aliphatic copolyester. Structural changes of the samples (crosslinking or degradation) by SEM were not observed. The FT-IR identified the characteristic peaks of each involved functional group (copolyester and corn starch). However, it was not found bands of oxidation of the samples. In the DSC, changes in the melting temperature of the irradiated Ecoflex{sup R} and Ecobras{sup R} samples, was not identified when compared with the samples of reference. However, it was verified a reduction in the melting enthalpy of the Ecobras{sup R} samples after irradiation. The Ecobras{sup R} material presented crosslinking, when submitted to doses of 10 kGy and 40 kGy. The Ecoflex{sup R} material did not present crosslinking when submitted to these doses. The biodegradability of the materials was evaluated by two methods of test: soil simulated and enzymatic. In both methods, the irradiated samples presented faster biodegradation than the references not irradiated. (author)

  12. The effect of electron beam irradiation, combined with acetic acid, on the survival and recovery of Escherichia coli and Lactobacillus curvatus

    International Nuclear Information System (INIS)

    Fielding, L.M.; Cook, P.E.; Grandison, A.S.

    1997-01-01

    The preservation of food by ionising radiation may lead to undesirable sensory changes within the food. These changes can be reduced by combining irradiation with other treatments, for example the addition of organic acids. Late exponential phase cultures of Escherichia coli and Lactobacillus curvatus were irradiated, in a liquid medium, at doses of 0-1.8 kilograys (kGy), in the presence of acetic acid (0-2%) at pH 4.6. A synergistic effect occurred when E. coli was irradiated in the presence of acetic acid (0.02-1.0%) at all doses used (0.145-1.1 kGy). There is evidence to suggest that membrane disruption occurred in the cells as a result of the combined treatments and this may account, to some extent, for the synergism observed. The addition of acetic acid up to a concentration of 2.0% had no effect upon the radiation survival or upon the subsequent growth of L. curvatus

  13. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  14. EFFECT OF HEAT TREATMENT ON (Cr, Fe)7C3/γ-Fe COATINGS IN SITU SYNTHESIZED BY VACUUM ELECTRON BEAM IRRADIATION

    Science.gov (United States)

    Lu, Binfeng; Chen, Yunxia; Xu, Mengjia

    (Cr, Fe)7C3/γ-Fe composite layer has been in situ synthesized on a low carbon steel surface by vacuum electron beam VEB irradiation. The synthesized samples were then subdued to different heat treatments to improve their impaired impact toughness. The microstructure, impact toughness and wear resistance of the heat-treated samples were studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester, impact test machine and tribological tester. After heat treatment, the primary and eutectic carbides remained in their original shape and size, and a large number of secondary carbides precipitated in the iron matrix. Since the Widmanstatten ferrite in the heat affected zone (HAZ) transformed to fine ferrite completely, the impact toughness of the heat-treated samples increased significantly. The microhardness of the heat-treated samples decreased slightly due to the decreased chromium content in the iron matrix. The wear resistance of 1000∘C and 900∘C heat-treated samples was almost same with the as-synthesized sample. While the wear resistance of the 800∘C heat-treated one decreased slightly because part of the austenite matrix had transformed to ferrite matrix, which reduced the bonding of carbides particulates.

  15. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    Science.gov (United States)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  16. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    Science.gov (United States)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  17. Irradiation uniformity of spherical targets by multiple uv beams from OMEGA

    International Nuclear Information System (INIS)

    Beich, W.; Dunn, M.; Hutchison, R.

    1984-01-01

    Direct-drive laser fusion demands extremely high levels of irradiation uniformity to ensure uniform compression of spherical targets. The assessment of illumination uniformity of targets irradiated by multiple beams from the OMEGA facility is made with the aid of multiple beams spherical superposition codes, which take into account ray tracing and absorption and a detailed knowledge of the intensity distribution of each beam in the target plane. In this report, recent estimates of the irradiation uniformity achieved with 6 and 12 uv beams of OMEGA will be compared with previous measurements in the IR, and predictions will be made for the uv illumination uniformity achievable with 24 beams of OMEGA

  18. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-02-15

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

  19. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    International Nuclear Information System (INIS)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun

    2015-01-01

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications

  20. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  1. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation.

    Science.gov (United States)

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-06-23

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  2. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  3. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    Science.gov (United States)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  4. Application of electron beams irradiation in science and industry

    International Nuclear Information System (INIS)

    Hilmy, N.; Razzak, M.T.; Chosdu, R.; Soebianto, Y.S.

    1996-01-01

    The research and development of radiation technology in Indonesia is mainly conducted at the Center for Application of Isotopes and Radiation of the National Atomic Energy Agency (CAIR-BATAN). During the past 10 years, the center has gained a great progress in the development of gamma irradiation techniques for industrial processing, food preservation, health care products sterilization, and waste treatment. A low energy (300 keV, 50 mA) electron beam accelerator has been installed in cooperation with IAEA/UNDP as a training and demonstration facility for wood surface coating. In spite of the advantages of radiation curing, this technique is still unacceptable in the industries due to the uneconomical reasons and inferiority of the products. The research and development using this facility is also considered expensive, due to the high cost of the liquid nitrogen consumed by the accelerator. The medium energy (2 MeV, 10 mA) accelerator has been installed recently. This is a multipurpose irradiator provided with a belt conveyer, but also designed for wire and cable irradiation. The main technical parameters have been measured under different operating conditions during its commissioning, and the nominal dose measurement has been performed using alanine polyethylene, ethanol-chlorobenzene solution, and FWT-60 film dosimeters. Research and development of polymer cross-linking and shrinkable tubes have become the concern of the accelerator application. The radiation curable polyethylene compound for the cable insulation has been formulated with a characteristic of high voltage and heat resistant. Dosimetry of spices with 0.3-0.6 g/cm 3 density and health care products of 0.2-0.3 g/cm 3 density have been carried out for the promising food preservation and radiation sterilization, energy beam on micro-organism, and surface modification of some synthetic and natural polymers are also carried out. (J.P.N.)

  5. Characteristics of chrysanthemum mutants regenerated from in vitro explants irradiated with 12C5+ ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomi, Shigeaki [Laboratory of Radiation Biotechnology, Institute of Radiation Breeding, NIAR, MAFF, Tsukuba, Ibaraki (Japan)

    1998-12-31

    As most of the mutagens used for mutant varieties registered in Japan are gamma ray and x ray, it is necessary to develop new and efficient mutagens for plant mutation breeding. In this report, radiobiological effects of 12C5+ ion beam on in vitro cultured materials and mutation induction of flower color of regenerated plants are demonstrated, the results being compared with those from gamma ray irradiation. (J.P.N.)

  6. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  7. Exquisite wild mushrooms as a source of dietary fiber: analysis in electron-beam irradiated samples

    OpenAIRE

    Fernandes, Ângela; Barreira, João C.M.; Antonio, Amilcar L.; Morales, Patricia; Férnandez-Ruiz, Virginia; Martins, Anabela; Oliveira, M.B.P.P.; Ferreira, Isabel C.F.R.

    2015-01-01

    In the present study, electron-beam irradiation was applied to dried samples of Boletus edulis and Macrolepiota procera to evaluate the effects on their fiber composition. Both species presented an important percentage of dietary fiber, soluble and insoluble in different ratios. These high fiber levels are an interesting feature, allowing considering mushrooms as an alternative source of dietary fibers in the highly competitive market of fiber-enriched food products. In B. edulis samples, ins...

  8. Food Irradiation Using Electron Beams and X-Rays

    Science.gov (United States)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The

  9. Effectiveness of virtual reality simulation software in radiotherapy treatment planning involving non-coplanar beams with partial breast irradiation as a model.

    Science.gov (United States)

    Glaser, S; Warfel, B; Price, J; Sinacore, J; Albuquerque, K

    2012-10-01

    Virtual reality simulation software (VRS - FocalSim Version 4.40 with VRS prototype, Computerized Medical Systems, St. Louis, MO) is a new radiation dose planning tool that allows for 3D visualization of the patient and the machine couch (treatment table) in relationship to the linear accelerator. This allows the radiation treatment planner to have a "room's-eye-view" and enhances the process of virtual simulation. The aim of this study was to compare VRS to a standard planning program (XiO - Version 4.50, Computerized Medical Systems, St. Louis, MO) in regards to the time it took to use each program, the angles chosen in each, and to determine if there was a dosimetric benefit to using VRS. Ten patients who had undergone left-sided lumpectomies were chosen to have treatment plans generated. A partial breast irradiation (PBI) treatment plan by external beam radiation therapy (EBRT) was generated for each patient using two different methods. In the first method the full plan was generated using XiO software. In the second method beam angles were chosen using the VRS software, those angles were transferred to XiO, and the remaining part of the plan was completed using XiO (since VRS does not allow dose calculations). On average, using VRS to choose angles took about 10 minutes longer than XiO. None of the five gantry angles differed significantly between the two programs, but four of the five couch angles did. Dose-volume histogram (DVH) data showed a significantly better conformality index, and trends toward decreased hot spots and increased coverage of the planed treatment volume (PTV) when using VRS. However, when angels were chosen in VRS a greater volume of the ipsilateral breast received a low dose of radiation (between 3% and 50% of the prescribed dose) (VRS = 23.06%, XiO = 19.57%, p < 0.0005). A significant advantage that VRS provided over XiO was the ability to detect potential collisions prior to actual treatment of the patient in three of the ten patients

  10. New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation.

    Science.gov (United States)

    Stelescu, Maria-Daniela; Manaila, Elena; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  11. Use of electron beam irradiation to improve the microbiological safety of Hippophae rhamnoides

    Energy Technology Data Exchange (ETDEWEB)

    Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Department, 409 Atomistilor St., Bucharest-Magurele 077125 (Romania); Nemtanu, M.R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Department, 409 Atomistilor St., Bucharest-Magurele 077125 (Romania)], E-mail: monica.nemtanu@inflpr.ro; Manea, S.; Mazilu, E. [S.C. Hofigal Export-Import S.A., 2A Intrarea Serelor St., 75669, Bucharest 4 (Romania)

    2007-09-21

    Sea buckthorn (Hippophae rhamnoides) is increasingly used in food supplements due to its dietary and medicinal compounds with a beneficial role in human diet and health. As many other medicinal plants, sea buckthorn can be contaminated with microorganisms which exerts an important impact on the overall quality of the products. Irradiation is an effective method for food preservation because it is able to destroy pathogenic microorganisms keeping the organoleptic and nutritional characteristics of the foods. The objective of the present study was to investigate the application of electron beam irradiation in order to improve the microbiological safety of sea buckthorn. The experimental results indicated that the electron beam treatment might be a good method to remove undesirable microorganisms from sea buckthorn without significant changes in its active principles.

  12. Effects of hadron irradiation on scintillating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

    1993-08-01

    Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

  13. New equipment the ion beam irradiation equipment installed at ISAS / JAXA

    Science.gov (United States)

    Nakauchi, Yusuke; Matsumoto, Toru; Asada, Yuma; Abe, Masanao; Tsuchiyama, Akira; Takigawa, Aki; Watanabe, Naoki; Yusuke Nakauchi

    2017-10-01

    Understanding of the space weathering effect by the solar wind implantation is thought to be important for the interpretation of the reflectance spectra on the airless body’s surface [e.g. 1]. It is important to elucidate the space weathering effect by hydrogen ions and helium ions which account for most of solar wind. In particular, it is suggested that the solar wind protons interact with the minerals in the surface layer of the airless bodies to form OH and H2O. To understanding the space weathering effect by solar wind protons will be an important clue to reveal the origin and the abundance of lunar water [e.g. 2].Solar wind consists of 95% protons, 4% helium and other ions [3]. The energy of protons is mainly 1.1 keV and the one of helium ions is mainly 4 keV. Then, we established the ion beam irradiation equipment in ISAS/JAXA. This device consists of a cold cathode ion gun, an ion irradiation chamber, a load lock chamber for specimen preparation and reflection spectrum measurement, and FTIR. The ion sources capable of irradiation are hydrogen and helium which occupy the most of solar wind and it is possible to selectively irradiate each ion with a magnetic separator. The energy can be selected from 500 eV to 5 keV. The ultimate degree of vacuum is about 10-6 Pa. The samples can move between the irradiation chamber and the load lock chamber without being exposed to the air. Moreover, since the nitrogen purge is possible for the optical path of FTIR, the influence of the adsorbed water can be ignored when measuring the reflection spectra.In this presentation, we will report the first results of the performance of ion beam irradiation equipment (e.g. beam current, beam-shape) and the proton irradiation to Sun Carlos olivine.[1] T. Noguchi et al., MPS, 49(2):188-214, 2014. [2] C.M. Pieters et al., Science, 326(5952):568-572, 2009. [3] J.T. Gosling, Encyclopedia of the Solar System (Second Edition), pages 99 -116, 2007. Acknowledgements Part of this work has

  14. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Abo, M.; Abe, Y.; Mariya, Y.; Ando, K.

