WorldWideScience

Sample records for beam ion trap

  1. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  2. Electron beam ion traps and their applications

    Institute of Scientific and Technical Information of China (English)

    ZOU Ya-Ming; Roger HUTTON

    2003-01-01

    A brief introduction to the historical background and current status of electron beam ion traps (EBITs)is presented. The structure and principles of an EBIT for producing highly charged ions are described. Finally,EBITs as a potential tool in hot-plasma diagnostics and in studying frontier problems of highly charged ion physicsare discussed.

  3. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  4. Electron beam ion source and electron beam ion trap (invited)a)

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  5. Ion traps for radioactive beam manipulation and precision experiments

    CERN Document Server

    Bollen, G

    2003-01-01

    Ion traps have become important experimental tools in nuclear physics. They can be used for precise determination of nuclear binding energies, decay studies and radioactive ion beam manipulation. This article will summarize their basic features and how they are employed and will present new developments.

  6. Charge State Evolution of Uranium in Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Feng; YAO Ke; Roger Hutton; ZOU Ya-Ming

    2005-01-01

    @@ We present a calculation scheme with significant modifications and improvements for determining the ionization balance and the ion temperature evolution in an electron beam ion trap (EBIT). The scheme is applied to uranium and nitrogen ions using a specific set of EBIT operating parameters. The calculation results are compared to the experimental data. Rates for the individual atomic processes in EBIT, especially single and multiple charge exchange processes, are discussed. The time evolution of the ion temperatures for uranium and its coolant nitrogen are also given.

  7. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  8. Electron trapping and de-trapping in ion-beam-damaged diamond surfaces

    International Nuclear Information System (INIS)

    Full text: Ion beam damaged diamond surfaces subjected to electron irradiation are observed to develop a pronounced negative surface charge, the origin of which has remained a mystery. We show that this effect is associated with the capture of electrons into traps created by the ion irradiation process. The trapped charge increases with ion dose and incident electron current, and decreases with increasing sample temperature and laser illumination as the traps are depleted of charge. An activation energy for detrapping of about 1 5 eV is deduced from the temperature dependence of the charging. These results have important implications for the use of diamond in electron multipliers and cold cathode devices. Copyright (2005) Australian Institute of Physics

  9. The kick-out mass selection technique for ions stored in an Electrostatic Ion Beam Trap

    Energy Technology Data Exchange (ETDEWEB)

    Toker, Y; Altstein, N; Aviv, O; Rappaport, M L; Heber, O; Schwalm, D; Strasser, D; Zajfman, D [Department of Particle Physics, Weizmann Institute of Science, Rehovot, 76100 (Israel)], E-mail: jtoker@weizmann.ac.il

    2009-09-15

    A simple mass selection technique which allows one to clean a keV ion beam of undesirable masses while stored in an Electrostatic Ion Beam Trap (EIBT) is described. The technique is based on the time-of-flight principle and takes advantage of the long storage times and self-bunching that are possible in this type of traps (self bunching being the effect that keeps ions of the same mass bunched in spite of their finite distributions of velocities and trajectories). As the oscillation period is proportional to the square root of the ion mass, bunches containing ions of different masses will separate in space with increasing storage time and can be kicked out by a pulsed deflector mounted inside the trap. A mass selector of this type has been implemented successfully in an EIBT connected to an Even-Lavie supersonic expansion source and is routinely used in ongoing cluster experiments.

  10. Radiative and collisional processes of highly charged heavy ions studied with electron beam ion traps

    International Nuclear Information System (INIS)

    We have been studying radiative and collisional processes of highly charged heavy ions using two electron beam ion traps (EBITs) at the University of Electro-Communications (UEC/Tokyo); one is the Tokyo-EBIT constructed in 1995 for the operation with a high energy (up to 200 keV) electron beam, and another is “CoBIT” constructed recently for the operation with a low energy (< 1 keV) electron beam. Recent activities using the two EBITs are presented. (author)

  11. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions.

    Science.gov (United States)

    Aviv, O; Toker, Y; Errit, M; Bhushan, K G; Pedersen, H B; Rappaport, M L; Heber, O; Schwalm, D; Zajfman, D

    2008-08-01

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Al(n) (-) clusters after irradiation by a short laser pulse. PMID:19044339

  12. Trapping ions from a fast beam in a radio-frequency ion trap: Exploring the energy exchange with the longitudinal radio-frequency field

    DEFF Research Database (Denmark)

    Svendsen, Annette; Lammich, Lutz; Vad Andersen, John Erik;

    2013-01-01

    The possibility of injecting ions from an initially fast moving beam into a multipole radio-frequency (RF) ion trap without the use of buffer gas is described. The chosen trap geometry gives rise to an oscillating electric field along the direction of the incoming ions, and through an analytical...... kinetic energy even if their kinetic energy initially exceeds the depth of the trapping potential well. An experimental apparatus for trapping ions from a fast beam is described, and experimental investigations demonstrating the described trapping dynamics are presented....... model as well as numerical simulations it is demonstrated that the energy exchange between the injected ions and this oscillating field governs the trapping dynamics. Most notably, if ions arrive at the trap during specific phases of the RF field, they can be effectively decelerated and stored with low...

  13. Electron - Ion Recombination Data for Plasma Applications : Results from Electron Beam Ion Trap and Ion Storage Ring

    OpenAIRE

    Ali, Safdar

    2012-01-01

    This thesis contains results of electron-ion recombination processes in atomic ions relevant for plasma applications. The measurements were performed at the Stockholm Refrigerated Electron Beam Ion Trap (R-EBIT) and at the CRYRING heavy-ion storage ring. Dielectronic recombination (DR) cross sections, resonant strengths, rate coefficients and energy peak positions in H-like and He-like S are obtained for the first time from the EBIT measurements. Furthermore, the experimentally obtained DR re...

  14. Initial commissioning results with the NSCL Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S.; Kittimanapun, K.; Lapierre, A.; Leitner, D.; Ottarson, J.; Portillo, M. [National Superconducting Cyclotron Laboratory, NSCL, Michigan State University, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory, NSCL, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Lopez-Urrutia, J. R. Crespo [Max-Planck Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kester, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2012-02-15

    The ReA reaccelerator is being added to the National Superconducting Cyclotron Laboratory (NSCL) fragmentation facility in order to provide exotic rare-isotope beams, not available at the Isotope Separation On-Line facilities, in the several-MeV/u energy range. The first stage of the NSCL reaccelerator complex, consisting of an EBIT charge breeder, a room-temperature radiofrequency quadrupole (RFQ) accelerator, and superconducting linear accelerator modules, has been completed and is being put into operation. Commissioning of the EBIT has started by extracting charge-bred residual gas ions, ions created from a Ne gas jet directed across the EBIT's electron beam and ions captured from an external test ion source. Charge-bred ions from the Ne gas jet have been extracted as a pulse and accelerated through the RFQ and the two cryomodules.

  15. Electron trapping and detrapping in ion-beam-damaged diamond surfaces

    International Nuclear Information System (INIS)

    Ion-beam-damaged diamond surfaces subjected to electron irradiation are observed to develop a pronounced negative surface charge. In this study, this effect is shown to be associated with the capture of electrons into traps created by the ion irradiation process. The trapped charge increases with ion dose and incident electron current, and decreases with increasing sample temperature and laser illumination as the traps are depleted of charge. An activation energy for detrapping of about 1.5 eV is deduced from the temperature dependence of the charging

  16. Anomalous slowing of a perpendicularly-injected ion beam in both quasilinear and trapping regimes

    International Nuclear Information System (INIS)

    The anomalous slowing of an ion beam injected perpendicularly to the confining magnetic field of a low β plasma is experimentally verified in the nonlinear stages of the excited lower-hybrid instability. Furthermore, a transition of the main nonlinear mechanism from the quasilinear to the particle trapping regime is demonstrated by varying beam parameters

  17. The low-energy-beam and ion-trap facility at NSCL/MSU

    CERN Document Server

    Schwarz, S; Lawton, D; Lofy, P; Morrissey, D J; Ottarson, J; Ringle, R; Schury, P; Sun, T; Varentsov, V; Weissman, L

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A sup 4 sup 0 Ar sup 1 sup 8 sup + ions in a gas cell.

  18. Cascade emission in electron beam ion trap plasma of W$^{25+}$ ion

    CERN Document Server

    Jonauskas, V; Kučas, S; Masys, Š; Kynienė, A; Gaigalas, G; Kisielius, R; Radžiūtė, L; Rynkun, P; Merkelis, G

    2015-01-01

    Spectra of the W$^{25+}$ ion are studied using the collisional-radiative model (CRM) with an ensuing cascade emission. It is determined that the cascade emission boosts intensities only of a few lines in the $10 - 3$ nm range. The cascade emission is responsible for the disappearance of structure of lines at about 6 nm in the electron beam ion trap plasma. Emission band at 4.5 to 5.3 nm is also affected by the cascade emission. The strongest lines in the CRM spectrum correspond to $4d^{9} 4f^{4} \\rightarrow 4f^{3}$ transitions, while $4f^{2} 5d \\rightarrow 4f^{3}$ transitions arise after the cascade emission is taken into account.

  19. 12th International Symposium on Electron Beam Ion Sources and Traps and Their Applications

    CERN Document Server

    Schwarz, Stefan; Baumann, Thomas M

    2014-01-01

    The EBIST symposia date back to 1977 and have taken place every 3 to 4 years to specifically discuss progress and exchange ideas in the design, development, applications of electron beam ion sources and traps, and the physics with highly charged ions. The topics to be covered in 2014 are: - Progress and status of EBIS/T facilities, - Atomic spectroscopy of highly charged ions, - Charge-exchange and surface interaction with highly charged ions, - Charge breeding of stable and radioactive isotopes, - Nuclear physics with highly charged ions.

  20. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  1. The ReA electron-beam ion trap charge breeder for reacceleration of rare isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A.; Schwarz, S.; Kittimanapun, K.; Fogleman, J.; Krause, S.; Nash, S.; Rencsok, R.; Tobos, L.; Perdikakis, G.; Portillo, M.; Rodriguez, J. A.; Wittmer, W.; Wu, X.; Bollen, G.; Leitner, D.; Syphers, M. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 South Shaw Lane, East Lansing, MI 48824 (United States); Collaboration: ReA Team

    2013-04-19

    ReA is a post-accelerator at the National Superconducting Cyclotron Laboratory at Michigan State University. ReA is designed to reaccelerate rare isotopes to energies of a few MeV/u following production by projectile fragmentation and thermalization in a gas cell. The facility consists of four main components: an electron-beam ion trap (EBIT) charge breeder, an achromatic charge-over-mass (Q/A) separator, a radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder was specifically designed to efficiently capture continuous beams of singly charged ions injected at low energy (<60 keV), charge breed in less than 50 ms, and extract highly charged ions to the Q/A separator for charge-state selection and reacceleration through the accelerator structures. The use of highly charged ions to reach high beam energies is a key aspect that makes ReA a compact and cost-efficient post-accelerator. The EBIT is characterized by a high-current electron gun, a long multi-electrode trap structure and a dual magnet to provide both the high electron-beam current density necessary for fast charge breeding of short-lived isotopes as well as the high capture probability of injected beams. This paper presents an overview and the status of the ReA EBIT, which has extracted for reacceleration tests stable {sup 20}Ne{sup 8+} ion beams produced from injected gas and more recently {sup 39}K{sup 16+} beams by injecting stable {sup 39,41}K{sup +} ions from an external ion source.

  2. The ReA electron-beam ion trap charge breeder for reacceleration of rare isotopes

    Science.gov (United States)

    Lapierre, A.; Schwarz, S.; Kittimanapun, K.; Fogleman, J.; Krause, S.; Nash, S.; Rencsok, R.; Tobos, L.; Perdikakis, G.; Portillo, M.; Rodriguez, J. A.; Wittmer, W.; Wu, X.; Bollen, G.; Leitner, D.; Syphers, M.; ReA Team

    2013-04-01

    ReA is a post-accelerator at the National Superconducting Cyclotron Laboratory at Michigan State University. ReA is designed to reaccelerate rare isotopes to energies of a few MeV/u following production by projectile fragmentation and thermalization in a gas cell. The facility consists of four main components: an electron-beam ion trap (EBIT) charge breeder, an achromatic charge-over-mass (Q/A) separator, a radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder was specifically designed to efficiently capture continuous beams of singly charged ions injected at low energy (breed in less than 50 ms, and extract highly charged ions to the Q/A separator for charge-state selection and reacceleration through the accelerator structures. The use of highly charged ions to reach high beam energies is a key aspect that makes ReA a compact and cost-efficient post-accelerator. The EBIT is characterized by a high-current electron gun, a long multi-electrode trap structure and a dual magnet to provide both the high electron-beam current density necessary for fast charge breeding of short-lived isotopes as well as the high capture probability of injected beams. This paper presents an overview and the status of the ReA EBIT, which has extracted for reacceleration tests stable 20Ne8+ ion beams produced from injected gas and more recently 39K16+ beams by injecting stable 39,41K+ ions from an external ion source.

  3. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    International Nuclear Information System (INIS)

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA's astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th80+ can be performed routinely. Measurements of the rates and cross sections for electron transfer from H2 performed to determine the lifetime of HCI up to Xeq+ and Thq+ (35 ≤ q ≤ 80) have been studied at mean energies estimated to be ∼ 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events

  4. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  5. Electron beam ion trap bi-annual report 1996/1997

    International Nuclear Information System (INIS)

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U92+), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime and

  6. Electron beam ion trap bi-annual report 1996/1997

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D

    1999-01-05

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U92+), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime

  7. Production of highly charged argon ions from a room temperature electron beam ion trap

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; PENG Hai-Bo; Ovsyannikov V P; Kentsch U; Ullmann F; CHENG Rui; Zschornack G

    2008-01-01

    In this work.highly charged ions have been extracted from the advanced Electron Beam Ion Source (EBIS-A) developed in a scientific cooperation between the Dresden University of Technology and the DREEBIT GmbH Dresden.The charge state distributions of ions extracted from the EBIS-A are measured in and extracted in the leaky mode.3×105 Ar18+ ions per pulse are extracted in the pulse mode.The ion charge state distribution is a function of the ionization time.

  8. Rare-earth neutral metal injection into an electron beam ion trap plasma

    Energy Technology Data Exchange (ETDEWEB)

    Magee, E. W., E-mail: magee1@llnl.gov; Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  9. X-ray laser spectroscopy with an electron beam ion trap at the free electron laser LCLS

    International Nuclear Information System (INIS)

    We present a first laser spectroscopy experiment in the keV energy regime, performed at the Free-Electron Laser LCLS at Stanford. An electron beam ion trap was used to provide a target of highly charged O, F and Fe ions. The resonant fluorescence spectra obtained for various transitions were calibrated to simultaneously measured Lyman lines of hydrogenic ions.