    2000-01-01

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  15. EFFICACY OF ELECTRON BEAM IRRADIATION OF PROCESSED PORK PRODUCTS

    OpenAIRE

    Cardona, Fredy A.; O'Rourke, Patrick D.; Wiegand, Bryon R.; O'Rourke, David L.

    2003-01-01

    The research reported on in this paper was conducted as part of a larger project. That project is on-going and is focused on ascertaining if irradiation of processed meats would be effective and economical. It involved the examination, through modeling, of the irradiation of one of many currently produced ready-to-eat (RTE) convenience-oriented, value-added pork products, sliced boneless ham. The results and findings reported in this paper represent the initial estimates of the cost and poten...

  16. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  17. Single-dose electron beam irradiation in treatment and prevention of keloids and hypertrophic scars

    International Nuclear Information System (INIS)

    Lo, T.C.M.; Salzman, F.A.; Seckel, B.R.; Wright, K.A.

    1990-01-01

    Low megavolt electron beam irradiation was used on 354 sites in 199 patients at Lahey Clinic either for palliation of symptomatic hypertrophic scars or as post operative irradiation in an attempt to prevent formation or recurrence of hypertrophic scars. Electron energies used ranged from 1.5 to 3.5 MeV. The median age of the 59 male patients was 22 years and of the 140 female patients 35 years. All patients had at least one follow-up visit, and the median follow-up was 35 months. Of the 294 sites treated for the first time, 272 (93 per cent) were irradiated with a single fraction with a skin dose ranging from 2 to 20 Gy. Of the 85 sites in 63 patients without excision of symptomatic hypertrophic scars, single-dose electron beam irradiation was of clinically significant value in only 41 sites (48 per cent). No patients have been treated without surgical excision since 1973. Because of a history of formation of hypertrophic scars elsewhere in the body, 13 patients with 19 incisions were treated prophylactically after operation for other diseases. All sites were irradiated with single doses ranging from 8 to 20 Gy, and hypertrophic scars did not subsequently develop in any patient. Altogether, 119 patients with 174 sites were irradiated after surgical excision of hypertrophic scars to prevent recurrence; 168 sites (97 per cent) received singe-fraction irradiation, and 161 received a dose of 8 Gy greater, up to 15 Gy. No statistically significant differences were observed in complete success rates, ranging from 82 to 90 per cent with doses of 9 Gy or greater. An interval of up to 72h between excision and single-fraction irradiation satisfactorily prevented recurrence, and clinically significant chronic telangiectasia was recorded in only one patient. Postoperative low megavolt electron beam irradiation with a single dose of 9 Gy or greater is highly effective in the prevention of formation recurrence of hypertrophic scars or keloids. (author). 31 refs.; 2 figs.; 4 tabs

  18. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    International Nuclear Information System (INIS)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Wan Md Zin Wan Yunus

    2007-01-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate

  19. Radiation synthesis of chitosan stabilized gold nanoparticles comparison between e− beam and γ irradiation

    International Nuclear Information System (INIS)

    Vo, Khoa Dang Nguyen; Kowandy, Christelle; Dupont, Laurent; Coqueret, Xavier; Hien, Nguyen Quoc

    2014-01-01

    Gold nanoparticles were synthesized via radiolytic reduction of Au(III) salts induced by e − beam or γ-irradiation, using chitosan as a stabilizer. The effect of irradiation dose, chitosan concentration and the conditioning of HAuCl 4 –chitosan solutions were studied. UV–visible absorption measurements reveal that the size of Au clusters formed immediately after irradiation is correlated with the extent of chitosan scission chain of chitosan and fall with the increase of dose absorbed. This effect is more pronounced with solution conditioned under Argon (Ar). Au clusters coalesce to form stable nanoparticles after two weeks. - Highlights: • This paper underlines the potential of ionizing radiations in the synthesis of AuNps. • The size of the nanoparticles, and their stability are controlled by the ratio [GLA]/[Au(III)] • This paper compares results obtained with e − beam and γ irradiation for the AuNps synthesis. • This paper points the influence of dose rate on the size of preformed Au clusters

  20. Intensity modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Forster, K.; Lee, H.; Lutz, W.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1997-01-01

    Purpose/Objective: The purpose of this study was to evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. The primary goal was to develop an intensity modulated treatment which would substantially decrease the dose to coronary arteries, lung and contralateral breast while still using a standard tangential beam arrangement. Improved target dose homogeneity, within the limits imposed by opposed fields, was also desired. Since a major goal of the study was the development of a technique which was practical for use on a large population of patients, the design of 'standard' intensity profiles analogous in function to conventional wedges was also investigated. Materials and Methods: Three dimensional treatment planning was performed using both conventional and intensity modulated tangential beams. Plans were developed for both the right and left breast for a range of patient sizes and shapes. For each patient, PTV, lung, heart, origin and peripheral branches of the coronary artery, and contralateral breast were contoured. Optimum tangential beam direction and shape were designed using Beams-Eye-View display and then used for both the conventional and intensity modulated plans. For the conventional plan, the optimum wedge combination and beam weighting were chosen based on the dose distribution in a single transverse plane through the field center. Intensity modulated plans were designed using an algorithm which allows the user to specify the prescribed, maximum and minimum acceptable doses and dose volume constraints for each organ of interest. Plans were compared using multiple dose distributions and DVHs. Results: Significant improvements in the doses to critical structures were achieved using the intensity modulated plan. Coronary artery dose decreased substantially for patients treated to the left breast. Ipsilateral lung and contralateral breast doses decreased for all patients. For one patient treated to

  1. Important aspects of linac beams for food irradiation

    International Nuclear Information System (INIS)

    McKeown, J.; Jones, R.T.

    1987-01-01

    Linac based irradiators will require careful design before they can be routinely adopted for the radiation processing of food. The transverse emittance and energy spread from simple injectors provide a significant challenge to the design of a beam delivery system which must handle high power especially in photon mode. Any nonuniform current distribution at the plane of the product is further complicated by large dose variations near the air/product interface, even with simple geometries. The paper describes the use of methods developed at AECL to control and monitor linac behaviour as well as electron interactions at the product surface. It also reports on activation cross-section measurements and particularly on neutron yields from composite targets, designed to monitor the energy of accelerators used in food applications. (orig.)

  2. Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers

    International Nuclear Information System (INIS)

    Choi, Hae Young; Han, Seong Ok; Lee, Jung Soon

    2008-01-01

    The surface morphology of henequen irradiated by electron beam has been investigated by atomic force microscopy (AFM). Also, the extents to which electron beam irradiation affected the tensile and thermal properties of henequen fiber were investigated with Instron tensile tests and thermogravimetric analysis (TGA). The AFM studies showed that the pectin, waxy and primary layers (P) of henequen fiber, which have heterogeneous structures, were removed from the fiber surface by electron beam irradiation. The tensile strength and thermal stability of henequen fiber decreased with increasing dose of electron beam. At the irradiation of 10 kGy, the surface roughness increased because of the removal of the pectin, waxy and P layer, but the tensile strength of henequen irradiated with 10 kGy were maintained. It has been suggested that the use of a 10 kGy dose of electron beam to modify the henequen fiber surface can improve the surface properties and preserve the fibers' mechanical and thermal properties.

  3. Characterization of polymeric films subjected to lithium ion beam irradiation

    Science.gov (United States)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  4. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Okonogi Noriyuki

    2012-10-01

    Full Text Available Abstract Background Proton-beam therapy (PBT provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Methods Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT was proposed. This technique requires the following two adjustments: (A blocking a part of the PTV by multi-leaf collimator(s (MLCs; and (B fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility. After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. Results The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the

  5. Demonstration plant of smoke treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Kawamura, Keita

    1989-01-01

    The acid rain caused by sulfur oxides and nitrogen oxides has become the large social problem as it damages forests, lakes and agricultural crops and also buildings in Europe and America. In such circumstances, concern has been expressed in various countries on the smoke treatment technology, EBA process, which removes the sulfur oxides and nitrogen oxides contained in smoke simultaneously by irradiating electron beam on the smoke which is exhausted from power station boilers and industrial boilers and mainly causes acid rain. The research and development of this technology were begun in 1971 based on the original idea of Ebara Corp., and from 1972, those were advanced as the joint research with Japan Atomic Energy Research Institute. Thereafter, by the joint research with the technical research association on prevention of nitrogen oxides in iron and steel industry, by ammonia addition and irradiation process, the desulfurization and denitration performance was heightened, and the byproduct was successfully captured as powder, in this way, the continuous dry treatment process was established. The demonstration test plant was constructed in a coal-firing power station in Indiana, USA, and the trial operation was carried out from 1985 for two years. (K.I.)

  6. Hydrogel coating of RVNRL film by electron beam irradiation

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Hj, Mohd Dahlan; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The tackiness properties of Radiation Vulcanized Natural Rubber Latex (RVNRL) film surfaces coated by various monomers have been investigated in order to understand the suitable hydrogels which reduce the tackiness of the film. In this context , different types of monomers namely, N-vinyl-2-pyrrolidone (NVP), N,N-dimethyl amino ethyl amide (DMAEA), acrylic acid (AAc), N-butyl acrylate (n-BA) and 2-hydroxyethyl methacrylate (HEMA) as well as monomer mixtures have been tried with varying degrees of success. It was found that coating the RVNRL with 80% HEMA/20% n-BA by irradiation at 80 kGy using low Energy Electron Beam gave remarkable reduction in surface tackiness of the RVNRL film. Several other attempts were made such as priming with acid and aluminum sulfate, mixing the aluminum sulfate into the monomer and dipping the partially wet RVNRL film into the monomer to enhance the wettability of he monomers with the film. Studies on surface topography revealed that the decrease in tackiness with coating is due to the increase of the surface roughness at 80 kGy, irradiation dose

  7. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  8. Electron beam irradiations of polypropylene syringe barrels and the resulting physical and chemical property changes

    Science.gov (United States)

    Abraham, Ann C.; Czayka, M. A.; Fisch, M. R.

    2010-01-01

    Mechanical, thermal, chemical decomposition and electron spin resonance (ESR) methods were used to study electron beam irradiated polypropylene syringe barrels that were irradiated to a total fractionated dose of 0, 20, 40, 60, and 80 kGy (in steps of 20 kGy). Dose mapping was conducted to determine dose to and through the syringe barrel. Analysis of these data indicated that degradation of the polypropylene syringes increased with an increase in electron beam irradiation.

  9. In vitro degradation properties of ion-beam irradiated poly(lactide-co-glycolic acid) mesh

    Science.gov (United States)

    Tanaka, Toshiyuki; Tsuchiya, Koji; Yajima, Hirofumi; Suzuki, Yoshiaki; Fukutome, Akira

    2011-10-01

    Scaffolds for tissue regeneration must be biocompatible and biodegradable. Ion-beam irradiation is useful for making polymers biocompatible, but the process by which the irradiated polymers biodegradable is not yet well understood. We investigated this phenomenon by Kr +-irradiated poly(lactide-co-glycolic acid) (PLGA) mesh substrate at an acceleration energy of 50 keV with fluences of 1 × 10 13 and 1 × 10 14 ions/cm 2. We then measured the electronic states of the constituent elements on the irradiated surface by X-ray photoelectron microscopy (XPS) and evaluated the hydrolytic degradation properties (weight loss, media pH, and tensile strength) of the mesh in phosphate buffer solution. New functional groups and carbonization were induced on the irradiated surface. Degradation rate and tensile strength remain unchanged by ion-beam irradiation. Ion-beam irradiation should, thus, be a promising modification technique for tissue engineering scaffolds.