  10. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    Science.gov (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  11. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    International Nuclear Information System (INIS)

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO2+ with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H2 densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH+, CH2+, and CH4+ have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  12. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  13. Model development of plasma implanted hydrogenic diffusion and trapping in ion beam damaged tungsten

    Science.gov (United States)

    Barton, J. L.; Wang, Y. Q.; Doerner, R. P.; Tynan, G. R.

    2016-10-01

    A Cu ion beam is used to induce controlled levels of damage (10-3, 10-2, and 10-1 dpa) in room temperature W samples. A single 5 MeV beam energy yielding a peaked damage profile 0.8 μm into the material, or three beam energies (0.5, 2, and 5 MeV) producing a relatively uniform damage profile from the near surface up to 0.8 μm were used. The W samples were then exposed to a D plasma ion fluence of 1024 ions m-2 at 380 K, and the resulting D retention was measured using the D(3He,p)4He reaction analysis (NRA) and thermal desorption spectroscopy (TDS). We observe that within experimental error there is no significant difference in retention whether the damage profile is peaked or uniform. The increase in retention is observed to increase proportional to \\text{dp}{{\\text{a}}0.66} estimated from the dpa peak calculated from the SRIM program. A simplified retention model is proposed that provides concentration profiles that can be directly compared to NRA data and total retention measurements. Taking the trapping energies due to three defect types calculated from density functional theory (DFT), the only free-parameters are three defect densities of in-grain monovacancies, dislocations, and grain boundary vacancies, and we assume these defects to be the dominant trapping locations. The model can fit D retention data in a pristine W sample within the experimental error of the measurements, and in subsequent modeling these intrinsic defect densities are then fixed. We model the retention profile after ion damage by adding the SRIM predicted vacancy profile to the intrinsic monovacancy defect density. Since the increase in retention, and therefore the increase in vacancy production, does not increase linearly with dpa, a correction factor is multiplied to the predicted vacancy profile to fit the data. A new diffusion coefficient is calculated with the model that is a function of the concentration of trapped atoms. This calculation may resolve discrepancies of various

  14. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST

    Science.gov (United States)

    Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team

    2016-06-01

    This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)

  15. Analysis of the fine structure of Sn$^{11+...14+}$ ions by optical spectroscopy in an electron beam ion trap

    CERN Document Server

    Windberger, A; Borschevsky, A; Ryabtsev, A; Dobrodey, S; Bekker, H; Eliav, E; Kaldor, U; Ubachs, W; Hoekstra, R; López-Urrutia, J R Crespo; Versolato, O O

    2016-01-01

    We experimentally re-evaluate the fine structure of Sn$^{11+...14+}$ ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole $M1$ transitions, in a wavelength range covering 260\\,nm to 780\\,nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of \\emph{ab initio} calculations based on Fock space coupled cluster theory. We validate our line identification using semi-empirical Cowan calculations with adjustable wavefunction parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  16. Electron beam density study using a portable slit imaging system at the Shanghai Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Lu Di; Pu Yun-Qing; Yao Ke; Chen wei-Dong; Xiao Jun; Geng Zhi-xian; Roger Hutton; Zou Ya-Ming

    2011-01-01

    In this work,a portable slit imaging system is developed to study both the electron beam diameter and the profile of the newly developed Shanghai Electron Beam Ion Trap(Shanghai EBIT).Images are detected by a charge coupled device(CCD)sensitive to both X rays and longer wavelength photons(up to visible).Large scale ray tracings were conducted for correcting the image broadening effects caused by the finite slit width and the finite width of the CCD pixels.A numerical de-convolution method was developed to analyse and reconstruct the electron beam density distribution in the EBIT.As an example of the measured beam diameter and current density,the FWHM(full width at half maximum)diameter of the electron beam at 81 keV and 120 mA is found to be 76.2 μm and the density 20.00×103 A·cm-2,under a magnetic field of 3 T,including all corrections.

  17. An effective method for trapping ion beams in superfluid helium for laser spectroscopy experiments

    Directory of Open Access Journals (Sweden)

    Yang X.F

    2014-03-01

    Full Text Available A novel laser spectroscopy technique -“OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher has been proposed. This method aimed to investigate the structure of exotic nuclei systematically by measuring nuclear spins and moments. For in-situ laser spectroscopy of atoms in He II, a method to trap atoms precisely at the observation region of laser is highly needed. In this work, a setup composed of a degrader, two plastic scintillators and a photon detection system is further tested and verified for adjusting and checking the stopping position of 84–87Rb beam. Details of the current setup, experimental results using this method are presented.

  18. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Thomas M., E-mail: baumannt@nscl.msu.edu; Lapierre, Alain, E-mail: lapierre@nscl.msu.edu; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan, 48824 (United States)

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  19. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    Science.gov (United States)

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  20. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  1. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  2. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  3. The XRS microcalorimeter spectrometer at the Livermore Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F S; Beiersdorfer, P; Boyce, K; Brown, G V; Chen, H; Gygax, J; Kahn, S M; Kelley, R; Kilbourne, C A; Magee, E; Thorn, D B

    2007-08-22

    NASA's X-ray Spectrometer (XRS) microcalorimeter instrument has been operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use, extremely high performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be {approx}3.8 eV in the Fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last 6 years, and prospects for future upgrades. Specifically we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector, and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV, and 2 eV at 6 keV with high counting rates.

  4. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  5. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  6. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (Cn- n=2-12), aluminium (Aln- n=2-7) and silver clusters (Agn- n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and silver

  7. EXPERIMENTAL INVESTIGATIONS OF ION CHARGE DISTRIBUTIONS, EFFECTIVE ELECTRON DENSITIES, AND ELECTRON-ION CLOUD OVERLAP IN ELECTRON BEAM ION TRAP PLASMA USING EXTREME-ULTRAVIOLET SPECTROSCOPY

    International Nuclear Information System (INIS)

    Spectra in the extreme ultraviolet range from 107 to 353 A emitted from Fe ions in various ionization stages have been observed at the Heidelberg electron beam ion trap (EBIT) with a flat-field grating spectrometer. A series of transition lines and their intensities have been analyzed and compared with collisional-radiative simulations. The present collisional-radiative model reproduces well the relative line intensities and facilitates line identification of ions produced in the EBIT. The polarization effect on the line intensities resulting from nonthermal unidirectional electron impact was explored and found to be significant (up to 24%) for a few transition lines. Based upon the observed line intensities, relative charge state distributions (CSD) of ions were determined, which peaked at Fe23+ tailing toward lower charge states. Another simulation on ion charge distributions including the ionization and electron capture processes generated CSDs which are in general agreement with the measurements. By observing intensity ratios of specific lines from levels collisionally populated directly from the ground state and those starting from the metastable levels of Fe XXI, Fe X and other ionic states, the effective electron densities were extracted and found to depend on the ionic charge. Furthermore, it was found that the overlap of the ion cloud with the electron beam estimated from the effective electron densities strongly depends on the charge state of the ion considered, i.e. under the same EBIT conditions, higher charge ions show less expansion in the radial direction.

  8. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  9. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  10. State-Selective Quantum Interference Observed in the Recombination of Highly Charged Hg75+···78+ Mercury Ions in an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    We present experimental data on the state-selective quantum interference between different pathways of photorecombination, namely, radiative and dielectronic recombination, in the KLL resonances of highly charged mercury ions. The interference, observed for well resolved electronic states in the Heidelberg electron beam ion trap, manifests itself in the asymmetry of line shapes, characterized by ''Fano factors,'' which have been determined with unprecedented precision, as well as their excitation energies, for several strong dielectronic resonances

  11. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    International Nuclear Information System (INIS)

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  12. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Brown, G. V.; Clementson, J. [Physics Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Kilbourne, C. A.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Schweikhard, L. [Institute of Physics, Ernst-Moritz-Arndt University, D-17487 Greifswald (Germany)

    2013-04-19

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  13. Transportation of a radioactive ion beam for precise laser-trapping experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirokazu; Inoue, T. [Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Köhler, L.; Sakamoto, K.; Uchiyama, A.; Sakemi, Y. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan)

    2016-02-15

    Francium is the heaviest species among the alkali elements. Due to its properties, francium is said to be of advantage in measurements of tiny observations, such as atomic parity violation and electric dipole moment. Before executing experiments with francium, it must be produced artificially because it is one of the most unstable elements. We produced francium with the nuclear fusion reaction of an oxygen beam and gold target, ionized the produced francium through a thermal ionization process, and extracted the ion with electrostatic fields. However, the thermal ionization process is known to ionize not only an objective atom but also other atomic species. Therefore, a Wien filter was installed to analyze the composition of the ion beam and purify the beam. This allowed us to improve the beam purity from ∼10{sup −6} to ∼10{sup −3}.

  14. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  15. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    Science.gov (United States)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  16. X-ray Spectropolarimetry of high temperature and high density plasma supported by LLNL Electron Beam Ion Trap Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shlyaptseva, A S; Kantsyrev, V L; Ouart, N D; Fedin, D A; Neill, P; Harris, C; Hamasha, S M; Hansen, S B; Safronova, U I; Beiersdorfer, P; Petrashen, A G

    2004-03-15

    Plasma polarization spectroscopy work done by our group since the 3rd US-Japan PPS Workshop is overviewed. Theoretically, the polarization dependence on various electron distribution functions for He-like, Ne-like, and Ni-like x-ray transitions for a wide range of Z has been investigated. In particular, this study was focused on the polarization dependence for monoenergetic and steep electron distribution functions. The diagnostically important spectral lines and features of K-, L-, and M-shell ions were identified which can be used in x-ray spectropolarimetry of plasma. Importance of polarization-sensitive LLNL Electron Beam Ion Trap data is emphasized. The results of the UNR polarization-sensitive Ti and Mo x-pinch experiments are discussed.

  17. Nonlinear integrable ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  18. Nonlinear Integrable Ion Traps

    CERN Document Server

    Nagaitsev, S

    2011-01-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  19. Analysis of the fine structure of Sn11 +-Sn14 + ions by optical spectroscopy in an electron-beam ion trap

    Science.gov (United States)

    Windberger, A.; Torretti, F.; Borschevsky, A.; Ryabtsev, A.; Dobrodey, S.; Bekker, H.; Eliav, E.; Kaldor, U.; Ubachs, W.; Hoekstra, R.; Crespo López-Urrutia, J. R.; Versolato, O. O.

    2016-07-01

    We experimentally re-evaluate the fine structure of Sn11 +-Sn14 + ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole M 1 transitions, in a wavelength range covering 260 to 780 nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of ab initio calculations based on Fock space coupled cluster theory. We validate our line identification using semiempirical cowan calculations with adjustable wave-function parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  20. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Science.gov (United States)

    Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-11-01

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  1. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    International Nuclear Information System (INIS)

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm−3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed

  2. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  3. Micromotion Compensation and Photoionization of Ions in a Linear Trap

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; ZHOU Fei; CHEN Liang; WAN Wei; FENG Mang

    2011-01-01

    @@ e confinement of ions in an electromagnetic trap is a prerequisite of sideband cooling and quantum information processing.For a string of ions in a linear ion trap,we report our recent efforts of compensating for micromotion of the ions by three methods,which yields narrower fluorescence spectra and lower temperature.We also achieve a photoionization scheme that loads the ions deterministically into the linear trap from an atomic beam.%The stable confinement of ions in an electromagnetic trap is a prerequisite of sideband cooling and quantum information processing. For a string of ions in a linear ion trap, we report our recent efforts of compensating for micromotion of the ions by three methods, which yields narrower fluorescence spectra and lower temperature. We also achieve a photoionization scheme that loads the ions deterministically into the linear trap from an atomic beam.

  4. The NSCL electron beam ion trap for the reacceleration of rare isotopes coming to life: First extraction tests with a high-current electron gun

    International Nuclear Information System (INIS)

    NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.

  5. ESR spin trapping of radicals in methanol solution irradiated by heavy ion beams. Dependence on specific energy and LET

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiko, E-mail: Nakagawa.Seiko@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Department of Chemistry, Facility of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Murakami, Takeshi [Research Program for the Application of Heavy Ions in Medical Sciences, Research Center for Charged Particle Therapy, National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-01

    Highlights: • The relative yield among radicals produced by ion irradiation of methanol was studied. • The ratio varied depending on the LET value, the specific energy and mass of ions. • The recombination of ionic species will occur effectively for Ar and Fe-ion irradiation. - Abstract: Radicals produced by the heavy ion (He, C, Ne, Si, Ar, and Fe) irradiation of methanol were spin trapped with PBN. Three kinds of radicals, PBN-CH{sub 3}O, PBN-CH{sub 2}OH, and PBN-H, were observed similar to those by γ-irradiation. The relative radical yields, PBN-CH{sub 3}O/PBN-CH{sub 2}OH and (PBN-CH{sub 3}O + PBN-CH{sub 2}OH)/PBN-H, varied depending on the LET value, the specific energy and mass of ions.

  6. Ion trap system for radioactive ions at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, V.S.; Jokinen, A.; Rinta-Antila, S.; Szerypo, J. [University of Jyvaeskylae, Department of Physics (Finland); Aeystoe, J. [CERN, Geneva (Switzerland)

    2001-07-01

    The goal of the ion trap project in Jyvaeskylae is to improve the quality of radioactive beams at IGISOL (Ion Guide Isotope Separator On-Line), in terms of transverse emittance, energy spread and purity. This improvement is achieved with an aid of an RFQ cooler/buncher and a mass-selective cylindrical Penning trap (mass resolving power up to 10{sup 5}). Their final purpose is to produce cooled isobarically pure beams of exotic radioactivities mainly of exotic neutron-rich isotopes from fission (including refractory elements). In the Penning trap ions are confined in three dimensions in a superposition of static quadrupole electric and homogeneous magnetic fields. The magnetic field confines the ions in two dimensions in a plane perpendicular to the field direction. A confinement in the third, magnetic field direction (parallel to the trap axis) is done by a quadrupole electric field. The Penning trap system in Jyvaeskylae (JYFLTRAP) will contain two cylindrical Penning traps placed inside the same superconducting magnet (B=7 T). The first, purification trap, will accept cooled (continuous or bunched) beams from the RFQ cooler/buncher and perform the isobaric purification. The latter is - done using a combination of a buffer gas cooling and an azimuthal quadrupole RF-field providing mass- dependent centering of ions. This, in turn, allows mass-selective ejection of ions in short pulses. Clean monoisotopic bunched beams will be delivered for the nuclear spectroscopy studies, collinear laser spectroscopy experiments and precise nuclear mass measurements (10{sup -7} precision). The latter will be performed in the second, precision Penning trap (author)

  7. Highly charged ions trapping for lifetime measurements

    International Nuclear Information System (INIS)

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar9+, Ar13+ and Ar14+. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O+ to O6+, from Ar8+ to Ar13+, and from Kr13+ to Kr20+

  8. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  9. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    Science.gov (United States)

    Boyarkin, Oleg V.; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ˜150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  10. Measurements of the intercombination and forbidden lines from helium-like ions in Tokamaks and Electron Beam Ion Traps

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Hill, K W; von Goeler, S; Stodiek, W; Beiersdorfer, P; Rice, J E; Ince-Cushman, A

    2007-08-22

    The paper reviews the results from tokamak experiments for the line ratios x/w, y/w, and z/w from helium-like ions with Z in the range from 14 to 28. With exception of the DITE experiments, where these line ratios were found to be in agreement with theoretical predictions, all other tokamak experiments yielded values that were significantly larger than predicted. The reasons for these discrepancies are not yet understood. It is possible that radial profile effects were not properly taken into account in the majority of the tokamak experiments. The paper also gives a short historical review of the X-ray diagnostic developments and also presents very recent data from a new type of X-ray imaging crystal spectrometer, which records spatially resolved spectra with a spatial resolution of about 1 cm in the plasma. These new data can be Abel inverted, so that it will be possible to determine line ratios at each radial position in the plasma. Effects of radial profiles, which may have affected the chord-integrated measurements of the past, will thus be eliminated in the future.

  11. Universal collisional activation ion trap mass spectrometry

    Science.gov (United States)

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  12. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Boyarkin, Oleg V., E-mail: oleg.boiarkin@epfl.ch; Kopysov, Vladimir [Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne (Switzerland)

    2014-03-15

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ∼150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion–He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  13. Ion traps for high resolution spectroscopy

    International Nuclear Information System (INIS)

    As applications of ion traps, direct mass measurement and laser spectroscopy are reported. The advantages of ion traps for high resolution spectroscopy are mentioned. Double resonance method for hfs measurement and problems on ion injection into trap are explained. The planning of laser and microwave spectroscopy, using an ion trap and ISOL at Tohoku cyclotron, is described. (author)

  14. Observation and mitigation of ion trapping in Indus-2

    Indian Academy of Sciences (India)

    Saroj Jena; A D Ghodke

    2015-12-01

    The presence of trapped ions in electron storage rings causes considerable degradation in the performances of the beam, such as increase in beam size, reduction in beam lifetime, shifting of betatron tune, beam instabilities etc. This paper discusses the effects of ion trapping and its mitigation in Indus-2 electron storage ring. Ion-induced instability generating partial beam loss is one of the main barriers in higher beam current accumulation in any electron storage ring. Though there are several techniques to clear the ions from the electron beam path, in Indus-2, it is addressed mainly by filling the storage ring in partial bunch filling pattern. In order to improve the electron beam performance and to mitigate the ion-related problem, a suitable bunch filling pattern has been determined. The theoretical prediction and the result of optimal bunch filling pattern are presented in this paper.

  15. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  16. Ball-grid array architecture for microfabricated ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Guise, Nicholas D., E-mail: nicholas.guise@gtri.gatech.edu; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M. [Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W. [Honeywell International, Golden Valley, Minnesota 55422 (United States)

    2015-05-07

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with {sup 40}Ca{sup +} ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with {sup 171}Yb{sup +} ions in a second BGA trap.

  17. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  18. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  19. Quantum Games in ion traps

    International Nuclear Information System (INIS)

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided

  20. Tachyon Physics with Trapped Ions

    CERN Document Server

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  1. A trapped ion source with improved ionizing efficiency for the production of multiply charged ions

    International Nuclear Information System (INIS)

    An ultrahigh vacuum 'trapped ion source' has been developed following closely Redhead's basic design. Positive ions have been trapped within the space charge of a magnetically confined electron beam with potential barriers at either end of the ionization region, resulting in the production of multiply charged ions. These highly stripped ions are formed by the successive collisions with low energy (0 mass spectrometer. The results obtained in the production of multiply charged ions of Au are presented. (auth.)

  2. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  3. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  4. Experimental investigation of planar ion traps

    CERN Document Server

    Pearson, C E; Brown, K R; Chuang, I L; Leibrandt, D R; Mallard, W J

    2005-01-01

    Chiaverini et al. [Quant. Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of 0.44 micron diameter charged particles in a vacuum of 15 Pa (0.1 torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through in...

  5. Quantum information processing with trapped ion chains

    Science.gov (United States)

    Manning, Timothy Andrew

    Trapped atomic ion systems are currently the most advanced platform for quantum information processing. Their long coherence times, pristine state initialization and detection, and precisely controllable and versatile interactions make them excellent quantum systems for experiments in quantum computation and quantum simulation. One of the more promising schemes for quantum computing consists of performing single and multi-qubit quantum gates on qubits in a linear ion crystal. Some of the key challenges of scaling such a system are the individual addressing of arbitrary subsets of ions and controlling the growing complexity of motional mode interactions as the number of qubits increases or when the gates are performed faster. Traditional entangling quantum gates between ion qubits use laser pulses to couple the qubit states to the collective motion of the crystal, thereby generating a spin-spin interaction that can produce entanglement between selected qubits. The intrinsic limitations on the performance of gates using this method can be alleviated by applying optimally shaped pulses instead of pulses with constant amplitude. This thesis explains the theory behind this pulse shaping scheme and how it is implemented on a chain of Yb ions held in a linear radiofrequency 'Paul' trap. Several experiments demonstrate the technique in chains of two, three, and five ions using various types of pulse shapes. A tightly focused individual addressing beam allows us to apply the entangling gates to a target pair of ions, and technical issues related to such tight focusing are discussed. Other advantages to the pulse shaping scheme include a robustness against detuning errors and the possibility of suppressing undesirable coupling due to optical spillover on neighboring ions. Combined with ion shuttling, we harness these features to perform sequential gates to different qubit pairs in order to create genuine tripartite entangled states and demonstrate the programmable quantum

  6. Study of ion trapping phenomena in Indus-2 storage ring

    International Nuclear Information System (INIS)

    Electron beam in a synchrotron or storage ring ionizes the residual gas molecules present inside its vacuum chamber. These positive ions are trapped in the negative potential well of electron beam and limit the performance of the electron storage ring. During the commissioning of the Indus-2 storage ring, some features have shown up which may be related to ion trapping. In many storage rings, introduction of one long bunch gap in the stored beams has been found to be very effective in avoiding problems caused by ions. In this paper we discuss the phenomenon of ion trapping and its possible cure by optimization of the bunch gaps in Indus-2 storage ring. A suitable bunch-filling pattern with a single long gap appears suitable for Indus-2. (author)

  7. Superdense Coding via Hot Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    QIN Tao; FENG Mang; GAO Ke-Lin

    2004-01-01

    Superdense coding plays an important role in quantum information and can be performed with trapped ions. By confining the ions in a linear trap or a trap-cavity setup, we propose schemes to implement a reliable superdense coding by means of bichromatic radiation method. Experimental feasibility and reliability for achieving our schemes is discussed in detail.

  8. A low energy ion beamline for highly charged ions at SpecTrap

    International Nuclear Information System (INIS)

    One of the precision experiments of the HITRAP facility at GSI Darmstadt is SpecTrap, which aims to trap heavy Highly Charged Ions (HCI) in a Penning trap and cool them to cryogenic temperatures. Using laser spectroscopy it is possible to measure their hyperfine structure with an envisaged relative accuracy of the order of 10-7 which will serve as a test of strong-field quantum electrodynamics. This poster presents the current status of the SpecTrap experiment and give an overview of the associated beamline from the Electron Beam Ion Source (EBIS) to the Penning trap. The EBIS can produce HCI up to Xe44+ and the beamline is able to transport these ions with small kinetic energy with a few keV to SpecTrap or other experimental setups. Additionally the methods and first experimental results for detecting, cooling and manipulating the ions inside the trap are shown.

  9. Influence of magnetically trapped hot ions on warm plasma flowing

    International Nuclear Information System (INIS)

    Interesting and unexpected phenomenon was found on heating plasma experiments on trap open-quotes AMBAL-YUclose quotes: neutral beam injection results in decrease of target plasma density without change of its shape. The open-quotes AMBAL-YUclose quotes device is a classical mirror with minimum-B. Neutral beams injected into the trap perpendicularly to the magnetic field form hot-ion plasma. In the initial stage of hot-ion accumulation, target plasma is a plasma generated by gas-discharge source located behind the trap. Plasma penetrates into the trap along magnetic field lines. Injection leads to decrease of target plasma density (up to 2.5 times). Plasma density sudden leap moving from injection region to gas-discharge source had been observed. A considerable increase of energy of ions leaving the trap was experimentally registered. Plasma potential had been changed. It was cleared out that this effect is not explained by transversal losses of plasma or passing of momentum from beams to plasma. Rise of activity on ion cyclotron fluctuations had not been registered. The physical situation we wish to model is that of a warm plasma flowing along magnetic field lines in the presence of a magnetically trapped species of hot ions. Let us consider the plasma stream in the frames of two liquids magnetohydrodynamics. We consider the following set of momentum equations presented by Braginskiy in a slightly different form

  10. Telecloning Quantum States with Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.

  11. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  12. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  13. Parallel Transport Quantum Logic Gates with Trapped Ions.

    Science.gov (United States)

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity. PMID:26967401

  14. Quantum Information Processing with Trapped Ions

    Science.gov (United States)

    Roos, Christian

    Trapped ions constitute a well-isolated small quantum system that offers low decoherence rates and excellent opportunities for quantum control and measurement by laser-induced manipulation of the ions. These properties make trapped ions an attractive system for experimental investigations of quantum information processing. In the following, the basics of storing, manipulating and measuring quantum information encoded in a string of trapped ions will be discussed. Based on these techniques, entanglement can be created and simple quantum protocols like quantum teleportation be realized. This chapter concludes with a discussion of the use of entangling laser-ion interactions for quantum simulations and quantum logic spectroscopy.

  15. Active Stabilization of Ion Trap Radiofrequency Potentials

    CERN Document Server

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Monroe, C

    2016-01-01

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a rf Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to better than 10 Hz, or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  16. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  17. Mass measurements of short-lived nuclides with ion traps

    CERN Document Server

    Bollen, G

    2001-01-01

    Penning-trap mass spectrometry has reached a state that allows its application to very short-lived isotopes available from various sources of radioactive beams. Mass values with outstanding accuracy are achieved even far from stability. This paper illustrate the state of the art by discussing the status of the ISOLTRAP experiment at ISOLDE/CERN. In addition an overview of new ion-trap projects for nuclear mass determination will be given.

  18. Parallel transport quantum logic gates with trapped ions

    CERN Document Server

    de Clercq, Ludwig; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2015-01-01

    Quantum information processing will require combinations of gate operations and communication, with each applied in parallel to large numbers of quantum systems. These tasks are often performed sequentially, with gates implemented by pulsed fields and information transported either by moving the physical qubits or using photonic links. For trapped ions, an alternative approach is to implement quantum logic gates by transporting the ions through static laser beams, combining qubit operations with transport. This has significant advantages for scalability since the voltage waveforms required for transport can potentially be generated using micro-electronics integrated into the trap structure itself, while both optical and microwave control elements are significantly more bulky. Using a multi-zone ion trap, we demonstrate transport gates on a qubit encoded in the hyperfine structure of a beryllium ion. We show the ability to perform sequences of operations, and to perform parallel gates on two ions transported t...

  19. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers;

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...... Thesis (2008). [2] R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan and M. Drewsen, An all-optical ion-loading technique for scalable microtrap architectures, Applied Physics B, 88, 507 (2007)....

  20. Ion trap in a semiconductor chip

    Science.gov (United States)

    Stick, D.; Hensinger, W. K.; Olmschenk, S.; Madsen, M. J.; Schwab, K.; Monroe, C.

    2006-01-01

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ions. Work on miniaturizing electromagnetic traps to the micrometre scale promises even higher levels of control and reliability. Compared with `chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass-spectrometer arrays, compact atomic clocks and, most notably, large-scale quantum information processors. Here we report the operation of a micrometre-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium-arsenide heterostructure.

  1. Ion Trap in a Semiconductor Chip

    CERN Document Server

    Stick, D; Olmschenk, S; Madsen, M J; Schwab, K; Monroe, C

    2006-01-01

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium...

  2. Integrated Diffractive Optics for Surface Ion Traps

    Science.gov (United States)

    Streed, Erik; Ghadimi, Moji; Blums, Valdis; Norton, Benjamin; Connor, Paul; Amini, Jason; Volin, Curtis; Lobino, Mirko; Kielpinski, David

    2016-05-01

    Photonic interconnects are a bottleneck to achieving large-scale trapped ion quantum computing. We have modified a Georgia Tech Research Institute microwave chip trap by using e-beam lithography to write reflective diffractive collimating optics (80 μm x 127 μm, f=58.6 μm, λ=369.5nm) on the center electrode. The optics have an NA of 0.55 x 0.73, capturing 13.2% of the solid angle. To evaluate the optics 174Yb+ was loaded by isotope selective photo-ionization from a thermal oven and then shuttled to imaging sites. Near diffraction limited sub-wavelength ion images were obtained with an observed spot sized FWHM of 338 nm x 268 nm vs. a diffraction limit of 336 nm x 257 nm. The total photon collection efficiency was measured to be 5.2+/-1.2%. Coupling into a single mode fiber of up to 2.0+/-0.6% was observed, limited by mismatch in the coupling optics. Image mode quality indicates coupling up to 4% may be possible. Funding from Australian Research Council and IARPA.

  3. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  4. Nuclear spin quantum computing with trapped ions

    CERN Document Server

    Wang, Kunling; Feng, Mang; Mintert, Florian; Wunderlich, Christof

    2011-01-01

    Quantum computing with qubits encoded in nuclear spins of trapped ions is studied with particular attention to the Yb$^+$ ion. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. An efficient scheme is proposed to carry out gate operations on an array of trapped ions, and the feasibility of generating the required high magnetic field is discussed.

  5. High Density Pulsed Molecular Beam for Cold Ion Chemistry

    OpenAIRE

    Kokish, M. G.; V.Rajagopal; Marler, J. P.; Odom, B. C.

    2014-01-01

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this manuscript, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions ...

  6. Scheme for teleportation of unknown states of trapped ion

    Institute of Scientific and Technical Information of China (English)

    Chen Mei-Feng; Ma Song-She

    2008-01-01

    A scheme is presented for teleporting an unknown state in a trapped ion system.The scheme only requires a single laser beam.It allows the trap to be in any state with a few phonons,e.g.a thermal motion.Furthermore,it works in the regime,where the Rabi frequency of the laser is on the order of the trap frequency.Thus,the teleportation speed is greatly increased,which is important for decreasing the decoherence effect.This idea can also be used to teleport an unknown ionic entangled state.

  7. Interchange mode excited by trapped energetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might be associated with the fishbone mode in helical systems.

  8. Planar Ion Trap Geometry for Microfabrication

    CERN Document Server

    Madsen, M J; Stick, D; Rabchuk, J A; Monroe, C

    2004-01-01

    We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers. PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+Cm

  9. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  10. Note: High density pulsed molecular beam for cold ion chemistry

    International Nuclear Information System (INIS)

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure

  11. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  12. Long lifetimes in optical ion traps

    CERN Document Server

    Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2016-01-01

    We report on single Barium ions confined in a near-infrared optical dipole trap for up to three seconds in absence of any radio-frequency fields. Additionally, the lifetime in a visible optical dipole trap is increased by two orders of magnitude as compared to the state-of-the-art using an efficient repumping method. We characterize the state-dependent potentials and measure an upper bound for the heating rate in the near-infrared trap. These findings are beneficial for entering the regime of ultracold interaction in atom-ion ensembles exploiting bichromatic optical dipole traps. Long lifetimes and low scattering rates are essential to reach long coherence times for quantum simulations in optical lattices employing many ions, or ions and atoms.