  10. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  11. The evaluation of 6 and 18 MeV electron beams for small animal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chao, T C; Tu, S J; Tung, C J; Hong, J H; Lee, C C [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, A M [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan (China)], E-mail: cclee@mail.cgu.edu.tw

    2009-10-07

    A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm x 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses ({<=}2.5% for 6 MeV e; {<=}1.8% for 18 MeV e) and profiles (FWHM {<=} 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d{sub 90}. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.

  12. Intensity-modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Spirou, S.; Forster, K.; Lee, H.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1999-01-01

    Purpose: To evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. Methods and Materials: Three-dimensional treatment planning was performed on five left and five right breasts using standard wedged and intensity modulated (IM) tangential beams. Optimal beam parameters were chosen using beams-eye-view display. For the standard plans, the optimal wedge angles were chosen based on dose distributions in the central plane calculated without inhomogeneity corrections, according to our standard protocol. Intensity-modulated plans were generated using an inverse planning algorithm and a standard set of target and critical structure optimization criteria. Plans were compared using multiple dose distributions and dose volume histograms for the planning target volume (PTV), ipsilateral lung, coronary arteries, and contralateral breast. Results: Significant improvements in the doses to critical structures were achieved using intensity modulation. Compared with a standard-wedged plan prescribed to 46 Gy, the dose from the IM plan encompassing 20% of the coronary artery region decreased by 25% (from 36 to 27 Gy) for patients treated to the left breast; the mean dose to the contralateral breast decreased by 42% (from 1.2 to 0.7 Gy); the ipsilateral lung volume receiving more than 46 Gy decreased by 30% (from 10% to 7%); the volume of surrounding soft tissue receiving more than 46 Gy decreased by 31% (from 48% to 33%). Dose homogeneity within the target volume improved greatest in the superior and inferior regions of the breast (approximately 8%), although some decrease in the medial and lateral high-dose regions (approximately 4%) was also observed. Conclusion: Intensity modulation with a standard tangential beam arrangement significantly reduces the dose to the coronary arteries, ipsilateral lung, contralateral breast, and surrounding soft tissues. Improvements in dose homogeneity throughout the target volume can also be

  13. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  14. Evaluation of the Efficiency of Electron Beam Irradiation for Removal of Humic Acid from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad hasan Ehrampoosh

    2017-05-01

    Full Text Available Background: Humic acids (HAs have adverse effects on the environment; therefore, they should be removed from the water and wastewater. The aim of this study was to evaluate the efficiency of the electron beam irradiation for removal of humic acid from aqueous solutions. Methods: Humic acid was purchased from Sigma-Aldrich Company. After preparation of stock solution in alkaline condition, different concentrations of humic acid (10, 25 and 50 mg were prepared. Study has done at pH= 8 and in different dose rates of 1, 3, 6, 9 and 15 kGy. Then initial absorption of samples was measured at 254 nm using UV-Visible spectrophotometer before and after the irradiation. Excel and SPSS Ver. 18 were used for analyzing the data and drawing graphs. Results: The results of this study showed that by increasing adsorbed dose from 1 to 15 kGy, the efficiency of HA removal increased and by increasing humic acid concentration from 10 to 50 mg/L, the removal efficiency of humic acid decreased. The results of the kinetic study showed that irradiation of humic acid followed pseudo second-order reaction. Conclusion: It can be concluded that electron beam irradiation can be a useful technology for the treatment of environmental samples contaminated by humic acid.

  15. Ciliary body and choroidal melanomas treated by proton beam irradiation. Histopathologic study of eyes

    International Nuclear Information System (INIS)

    Seddon, J.M.; Gragoudas, E.S.; Albert, D.M.

    1983-01-01

    Proton beam irradiation resulted in clinical and/or histopathological regression of large ciliary body and choroidal melanomas in three eyes. Enucleations were performed 6 1/2 weeks, five months, and 11 months after irradiation for angle-closure glaucoma from total retinal detachment, increase in retinal detachment, and neovascular glaucoma, respectively. A direct relationship was found between the length of the interval from irradiation to enucleation and the degree of histologic changes. Vascular changes in the tumors included endothelial cell swelling and decreased lumen size, basement membrane thickening, collapse of sinusoidal vessels, and thrombosis of vessels. Although apparently unaltered tumor cells remained, degenerative changes occurred in some melanoma cells, including lipid vacuoles in cytoplasm, pyknotic nuclei, and balloon cell formation. Patchy areas of necrosis and proteinaceous exudate were present. Pigment-laden macrophages were found near tumor vessels and all had a substantial chronic inflammatory infiltrate. The effect of proton beam irradiation on tumor vessels probably plays an important role in uveal melanoma regression

  16. Ciliary body and choroidal melanomas treated by proton beam irradiation. Histopathologic study of eyes

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, J.M.; Gragoudas, E.S.; Albert, D.M.

    1983-09-01

    Proton beam irradiation resulted in clinical and/or histopathological regression of large ciliary body and choroidal melanomas in three eyes. Enucleations were performed 6 1/2 weeks, five months, and 11 months after irradiation for angle-closure glaucoma from total retinal detachment, increase in retinal detachment, and neovascular glaucoma, respectively. A direct relationship was found between the length of the interval from irradiation to enucleation and the degree of histologic changes. Vascular changes in the tumors included endothelial cell swelling and decreased lumen size, basement membrane thickening, collapse of sinusoidal vessels, and thrombosis of vessels. Although apparently unaltered tumor cells remained, degenerative changes occurred in some melanoma cells, including lipid vacuoles in cytoplasm, pyknotic nuclei, and balloon cell formation. Patchy areas of necrosis and proteinaceous exudate were present. Pigment-laden macrophages were found near tumor vessels and all had a substantial chronic inflammatory infiltrate. The effect of proton beam irradiation on tumor vessels probably plays an important role in uveal melanoma regression.

  17. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams

    International Nuclear Information System (INIS)

    Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-01-01

    The efficiency of ion-beam irradiation combined with tissue culture in obtaining floral mutants was investigated and compared with those of gamma rays and X-rays in carnation. Leaf segments of carnation plants in vitro were irradiated with the 220 MeV carbon ions, and cultured till the shoot regenerated. The carbon ion had the highest effect in reducing the regeneration frequency, and the RBE value with respect to gamma-rays was four. The higher mutation frequency and the wider mutation spectrum were obtained in plants irradiated with the carbon ions than low LET radiations. Three new carnation varieties developed by ion-beam irradiation were applied for the registration of the Japanese Ministry of Agriculture, Forestry and Fisheries. The results indicate that ion beam irradiation could induce wide variety of flower-color and -shape mutants, and that the combined method of ion-beam irradiation with tissue culture is useful to obtain the commercial varieties in a short time

  18. An irradiation facility with a horizontal beam for radiobiological studies

    International Nuclear Information System (INIS)

    Czub, J.; Banas, D.; Braziewicz, J.; Choinski, J.; Jaskola, M.; Korman, A.; Szeflinski, Z.; Wojcik, A.

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw Univ.. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as in the region of the Bragg peak. (authors)

  19. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary S., E-mail: gary.groenewold@inl.gov [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Cannon, W. Roger; Lessing, Paul A. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark [Image and Chemical Analysis Laboratory, Montana State University, Bozeman, MT 59717 (United States); Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States)

    2013-02-01

    Highlights: ► Polyethylene glycol (PEG) and paraffinic polymers were subjected to Li ion irradiation. ► Small oligomers detected in irradiated PEG by electrospray ionization (ESI) mass spectrometry. ► Radiolytic scission observed in X-ray photoelectron and electrospray ionization mass spectra. ► Radiation modified paraffinics characterized by changes in non-ionic surfactant additives. ► Results suggest that extent of radiolysis, and radiolytic pathways can be inferred. -- Abstract: Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H{sub 2}O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with H{sup ·} and OH{sup ·}. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp{sup 2} carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H{sub 2}O or a H{sub 2}O–methanol solution, and

  20. Fast crystallization of amorphous Gd2Zr2O7 induced by thermally activated electron-beam irradiation

    Science.gov (United States)

    Huang, Zhangyi; Qi, Jianqi; Zhou, Li; Feng, Zhao; Yu, Xiaohe; Gong, Yichao; Yang, Mao; Shi, Qiwu; Wei, Nian; Lu, Tiecheng

    2015-12-01

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd2Zr2O7 synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd2Zr2O7 and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm2). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 1017 electrons/cm2. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  1. Effects of mixed neutron-gamma beams in both sequential and simultaneous irradiation modalities on chromosomal aberrations of human peripheral blood lymphocytes in-vitro

    International Nuclear Information System (INIS)

    Blake, P.K.; DeLuca, P.M. Jr.; Pearson, D.W.; Meisner, L.F.; Gould, M.N.

    1984-01-01

    Initial irradiations have been performed in preparation for testing the independent action hypothesis for chromosomal abnormality production between low- and high-LET radiation. Results of these irradiations are compared with typical dose response curves. Lessons learned and proposed experiments for the future are discussed. 25 refs., 3 figs

  2. Structure modification and medical application of the natural products by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S. [Dongguk University, Gyeongju (Korea, Republic of)

    2008-04-15

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  3. A method of beam control for NFZ-10 industrial irradiation linac

    International Nuclear Information System (INIS)

    Zhao Minghua

    2000-01-01

    Traditionally negative feedback coming from output beam is used to stabilize output beam by regulating filament voltage of bombarding diode electron gun. The authors analysed the shortcomings of the method in detail and put forward a new method of regulating bombarding high voltage in NFZ-10 industrial irradiation linac. Output beam with high stability and high accuracy was obtained

  4. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  5. Irradiance Scintillation Index for a Gaussian Beam Based on the Generalized Modified Atmospheric Spectrum with Aperture Averaged

    Directory of Open Access Journals (Sweden)

    Chao Gao

    2016-01-01

    Full Text Available This paper investigates the aperture-averaged irradiance scintillation index of a Gaussian beam propagating through a horizontal path in weak non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results are conducted to analyze the influences of optical parameters on the aperture-averaged irradiance scintillation index for different Gaussian beams. This paper also examines the effects of the irradiance scintillation on the performance of the point-to-point optical wireless communication system with intensity modulation/direct detection scheme.

  6. Discrimination of damages depending on the types of lactic dehydrogenase isozymes in electron beam irradiation

    International Nuclear Information System (INIS)

    Ohta, Akishige; Matsubayashi, Takashi; Liu Xiaolan; Takizawa, Haruki.

    1995-01-01

    Lactate dehydrogenase (EC 1.1.1.27,LDH) was a tetrameric molecule. The five different combinations of two different polypeptide chains can be readily identified by electrophoresis and ion-exchange chromatography. Injury patterns of LDH activity following electron-beam irradiation was investigated by assaying activities of three isozymes (pig heart LDH;M 4 , rabbit muscle LDH;H 4 , chicken heart LDH;M 3 H 1 ). Following results were obtained in the electron beam irradiation to three kinds of LDH isozymes: 1) Each isozyme has respective different reactivities to the electron beam irradiation. 2) Among the isozymes, M 4 enzyme was increased its enzymatic activity by the irradiations of low-level doses. 3) For the H 4 enzymes, an increasing phenomenon of -SH group was found in the low-level doses of electron beam irradiation. (author)

  7. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    Science.gov (United States)

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  8. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, S., E-mail: stephanie.pellegrino@cea.fr [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, E.; Martin, H. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Chaabane, N.; Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Gallien, J.P.; Beck, L. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2012-02-15

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  9. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Science.gov (United States)

    Pellegrino, S.; Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, É.; Martin, H.; Chaâbane, N.; Vaubaillon, S.; Gallien, J. P.; Beck, L.

    2012-02-01

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  10. Monte Carlo simulation of small field electron beams for small animal irradiation

    International Nuclear Information System (INIS)

    Lee, Chung-Chi; Chen, Ai-Mei; Tung, Chuan-Jong; Chao, Tsi-Chian

    2011-01-01

    The volume effect of detectors in the dosimetry of small fields for photon beams has been well studied due to interests in radiosurgery and small beamlets used in IMRT treatments; but there is still an unexplored research field for small electron beams used in small animal irradiation. This study proposes to use the BEAM Monte Carlo (MC) simulation to assess characteristics of small electron beams (4, 6, 14, 30 mm in diameter) with the kinetic energies of 6 and 18 MeV. Three factors influencing beam characteristics were studied (1) AE and ECUT settings, (2) photon jaw settings and (3) simulation pixel sizes. Study results reveal that AE/ECUT settings at 0.7 MeV are adequate for linear accelerator treatment head simulation, while 0.521 MeV is more favorable to be used for the phantom study. It is also demonstrated that voxel size setting at 1/4 of the simulation field width in all directions is sufficient to achieve accurate results. As for the photon jaw setting, it has great impact on the absolute output of different field size setting (i.e. output factor) but with minimum effect on the relative lateral distribution.

  11. Irradiation effects on perfluorinated polymers

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Pompe, G.; Scheler, U.; Lunkwitz, K.

    2002-01-01

    Complete text of publication follows. High-energy radiation affects the properties of polymers by chain scission and crosslinking reactions. Both types of reaction occur simultaneously in irradiated polymers. However, one process will usually predominate, depending on the chemical structure of the polymer and the irradiation conditions such as temperature and atmosphere. Polytetrafluoroethylene (PTFE) undergoes predominantly chain scission, if the irradiation is performed at room temperature. This shortcoming is exploited by converting PTFE into low molecular weight micropowders. The use of PTFE micropowders functionalized with COOH groups as additive in polyamides to improve the sliding properties of the materials has been studied. During the compounding process in a twin screw extruder the COOH groups of the irradiated PTFE react with the polyamides. For these studies, it became necessary to investigate the content of end groups in irradiated PTFE by FTIR and 19 F solid-state NMR. These date were used to calculate number-average molecular weights. The ratios of COOH groups to CF 3 groups are discussed in terms of the mechanism of PTFE degradation. If PTFE is irradiated at temperatures above its crystalline melting point in an oxygen-free atmosphere, branching and crosslinking occur. The dependence of radiation effects on perfluorinated copolymers (FEP, PFA) on temperature has been studied. Melt flow index measurements have shown that branching and crosslinking predominate over chain scission with increasing irradiation temperature both in FEP and in PFA. Quantitative analysis of 19 F solid-state NMR data has shown that the content of branching groups (>CF-) exceeds the content of end groups in the case of PFA irradiated above its crystalline melting point. The formation of COF and COOH groups in the irradiated PFA is interpreted as a result of partial degradation of perfluorovinyl ether comonomer units

  12. Severe dry-eye syndrome following external beam irradiation

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Million, R.R.

    1994-01-01

    There are limited data in the literature on the probability of dry-eye complications according to radiotherapy dose. This study investigates the risk of radiation-induced severe dry-eye syndrome in patients in whom an entire orbit was exposed to fractionated external beam irradiation. Between October 1964 and May 1989, 33 patients with extracranial head and neck tumors received irradiation of an entire orbit. Most patients were treated with 60 Co. The dose to the lacrimal apparatus was calculated at a depth of 1 cm from the anterior skin surface, the approximate depth of the major lacrimal gland. The end point of the study was severe dry-eye syndrome sufficient to produce visual loss secondary to corneal opacification, ulceration, or vascularization. Twenty patients developed severe dry-eye syndrome. All 17 patients who received dose ≥57Gy developed severe dry-eye syndrome. Three (19%) of 16 patients who received doses ≥45 Gy developed severe dry-eye syndrome; injuries in the latter group were much more slower to develop (4 to 11 years) than in the higher dose group, in whom corneal vascularization and opacification were usually pronounced within 9-10 months. There were no data for the range of doses between 45.01 and 56.99 Gy. The data did not suggest an increased risk of severe dry-eye syndrome with increasing age. Data from the current series and the literature are combined to construct a sigmoid dose response curve. The incidence of injury increases from 0% reported after doses ≥30 Gy to 100% after doses ≥57 Gy. 13 refs., 3 figs., 5 tabs

  13. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    International Nuclear Information System (INIS)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-01-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test. - Highlights: • Microencapsulated ammonium polyphosphate is prepared by successive sol-gel process. • The higher irradiation dose induces the better dimensional stability for EVA system. • The higher irradiation, the more MCAPP immobilized in EVA crosslinked structure. • The higher irradiation dose enhances the flame retardancy of EVA composites. • The microencapsulated composites demonstrate stable flame retardancy in ageing test.

  14. Surrogates for validation of electron beam irradiation of foods.

    Science.gov (United States)

    Rodriguez, Oscar; Castell-Perez, M Elena; Ekpanyaskun, Nont; Moreira, Rosana G; Castillo, Alejandro

    2006-07-15

    The aim of this study was to identify a potential surrogate to describe the radiation sensitivity of the most common pathogens encountered in fruits. Three pathogens: Escherichia coli O157:H7 933, Listeria monocytogenes ATCC 51414, and Salmonella Poona, and five non-pathogens: E. coli K-12 MG1655, Listeria innocua Seeliger 1983 (NRRL B-33003 and NRRl B-33014), Enterobacter aerogenes, and Salmonella LT2 were inoculated (populations of 10(7)-10(9) CFU/ml) into model food systems (10% w/w gelatin) and exposed to doses up to 1.0 kGy using a 2 MeV Van der Graaf linear accelerator. The non-pathogen E. coli K-12 MG1655 was highly resistant to radiation (D(10)=0.88 kGy) in comparison to the other strains while L. monocytogenes was the more radiation-resistant pathogen (D(10)=1.09 kGy). Thus, E. coli K-12 MG1655 could be a suitable surrogate for e-beam studies with L. monocytogenes as the indicator pathogen. L. innocua strains were more radiation-sensitive (D(10)=0.66, 0.72 kGy) than their pathogenic counterpart. S. Poona and E. coli O157:H7 were even more radiation-sensitive (D(10)=0.38, 0.36 kGy, respectively). S. LT2 was the least radiation-resistant pathogen with D(10)=0.12 kGy. In a later study, the radiation resistance of the pathogens and the surrogate was evaluated when inoculated in a real food (i.e., fresh cantaloupe). The D(10) values obtained in this experiment were higher than those obtained with the model foods. However, the surrogate was still more radiation-resistant and could therefore be used to indicate decontamination of the target pathogens under electron beam irradiation.

  15. Radiation effect of low energy electron beam on plant growth

    International Nuclear Information System (INIS)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Radiation effect of low energy electron beam (EB) on the growth of maize, barley and soybean was investigated. Seeds of maize, barley and soybean were irradiated in the dose range of 2 to 20 kGy using EB with different energy from 150 to 250 keV. Growth promotion was observed for irradiated seeds of maize and soybean at the dose up to 10 kGy. Especially, significant promotion of root growth was observed for irradiated barley and soybean. It was also found for soybean that phytoalexin induction activity was clearly enhanced by low energy EB irradiation. (author)

  16. Realistic respiratory motion margins for external beam partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Leigh; Quirk, Sarah [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Smith, Wendy L., E-mail: wendy.smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2015-09-15

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  17. An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation

    International Nuclear Information System (INIS)

    Straube, William L.; Moros, Eduardo G.; Low, Daniel A.; Klein, Eric E.; Willcut, Virgil M.; Myerson, Robert J.

    1996-01-01

    the ability to effectively deliver ultrasound hyperthermia or 60 Co teletherapy. With the en-face approach the ultrasonic patterns generated with and without the reflector demonstrated that the ultrasound system maintained both a uniform and controllable heating pattern. The 60 Co beam had no effect on the performance of the thermocouple thermometers. The radiation beam is attenuated nearly uniformly by the reflector system. To date, 10 patients have been treated with the en-face approach and 12 have been treated with the orthogonal approach (90 treatments). Conclusions: The clinical implementation of ultrasound hyperthermia simultaneous with 60 Co irradiation is technically and clinically feasible without any complications or hazards to the patient. The implementation of a reflecting device allows en-face delivery of both the ultrasound and 60 Co irradiation. Temperatures obtained during simultaneous treatments are comparable to those historically obtained during sequential treatments with the same commercial ultrasound device

  18. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  19. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  20. Treatment of keloid in upper limb by combined surgical excision and immediate postoperative electron beam irradiation

    International Nuclear Information System (INIS)

    Shimada, Kenichi; Yoshida, Jun; Heshiki, Takaya; Ishikura, Naotaka; Kawakami, Shigehiko

    2002-01-01

    A scar in the upper extremities sometimes leads to onset of keloid, whose treatment is difficult and many treatment methods have been tried. Recently our hospital has performed electron beam radiation for treatment of keloid. In this report, we describe our examination on patients with keloid in the upper extremities who visited our hospital and underwent electron beam irradiation in these past 7 years. The patients were 9 males and 15 females, age between 9 and 84 (average age 26.6 years). Treatments included the following: Total ablation of keloid plus electron beam radiation, electron beam radiation alone, localized administration of triamcinolone. Treatment evaluation and presence or absence of pigmentation was examined. Electron beam radiation was performed with a total of 25 Gy for consecutive 5 days by 5 Gy electron beam since 1 week after keloid ablation with sufficient informed consent. Onset site of 24 patients with keloid in the upper extremities was the shoulder in 12 patients, the upper arm in 11, and the elbow in one patient. Development cause was BCG inoculation in 8 patients, wound associated with surgery in 6, unknown cause in 6, and others in 4 patients. The number of patients who were followed-up after treatment was 16 for each examination respectively, and mean followed-up period was 2 years and 10 months. Postoperative evaluation for ablation plus electron beam was good in 1 patient and fair in 6, that for electron beam radiation alone was good in 1, fair in 2, and unknown in 2, and that for triamcinolone was fair in 2, poor in 4, and unknown in 1 patient. Postoperative pigmentation was observed in all the patients immediately after radiation, and at the time of final follow-up, in 6 (33%) out of 9 patients confirmed. Ablation plus electron beam irradiation for keloid in the upper extremities was effective. However, this treatment cannot avoid a possibility of cancerogenesis. Thus, sufficient explanation and consent may be essential after full

  1. Electron beam irradiation and adsorption as possibilities for wastewater reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Higa, Marcela C.; Pinheiro, Alessandro; Morais, Aline V.; Fungaro, Denise A.

    2013-01-01

    The importance of water for life and for the industrial processes is forcing the development of combined technologies for wastewater improvement. The limitations of biological treatment for reducing micro-pollutants and the constant introduction of different chemical into environment make Ionizing Radiation a more interesting technique for pollutants abatement. Electron Accelerators are the main radiation source for cleaning waters purpose. Remazol Orange and Black B were decomposed by Electron Beam Irradiation. Another research consisted in reuse of burnt coal for cleaning wastewater and the Orange and Red dyes were adsorbed onto zeolitic material. Both color and toxicity were the main parameters to evaluate the efficacy of the process and also the recommended criteria which allow further industrial reuse. Real effluents were also treated by both technologies in batch scale. The radiation dose suggested for real effluents varied from 2.5kGy up to 5kGy. The characteristics of obtained zeolite will be presented. The removal of color and toxicity was enough to allow the industrial reuse of those products (wastewater). (author)

  2. Advanced stabilization of PAN fibers for fabrication of carbon fibers by e-beam irradiation

    International Nuclear Information System (INIS)

    Jeun, Joon Pyo; Kim, Du Young; Shin, Hye Kyoung; Kang, Phil Hyun; Park, Jung Ki

    2012-01-01

    In recent years, the carbon fiber industry has been growing rapidly to meet the demand from efferent industries such as aerospace, military, turbine blades, light weight cylinders and pressure vessels. Generally, carbon fibers are manufactured by a controlled pyrolysis of stabilized precursor fiber such as polyacrylonitrile (PAN). In the stabilization step, the linear PAN molecules are first converted to cyclic structure. However, cyclization is a very complicated process and there are still differences of opinion on the reaction mechanisms. Photo-induced crosslinking and stabilization of PAN via ion beam, X-ray, gamma ray and UV irradiation has been reported in the literature. However, the process required a long stabilization time. In this work, a new and highly effective method of pretreatment PAN precursor fiber was described. The effect of the e-beam on the stabilization process of the fibers was investigated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD) measurement

  3. Degradation in tensile properties of aromatic polymers by electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hayakawa, N.; Yoshida, K.; Hagiwara, M.