  13. Surface ion trap structures with excellent optical access for quantum information processing

    Science.gov (United States)

    Maunz, P.; Blain, M.; Benito, F.; Chou, C.; Clark, C.; Descour, M.; Ellis, R.; Haltli, R.; Heller, E.; Kemme, S.; Sterk, J.; Tabakov, B.; Tigges, C.; Stick, D.

    2013-05-01

    Microfabricated surface electrode ion traps are necessary for the advancement of trapped ion quantum information processing as it offers a scalable way for realizing complex trap structures capable of storing and controlling many ions. The most promising way of performing two-qubit quantum gates in a chain of trapped ions is to focus laser beams on individual ions of the chain to drive gates. However, in surface ion traps the close proximity of the ions to the surface and the size of the chips usually cannot accommodate the tightly focused laser beams necessary to address individual ions parallel to the chip surface. Here we present a surface electrode ion trap monolithically fabricated in standard silicon technology that implements a linear quadrupole trap on a bowtie shaped chip with a narrow section that is only 1.2 mm wide. Laser beams parallel to the surface can be focused down to a waist of 4 μm with enough separation from the trap chip to prevent light scattering. The trap structure incorporates two Y-junctions for reordering ions and is optimized for quantum information processing. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, L

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  15. Rydberg Excitation of a Single Trapped Ion.

    Science.gov (United States)

    Feldker, T; Bachor, P; Stappel, M; Kolbe, D; Gerritsma, R; Walz, J; Schmidt-Kaler, F

    2015-10-23

    We demonstrate excitation of a single trapped cold (40)Ca(+) ion to Rydberg levels by laser radiation in the vacuum ultraviolet at a wavelength of 122 nm. Observed resonances are identified as 3d(2)D(3/2) to 51F, 52F and 3d(2)D(5/2) to 64F. We model the line shape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps. PMID:26551109

  16. Ion Crystal Metamorphoses in a Paul trap

    CERN Document Server

    Ursekar, V; Nam, Y S; Blümel, R

    2016-01-01

    The standard second-order pseudo-oscillator potential used in many analytical investigations of the properties of ions stored in a Paul trap has serious limitations. In this paper we show that ion-crystal configurations exhibited by 2, 3, and 4 simultaneously stored ions in a Paul trap are not predicted by the standard pseudo-oscillator potential, but are all captured qualitatively and quantitatively by an extended pseudopotential derived in this paper. The power of our extended pseudopotential extends in particular to the prediction of the border lines between different crystal configurations (morphologies) in the Paul trap's $a$, $q$ stability diagram. In the three- and four-ion cases, several of the ion-crystal structures predicted by our improved pseudopotential have never been observed experimentally before. We present them here as a challenge for experiments.

  17. Radiative trapping in intense laser beams

    Science.gov (United States)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron-positron pairs can be optimized by a suitable choice of the intensity ratio.

  18. Radiative trapping in intense laser beams

    CERN Document Server

    Kirk, J G

    2016-01-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron-positron pairs can be optimized by a suitable choice of the intensity ratio.

  19. Radiative trapping in intense laser beams

    Science.gov (United States)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  20. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  1. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  2. Enabling Technologies for Scalable Trapped Ion Quantum Computing

    Science.gov (United States)

    Crain, Stephen; Gaultney, Daniel; Mount, Emily; Knoernschild, Caleb; Baek, Soyoung; Maunz, Peter; Kim, Jungsang

    2013-05-01

    Scalability is one of the main challenges of trapped ion based quantum computation, mainly limited by the lack of enabling technologies needed to trap, manipulate and process the increasing number of qubits. Microelectromechanical systems (MEMS) technology allows one to design movable micromirrors to focus laser beams on individual ions in a chain and steer the focal point in two dimensions. Our current MEMS system is designed to steer 355 nm pulsed laser beams to carry out logic gates on a chain of Yb ions with a waist of 1.5 μm across a 20 μm range. In order to read the state of the qubit chain we developed a 32-channel PMT with a custom read-out circuit operating near the thermal noise limit of the readout amplifier which increases state detection fidelity. We also developed a set of digital to analog converters (DACs) used to supply analog DC voltages to the electrodes of an ion trap. We designed asynchronous DACs to avoid added noise injection at the update rate commonly found in synchronous DACs. Effective noise filtering is expected to reduce the heating rate of a surface trap, thus improving multi-qubit logic gate fidelities. Our DAC system features 96 channels and an integrated FPGA that allows the system to be controlled in real time. This work was supported by IARPA/ARO.

  3. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  4. Improvement of the axial trapping effect using azimuthally polarised trapping beam

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Cong; Sun Xiu-Dong

    2010-01-01

    A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constructed to compare the axial trapping effect of DMOT and SMOT. The long-distance axial trapping of ST68 microbubbles (MBs) achieved by DMOT was more stable than that of SMOT. Moreover the axial trapping force measured using the viscous drag method, was depended on the diameter of the particle, the laser power, and the numerical aperture (NA) of the objective lens. The measurement of the axial trapping force and the acquisition of CCD images of trapping effect confirmed that the DMOT showed excellent axial trapping ability than SMOT. A simple and effective method is developed to improve axial trapping effect using the azimuthally polarized beam as trapping beam. This is helpful for the long-distance manipulating of particles especially polarised biological objects in axial direction.

  5. Modular cryostat for ion trapping with surface-electrode ion traps

    CERN Document Server

    Vittorini, Grahame; Brown, Kenneth R; Harter, Alexa W; Doret, S Charles

    2013-01-01

    We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access, and enables rapid turnaround and flexiblity for future modifications. Long rectangular windows provide nearly 360 degrees of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics, and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

  6. IMPROVEMENT OF THE CERN SPS ELECTROSTATIC SEPTA ION TRAPS

    CERN Multimedia

    Balhan, Bruno; Barlow, Roger Andrew; Raffaele, Graziano

    2016-01-01

    At CERN, the SPS synchrotron is equipped with a slow extraction channel towards the fixed target beam lines in the North Area This channel includes five consecutive electrostatic septa, where the field free region and the active high field region are separated by an array of tungsten-rhenium wires. The field-free region provides for the circulating beam, while the high field region is used to deflect the extracted beam. Since the residual gas can be ionized by the orbiting beam, low energy ions could cross the wire array and enter the high field region and cause high voltage breakdown when accelerated onto the cathode. To prevent low energy ions from entering this high electric field region, a vertical field is applied to the orbiting beam using so-called ‘ion traps’ for active protection. The vertical field is created by electrodes placed inside the region containing the circulating beam. Due to electromagnetic coupling onto the ion trap electrodes observed with the high frequency LHC beam (25 ns spaced ...

  7. Fast scheme for generating quantum-interference states and G HZ state of N trapped ions

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiao-Juan; Fang Mao-Fa; Liao Xiang-Ping; Cai Jian-Wu; Cao Shuai

    2007-01-01

    We propose a fast scheme to generate the quantum-interference states of N trapped ions. In the scheme the ions are driven by a standing-wave laser beam whose carrier frequency is tuned such that the ion transition can take place.We also propose a simple and fast scheme to produce the GHZ state of N hot trapped ions and this scheme is insensitive to the heating of vibrational motion, which is important from the viewpoint of decoherence.

  8. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  9. Control of an ion trap in the 'Krion-C' ionizer

    International Nuclear Information System (INIS)

    Experiments on the production of multicharged ions are being carried out on the electron beam ion source Krion-C. The electron beam energy is within 10-80 keV and the current density is up to 300 A/cm2 and more. In addition to these factors for effective ionization, it is required to produce a potential distribution for ion retention along the electron beam axis (ion trap). The method of trap formation for any ionization time is described, and the experimental results are given. 5 refs.; 6 figs

  10. Quantum computation with ions in microscopic traps

    Science.gov (United States)

    Šašura, Marek; Steane, Andrew M.

    2002-12-01

    We discuss a possible experimental realization of fast quantum gates with high fidelity with ions confined in microscopic traps. The original proposal of this physical system for quantum computation comes from Cirac and Zoller (Nature 404, 579 (2000)). In this paper we analyse a sensitivity of the ion-trap quantum gate on various experimental parameters which was omitted in the original proposal. We address imprecision of laser pulses, impact of photon scattering, nonzero temperature effects and influence of laser intensity fluctuations on the total fidelity of the two-qubit phase gate.

  11. Cooling of radioactive ions with the Penning trap REXTRAP

    CERN Document Server

    Ames, F; Delahaye, P; Forstner, O; Huber, G; Kester, O; Reisinger, K; Schmidt, P

    2005-01-01

    Cooling of radioactive ion beams in a Penning trap is an essential component of the post-accelerator REX-ISOLDE at CERN. Prior to their charge-breeding and acceleration, ions from the on-line mass separator ISOLDE are accumulated, cooled and bunched with REXTRAP. This beam preparation provides short ion pulses with low emittance, key ingredient for a high efficiency of REX-ISOLDE. Two different cooling techniques have been investigated with REXTRAP. Both rely on the use of a buffer gas as the coolant but differ in the way the transversal compression of the stored ion cloud is achieved. Sideband cooling with a light buffer gas as coolant is the standard technique used at REXTRAP so far. With this technique an efficiency of about 45% for the injection, cooling, and extraction process has been obtained for stable and radioactive ions. For about 105 simultaneously stored ions the resulting emittance of the extracted ion pulses is about 10pimm mrad at 30 keV beam energy. For much larger numbers of ions shifts of t...

  12. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    Science.gov (United States)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  13. A Single Laser Cooled Trapped 40Ca+ Ion in a Miniature Paul Trap

    Institute of Scientific and Technical Information of China (English)

    SHU Hua-Lin; GUAN Hua; HUANG Xue-Ren; LI Jiao-Mei; GAO Ke-Lin

    2005-01-01

    @@ We have observed the phenomenon of phase transition of a few trapped ions in a miniature Paul trap. Judging from the quantum jump signals, a single laser-cooled trapped Ca+ ion has been realized. The ion temperature is estimated to be 22mK. The result shows that the amplitude of ion micromotion is strongly dependent on the rf voltage.

  14. Quantum interference from remotely trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S; Rotter, D; Hennrich, M; Blatt, R [Institute for Experimental Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Rohde, F; Schuck, C; Almendros, M; Gehr, R; Dubin, F; Eschner, J [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av del Canal OlImpic, E-08860 Castelldefels (Spain)], E-mail: francois.dubin@icfo.es

    2009-01-15

    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, Ca{sup +} and Ba{sup +}. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference.

  15. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  16. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  17. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  18. Addressing single trapped ions for Rydberg quantum logic

    Science.gov (United States)

    Bachor, P.; Feldker, T.; Walz, J.; Schmidt-Kaler, F.

    2016-08-01

    We demonstrate the excitation of ions to the Rydberg state 22F by vacuum ultraviolet radiation at a wavelength of 123 nm combined with the coherent manipulation of the optical qubit transition in {}40{{Ca}}+. With a tightly focused beam at 729 nm wavelength we coherently excite a single ion from a linear string into the metastable 3{D}5/2 state before a VUV pulse excites it to the Rydberg state. In combination with ion shuttling in the trap, we extend this approach to the addressed excitation of multiple ions. The coherent initialization as well as the addressed Rydberg excitation are key prerequisites for more complex applications of Rydberg ions in quantum simulation or quantum information processing.

  19. The lensing effect of trapped particles in a dual-beam optical trap.

    Science.gov (United States)

    Grosser, Steffen; Fritsch, Anatol W; Kiessling, Tobias R; Stange, Roland; Käs, Josef A

    2015-02-23

    In dual-beam optical traps, two counterpropagating, divergent laser beams emitted from opposing laser fibers trap and manipulate dielectric particles. We investigate the lensing effect that trapped particles have on the beams. Our approach makes use of the intrinsic coupling of a beam to the opposing fiber after having passed the trapped particle. We present measurements of this coupling signal for PDMS particles, as well as a model for its dependence on size and refractive index of the trapped particle. As a more complex sample, the coupling of inhomogeneous biological cells is measured and discussed. We show that the lensing effect is well captured by the simple ray optics approximation. The measurements reveal intricate details, such as the thermal lens effect of the beam propagation in a dual-beam trap. For a particle of known size, the model further allows to infer its refractive index simply from the coupling signal. PMID:25836555

  20. Quantum simulations with cold trapped ions

    Science.gov (United States)

    Blatt, Rainer

    2016-05-01

    The quantum toolbox of the Innsbruck ion-trap quantum computer is applied to simulate the dynamics and to investigate the propagation of entanglement in a quantum many-body system represented by long chains of trapped-ion qubits. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behavior of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-lightcone picture does not apply. Moreover, a spectroscopic technique is presented to study artificial quantum matter and use it for characterizing quasiparticles in a many-body system of trapped atomic ions. Our approach is to excite combinations of the system's fundamental quasiparticle eigenmodes, given by delocalized spin waves. By observing the dynamical response to superpositions of such eigenmodes, we extract the system dispersion relation, magnetic order, and even detect signatures of quasiparticle interactions. In the second part of the talk, it will be shown how strings of trapped ions can be used for quantum simulations of a lattice gauge field theory. As an example, we map the real-time evolution of the Schwinger mechanism to a string of trapped ions in a few-qubit quantum computer, simulating the spontaneous creation of electron-positron pairs.