    1985-01-01

    Electron beam irradiation effects of ten kinds of polymers containing various aromatic rings linked by functional groups in the main chain (aromatic polymer) were studied with reference to change in tensile properties. The polymers studied were polyimides 'Kapton H', and 'UPILEX', polyetherimide 'ULTEM', polyamides 'A-Film' and 'APH-50 (nomex type paper)', poly-ether-ether-ketone 'PEEK', polyarylate 'U-Polymer', polysulphones 'Udel-Polysulphone' and 'PES', and modified poly(phenylene oxide) 'NORYL'. Irradiation was carried out by use of electron beam at a dose rate of 5 x 10 3 Gy s -1 at room temperature. The elongation at break was the most severely influenced by the irradiation and it decreased with increasing dose. The order of radiation resistivity which was evaluated from the dose required for the elongation to become 50% and 20% of the initial value was as follows: Polyimide > PEEK > polyamide > polyetherimide > polyarylate > polysulphone, poly(phenylene oxide). Based on the above experimental results, an order is proposed for the radiation stability of the aromatic repeating units composing the main chain. (author)

  4. Monte Carlo study of molecular weight distribution changes induced by degradation of ion beam irradiated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chappa, V.C., E-mail: chappa@tandar.cnea.gov.a [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); CONICET (Argentina); Pastorino, C.; Grosso, M.F. dwel; Arbeitman, C.R. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); CONICET (Argentina); Mueller, M. [Institut fuer Theoretische Physik, Georg-August-Universitaet, Goettingen (Germany); Garci' a Bermudez, G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); CONICET (Argentina); Escuela de Ciencia y Tecnologi' a, UNSAM (Argentina)

    2010-10-01

    In this work we study a polymeric material that degrades upon irradiation due to the energy inhomogeneously deposited by heavy ion beams. Ion beam irradiation of polymers generates rather different effects than those induced by 'classical' low ionizing particles such as electrons or gamma rays. This is due to the high electronic stopping power and the inhomogeneous distribution of deposited energy. This energy is transferred to the material within a small volume along the ion path forming the so called 'nuclear track' or 'latent track'. The track size primarily depends on the ion velocity, and it is determined by the secondary electrons (delta rays) generated along the ion trajectory. By means of Monte Carlo simulations we first obtained equilibrated polymer configurations using a coarse-grained model, and then investigated the spatially inhomogeneous chain scission process due to the passage of the ions. The number average molecular weight, weight average molecular weight and the polydispersity were calculated as a function of track radius, scission probability within the ion track and irradiation fluence. Finally we compared our results with a numerical implementation of a model for random homogeneous degradation.

  5. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  6. Analysis of target implosion irradiated by proton beam, (1)

    International Nuclear Information System (INIS)

    Tamba, Moritake; Nagata, Norimasa; Kawata, Shigeo; Niu, Keishiro.

    1982-10-01

    Numerical simulation and analysis were performed for the implosion of a hollow shell target driven by proton beam. The target consists of three layers of Pb, Al and DT. As the Al layer is heated by proton beam, the layer expands and pushes the DT layer toward the target center. To obtain the optimal velocity of DT implosion, the optimal target size and optimal layer thickness were determined. The target size is determined by, for example, the instability of the implosion or beam focusing on the target surface. The Rayleigh-Taylor instability and the unstable implosion due to the inhomogeneity were investigated. Dissipation, nonlinear effects and density gradient at the boundary were expected to reduce the growth rate of the Rayleigh-Taylor instability during the implosion. In order that the deviation of the boundary surface during the implosion is less than the thickness of fuel, the inhomogeneity of the temperature and the density of the target should be less than ten percent. The amplitude of the boundary surface roughness is required to be less than 4 micrometer. (Kato, T.)

  7. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration

    OpenAIRE

    An, Sung-Jun; Lee, So-Hyoun; Huh, Jung-Bo; Jeong, Sung In; Park, Jong-Seok; Gwon, Hui-Jeong; Kang, Eun-Sook; Jeong, Chang-Mo; Lim, Youn-Mook

    2017-01-01

    Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated b...

  8. Suppression of discharge breakdown of polyethylene insulation during electron beam irradiation to power cable

    International Nuclear Information System (INIS)

    Sasaki, T.; Hosoi, F.; Kasai, N.; Hagiwara, M.

    1981-01-01

    In an attempt to apply the electron beam process to the crosslinking procedure for polyethylene insulation of high tension power cables, the suppression of discharge breakdown during irradiation has been investigated in the presence of crosslinking agents. Alkylamines of strong basicity and secondary or tertiary alcoholamines were found to be effective additives to suppress the discharge breakdown. The retardation of crosslinking by amines was minimized by reducing the amount of an amine and adding an alcohol instead. Polyethylene compounds contaning crosslinking agents, amines and alcohols which gave properties suitable for insulating a cable were obtained. The feasibility of these results are ascertained by irradiating cable specimens of a 22 kV class. (author)

  9. Sensorial analysis of irradiated coffee (Coffea arabica L.) by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Flavio T.; Fanaro, Gustavo B.; Koike, Amanda C.R.; Villavicencio, Anna Lucia C.H., E-mail: flaviot@ymail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Maria E.M. Pinto e [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Saude Publica. Dept. de Nutricao

    2013-07-01

    Coffee is an important commodity and it is one of the most widely consumed beverages in the world. The acceptance of coffee by consumers depends mainly on the sensory characteristics of the beverage, that is its flavor, body, color, acidity and aroma. Food irradiation is processing technology environmental friendly and safety which aimed at the improvement of food quality. Depending on the absorbed radiation dose various effects can be achieved resulting in increase the shelf life, disinfestation, microorganism load reduction, without causing sensory changes to the food. Sensory analysis is the examination of a food through the evaluation of the attributes sensorial of product. The objective this paper was to evaluate the sensory properties, acceptance and purchase intent by the consumer of coffee (Coffea arabica L.) after the irradiation process with doses 6.0, 12.0 and 18.0kGy by electron beam. (author)

  10. Irradiation with benzene, toluene and phenol electron beams in aqueous solution

    International Nuclear Information System (INIS)

    Santoyo O, E.L.; Lopez V, H.; Vazquez A, O.; Lizama S, B.E.; Garcia F, M.

    1998-01-01

    It is described a methodology for waste water treatment which is simulated doing a benzene-toluene-phenol mixture in aqueous solution. Three different concentrations of them ones were used which were irradiated with electron beams coming from a Pelletron Accelerator carrying out the degradation effect of these compounds in CO 2 and H 2 O. By mean of gas chromatography the analytical determinations were realized finding that in lower concentration of benzene and toluene performances of degradation higher than 95 % were obtained, but higher concentrations (100 ppm) the performance diminishes at 89 %, while for phenol in higher concentrations its degradation is over 60 % and in lower concentrations the degradation is under 80 %. The results are obtained with a constant irradiation time of 12 seconds and neutral pH. (Author

  11. Sensorial analysis of irradiated coffee (Coffea arabica L.) by electron beam

    International Nuclear Information System (INIS)

    Rodrigues, Flavio T.; Fanaro, Gustavo B.; Koike, Amanda C.R.; Villavicencio, Anna Lucia C.H.; Silva, Maria E.M. Pinto e

    2013-01-01

    Coffee is an important commodity and it is one of the most widely consumed beverages in the world. The acceptance of coffee by consumers depends mainly on the sensory characteristics of the beverage, that is its flavor, body, color, acidity and aroma. Food irradiation is processing technology environmental friendly and safety which aimed at the improvement of food quality. Depending on the absorbed radiation dose various effects can be achieved resulting in increase the shelf life, disinfestation, microorganism load reduction, without causing sensory changes to the food. Sensory analysis is the examination of a food through the evaluation of the attributes sensorial of product. The objective this paper was to evaluate the sensory properties, acceptance and purchase intent by the consumer of coffee (Coffea arabica L.) after the irradiation process with doses 6.0, 12.0 and 18.0kGy by electron beam. (author)

  12. Bronchiolitis obliterans organizing pneumonia after tangential beam irradiation to the breast. Discrimination from radiation pneumonitis

    International Nuclear Information System (INIS)

    Nambu, Atsushi; Ozawa, Katsura; Kanazawa, Masaki; Miyata, Kazuyuki; Araki, Tsutomu; Ohki, Zennosuke

    2002-01-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) secondary to tangential beam irradiation to the breast, which occurred seven months after the completion of radiotherapy. Although radiation pneumonitis is an alternative consideration, BOOP could be differentiated from it by its relatively late onset and extensive distribution, which did not respect the radiation field. This disease should always be kept in mind in patients with a history of tangential beam irradiation to the breast. (author)

  13. Treatment of toxic gases SO2 and NO X by electron beam irradiation

    International Nuclear Information System (INIS)

    Castro Rubio Poli, D. de; Vieira, J.M.; Campos, C.A. de.

    1993-01-01

    The removal of S O 2 and N O x by electron beam irradiation will be studied using a small scale flow system which is being set up in order to obtain basic data for the process technical and economical feasibility concerning industrial applications. The gas irradiation will be performed using a Electron Beam Accelerator with 1,5 MeV power, 25 m A current from Radiation Dynamics, Inc. USA. (author)

  14. Application of ion beam irradiated ePTFE to repair small vessel injuries

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan) and Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)]. E-mail: norikichi@ionbeams.riken.jp; Suzuki, Y. [Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ujiie, H. [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666 (Japan); Hori, T. [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666 (Japan); Iwaki, M. [Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, T. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2007-04-15

    In surgery, bleeding from small injured vessels often requires prompt hemostasis without occlusion. This study evaluated the usefulness of 0.06 mm thick ion beam irradiated ePTFE sheets to repair small holes in vessels. Both surfaces of ePTFE sheets were irradiated with a 150 keV-Ar{sup +} beam with fluences of 5 x 10{sup 14} ions/cm{sup 2}. A small hole up to 2 mm in diameter was created in the common carotid artery of a rabbit. The defect was wrapped with an ion beam irradiated or non-irradiated ePTFE sheet. Fibrin glue was used to fix the ePTFE sheets to the common carotid artery. Hemostasis was instantly obtained with ion beam irradiated ePTFE but was rather difficult when using a non-irradiated ePTFE sheet. Three weeks after implantation, no occlusion was observed. Histological examination showed that the ePTFE sheets functioned as a scaffold for vessel wall regeneration. Thin ion beam irradiated ePTFE would be useful in vascular surgery.