  1. Ion trap simulation program, ITSIM: A powerful heuristic and predictive tool in ion trap mass spectrometry

    Science.gov (United States)

    Bui, Huy Anh

    The multi-particle simulation program, ITSIM version 4.0, takes advantage of the enhanced performance of the Windows 95 and NT operating systems in areas such as memory management, user friendliness, flexibility of graphics and speed, to investigate the motion of ions in the quadrupole ion trap. The objective of this program is to use computer simulations based on mathematical models to improve the performance of the ion trap mass spectrometer. The simulation program can provide assistance in understanding fundamental aspects of ion trap mass spectrometry, precede and help to direct the course of experiments, as well as having didactic value in elucidating and allowing visualization of ion behavior under different experimental conditions. The program uses the improved Euler method to calculate ion trajectories as numerical solutions to the Mathieu differential equation. This Windows version can simultaneously simulate the trajectories of ions with a virtually unlimited number of different mass-to-charge ratios and hence allows realistic mass spectra, ion kinetic energy distributions and other experimentally measurable properties to be simulated. The large number of simulated ions allows examination of (i) the offsetting effects of mutual ion repulsion and collisional cooling in an ion trap and (ii) the effects of higher order fields. Field inhomogeneities arising from exit holes, electrode misalignment, imperfect electrode surfaces or new trap geometries can be simulated with the program. The simulated data are used to obtain mass spectra from mass-selective instability scans as well as by Fourier transformation of image currents induced by coherently moving ion clouds. Complete instruments, from an ion source through the ion trap mass analyzer to a detector, can now be simulated. Applications of the simulation program are presented and discussed. Comparisons are made between the simulations and experimental data. Fourier transformed experiments and a novel six

  2. Equipment for ion beam production

    International Nuclear Information System (INIS)

    An equipment has been designed to extend the scope of control of ion beam flux for an intensive ion beam source used for plasma injection in magnetic vessels. The control equipment is connected to the electromagnet power supply. A consumption regulator is fitted in the operating gas supply to the hollow cathode of the ion source. A circuit is also included for discharge voltage maintenance consisting of a control element and a discharge voltage pick-up. (M.D.). 1 fig

  3. Microfabrication techniques for trapped ion quantum information processing

    CERN Document Server

    Britton, Joe

    2010-01-01

    Quantum-mechanical principles can be used to process information (QIP). In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. The ion trap approach to QIP requires trapping and control of numerous ions in electrode structures with many trapping zones. I investigated microfabrication of structures to trap, transport and couple large numbers of ions. Using 24Mg+ I demonstrated loading and transport between zones in microtraps made of boron doped silicon. This thesis describes the fundamentals of ion trapping, the characteristics of silicon-based traps amenable to QIP work and apparatus to trap ions and characterize traps. Microfabrication instructions appropriate for nonexperts are included. Ion motional heating was measured. Using MEMs techniques I built a Si micro-mechanical oscillator and demonstrated a method to reduce the kinetic energy of its lowest order mechanical mode via capacitive coupling to a driven...

  4. Generation of Pair Coherent States in Two-dimensional Trapped Ion

    Institute of Scientific and Technical Information of China (English)

    WANG Kai-Ge; S Maniscalco; A Napoli2, A Messina

    2001-01-01

    We consider a two-dimensional (2D) trapped ion model in which two laser beams drive the corresponding vibrational motions and are carrier resonant with the two-level of the ion. Due to the coherent superposition of two sub-Rabi oscillations involved in the bimodal vibrations, the Rabi frequency degeneration and offset may occur in this model. This provides the possibility of generating the pair coherent state in the 2D trapped ion.

  5. Penning traps with unitary architecture for storage of highly charged ions

    CERN Document Server

    Tan, Joseph N; Guise, Nicholas D; 10.1063/1.3685246

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two- magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  6. Single trapped cold ions: a testing ground for quantum mechanics

    International Nuclear Information System (INIS)

    In this article I review some results obtained during my PhD work in the group of Professor Messina, at the University of Palermo. I discuss some proposals aimed at exploring fundamental issues of quantum theory, e.g. entanglement and quantum superpositions, in the context of single trapped ions. This physical context turns out to be extremely well suited both for studying fundamental features of quantum mechanics, such as the quantum-classical border, and for technological applications such as quantum logic gates and quantum registers. I focus on some procedures for engineering nonclassical states of the vibrational motion of the centre of mass of the ion. I consider both the case in which the ion interacts with classical laser beams and the case of interaction with a quantized mode of light. In particular, I discuss the generation of Schroedinger cat-like states, Bell states and Greenberger-Horn-Zeilinger states. The schemes for generating nonclassical states stem from two different quantum processes: the parity effect and the quantum state manipulation via quantum non-demolition measurement. Finally, I consider a microscopic theory of the interaction of a quantum harmonic oscillator (the centre of mass of the ion in the trapped ion context) with a bosonic thermal environment. Using an exact approach to the dynamics, I discuss a quantum theory of heating of trapped ions able to describe both the short time non-Markovian regime and the thermalization process. I conclude showing briefly how the trapped ion systems can be used as simulators of key models of open quantum systems such as the Caldeira-Leggett model. (phd tutorial)

  7. Efficient Fiber Optic Detection of Trapped Ion Fluorescence

    OpenAIRE

    VanDevender, A. P.; Colombe, Y.; J. Amini; Leibfried, D.; Wineland, D. J.

    2010-01-01

    Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection numerical aperture is 0.37 and total collection efficiency is 2.1 %. The ion can be positioned betwee...

  8. Longitudinal compression of ion beams

    International Nuclear Information System (INIS)

    This paper examines the longitudinal compression of ion beams which is necessary in some designs of drivers intended to realize inertial thermonuclear fusion by heavy ions. Taking space-charge forces in the beams into account, two compression schemes are investigated: the first preserves the longitudinal phase-space area of the beams, and the second allows an increase of the phase-space area. The compression-system parameters are optimized for an example of a driver for inertial thermonuclear fusion by heavy ions with an energy of 10 MJ and with a pulse length of 25 ns on the target

  9. Controlling the quantum state of trapped ions

    CERN Document Server

    Roos, C

    2000-01-01

    brace quadrupole transition enables the transfer of the ion's motional state into the ground state with up to 99.9 % probability. Different aspects of the cooling process are investigated. In particular, a measurement of the length of time that the ion spends on average in the final state after switching off the cooling lasers (heating time) is made. In contrast to prior experiments, this time is found to be orders of magnitude longer than the time required to manipulate the ion's quantum state. By coherently exciting the ion after preparing it in Fock states of motion, the coherence time is probed and found to be on the order of a millisecond, thus allowing the realization of a few quantum gates. Coherence-limiting processes have been investigated, as well as first steps towards extending the experiments to the case of two trapped ions. In addition to the experiments mentioned above, the possibility of performing cavity-QED experiments with trapped ions is explored. How to efficiently couple the quadrupole t...

  10. Quantum Computation by Pairing Trapped Ultracold Ions

    Institute of Scientific and Technical Information of China (English)

    冯芒; 朱熙文; 高克林; 施磊

    2001-01-01

    Superpositional wavefunction oscillations for the implementation of quantum algorithms modify the desired interference required for the quantum computation. We propose a scheme with trapped ultracold ion-pairs beingqubits to diminish the detrimental effect of the wavefunction oscillations, which is applied to the two-qubitGrover's search. It can be also found that the qubits in our scheme are more robust against the decoherencecaused by the environment, and the model is scalable.

  11. Measured Quantum Dynamics of a Trapped Ion

    OpenAIRE

    Viola, Lorenza; Onofrio, Roberto

    1997-01-01

    The measurement process is taken into account in the dynamics of trapped ions prepared in nonclassical motional states. The induced decoherence is shown to manifest itself both in the inhibition of the internal population dynamics and in a damping of the vibrational motion without classical counterpart. Quantitative comparison with present experimental capabilities is discussed, leading to a proposal for the verification of the predicted effects.

  12. A grooved planar ion trap design for scalable quantum information processing

    Institute of Scientific and Technical Information of China (English)

    Ji Wei-Bang; Wan Jin-Yin; Cheng Hua-Dong; Liu Liang

    2012-01-01

    We describe a new electrode design for a grooved surface-electrode ion trap,which is fabricated in printed-circuitboard technology with segmented electrodes.This design allows a laser beam to get through the central groove to avoid optical access blocking and laser scattering from the ion trap surface.The confining potentials are modeled both analytically and numerically.We optimize the radio frequency (rf) electrodes and dc electrodes to achieve the maximum trap depth for a given ion height above the trap electrodes.We also compare our design with the reality ion chip MI I for practical considerations.Comparison results show that our design is superior to MI I.This ion trap design may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.

  13. Using neutral beams as a light ion beam probe (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi, E-mail: chenxi@fusion.gat.com [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831 (United States); Heidbrink, W. W. [University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kramer, G. J.; Nazikian, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Hanson, J. M. [Columbia University, New York, New York 10027 (United States); Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  14. Experimental study on dipole motion of an ion plasma confined in a linear Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K., E-mail: kzito@hiroshima-u.ac.jp; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan)

    2015-11-15

    The compact non-neutral plasma trap systems named “S-POD” have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.

  15. Experimental study on dipole motion of an ion plasma confined in a linear Paul trap

    Science.gov (United States)

    Ito, K.; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H.

    2015-11-01

    The compact non-neutral plasma trap systems named "S-POD" have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.

  16. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  17. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  18. Nonlinear generation of whistler waves by an ion beam

    Science.gov (United States)

    Akimoto, K.; Winske, D.

    1989-01-01

    An electromagnetic hybrid code is used to simulate a new mechanism for whistler wave generation by an ion beam. First, a field-aligned ion beam becomes unstable to the electromagnetic ion/ion right-hand resonant instability which generates large amplitude MHD-like waves. These waves then trap the ion beam and increase its effective temperature anisotropy. As a result, the growth rates of the electron/whistler instability are significantly enhanced, and whistlers start to grow above the noise level. At the same time, because of the reduced parallel drift speed of the ion beam, the frequencies of the whistlers are also downshifted. Full simulations were performed to isolate and separately investigate the electron/ion whistler instability. The results are in agreement with the assumption of fluid electrons in the hybrid simulations and with the linear theory of the instability.

  19. Triple ion beam irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  20. Triple ion beam irradiation facility

    International Nuclear Information System (INIS)

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm2 in area. Typical depth ranges are 0.1 to 1.0 μm. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab

  1. Laser-cooled bunched ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  2. Cluster States from Quantum Logic Gates with Trapped Ions in Thermal Motion

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-Xing; ZHAN Zhi-Ming; LI Jia-Hua

    2006-01-01

    Following the recent proposal by Briegel et al. [Phys. Rev. Lett. 86 (2001) 910], a procedure is proposed for one-step realizing quantum control phase gates with two trapped ions in thermal motion. It is shown that the scheme can also be used to create a new special type of entangled states, i.e., cluster states of many trapped ions. In the scheme the two-trapped ions are simultaneously excited by a single laser beam and the frequency of the laser beam is slightly off resonance with the first lower vibration sideband of the trapped ions. The distinct advantage of the scheme is that it does not use the vibrational mode as the data bus. Furthermore, our scheme is insensitive to both the initial motional state and heating (or decay) as long as the system remains in the Lamb-Dicke regime.

  3. Capture and isolation of highly-charged ions in a unitary Penning trap

    OpenAIRE

    Brewer, Samuel M.; Nicholas D. Guise; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, ...

  4. Vibratile Coherence and Squeezing in Two Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZENG HaoSheng; KUANG LeMan; ZHU XiWen; GAO KeLin

    2002-01-01

    It is shown that two trapped ions interacting with laser beams resonant to the first red side-band of center-of-mass mode, in Lamb Dicke regime and under rotating wave approximation, is described by a Jaynes-Cummingsmodel. For the initial condition that the motional state of center-of-mass mode is in vacuum state and the internal stateis prepared in a coherent superposition of states, coherence and squeezing for the vibratile motion of center-of-mass modeare discussed, particularly, a "weak" coherent state and a "weak" squeezed vacuum state are obtained. Collapse andrevival are also observed in this type of initial condition.

  5. Diagnosing light ion beam diodes

    International Nuclear Information System (INIS)

    This lecture begins with a discussion of diagnostics in ion-beam diodes. This will include electromagnetic measurements, measurements of the electron cloud, and measurements of anode plasmas. A few minutes will be spent on diagnostics of distributed ion sources required for one class of ion diodes, the plasma-filled versions, which require high-density, highly ionized sources of very uniform plasma. The measurements of the beam characteristics will then be discussed. This will be broken into two regions; the region near the diode where diagnostics are generally extensions of those used in other fields; and the region near focus where new diagnostics have been developed

  6. Trap split with Laguerre-Gaussian beams

    CERN Document Server

    Kazemi, Seyedeh Hamideh; Mahmoud, Mohammad

    2016-01-01

    The optical trapping techniques have been extensively used in physics, biophysics, micro-chemistry, and micro-mechanics to allow trapping and manipulation of materials ranging from particles, cells, biological substances, and polymers to DNA and RNA molecules. In this Letter, we present a convenient and effective way to generate a novel phenomenon of trapping, named trap split, in a conventional four-level double-$\\Lambda$ atomic system driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can be always achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This work would greatly facilitate the trapping and manipulating the particles and generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  7. Cold atom-ion experiments in hybrid traps

    OpenAIRE

    Härter, Arne; Denschlag, Johannes Hecker

    2013-01-01

    In the last 5 years, a novel field of physics and chemistry has developed in which cold trapped ions and ultracold atomic gases are brought into contact with each other. Combining ion traps with traps for neutral atoms yields a variety of new possibilities for research and experiments. These range from studies of cold atom-ion collisions and atom-ion chemistry to applications in quantum information science and condensed matter related research. In this article we give a brief introduction int...

  8. Adiabatic cooling of a single trapped ion

    CERN Document Server

    Poulsen, Gregers

    2012-01-01

    We present experimental results on adiabatic cooling of a single 40Ca+ ion in a linear radiofrequency trap. After a period of laser cooling, the secular frequency along the rf-field-free axis is adiabatically lowered by nearly a factor of eight from 583 kHz to 75 kHz. For an ion originally Doppler laser cooled to a temperature of 0.65 +/- 0.03 mK, a temperature of 87 +/- 7 \\mu K is measured after the adiabatic expansion. Applying the same adiabatic cooling procedure to a single sideband cooled ion in the ground state (P0 = 0.978 +/- 0.002) resulted in a final ground state occupation of 0.947 +/- 0.005. Both results are in excellent agreement with an essentially fully adiabatic behavior. The results have a wide range of perspectives within such diverse fields as ion based quantum information science, high resolution molecular ion spectroscopy and ion chemistry at ultra-low temperatures.

  9. A second-generation ion beam buncher and cooler

    CERN Document Server

    Schwarz, S; Lawton, D; Neudert, A; Ringle, R; Schury, P; Sun, T

    2003-01-01

    A radiofrequency quadrupole (RFQ) ion accumulator and buncher has been designed for the low-energy beam and ion-trap (LEBIT) facility which is being set up at the NSCL/MSU. The LEBIT buncher will be a cryogenic system. Compared to room-temperature systems an improved beam quality and overall efficiency are expected. It will feature a novel electrode structure with a drastically reduced number of electrodes for simplified operation. Its design is presented and Monte-Carlo type ion-trajectory calculations are discussed which predict excellent beam quality and high performance.

  10. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  11. Cryogenic setup for trapped ion quantum computing

    CERN Document Server

    Brandl, M F; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-01-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120~dB reduction of 50~Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than $\\pm$20~nm over 2~s. In addition to the cryogenic apparatus, we describe the setup required for an operation with $^{\\mathrm{40}}$Ca$^{\\mathrm{+}}$ and $^{\\mathrm{88}}$Sr$^{\\mathrm{+}}$ ions. The instability of the laser manipulating the optical qubits in $^{\\mathrm{40}}$Ca$^{\\mathrm{+}}$ is characterized yielding a min...

  12. Search for new physics in $\\beta$-neutrino correlations using trapped ions and a retardation spectrometer

    CERN Multimedia

    Coeck, S; Lienard, E; Zboril, M; Zakoucky, D; Severijns, N

    2002-01-01

    The WITCH set-up is a combination of two Penning ion traps and a retardation spectrometer for recoil ions from $\\beta$-decay. It was installed at ISOLDE in the past four years. In this addendum the present status of the experiment is described and beam time is asked to further improve the set-up and perform first measurements.

  13. Many-Body Physics with Trapped Ions

    CERN Document Server

    Schneider, Christian; Schaetz, Tobias

    2011-01-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. We report on the progress in experimentally simulating quantum many-body physics with trapped ions.

  14. Ion Trapping in the SLAC B-factory High Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Villevald, D.; Heifets, S.; /SLAC

    2006-09-07

    The presence of trapped ions in electron storage rings has caused significant degradation in machine performance. The best known way to prevent the ion trapping is to leave a gap in the electron bunch train. The topic of this paper is the dynamics of ions in the field of the bunch train with uneven bunch filling. We consider High Energy Ring (HER) of the PEP-II B-factory. In the first section we summarize mechanisms of the ion production. Then the transverse and longitudinal dynamics are analyzed for a beam with and without gap. After that, the effect of the ions is considered separating all ions in the ring in several groups depending on their transverse and longitudinal stability. The main effects of the ions are the tune shift and the tune spread of the betatron oscillations of the electrons. The tune spread is produced by bunch to bunch variation of the electric field of ions and by nonlinearity of the field. It is shown that the main contribution to the shift and spread of the betatron tune of the beam is caused by two groups of ions: one-turn ions and trapped ions. One-turn ions are the ions generated during the last passage of the bunch train. Trapped ions are the ions with stable transverse and longitudinal motion. In the last section we discuss shortly related problems of parameters of the clearing electrodes, injection scenario, and collective effects. Clearing electrodes should be located at the defocusing in x-plane quadrupole magnets. An electric DC field of value 1.0 kv/cm will be enough to prevent the ion trapping process. During the injection, it is recommended to fill the bucket with the design number of the particles per bunch N{sub B} before going to the next bucket. In addition, it is recommended to have the sequential filling of the ring, i.e. the filling from one bucket to the next sequentially. It was shown that ions will not be trapped at the location of the interaction point. The reason for this is that the current of the positron beam is

  15. Sympathetic cooling of 171 Yb+ qubit ions on a scalable ion trap chip using Yb isotopes

    Science.gov (United States)

    Kwon, Yeong-Dae; Ahn, Jun Sik; Hong, Seokjun; Lee, Minjae; Cheon, Hongjin; Cho, Dongil ``Dan''; Kim, Taehyun

    2016-05-01

    To achieve ion trap based large-scale quantum computing devices, motional states of qubit ions must be regulated against heating from ion transportation or noise on the chip surface while leaving internal states of the ions intact. Sympathetic cooling is a natural solution for this problem, but trapping two different species of ions generally requires two sets of optical devices including separate lasers for each ion type, increasing the complexity and the cost of the setup. We tested Doppler-cooled 174 Yb+ ions to sympathetically cool 171 Yb+ qubit ions. Since these two isotopes have energy levels close to each other, the optical setup can be vastly simplified. We also verified that the tail of non-ideally focused cooling beam and the scattered light from the surface create excited state population in the 171 Yb+ qubit ions, as expected. This leads to occasional spontaneous emission events, which currently limits the coherence time of our qubit to a few seconds. We will also discuss our plans for optimizing the experiment, which may increase the coherence time by one or two orders of magnitude. This work was partially supported by ICT R&D program of MSIP/IITP. [10043464, Development of quantum repeater technology for the application to communication systems].

  16. Single-laser, one beam, tetrahedral magneto-optical trap

    CERN Document Server

    Vangeleyn, Matthieu; Riis, Erling; Arnold, Aidan S

    2009-01-01

    We have realised a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  17. Novel radio-frequency ion trap with spherical geometry

    CERN Document Server

    Noshad, Houshyar

    2014-01-01

    Confinement of single ions in a novel radio-frequency (RF) quadrupole ion trap with spherical shape is investigated. An optimization of this spherical ion trap (SIT) is carried out in order to suppress its nonlinearity substantially by eliminating the electric octupole moment. Hence, a trapping potential and consequently an electric field very similar to the ideal quadrupole ion trap (QIT) are obtained. Afterwards, three stability regions for the optimized SIT are numerically computed. The regions coincide well with those reported in the literature for the ideal QIT. The reason is attributed to the zero electric octupole moment of our proposed trap. The SIT simple geometry and relative ease of fabrication along with its increased trapping volume compared to the conventional hyperbolic quadrupole ion trap, make it an appropriate choice for miniaturization.

  18. Suitability of linear quadrupole ion traps for large Coulomb crystals

    OpenAIRE

    Tabor, D. A.; Rajagopal, V.; Lin, Y-W.; Odom, B.

    2011-01-01

    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial co...

  19. Teleportation with trapped ions in a magnetic field gradient

    OpenAIRE

    Deng, Z. J.; Feng, M; Gao, K. L.

    2005-01-01

    By means of the Ising terms generated by Coulomb interaction between ions and the magnetic field gradient, we carry out teleportation with insurance with trapped ions. We show the feasibility and the favorable feature of our scheme by comparing with the recently achieved teleportation experiments with trapped ions.

  20. Towards Quantum Simulations Using a Chip Ion Trap

    Science.gov (United States)

    Cao, Chenglin; Wright, Ken; Brennan, Daniel; Ji, Geoffrey; Monroe, Christopher

    2013-05-01

    We report our current experimental progress towards using chip ion traps for quantum simulation. Current progress is being made using a micro-fabricated symmetric trap from GTRI. This trap implements a novel two level design that combines the benefits of both surface traps and linear four-rod traps. The trap has 50 electrodes which allow for the fine control of the DC potential needed to create large anharmonic potentials, to join and split ion chains and to shuttle ions along the trapping axis similar to many surface traps. However this trap also has a much deeper trapping depth than conventional surface traps and improved optical access via an angled slot through the chip wide enough to accommodate higher power laser light which could cause surface charging or damage in a traditional chip trap. These advantages should allow trapping of long ion chains. We hope to use these features as the next step in increasing the size of current quantum simulations being done at Univ of Maryland, which are aimed at exploring quantum phenomena in spin systems in a regime inaccessible to classical simulation. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI. We acknowledge the GTRI team of J. Amini, K. Brown, A. Harter, F. Shaikh, R. Slusher, and C. Volin for the fabrication of the trap.

  1. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  2. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P+ beam implantation at

  3. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  4. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    CERN Document Server

    Doret, S Charles; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C -S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/eleme...

  5. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  6. Combined ion and atom trap for low temperature ion-atom physics

    OpenAIRE

    Ravi, K.; LEE, Seunghyun; Sharma, Arijit; Werth, G.; Rangwala, S. A.

    2010-01-01

    We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently ...

  7. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  8. Test of Lorentz symmetry with trapped ions

    Science.gov (United States)

    Pruttivarasin, Thaned

    2016-05-01

    The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).

  9. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  10. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    Science.gov (United States)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  11. Capture and isolation of highly-charged ions in a unitary Penning trap

    CERN Document Server

    Brewer, Samuel M; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, and storage of highly-charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply-charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is $\\approx$ 60 times narrower than typically...

  12. Trapped ion simulation of molecular spectrum

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2016-05-01

    Boson sampling had been suggested as a classically intractable and quantum mechanically manageable problem via computational complexity theory arguments. Recently, Huh and co-workers proposed theoretically a modified version of boson sampling, which is designed to simulate a molecular problem, as a practical application. Here, we report the experimental implementation of the theoretical proposal with a trapped ion system. As a first demonstration, we perform the quantum simulation of molecular vibronic profile of SO2, which incorporates squeezing, rotation and coherent displacements operations, and the collective projection measurement on phonon modes. This work was supported by the National Basic Research Program of China 11CBA00300, 2011CBA00301, National Natural Science Foundation of China 11374178, 11574002. Basic Science Research Program of Korea NRF-2015R1A6A3A04059773.

  13. Wave heating of an ion beam in a tokamak plasma

    International Nuclear Information System (INIS)

    Heating of a 26-keV trapped-ion beam by interaction with incident lower-hybrid RF power (as low as 5kW) was observed in the ATC plasma. We suggest that ion-cyclotron damping of lower hybrid waves by beam ions can account for the increase in beam energy. This process can explain the main features of the experiment: (1) preferential absorption in the perpendicular direction, (2) lack of absorption by the background plasma ions, and (3) low power requirement for absorption. Theory requires ksub(perpendicular)rhosub(i) approximately > (ω/ωsub(ci))sup(1/2). The relatively high perpendicular temperature of the beam ions (approximately 1keV), combined with one of several possibilities for RF energy at large ksub(perpendicular), allows the condition on ksub(perpendicular)rhosub(i) to be satisfied. Moreover, the large parallel energy of the beam ions plays a major role in broadening the harmonic resonances, thus making it possible for a large number of beam ions to resonate with the wave. Though the primary process is perpendicular absorption, there is also a net gain in parallel energy during a collision time due to pitch-angle scattering. The importance of this heating mechanism for large machines such as TFTR is discussed. For these machines, ions will be injected with large rhosub(i), making ion heating possible even with moderate values of ksub(perpendicular). (author)

  14. Ion-beam-driven lower-hybrid instability and resultant anomalous beam slowing

    International Nuclear Information System (INIS)

    A lower-hybrid instability with ion cyclotron harmonics is observed to be driven by an ion beam injected obliquely to the magnetic field confining the isothermal plasma of the Q-1 double plasma device. The instability occurs with the injection of a low density, low velocity beam and propagates normal to the field with phase velocity ω/k/sub perpendicular/ approximately equal to u/sub b//sub perpendicular/, the perpendicular velocity component of the spiraling ions. The frequency spectrum, propagation, and growth rate are all in good agreement with a numerical calculation based on linear kinetic theory. Pulsed beams are used to follow the instability from the linearly growing stage to nonlinear saturation. The anomalous perpendicular momentum loss of the beam is examined by both direct energy analysis and by measurements of the resultant beam orbit modifications. By varying the beam parameters, a transition of the nonlinear saturation mechanism from the quasilinear to the trapping regime is demonstrated

  15. Technologies for trapped-ion quantum information systems

    CERN Document Server

    Eltony, Amira M; Shi, Molu; Bylinskii, Alexei; Vuletić, Vladan; Chuang, Isaac L

    2015-01-01

    Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

  16. Architecture for a scalable ion-trap quantum computer

    International Nuclear Information System (INIS)

    A scalable architecture for quantum information processing with trapped ions depends, among other things, on the ability to store and manipulate large numbers of ions within a single processing unit, i.e. the ion trap. To reliably control the ions these traps must be stable and well characterised. Furthermore, reliable ways of sharing the information between the ions have to be developed. This work presents the development of and the results from two segmented-trap experiments. First, the ions are used as electrical field probes which serves as the basis for a novel diagnostic tool. With these probes light-induced charging of trap structures was observed with a sensitivity of 40 elementary charges per root Hz. Second, a way to share quantum information in a multiplexed trap structure by direct coupling between two trapping sites is presented. A coherent exchange of the motional states between two ions, separated by 54 microns, was observed. The coupling strength between these two trap sites was increased using additional ions as near-field antennae. (author)

  17. Grover search algorithm in an ion trap system

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    Two schemes for the implementation of the two-qubit Grover search algorithm in the ion trap system are proposed.These schemes might be experimentally realizable with presently available techniques. The experimental implementation of the schemes would be an important step toward more complex quantum computation in the ion trap system.

  18. Quantum Discrete Fourier Transform in an Ion Trap System

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2007-01-01

    We propose two schemes for the implementation of quantum discrete Fourier transform in the ion trap system. In each scheme we design a tunable two-qubit phase gate as the main ingredient. The experimental implementation of the schemes would be an important step toward complex quantum computation in the ion trap system.

  19. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    Science.gov (United States)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  20. Dynamics of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P

    2013-01-01

    A linear ion trap setup has been developed for studying the dynamics of trapped ion cloud and thereby realizing possible systematics of a high precision measurement on a single ion within it. The dynamics of molecular nitrogen ion cloud has been investigated to extract the characteristics of the trap setup. The stability of trap operation has been studied with observation of narrow nonlinear resonances pointing out the region of instabilities within the broad stability region. The secular frequency has been measured and the motional spectra of trapped ion oscillation have been obtained by using electric dipole excitation. It is applied to study the space charge effect and the axial coupling in the radial plane.

  1. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO2, Al2O3, Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW)

  2. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  3. Systematics in a measurement of the electron's electric dipole moment using trapped molecular ions

    Science.gov (United States)

    Grau, Matt; Cossel, Kevin; Cairncross, William; Gresh, Dan; Zhou, Yan; Ye, Jun; Cornell, Eric

    2015-05-01

    A precision measurement of the electron's electric dipole moment (EDM) has important implications for physics beyond the Standard Model. Trapped molecular ions offer high sensitivity in such an experiment because of the large effective electric fields and long coherence times that are possible. Our experiment uses Ramsey spectroscopy of HfF+ ions in a linear RF trap with rotating bias fields, achieving coherence times beyond 1 second for 1000 trapped ions. Compared to other electron EDM experiments that use molecular beams, we will be sensitive to a different class of systematic errors. In this work we investigate systematic errors arising from all fields involved in the experiment, including the trapping and polarizing electric fields, magnetic field gradients, and motional effects such as geometric phases. This work was supported by NIST and NSF.

  4. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    OpenAIRE

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocho...

  5. Vibratile Coherence and Squeezing in Two Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZENGHao-Sheng; KUANGLe-Man; 等

    2002-01-01

    It is shown that two trapped ions interacting with laser beams resonant to the first red side-band of center-of-mass mode,in Lamb-Dicke regime and under rotating wave approximation,is described by a Jaynes-Cummings model.For the initial condition that the motional state of center-of-mass mode is in vacuum state and the internal state is prepared in a coherent superposition of states,coherence and squeezing for the vibratile motion of center-of-mass mode are discussed,particularly,a“weak” coherent state and a “weak” squeezed vacuum state are obtained.Collapse and revival are also observed in this type of initial condition.

  6. Comparative numerical studies of ion traps with integrated optical cavities

    CERN Document Server

    Podoliak, Nina; Keller, Matthias; Horak, Peter

    2016-01-01

    We study a range of radio-frequency ion trap geometries and investigate the effect of integrating dielectric cavity mirrors on their trapping potential. We aim to identify ion trap and cavity configurations that are best suited for achieving small cavity volumes and thus large ion-photon coupling as required for scalable quantum information networks. In particular, we investigate the trapping potential distortions caused by the dielectric material of the cavity mirrors for different mirror orientations with respect to the trapping electrodes, as well as for mirror misalignment. We also analyze the effect of the mirror material properties such as dielectric constants and surface conductivity, and study the effect of surface charges on the mirrors. The smallest trapping potential distortions are found if the cavities are aligned along the major symmetry axis of the electrode geometries. These cavity configurations also appear to be the most stable with respect to any mirror misalignment.