  15. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dawi, E.A., E-mail: elmuez.dawi@gmail.com [Ajman University of Science and Technology, Basic Science and Education, Physics Department, P.O. Box 346 (United Arab Emirates); Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); ArnoldBik, W.M. [Eindhoven University of Technology, Irradiation Technology, 5600 GM Eindhoven (Netherlands); Ackermann, R.; Habraken, F.H.P.M. [Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si{sub 3}N{sub 4}), combinations of oxide-nitride films (SiO{sub 2}-Si{sub 3}N{sub 4}) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si{sub 3}N{sub 4} films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  16. Internal structure transition of spin-on glass by electron beam irradiation

    International Nuclear Information System (INIS)

    Araki, Makoto; Taniguchi, Jun; Sawada, Nobuo; Utsumi, Takayuki; Miyamoto, Iwao

    2007-01-01

    The effects of electron beam (EB) irradiation on spin-on glass (SOG) were investigated using thermal desorption spectroscopy. We were able to employ heat treatment as a 'development process', since we discovered that heat treatment breaks different bonds in SOG depending on whether it is applied before or after EB irradiation of SOG. In the case, when heat treatment was applied before EB irradiation of SOG, it was possible to break the Si-C bond at about 500 deg. C. In the case, when heat treatment was applied after EB irradiation of SOG, on the other hand, the -SiC bond could be broken at a lower temperature of about 400 deg. C. Using this difference between the two bond-breaking temperatures, it was possible to develop SOG using thermal desorption development (TDD). Moreover, the bond-breaking mechanisms revealed that the organic components in SOG play an important role in TDD. Hence, in order to determine the influence of organic components on TDD, the development characteristics of SOG samples with 10% and 15% organic contents were investigated

  17. Contribution of Brazil nut shell fiber and electron-beam irradiation in thermomechanical properties of HDPE

    International Nuclear Information System (INIS)

    Polato, Pamella; Lorusso, Leandro Alex; Souza, Clecia de Moura; Moura, Esperidiana Augusta Barretos de; Chinellato, Anne; Rosa, Ricardo de

    2010-01-01

    In the present work, the influence of electron-beam irradiation on thermo-mechanical properties of HDPE and HDPE/Brazil nut shell fiber composite was investigated. The materials were irradiated at radiation dose 50 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated samples were submitted to thermo-mechanical tests and the correlation between their properties was discussed. The results showed that the incorporation of Brazil nut shell fiber represented a significant gain (p < 0,05) in tensile strength at break, flexural strength, flexural module, Vicat softening temperature and heat distortion temperature (HDT) properties of the HDPE. In addition, the irradiated HDPE/Brazil nut shell fiber composite presented a significant increase (p < 0.05) in this properties compared with irradiated HDPE. (author)

  18. Effects of irradiation upon spices

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    ESR studies were performed on untreated and irradiated samples of paprika powder, ground black pepper, and a spice mixture of the following composition: paprika, 55%; black pepper, 14%; allspice, 9%; coriander, 9%; marjoram, 7%; cumin, 4%; and nutmeg, 2%. Gamma radiation doses from 0.5 to 5 Mrad were applied. In the case of paprika samples, the effect of moisture content on the formation and disappearance of radiation-induced free radicals was also investigated. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in irradiated spice samples but they diminished upon storage. After a period of 3 months the ESR signals of the irradiated samples approximated those of the controls. The free radicals found in unirradiated ground spices did not disappear during a storage period as long as one year. The formation and disappearance of radiation-induced free radicals were found to be strongly affected by the moisture content of samples. If a sample of low moisture content containing a high free radical concentration after irradiation was placed in an atmosphere of higher moisture content, the free radicals decayed rapidly.

  19. Assessment of toxicity and genotoxicity of the reactive azo dyes Remazol Black B and Remazol Orange 3R and effectiveness of electron beam irradiation in the reduction of color and toxic effects

    International Nuclear Information System (INIS)

    Pinheiro, Alessandro de Sa

    2011-01-01

    organism Ceriodaphnia dubia and the NOEC and OEC values of RPB dye (sulphatoethylsulphone) were 12.5 and 25 mg L-1, respectively. After hydrolysis of the dye (vinylsulphone and hydroxyethyl sulphone) was shown to increase the values obtained from the NOEC and OEC. There was no chronic effect for the R3AR dye and its chemical forms to C. dubia. The comet assay adapted to haemocytes of Biomphalaria glabrata was used to assess the genotoxicity of the dyes. The RPB dye was genotoxic at highest concentrations (1 and 2 g L-1), with quantitative values of DNA damage equal to 117 and 112 and the R3AR dye was not genotoxic. The use of radiation with electron beams have proven effective in removing the color dyes. With a dose of 10 kGy a reduction of 97.64% and 96.8% for R3AR and RPB, respectively, was achieved. Possibly, the color removal was mainly due to the interaction of reactive species such as hydroxyl radicals generated in the radiolysis of water after the radiation beam of electrons. After radiation of the RPB dye a dose of 10 kGy reduced 59.52 % of the acute toxicity measured with Vibrio fischeri. For the other doses there was no significant reduction, as well as with Daphnia similis, where the values of EC50 48h obtained were smaller than the non-irradiated dye. The R3AR dye showed better decreased toxicity after radiation when compared with the RPB, with reductions of 82.95% (V. fischeri) and 71.26% (D. similis) with 10 kGy. (author)

  20. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  1. On the way to high resolution TEM characterization of dual ion beam irradiated ODS steels

    International Nuclear Information System (INIS)

    Hsiung, L.; Tumey, S.; Fluss, M. J.; King, W.; Marian, J.; Kuntz, J.; Dasher, B. El; Serruys, Y.; Willaime, F.; Kimura, A.

    2009-01-01

    Fission and fusion energy application of ODS steels while appearing promising requires that many key science issues be resolved. Among these issues are our incomplete understanding of the effect of irradiation on low-temperature fracture properties, the role of fusion relevant helium and hydrogen transmutation gases on the deformation and fracture of irradiated material at low and high temperatures, radiation-induced solute segregation and phase stability, mechanisms of swelling suppression in ODS steels, and the effects of radiation damage on localized deformation. While planning to focus on all these issues we are particularly interested in the atomic scale mechanism by which helium is mitigated by the nano scale particles. In order to obtain insight we are performing analytical transmission electron microscopy (AEM), high resolution electron microscopy (HRTEM) to investigate micro-structural and micro-compositional changes and property alterations of Fe-Cr ferritic/martensitic and ODS steels driven by temperature and ion-beam irradiation with Fe, H, and He. As a beginning to a collaboration between LLNL and CEA-Saclay, we have carried out an irradiation of four specimens, Fe, Fe14%Cr, and two ODS steels (14% Cr and 16% Cr) using the dual beam facility at CEA-Saclay (JANNuS). An Fe 8+ beam was implanted at 24 MeV and helium was implanted through a degrader wheel with energies between 1.7 MeV and 1.3 MeV. The nominal radiation parameters were 40 to 25 DPA, 10 to 25 appm He/DPA ratio, and specimen temperatures of ∼425 deg. C. Our goal is to compare the evolved microstructure with respect to the accumulation of helium at or near the particle matrix interface. Preparatory to this first study we have made many hi-resolution analyses of the nano-particles in the two ODS steels which serve as a base line for comparison with the TEM post irradiation examination reported here. These base line studies are reported separately at this conference. (author)

  2. Surface decontamination of cheddar cheese by electron-beam irradiation

    International Nuclear Information System (INIS)

    Shamsuzzaman, K.

    1991-01-01

    Cheddar cheese samples inoculated with two different levels of Penicillium cyclopium or Aspergillus ochraceus spores were vacuum-packed and irradiated at various doses up to 3.5 kGy with electrons from a 10-MeV linear accelerator. Unirradiated cheese showed visible mold growth in 8-25 d at 10 degrees C, and 7-12 d at 15 degrees C, depending on species and spore concentration. Only marginal extension of shelf life at 15 degrees C was achieved with cheese inoculated with 10 2 cfu per sample of either of the mold spores, followed by irradiation at 0.21 or 0.52 kGy. However, at these doses the average shelf life at 10 degrees C was extended by 41.5 and 50.5 d respectively when the inoculum was A. ochraceus. When the inoculum level was increased tenfold, irradiation at 1.2 and 3.5 kGy extended the average shelf life of cheese containing P. cyclopium by 44.5 and >262 d respectively at 10 degrees C, and by 3 and >166 d respectively at 15 degrees C. The shelf life of samples containing A. ochraceus and irradiated at 1.2 or 3.5 kGy was extended by at least 255.5 d at 10 degrees C and at least 160 d at 15 degrees C. The results clearly showed that low radiation doses are effective in the mold decontamination of cheese. The results also suggest that P. cyclopium in Cheddar cheese is more radiation-resistant than A. ochraceus. This was supported by determination of radiation survival curves for the two species incorporated into Cheddar cheese: D 10 values for P. cyclopium and A. ochraceus were found to be 0.40 and 0.21 kGy respectively. The radiation sensitivity of the two organisms was found not to vary with pH in the pH range 5.0-6.2

  3. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  4. Analytical examination of a spiral beam scanning method for uniform irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Mitsuhiro; Okumura, Susumu; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A new circular beam scanning method for uniform irradiation of high-energy, intense ion beams over a large area has been developed. A sweeping speed and a trajectory density in a radial direction are kept constant to obtain uniform fluence distribution. A radial position of a beam spot on a target and an angular frequency of the circular motion are expressed by an irrational function of time. The beam is swept continuously, and a beam trajectory becomes spiral. More than 90 % uniformity of the fluence distribution can been achieved over a large area. (author)

  5. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    Science.gov (United States)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  6. Proton microbeam irradiation effects on PtBA polymer

    Indian Academy of Sciences (India)

    Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface ...

  7. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  8. Spacecraft ion beam noise effects

    Science.gov (United States)

    Anenberg, G. L.

    1972-01-01

    An estimate of the antenna noise temperature and the uplink signal-to-noise ratio has been made for Bremsstrahlung radiation emitted by a spacecraft ion beam; a worst-case situation in which the spacecraft antenna is located in the exit plane of the ion beam and directed at varying angles into the ion beam is assumed. Numerical results of the antenna noise temperature versus antenna pointing angle are given for a typical set of ion beam and antenna pattern parameters. The uplink signal-to-noise ratio due to the ion beam noise alone is given in terms of a critical range in AU at which a typical ranging transmission is received with S/N = 0 db. The effects of the ion beam divergence angle and antenna distance on the ion beam are also presented. Results of the study show typical increases in the antenna noise temperature of about 0.2 K and critical ranges of the order of 3-5 AU. An ion engine thus generally introduces an undetectable level of noise into a spacecraft receiver.

  9. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  10. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sung-Jun An

    2017-10-01

    Full Text Available Bacterial cellulose (BC is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR using an irradiation technique for applications in the dental field. Electron beam irradiation (EI increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs were evaluated by scanning electron microscopy (SEM, attenuated total reflectance-Fourier transform infrared (ATR-FTIR spectroscopy, thermal gravimetric analysis (TGA, and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05. Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; % than 300k EI-BCMs at 8 weeks after implantation (p < 0.05. Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.

  11. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration.

    Science.gov (United States)

    An, Sung-Jun; Lee, So-Hyoun; Huh, Jung-Bo; Jeong, Sung In; Park, Jong-Seok; Gwon, Hui-Jeong; Kang, Eun-Sook; Jeong, Chang-Mo; Lim, Youn-Mook

    2017-10-25

    Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes) were significantly greater than on NI-BCMs after 3 and 7 days ( p NBA; %) than 300k EI-BCMs at 8 weeks after implantation ( p < 0.05). Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.

  12. Electron postgrowth irradiation of platinum-containing nanostructures grown by electron-beam-induced deposition from Pt(PF3)4

    NARCIS (Netherlands)

    Botman, A.; Hagen, C.W.; Li, J.; Thiel, B.L.; Dunn, K.A.; Mulders, J.J.L.; Randolph, S.; Toth, M.