  7. A Scalable Microfabricated Ion Trap for Quantum Information Processing

    Science.gov (United States)

    Maunz, Peter; Haltli, Raymond; Hollowell, Andrew; Lobser, Daniel; Mizrahi, Jonathan; Rembetski, John; Resnick, Paul; Sterk, Jonathan D.; Stick, Daniel L.; Blain, Matthew G.

    2016-05-01

    Trapped Ion Quantum Information Processing (QIP) relies on complex microfabricated trap structures to enable scaling of the number of quantum bits. Building on previous demonstrations of surface-electrode ion traps, we have designed and characterized the Sandia high-optical-access (HOA-2) microfabricated ion trap. This trap features high optical access, high trap frequencies, low heating rates, and negligible charging of dielectric trap components. We have observed trap lifetimes of more than 100h, measured trap heating rates for ytterbium of less than 40quanta/s, and demonstrated shuttling of ions from a slotted to an above surface region and through a Y-junction. Furthermore, we summarize demonstrations of high-fidelity single and two-qubit gates realized in this trap. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA).

  8. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  9. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  10. Ion sponge: a 3-dimentional array of quadrupole ion traps for trapping and mass-selectively processing ions in gas phase.

    Science.gov (United States)

    Xu, Wei; Li, Linfan; Zhou, Xiaoyu; Ouyang, Zheng

    2014-05-01

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations.

  11. Quantum entanglement in a two—dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper,we investigate the quantum entanglement in a two-dimensional ion trap system.we discuss the quantum entanglement between the ion and phonons by using reduced entropy,and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy.We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  12. Quantum entanglement in a two-dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  13. An Integrated Mirror and Surface Ion Trap with a Tunable Trap Location

    CERN Document Server

    Van Rynbach, Andre; Kim, Jungsang

    2016-01-01

    We report a demonstration of a surface ion trap fabricated directly on a highly reflective mirror surface, which includes a secondary set of radio frequency (RF) electrodes allowing for translation of the quadrupole RF null location. We introduce a position-dependent photon scattering rate for a $^{174}$Yb$^+$ ion in the direction perpendicular to the trap surface using a standing wave of retroreflected light off the mirror surface directly below the trap. Using this setup, we demonstrate the capability of fine-tuning the RF trap location with nanometer scale precision and characterize the charging effects of the dielectric mirror surface upon exposure to ultra-violet light.

  14. Ion-trap electrode preparation with Ne$^+$ bombardment

    CERN Document Server

    McKay, K S; Colombe, Y; Jördens, R; Wilson, A C; Slichter, D H; Allcock, D T C; Leibfried, D; Wineland, D J; Pappas, D P

    2014-01-01

    We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electrode surfaces and interelectrode gaps of microfabricated traps. This procedure helps to minimize redeposition in the gaps between electrodes that can cause electrical shorts. We report heating rates in a stylus-type ion trap prepared in this way that are lower by one order of magnitude compared to a similar untreated stylus-type trap using the same experimental setup.

  15. Effects on focused ion beam irradiation on MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-04-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 {mu}m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga{sup +} focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.

  16. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  17. Phase-stable free-space optical lattices for trapped ions

    CERN Document Server

    Schmiegelow, Christian Tomas; Ruster, Thomas; Schulz, Jonas; Kaushal, Vidyut; Hettrich, Max; Schmidt-Kaler, Ferdinand; Poschinger, Ulrich G

    2016-01-01

    We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2\\% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over 157~$\\mu$m range along the trap axis at accuracies of better than 6~nm.

  18. Phase-Stable Free-Space Optical Lattices for Trapped Ions.

    Science.gov (United States)

    Schmiegelow, C T; Kaufmann, H; Ruster, T; Schulz, J; Kaushal, V; Hettrich, M; Schmidt-Kaler, F; Poschinger, U G

    2016-01-22

    We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157  μm range along the trap axis at accuracies of better than 6 nm.

  19. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...... motional state onto one of the collective modes of the ion pair. The quantum state of this vibrational eigenmode is subsequently measured through sideband excitation of the bright ion. Physical processes to implement the desired state transfer are derived and the accomplishment of the scheme is evaluated...

  20. Multiply charged ion beams from solid substances

    International Nuclear Information System (INIS)

    The mVINIS Ion Source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: a) the evaporation of metals by using the inlet system based on mini-oven and b) the metal-ions-from volatile-compounds method (MIVOC) by using the modified gas inlet system. In the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg) were made great efforts. The B3+ ion beam current of over 300 μA is one of the most intensive beams extracted until now. The obtained multiply charged ion beam spectra of solid substances (B, Fe and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials and fullerenes. (author)

  1. Optimal surface-electrode trap lattices for quantum simulation with trapped ions.

    Science.gov (United States)

    Schmied, Roman; Wesenberg, Janus H; Leibfried, Dietrich

    2009-06-12

    Trapped ions offer long internal state (spin) coherence times and strong interparticle interactions mediated by the Coulomb force. This makes them interesting candidates for quantum simulation of coupled lattices. To this end, it is desirable to be able to trap ions in arbitrary conformations with precisely controlled local potentials. We provide a general method for optimizing periodic planar radio-frequency electrodes for generating ion trapping potentials with specified trap locations and curvatures above the electrode plane. A linear-programming algorithm guarantees globally optimal electrode shapes that require only a single radio-frequency voltage source for operation. The optimization method produces final electrode shapes that are smooth and exhibit low fragmentation. Such characteristics are desirable for practical fabrication of surface-electrode trap lattices. PMID:19658931

  2. Electron attachment to anionic clusters in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Franklin, E-mail: franklin.martinez@uni-rostock.de [University of Rostock, Institute of Physics (Germany); Bandelow, Steffi; Marx, Gerrit; Schweikhard, Lutz; Vass, Albert [Ernst-Moritz-Arndt University, Institute of Physics (Germany)

    2015-11-15

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented.

  3. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl;

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui...

  4. Ion bunch stacking in a Penning trap after purification in an electrostatic mirror trap

    CERN Document Server

    Rosenbusch, M; Blaum, K; Borgmann, Ch; Kreim, S; Lunney, D; Manea, V; Schweikhard, L; Wienholtz, F; Wolf, R N

    2014-01-01

    The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver ``contaminations'', i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors-if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury-Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with Cs-133(+) ions from an off-line ion source and by applicati...

  5. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  6. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    Science.gov (United States)

    Wolf, A.; von Hahn, R.; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schröter, C. D.; Crespo López-Urrutia, J. R.; Rappaport, M.; Urbain, X.; Weber, T.; Mallinger, V.; Haberstroh, Ch.; Quack, H.; Schwalm, D.; Ullrich, J.; Zajfman, D.

    2006-03-01

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a spead of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced.

  7. Suppression of Beam-Ion Instability in Electron Rings with Multi-Bunch Train Beam Fillings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Cai, Y.; Raubenheimer, T.O.; /SLAC; Fukuma, H.; /KEK, Tsukuba

    2011-08-18

    The ion-caused beam instability in the future light sources and electron damping rings can be serious due to the high beam current and ultra-small emittance of picometer level. One simple and effective mitigation of the instability is a multi-bunch train beam filling pattern which can significantly reduce the ion density near the beam, and therefore reduce the instability growth rate up to two orders of magnitude. The suppression is more effective for high intensity beams with low emittance. The distribution and the field of trapped ions are benchmarked to validate the model used in the paper. The wake field of ion-cloud and the beam-ion instability is investigated both analytically and numerically. We derived a simple formula for the build-up of ion-cloud and instability growth rate with the multi-bunch-train filling pattern. The ion instabilities in ILC damping ring, SuperKEKB and SPEAR3 are used to compare with our analyses. The analyses in this paper agree well with simulations.

  8. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens;

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  9. Fast Preparation of W States for Hot Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2005-01-01

    A scheme is presented for generating W states for three o()four trapped ions in thermal motion. The scheme works in the regime, where the Rabi frequency of the laser field is on the order of the trap frequency, resulting a fast entanglement speed, which is of importance in view of decoherence.

  10. Fast Preparation of W States for Hot Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZHENGShi-Biao

    2005-01-01

    A scheme is presented for generating W states for three or four trapped ions in thermal motion. The scheme works in the regime, where the Rabi frequency of the laser field is on the order of the trap frequency, resulting a fast entanglement speed, which is of importance in view of decoherence.

  11. Multilayer Interconnects for Microfabricated Surface Electrode Ion Traps

    Science.gov (United States)

    Amini, Jason; Seidelin, Signe; Wesenberg, Janus; Britton, Joe; Blakestad, Brad; Brown, Kenton; Epstein, Ryan; Home, Jonathan; Jost, John; Langer, Chris; Leibfried, Dietrich; Ozeri, Roee; Wineland, David

    2007-06-01

    Microfabricated surface electrode traps for ions are a promising technology for building scalable trapping geometries for quantum information processing. We have expanded upon our single layer gold-on-fused-silica surface electrode trap [1] to include a second patterned conducting layer under the trapping electrodes and have demonstrated the fabrication of this architecture using standard microfabrication techniques. The multilayer approach allows for a significant increase in multi-zone trapping complexity and permits improved trapping structures that are otherwise unattainable in single layer designs without vertical interconnects through the wafer. Using improved calculational methods [2], we are in the process of optimizing the planar designs to create modular elements that can be joined into larger multi-zone trapping structures. Work supported by DTO and NIST. 1. S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006). Also, see the abstract by S. Seidelin. 2. See the abstract by J. H. Wesenberg.

  12. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  13. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  14. Beam-line considerations for experiments with highly-charged ions

    International Nuclear Information System (INIS)

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ion traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations

  15. Photodetachment of cold OH- in a multipole ion trap

    OpenAIRE

    Trippel, S.; Mikosch, J.; Berhane, R.; Otto, R; Weidemüller, M.; Wester, R.

    2006-01-01

    The absolute photodetachment cross section of OH- anions at a rotational and translational temperature of 170K is determined by measuring the detachment-induced decay rate of the anions in a multipole radio-frequency ion trap. In comparison with previous results, the obtained cross section shows the importance of the initial rotational state distribution. Using a tomography scan of the photodetachment laser through the trapped ion cloud, the derived cross section is model-independent and thus...

  16. Atomic physics experiments with trapped and cooled highly charged ions

    OpenAIRE

    Kluge, H.-J.; Quint, W; Winters, D. F. A

    2007-01-01

    Trapping and cooling techniques have become very important for many fundamental experiments in atomic physics. When applied to highly charged ions confined in Penning traps, these procedures are very effective for testing quantum electrodynamics in extreme electromagnetic fields produced by heavy highly charged ions such as uranium U$^{91+}$. In addition, fundamental constants or nuclear ground state properties can be determined with high accuracy in these simple systems. Finally, by studying...

  17. Injection of intense ion beam into a tokamak

    International Nuclear Information System (INIS)

    We describe an experiment to investigate the direct injection of an intense ion beam into a tokamak by means of the polarization drift. Confinement of 100 keV ions in the UCI tokamak (r = 15 cm, R = 60 cm, B/sub T/ = 6 kG) requires operation with a plasma current of 56 kA corresponding to q (limiter) = 2. Trapped ions are to be detected by a charge-exchange analyzer. The present status of the experiment will be discussed

  18. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  19. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U92+. The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7Li+ ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7Li+ beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI)

  20. Trapped-Ion State Detection through Coherent Motion

    CERN Document Server

    Hume, D B; Leibrandt, D R; Thorpe, M J; Wineland, D J; Rosenband, T

    2011-01-01

    Quantum-limited experiments with trapped atomic ions rely on sensitive methods of detecting an ion's state. Current detection techniques are applicable only to relatively simple systems, which precludes most atomic and molecular species. Here, we demonstrate a technique that can be applied to a larger class of ion systems. We couple a "spectroscopy" ion (Al+) to a "control" ion (Mg+) in the same trap and perform state detection through off-resonant laser excitation of the spectroscopy ion that induces coherent motion. The motional amplitude, dependent on the spectroscopy ion state, is measured either by time-resolved photon counting, or by resolved sideband excitations. The first method provides a simplified way to distinguish "clock" states in Al+, which avoids ground state cooling and sideband transitions. The second method reduces spontaneous emission and optical pumping on the spectroscopy ion, which we demonstrate by nondestructively distinguishing Zeeman sublevels in the 1S0 ground state of Al+.

  1. Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.M.; Goeringer, D.E.; McLuckey, S.A.; Glish, G.L. (Oak Ridge National Laboratory, TN (United States))

    1993-01-01

    Matrix-assisted laser desorption (MALD), which has been proven to be an effective ionization technique for biological molecules, has been implemented on a quadrupole ion trap mass spectrometer (ITMS). In the instrumental configuration used for this work both the sample probe and the laser beam are brought through holes in the ring electrode, thereby enabling MALD-generated ions to expand directly into the ion trap cavity. This approach for directly introducing MALD-generated ions compliments the capabilities of the ITMS to obtain low detection limits and to perform tandem mass spectrometric analysis. For example, detection limits in the single-unit femtomole regime have been achieved for small polypeptides such as leucine enkephalin, bradykinin, and neuromedin U-8. Furthermore, structural information has been acquired via multiple stages of mass spectrometry. One limitation that currently exists is an unanticipated drop in sensitivity and resolution as the mass/charge ratio for ions exceeds 3000. 42 refs., 11 figs., 1 tab.

  2. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  3. Experimental demonstration of a surface-electrode multipole ion trap

    CERN Document Server

    Maurice, Mark; Green, Dylan; Farr, Andrew; Burke, Timothy; Hilleke, Russell; Clark, Robert

    2015-01-01

    We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model, and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.

  4. Electrospray ionization combined with ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, G.J.; Glish, G.L.; McLuckey, S.A. (Oak Ridge National Laboratory, TN (USA))

    1990-07-01

    Ions from a variety of molecules, formed via electrospray, have been injected into and analyzed with a quadrupole ion trap mass spectrometer. Examples are shown in which one or more stages of mass spectrometry (e.g., mass spectrometry/mass spectrometry) have been performed on both multiply charged anions and cations. Compounds for which data are described include the disodium salt of 2-hydroxynapthalene-3,6-disulfonic acid, Direct Red 81, bradykinin, melittin, cytochrome c, myoglobin, and bovine albumin. For some compounds, notable the sulfonates, evidence is presented for the injection of highly solvated ions that desolvate within the ion trap. The cations derived from the peptides, on the other hand, appear to be essentially desolvated prior to injection into the ion trap.

  5. Atomic physics experiments with trapped and cooled highly charged ions

    CERN Document Server

    Kluge, H -J; Winters, D F A

    2007-01-01

    Trapping and cooling techniques have become very important for many fundamental experiments in atomic physics. When applied to highly charged ions confined in Penning traps, these procedures are very effective for testing quantum electrodynamics in extreme electromagnetic fields produced by heavy highly charged ions such as uranium U$^{91+}$. In addition, fundamental constants or nuclear ground state properties can be determined with high accuracy in these simple systems. Finally, by studying a single trapped radioactive ion, its nuclear decay can be studied in detail by observing the disappearance of the signal of the mother and the appearance of that of the daughter isotope. Such experiments on highly charged ions at extremely low energy will become possible by the HITRAP facility which is currently being built up at GSI. Also the future Facility for Antiproton and Ion Research (FAIR) will be briefly described which is expected to be operational by 2014.