    2009-01-01

    The material grown in a scanning electron microscope by electron beam-induced deposition (EBID) using Pt(PF3)4 precursor is shown to be electron beam sensitive. The effects of deposition time and postgrowth electron irradiation on the microstructure and resistivity of the deposits were assessed by

  13. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N

    2003-07-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is

  14. Influence of physical and chemical parameters on the irradiation of aqueous solutions of phenol by electron beam

    International Nuclear Information System (INIS)

    Pellizzari, Fabien

    2005-01-01

    The aim of this work was the study of the influence of different parameters by electron beam irradiation on the decomposition of phenol in aqueous solution. A simulation based on a simplified mechanism emphasized the importance of the oxygenation of the solutions in the removal of phenol by ionisation. A model of the reactor used was proposed from the study of the influence of the beam energy on the decomposition of phenol. Penetration depths of the electrons were determined. Phenol degradation was found to increase with the dose rate. The fraction of the dose into several passages under the electron beam improved the abatement of the phenol. The reoxygenation of the solutions between each passage and the kinetic expressions of irradiation could explain this effect. As expected, the first by-products identified were originated from the reaction of phenol with hydroxyl radicals. [fr

  15. Beam-beam simulations: dynamical effects and beam-beam limit for LEP3

    CERN Document Server

    Ohmi, K

    2012-01-01

    Beam-beam simulations are reported for LEP3 and TLEP-H, including a rough tune scan. The results suggest that to achieve the design luminosity in LEP3, 10% higher bunch population may be necessary, while TLEP-H can achieve the design performance without any changes. The simulations indicate that the large synchrotron tune, in conjunction with a large hourglass effect, degrades the luminosity performance. This talk was given at CERN on 4 December 2012.

  16. Coherent Beam-Beam Effects in the LHC

    CERN Document Server

    Alexahin, Yu I; Herr, Werner; Zorzano-Mier, M P

    2001-01-01

    In the Large Hadron Collider (LHC) two proton beams of similar intensities collide in several interaction points. It is well known that the head-on collision of two beams of equal strength can excite coherent modes whose frequencies are separated from the incoherent spectrum of oscillations of individual particles. This can lead to the loss of Landau damping and possibly to unstable motion. The beam-beam effect in the LHC is further complicated by a large number of bunches (2808 per beam), a finite crossing angle and gaps in the bunch train. The coherent beam-beam effects under various conditions and operational scenarios are studied analytically and with multiparticle simulations. We give an overview of the main results and present proposals to overcome these difficulties together with possible side effects.

  17. Progress on untargeted effects of ionizing irradiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Li Wenjian

    2010-01-01

    The side effect of ionizing irradiation has been paid more attention with its widely using in tumor treating and mutation breeding. In recent years, untargeted effects induced by ionizing irradiation have become a hotspot of radiobiology. Here, according to reported results, we reviewed the types (genomic instability, bystander effect and adaptive response) and mechanisms of untargeted effects of ionizing irradiation in this paper. (authors)

  18. Influence of E-beam-irradiation on surface modification and micro hardness of recycled polyolefin's

    International Nuclear Information System (INIS)

    Atabaev, B.G.; Gafurov, U.

    2004-01-01

    Full text: The influence of high (E=5MeV) and low (E=0,125MeV) energy -beam irradiation on bulk and surface modification of recycled polypropylene and polyethylene has been investigated. The new techniques for measuring of polymer surface micro hardness, using decoration of indenter imprint under load lower than 100g are developed. It was shown that e-beam irradiation with high-energy lead to rise of surface micro hardness of recycled polypropylene up to two times for 50g load and 30 percent for 25g load with increasing of irradiation dose (D=100,125,150kGy). The bulk and surface modifications depend on cross-links and oxidation processes in recycled polymer under e-beam irradiation. For low energy e-beam irradiation of recycled polyethylene E=0,125MeV and doses D=50,125 kGy the like results took place. The correlation between increasing of micro hardness of irradiated polymers, E-beam radiation stimulated cross-linkage, oxidation processes by IR (FTIR) Spectroscopy method has been investigated

  19. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  20. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  1. Effects of Ga ion irradiation on growth of GaN on SiN substrates by electron cyclotron resonance-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, J. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan) and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan) and CREST-JST, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)]. E-mail: yanagisawa@ee.es.osaka-u.ac.jp; Matsumoto, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Fukuyama, T. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Shiraishi, Y. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Yodo, T. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Akasaka, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan)

    2007-04-15

    The possibility of forming GaN layers on Ga-implanted SiN surfaces was investigated using electron cyclotron resonance-assisted molecular beam epitaxy (MBE). It is found that the GaN layer initially formed on the SiN surface by Ga implantation at room temperature was amorphous-like, but become to polycrystalline after annealing at 650 deg. C for 3 min in vacuum. After the MBE growth of GaN, a grain structure of h-GaN was observed on the Ga-implanted SiN surface. The crystallinity of the GaN grown was, however, decreased upon increasing the Ga ion fluence on the SiN surface, which might be due, at least partly, to the formation of Ga clusters by the excess Ga implanted. The present results indicate the possibility of forming patterned GaN layers on SiN by selective Ga implantation on the SiN substrate, using a focused ion beam.

  2. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  3. Pre-feasibility study of electron beam irradiation of fresh water

    International Nuclear Information System (INIS)

    Finshi V, Silvia.

    1997-01-01

    A technical/economic evaluation of electron beam irradiation for the decontamination of liquids in the country is presented. Irradiation of fresh water is evaluated for the production of drinking water as a replacement for chlorine disinfection, which can lead to the formation of tri halo methanes. that are carcinogenic compounds. The technical literature states that the percentage of microorganisms removed by electro beam irradiation is high and similar to that found with chlorine disinfection. From an economic point of view, irradiation technology is not presently competitive as an alternative to conventional chlorination in terms of processing costs (US$0.23/m 3 ) instead of US$0.013/m 3 for conventional chlorination. Nevertheless, irradiation costs decreased sharply when unit costs for the accelerator machine are decreased with a resulting drop in capital costs

  4. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    TECS

    Formation of different phases of iron silicide has been investigated by X-ray diffraction (XRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation. I–V measurements for both pristine and irradiated samples have been carried out at room temperature, series resistance and ...

  5. Investigation of thermally stimulated properties of SHI beam irradiated polycarbonate/polystyrene double layered samples

    Science.gov (United States)

    Rathore, Bhupendra Singh; Gaur, Mulayam Singh; Singh, Kripa Shanker

    2011-12-01

    The double layered samples of polycarbonate/polystyrene (PC/PS) have been prepared by solvent casting method and irradiated with 55 MeV C 5+ beam at different ion fluences range from 1 × 10 11 to 1 × 10 13 ion/cm 2. The effect of swift heavy ion (SHI) beam in interfacial phenomena, phase change, dielectric relaxation, degradation temperature, stability, charge storage and transport mechanism of PC/PS pristine and irradiated double layered samples have been investigated by thermally stimulated discharge current (TSDC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TSDC show α, β-relaxation peaks shifted to the lower temperatures side with increase of fluence. The activation energy and relaxation time decrease, while the depolarization current and charge released increase with increase in the ion fluences. DSC curve show the glass transition temperature ( T g) and heat capacity decreases with increase in the ion fluences. The TGA characteristics represent the thermal stability, which is found to be decreased with increase in the ion fluences.

  6. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  7. Preliminary studies of the rubber from unserviceable tires irradiated by electron beam

    International Nuclear Information System (INIS)

    Souza, Clecia M.; Silva, Leonardo G. Andrade e

    2011-01-01

    Nowadays there is a growth in the developing processes for modification of polymers with ionizing radiation (gamma rays, electron beam) for several industrial applications. An option is ionizing radiation process due to their capacity of inducing crosslinking and scission on a wide range of polymeric materials without initiators or chemicals products. This method has significant advantages on economical and ecological fields, when compared to chemical, thermal and mechanical process. The rubber recycling has been extensively discussed, mainly related to tire. There are reports with data about production and consumption of rubber and unserviceable tire. There is very few information about the destination of others rubber items, incineration and landfill are the main methods for elimination of unserviceable tire, however those methods are not environmentally friendly. It is necessary to study better and effective methods to recycle and to give value to rubber residue. This work is about the use of ionizing radiation for the recovery and/or reuse and processing rubber of unserviceable tire. The samples were irradiated with 200, 400 and 600 kGy radiation dose, 22.39 kGy/s dose rates, at room temperature and in the presence of air using an 1.5 MeV electron beam accelerator. The irradiated and non-irradiated samples were studied by thermogravimetry (TG). The analyses were performed from room temperature up to 600 deg C, heating rate of 10 deg C/min in the presence of nitrogen (N 2 ) and air. By this technique it was possible to observe the effects of the radiation dose on the weight loss. (author)

  8. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  9. External beam irradiation inhibits neointimal hyperplasia after injury-induced arterial smooth muscle cell proliferation

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Dorszewski, A.; Breithardt, G.; Willich, N.

    1996-01-01

    Purpose/Objective: Restenosis after catheter-based revascularization has been demonstrated to be primarily caused by smooth muscle cell proliferation. This study examines the effects of external beam irradiation on neointimal proliferation after external injury to the central artery of the rabbit ear. Materials and Methods: 30 male New Zealand White rabbits were used in this study. Crush lesions were performed on each ear under general anesthesia and bilateral auricular nerve blockade. A single dose of 12 Gy (n=10), 16 Gy (n=10), or 20 Gy (n=10) gamma radiation was delivered to the left or right central artery of the ear 24 hours after injury; the contralateral central artery served as control. All rabbits were sacrificed after twenty-one days and the central arteries of the ear were fixed for morphometric measurements. Results: Mean (± SD) neointimal area was 0.062 ± 0.005 mm 2 (12 Gy), 0.022 ± 0.005 mm 2 (16 Gy) and 0.028 ± 0.006 mm 2 in irradiated arteries compared with 0.081 ± 0.009 mm 2 in the control group. Mean (± SD) luminal area was 0.049 ± 0.004 mm 2 (12 Gy), 0.059 ± 0.002 mm 2 (16 Gy) and 0.072 ± 0.006 mm 2 (24 Gy) in irradiated arteries compared with 0.043 ± 0.008 mm 2 in the control group. The difference in neointimal and luminal area between control and irradiated arteries was significant (p<0.05) only for the 16 and 20 Gy group compared to control. Conclusion: We conclude that in this model, external beam X-ray irradiation was successful in reducing neointimal proliferation after injury of the central artery of the rabbit ear. Marked reductions in neointimal proliferation were demonstrated in vessels subjected to 16 and 20 Gy radiation, a less prominent effect was noted for 12 Gy. Whether this approach can be used successfully to inhibit restenosis in the clinical setting requires further investigation

  10. In vitro and in vivo ion beam targeted micro-irradiation for radiobiology

    International Nuclear Information System (INIS)

    Vianna, Francois

    2014-01-01

    The main goal of radiobiology is to understand the effects of ionizing radiations on the living. These past decades, ion microbeams have shown to be important tools to study for example the effects of low dose exposure, or the bystander effect. Since 2003, the CENBG has been equipped with a system to perform targeted micro-irradiation of living samples. Recently, microbeams applications on this subject have diversified and the study of DNA repair mechanisms at the cellular and multicellular scales, in vitro and in vivo, has become possible thanks to important evolutions of fluorescence imaging techniques and cellular biology. To take into account these new approaches, the CENBG micro-irradiation beamline has been entirely redesigned and rebuilt to implement new features and to improve the existing ones. My PhD objectives were i) commissioning the facility, ii) characterizing the system on track etch detectors, and on living samples, iii) implementing protocols to perform targeted irradiations of living samples with a con-trolled delivered dose, at the cellular and multicellular scales, and to visualize the early consequences online, iv) modelling these irradiations to explain the biological results using the calculated physical data. The work of these past years has allowed us i) to measure the performances of our system: a beam spot size of about 2 μm and a targeting accuracy of ± 2 μm, and to develop ion detection systems for an absolute delivered dose control, ii) to create highly localized radiation-induced DNA damages and to see online the recruitment of DNA repair proteins, iii) to apply these protocols to generate radiation-induced DNA damages in vivo inside a multicellular organism at the embryonic stage: Caenorhabditis elegans. These results have opened up many perspectives on the study of the interaction between ionizing radiations and the living, at the cellular and multicellular scales, in vitro and in vivo. (author) [fr

  11. Molecular motions of non-crystalline poly(aryl ether-ether-ketone) PEEK and influence of electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hagiwara, M.

    1985-01-01

    The dynamic mechanical relaxation of non-crystalline poly(aryl ether-ether-ketone) PEEK and the one irradiated with electron beam were studied. The three distinct γ, β, α' relaxation maxima were observed in unirradiated PEEK from low to high temperature. It was revealed from the study on the irradiation effects that three different molecular processes are overlapped in γ relaxation peak, i.e., molecular motion of water bound to main chain, local motion of main chain, and local mode of the aligned and/or oriented moiety. The β relaxation connected with the glass transition occurred at 150 deg C and it shifted to higher temperature by irradiation. The α' relaxation which can be attributed to rearrangement of molecular chain due to crystallization was observed in unirradiated PEEK approx. 180 deg C and its magnitude decreased with the increase in irradiation dose. This effect indicates the formation of structures inhibiting crystallization such as crosslinking and/or short branching during irradiation. A new relaxation, β', appeared in the temperature range of 40 deg to 100 deg C by irradiation and its magnitude increased with dose. This relaxation was attributed to rearrangement of molecular chain from loosened packing around chain ends, which were introduced into the non-crystalline region by chain scission under irradiation, to more rigid molecular packing. (author)

  12. The network and properties of the NR/SBR vulcanizate modified by electron beam irradiation

    Science.gov (United States)

    Shen, Jing; Wen, Shipeng; Du, Yishi; Li, Ning; Zhang, Liqun; Yang, Yusheng; Liu, Li

    2013-11-01

    A natural rubber/styrene butadiene rubber (NR/SBR) vulcanizate filled with carbon black was modified by high-energy electron beam (EB) irradiation in this work. The crosslinked structure was studied by a special chemical probe method. The influence of EB irradiation on mechanical properties, filler network, and dynamic properties including abrasion resistance, rolling resistance, and wet skid resistance was also investigated. The results revealed that the crosslink structure significantly changed after EB treatment, indicating that the amount of poly- and di-sulfide crosslinked bonds decreased and that of mono-sulfide bonds increased. The polymer-filler interaction was enhanced after EB irradiation. An EB dose of 600 kGy reduced the abrasion loss of the NR/SBR vulcanizate, and one of 300 kGy reduced the rolling resistance by 11.4%. Meanwhile, EB doses below 200 kGy had no obvious effect on the wet skid resistance. This EB-modified NR/SBR vulcanizate can be used to prepare high-performance tires with good abrasion resistance and low rolling resistance.

  13. Chemical reactivity and ion beam irradiation behaviour of perovskite- and zirconolite-nuclear ceramics type

    Energy Technology Data Exchange (ETDEWEB)

    Larguem, H. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Boulevard Descartes Champs sur Marne, 77454 Marne la Vallee Cedex 2 (France)]. E-mail: larguem@univ-mlv.fr; Trocellier, P. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Tarrida, M. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Boulevard Descartes Champs sur Marne, 77454 Marne la Vallee Cedex 2 (France); Madon, M. [Laboratoire des Geomateriaux, Universite de Marne la Vallee, 5 Boulevard Descartes Champs sur Marne, 77454 Marne la Vallee Cedex 2 (France); Poissonnet, S. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Gosset, D. [Service de Recherche de Metallurgie Appliquee, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Leseigneur, O. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Martin, H. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Bonnaillie, P. [Service de Recherche de Metallurgie Physique, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France); Beck, L.; Vaubaillon, S.; Miro, S. [Laboratoire du Van de Graaff, Institut National des Sciences et Techniques Nucleaires, CEA-DEN/DMN, Centre d' Etudes de Saclay, 91191 Gif sur Yvette Cedex (France)

    2006-08-15

    Oxide ceramics of two neighboring families: perovskite A(II)B(IV)O{sub 3} and zirconolite A(II)B(IV)C(IV){sub 2}O{sub 7} have been synthesized by a classical solid route. Substitution of divalent cation (Ca) by trivalent cation (Nd) was tested on zirconolite compositions. Then, the ceramic pellets were submitted to aqueous leaching tests at 90 deg. C in deionized water. Some of them were previously ion irradiated with 150 keV Xe{sup +} within a fluence range 5 x 10{sup 13}-1 x 10{sup 15} cm{sup -2} in order to study the effect of ion damaging on their intrinsic chemical reactivity. X-ray diffraction (XRD), electron microprobe analysis (EMA), scanning electron microscopy (SEM) and ion beam analysis (IBA) methods were used to characterize the evolution of the crystallinity level and the surface chemical composition of the ceramics after each step (synthesis, irradiation, leaching). The alteration mechanism of unirradiated titanate ceramics appears to be not uniform at the sample surface. Chemical durability of zirconolite is shown to be dependent both on the pH of the aqueous solution and the ceramic composition. Surface hydration only concerns a very thin layer, typically 200 nm and the hydrogen content does not go beyond 1-2 at.%. No differences have been detected in the leaching behaviour of unirradiated or irradiated perovskite samples.

  14. Variation in the electrical properties of ion beam irradiated cadmium selenate nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, R. P., E-mail: chauhanrpc@gmail.com; Narula, Chetna; Panchal, Suresh [Department of Physics, National Institute of Technology, Kurukshetra-136119 (India)

    2016-05-23

    The key feature of nanowires consists in the pronounced change in properties induced by the low dimensionality and high surface to volume ratio. The study of electrical transport properties of nanowires is important for electronic device applications. Energetic ions create changes, which may be structural or chemical, in a material along their track and these changes might alter the material’s properties. The demand of the modern technology is to understand the effect of radiation on the different properties of the material for its further applications. The present study is on the high-energy Nickel ion beam (160 MeV Ni{sup +12}) induced modifications in the electrical and structural properties of the cadmium selenate nanowires. An enhancement in the electrical conductivity of irradiated wires was observed as the ion fluence was increased especially in the forward I–V characteristics. The creation of defects by ion irradiation and the synergy of the ions during their passage in the sample with the intrinsic charge carriers may be responsible for the variation in the transport properties of the irradiated nanowires.

  15. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  16. Structure and properties of combined protective coatings with use high-current electron beam irradiation

    International Nuclear Information System (INIS)

    Ruzimov, Sh.M.

    2004-01-01

    Full text: Improvement of superficial materials and products is the important task. The high-efficiency vacuum - arc sources created recently open more ample opportunities for change of properties of a surface of metal materials. Now there is a number of known technologies on drawing coverings for updating a surface of working parts of metals. Today the protecting coatings, which were deposited on tools applied in electrochemical and chemical devices, acquired a great interest. It is known that some kinds of treatment, such as, for example, ion implantation, ion-assisted deposition of thin films, electron beam irradiation, CVD, PVD, etc. cannot result directly in desired effect. Therefore to resolve some application problems, one has to use combined methods of treatment, which allow one to resolve complicated serious problems of material science and industrial fields, for example, in space, automobile, aviation, ship building, etc. So, the goal of this work was to study the structure, element composition and properties of hybrid coatings on TiNi/Cr/Al 2 O 3 and TiN/Al 2 O 3 base, which were deposited on AISI 321 stainless steel before and after electron beam irradiation. A special attention was paid to studies of diffusion and mass-transfer processes. We applied XRD, RBS, AES, SEM with micro-analysis as well as corrosion in sulfur acid, adhesion and hardness tests. It had been demonstrated that these coatings were able to perform different functions as protecting coatings. Tests of TiN/Al 2 O 3 and TiN/Cr/Al 2 O 3 coatings, which were deposited on AISI 321 steel, after high-current electron beam irradiation demonstrated significant increase in corrosion resistance in H 2 SO 4 solution under 400 0 C temperature. Hardness and adhesion of these coatings to substrate increased, and significant decrease in friction wear of coating surfaces was found. In such a way, in this report it was demonstrated that hybrid coatings on TiN/Cr/Al 2 O 3 and TiN/Al 2 O 3 base after

  17. Effect of particle irradiation on cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Kiyomi [National Inst. of Radiological Sciences, Chiba (Japan); Ohara, Hiroshi

    1997-02-01

    We studied effects of fractionated exposure of heavy ion beams with high linear energy transfer (LET). Asynchronous V79 cells were irradiated by He-3 or C ion beam at cyclotron at NIRS (12 MeV/u, LET{approx_equal} 20-250 keV/{mu}m). Extent of recovery of sublethal damage (SLDR) decreased with increasing LET. At the highest LET tested, the enhancement of cell killing (potentiation) was observed. Flow cytometry data showed the more efficient accumulation of cells at a G2/M phase at 4 h after irradiation by high LET particle beams than by X-rays. This potentiation might be caused by partial synchronization at a cell cycle position (s) where cells are sensitive to heavy ion exposure. When carbon ion beam with spread-out Bragg peak (SBP) at the RIKEN Ring Cyclotron (initial energy=135 MeV/u) were split into 2 equal exposure at 12-hr-interval, SLDR was observed at the entrance of the beam. In contrast, little recovery was observed at middle or distal peak positions. These results showed the benefits of carbon ion beam for cancer therapy, because we can expect some recovery in normal tissue at entrance of the beam, whereas no recovery in tumor at SBP. (author)

  18. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    International Nuclear Information System (INIS)

    Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun

    2017-01-01

    Highlights: • Epoxy resin microcomposites were irradiated by electron beam with energies of 10 and 20 keV. • Surface flashover voltage increase with the increase of electron beam energy. • Both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. • Deposition energy in epoxy resin microcomposites increases with electron beam energy, and surface trap properties are determined by deposition energy. • The influence of surface conductivity and trap distribution on flashover voltage is discussed. - Abstract: The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al 2 O 3 microcomposite was investigated. Epoxy resin/Al 2 O 3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  19. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin; Min, Daomin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Shengtao, E-mail: stli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Zhen; Xie, Dongri [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xuan [Key Laboratory of Engineering Dielectric and its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040 (China); Lin, Shengjun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Pinggao Group Company Ltd., State Grid High Voltage Switchgear Insulation Materials Laboratory, Pingdingshan 467001 (China)

    2017-06-01

    Highlights: • Epoxy resin microcomposites were irradiated by electron beam with energies of 10 and 20 keV. • Surface flashover voltage increase with the increase of electron beam energy. • Both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. • Deposition energy in epoxy resin microcomposites increases with electron beam energy, and surface trap properties are determined by deposition energy. • The influence of surface conductivity and trap distribution on flashover voltage is discussed. - Abstract: The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al{sub 2}O{sub 3} microcomposite was investigated. Epoxy resin/Al{sub 2}O{sub 3} microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  20. Effects of irradiation on the components of implantable pacemakers

    CERN Document Server

    Kawamura, S; Kuga, N; Shiba, T; Hirose, T; Fujimoto, H; Toyoshima, T; Hyodo, K; Matoba, M

    2003-01-01

    The purpose of this study was to examine the effects of irradiation on implantable pacemaker components. The pacemaker was divided into three components: lead wire and electrode, battery, and electrical circuit, and each component was irradiated by X-ray and electron beams, respectively. The pacemaker parameters were measured by both telemetry data of the programmer and directly measured data from the output terminal. The following results were obtained. For the lead wire and electrode, there was no effect on the pacemaker function due to irradiation by X-ray and electron beams. In the case of battery irradiation, there was no change in battery voltage or current up to 236 Gy X-ray dose. In the electrical circuit, the pacemaker reverted to the regular beating rate (fixed-rate mode) immediately after the start of X-ray irradiation, and it continued in this mode during irradiation. In patients with their own heartbeat rhythm, changing to the fixed-rate mode may cause dangerous conditions such as ventricular fib...

  1. Beam tests of proton-irradiated PbWO$_4$ crystals and evaluation of double-sided read-out technique for mitigation of radiation damage effects

    CERN Document Server

    Lucchini, Marco Toliman

    2016-01-01

    The harsh radiation environment in which detectors will have to operate during the High Luminosity phase of the LHC (HL-LHC) represents a crucial challenge for many calorimeter technologies. In the CMS forward calorimeters, ionizing doses and hadron fluences will reach up to 300 kGy (at a dose rate of 30 Gy/h) and $2\\times10^{14}$ cm$^{-2}$, respectively, at the pseudorapidity region of $\\lvert \\eta\\rvert=2.6$. T