  6. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  7. Suitability of linear quadrupole ion traps for large Coulomb crystals

    CERN Document Server

    Tabor, D A; Odom, B

    2011-01-01

    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of diff...

  8. Is the Penning Ion Trap Suitable for Quantum Computation?

    Science.gov (United States)

    Bollinger, J. J.; Kriesel, J. M.; Itano, W. M.; Mitchell, T. B.

    2001-10-01

    There is a great deal of interest in finding a physical system which can perform computations through quantum unitary operations and be scaled to large numbers of qubits. rf ion traps have been used in pioneering experiments on a few qubits. The Penning ion trap has some potential advantages compared to the rf trap. In rf traps, heating and decoherence rates of ion motional states have been observed to scale inversely with the size of the electrodes. Penning traps can have large electrodes while still retaining the large (5-10 MHz) motional frequencies required for quantum logic operations. This is because large static fields are more easily generated than large amplitude rf fields. Addressing of individual ions in the Penning trap is complicated by the plasma rotation, but should be possible with crystallized, planar plasmas controlled by a combination of rotating fields (a ``hard disk" geometry). We will discuss the pros and cons as well as some initial experiments to investigate the suitability of the Penning trap for quantum computation.

  9. Towards Non-Equilibrium Dynamics with Trapped Ions

    Science.gov (United States)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  10. Confining rigid balls by mimicking quadrupole ion trapping

    CERN Document Server

    Fan, Wenkai; Wang, Sihui; Zhou, Huijun

    2016-01-01

    The rotating saddle not only is an interesting system that is able to trap a ball near its saddle point, but can also intuitively illustrate the operating principles of quadrupole ion traps in modern physics. Unlike the conventional models based on the mass-point approximation, we study the stability of a ball in a rotating-saddle trap using rigid-body dynamics. The stabilization condition of the system is theoretically derived and subsequently verified by experiments. The results are compared with the previous mass-point model, giving large discrepancy as the curvature of the ball is comparable to that of the saddle. We also point out that the spin angular velocity of the ball is analogous to the cyclotron frequency of ions in an external magnetic field utilized in many prevailing ion-trapping schemes.

  11. A Single-Ion Trap with Minimized Ion-Environment Interactions

    CERN Document Server

    Nisbet-Jones, P B R; Jones, J M; Godun, R M; Baynham, C F A; Bongs, K; Doležal, M; Balling, P; Gill, P

    2015-01-01

    We present a new single-ion endcap trap for high precision spectroscopy that has been designed to minimize ion-environment interactions. We describe the design in detail and then characterize the working trap using a single trapped 171 Yb ion. Excess micromotion has been eliminated to the resolution of the detection method and the trap exhibits an anomalous phonon heating rate of d /dt = 24 +30/-24 per second. The thermal properties of the trap structure have also been measured with an effective temperature rise at the ion's position of 0.14 +/- 0.14 K. The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the 10^-18 level.

  12. Simulations of beta-decay of 6He in an Electrostatic Ion Trap

    CERN Document Server

    Vaintraub, S; Hass, M; Heber, O; Aviv, O; Rappaport, M; Dhal, A; Mardor, I; Wolf, A

    2014-01-01

    Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar terms in the weak interaction. Such scalar or tensor terms affect, e.g., the angular correlation between a neutrino and an electron in the beta-decay process, thus probing new physics of beyond-the-standard-model nature. The present system focuses on a novel use of an innovative ion trapping device, the Electrostatic Ion Beam Trap. Such a trap has not been previously considered for Fundamental Interaction studies and exhibits potentially very significant advantages over other schemes. These advantages include improved injection efficiency of the radionuclide under study, an extended field-free region, ion-beam kinematics for better efficiency and ease-of operation and the potential for a much larger solid angle for the electron and recoiling atom counters. The beta-d...

  13. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens;

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  14. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  15. Entangling a Series of Trapped Ions by Moving Cavity Bus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Miao; JIA Huan-Yu; WEI Lian-Fu

    2011-01-01

    Entangling multiple qubits is one of the central tasks of quantum information processing. We propose an approach to entangle a number of cold ions (individually trapped in a string of microtraps) by a moved cavity. The cavity is pushed to include the ions one by one with a uniform velocity and thus the information stored in former ions could be transferred to the latter ones by such a moving cavity bus. Since the positions of the trapped ions are precisely located, the strengths and durations of the ion-cavity interactions can be exactly controlled. As a consequence, by properly setting the relevant parameters, typical multi-ion entangled states, e.g., W state for 10 ions, could be deterministically generated. The feasibility of the proposal is also discussed.%@@ Entangling multiple qubits is one of the central tasks of quantum information processing.We propose an approach to entangle a number of cold ions (individually trapped in a string of microtraps) by a moved cavity.The cavity is pushed to include the ions one by one with a uniform velocity and thus the information stored in former ions could be transferred to the latter ones by such a moving cavity bus.Since the positions of the trapped ions are precisely located, the strengths and durations of the ion-cavity interactions can be exactly controlled.As a consequence, by properly setting the relevant parameters, typical multi-ion entangled states, e.g., W state for 10 ions, could be deterministically generated.The feasibility of the proposal is also discussed.

  16. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  17. The Temperature Effects on the Ion Trap Quantum Computer

    Institute of Scientific and Technical Information of China (English)

    Hongmin; JiatiLIN

    2001-01-01

    We consider one source of decoherence for a quantum computer composed of many trapped ions due to the thermal effects of the system in the presence of laser-ion interaction.The upper limit of the temperature at which the logical gate operations could be carried out reliably is given,and our result is agreement with the experiment.

  18. Trapped-ion antennae for the transmission of quantum information.

    Science.gov (United States)

    Harlander, M; Lechner, R; Brownnutt, M; Blatt, R; Hänsel, W

    2011-03-10

    More than 100 years ago, Hertz succeeded in transmitting signals over a few metres to a receiving antenna using an electromagnetic oscillator, thus proving the electromagnetic theory developed by Maxwell. Since this seminal work, technology has developed, and various oscillators are now available at the quantum mechanical level. For quantized electromagnetic oscillations, atoms in cavities can be used to couple electric fields. However, a quantum mechanical link between two mechanical oscillators (such as cantilevers or the vibrational modes of trapped atoms or ions) has been rarely demonstrated and has been achieved only indirectly. Examples include the mechanical transport of atoms carrying quantum information or the use of spontaneously emitted photons. Here we achieve direct coupling between the motional dipoles of separately trapped ions over a distance of 54 micrometres, using the dipole-dipole interaction as a quantum mechanical transmission line. This interaction is small between single trapped ions, but the coupling is amplified by using additional trapped ions as antennae. With three ions in each well, the interaction is increased by a factor of seven compared to the single-ion case. This enhancement facilitates bridging of larger distances and relaxes the constraints on the miniaturization of trap electrodes. The system provides a building block for quantum computers and opportunities for coupling different types of quantum systems. PMID:21346764

  19. Direct Measurement of Squeezing in the Motion of Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZENG Hao-Sheng; HU Ai-Qin; LIU Qiong; KUANG Le-Man

    2005-01-01

    @@ We present a simple method that can be used to directly measure the squeezing of the quantum motional states of a trapped ion.Through the use of the interaction between the trapped ion and classical lasers, one can design a required coupling between the internal electronic and external vibrational degrees of freedom of the ion and can transfer information of the expectation value of a vibrational operator to the atomic internal populations.Thus measurement of squeezing on the quantum motional state can directly be realized.By adjusting the phases of the interacting lasers, one can measure the squeezing of both position and momentum quadratures.

  20. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  1. A Linear RFQ Ion Trap for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Flatt, B.; Green, M.; Wodin, J.; DeVoe, R.; Fierlinger, P.; Gratta, G.; LePort, F.; Montero Diez, M.; Neilson, R.; O' Sullivan, K.; Pocar, A.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank Jr., W.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Hauger, M.; Hodgson, J.; /Stanford U., Phys. Dept. /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U.

    2008-01-14

    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of {sup 136}Xe to {sup 136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus ({sup 136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.

  2. Focused Ion Beam Technology for Optoelectronic Devices

    Science.gov (United States)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  3. Scalable Trapped Ion Quantum Computation with a Probabilistic Ion-Photon Mapping

    CERN Document Server

    Duan, L M; Möhring, D L; Monroe, C

    2004-01-01

    We propose a method for scaling trapped ions for large-scale quantum computation and communication based on a probabilistic ion-photon mapping. Deterministic quantum gates between remotely located trapped ions can be achieved through detection of spontaneously-emitted photons, accompanied by the local Coulomb interaction between neighboring ions. We discuss gate speeds and tolerance to experimental noise for different probabilistic entanglement schemes.

  4. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J; Sage, J M

    2015-01-01

    We describe rapid, random-access loading of a two-dimensional (2D) surface-electrode ion-trap array based on two crossed photo-ionization laser beams. With the use of a continuous flux of pre-cooled neutral atoms from a remotely-located source, we achieve loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive 2D arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.

  5. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  6. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  7. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  8. Collisional activation with random noise in ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L. [Oak Ridge National Lab., TN (United States)

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  9. Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces

    CERN Document Server

    Kireeff-Covo, Michel; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Friedman, Alex; Grote, D P; Kwan, Joe W; Lund, Steven M; Molvik, Arthur; Seidl, Peter; Vay, Jean-Luc; Vujic, Jasmina L; Westenskow, Glen

    2005-01-01

    The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

  10. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  11. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  12. Ion-optically driven depth compensation for ion beam tracking

    International Nuclear Information System (INIS)

    The beam delivery system for scanned carbon ion beam radiotherapy at GSI has been extended in research mode to irradiate moving targets. For beam tracking, the ion beam is adapted laterally as well as in range corresponding to the target's three dimensional (3D) motion. A beam tracking system with a motorized double wedge system for fast and accurate range adaptation has been developed. In addition to the current range adaptation system a much faster method for online energy modulation is being investigated where a fine focused ion beam is dynamically positioned, controlled by fast dipole magnets, on a small static wedge shaped absorber within the beam line. Experiments were performed at the therapy beam line to study the beam shift from central axis by the first dipole magnet up to the maximum limit where the beam can be deflected back to central axis by the second dipole magnet. Beam profiles were measured at different locations of the beam delivery system. The particle transmission was measured as well at the target position. Experiments were supported by Monte Carlo simulations for energy variation studies and for assessing the influence on beam profiles using MOCADI code

  13. Experiments towards quantum information with trapped Calcium ions

    CERN Document Server

    Leibfried, D; Barton, P; Rohde, H; Gulde, S T; Mundt, A B; Reymond, G; Lederbauer, M; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2000-01-01

    Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap is the prerequisite for quantum information experiments with trapped ions. With resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we have cooled one and two 40Ca+ ions to the ground state of vibration with up to 99.9% probability. With a novel cooling scheme utilizing electromagnetically induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the motional ground state we have demonstrated coherent quantum state manipulation on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations within 1.4 ms have been observed in the motional ground state and in the n=1 Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more than 5 micron for up to 4 ions. We are able to cool two ions to the ground state in...

  14. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  15. Scalable Digital Hardware for a Trapped Ion Quantum Computer

    CERN Document Server

    Mount, Emily; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-01-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for trapping and cooling the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  16. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  17. Ion trap with integrated time-of-flight mass spectrometer

    CERN Document Server

    Schneider, Christian; Yu, Peter; Hudson, Eric R

    2015-01-01

    Recently, we reported an ion trap experiment with an integrated time-of-flight mass spectrometer (TOFMS) [Phys. Rev. Appl. 2, 034013 (2014)] focussing on the improvement of mass resolution and detection limit due to sample preparation at millikelvin temperatures. The system utilizes a radio-frequency (RF) ion trap with asymmetric drive for storing and manipulating laser-cooled ions and features radial extraction into a compact $275$ mm long TOF drift tube. The mass resolution exceeds $m / \\Delta m = 500$, which provides isotopic resolution over the whole mass range of interest in current experiments and constitutes an improvement of almost an order of magnitude over other implementations. In this manuscript, we discuss the experimental implementation in detail, which is comprised of newly developed drive electronics for generating the required voltages to operate RF trap and TOFMS, as well as control electronics for regulating RF outputs and synchronizing the TOFMS extraction.

  18. Geometric Phases for Mixed States in Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    LU Hong-Xia

    2006-01-01

    The generalization of geometric phase from the pure states to the mixed states may have potential applications in constructing geometric quantum gates. We here investigate the mixed state geometric phases and visibilities of the trapped ion system in both non-degenerate and degenerate cases. In the proposed quantum system, the geometric phases are determined by the evolution time, the initial states of trapped ions, and the initial states of photons. Moreover,special periods are gained under which the geometric phases do not change with the initial states changing of photon parts in both non-degenerate and degenerate cases. The high detection efficiency in the ion trap system implies that the mixed state geometric phases proposed here can be easily tested.

  19. Laser ablation loading of a radiofrequency ion trap

    CERN Document Server

    Zimmermann, K; Herrera-Sancho, O A; Peik, E

    2012-01-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 10^5 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  20. Laser ablation loading of a radiofrequency ion trap

    Science.gov (United States)

    Zimmermann, K.; Okhapkin, M. V.; Herrera-Sancho, O. A.; Peik, E.

    2012-06-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10-7 to 10-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  1. Preparation of multicomponent motional coherent and squeezed coherent states of a trapped ion

    Institute of Scientific and Technical Information of China (English)

    Li Jia-Hua; Yang Wen-Xing; Peng Ju-Cun

    2004-01-01

    In this paper, we present a scheme for preparation of multicomponent motional coherent and squeezed coherent states of the quantized centre of mass of an ion trapped in a one-dimensional harmonic potential and driven by two travelling-wave laser beams tuned to the nth red and blue vibrational sidebands, respectively. In addition, our scheme also provides experimental possibility for quantum state engineering.

  2. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe26+ approximately 4x1010 h/s, Asub(r)sup(12+) approximately 1012 h/s intensive ion beams are produced. In the laser source a full number of C6+ ions during one laser pulse constitutes not less than 1010 from the 5x10mm2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached

  3. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    Science.gov (United States)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  4. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  5. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  6. Energy spectra of geomagnetically trapped oxygen ions

    CERN Document Server

    Leicher, M; Enge, W

    1999-01-01

    In a series of COSMOS satellite flights plastic nuclear track detectors have been exposed in low-earth orbits to monitor anomalous cosmic rays (ACR) at energies below 25 MeV/nuc. The analysis of energy spectra has now been extended to energies up to 40 MeV/nuc for two exposures aboard COSMOS 2260 in 1993 and COSMOS 2311 in 1995. Our data on trapped ACR (TACR) oxygen energy spectra might indicate the influence of energy-dependent stripping probabilities and the presence of multiply charged ACR oxygen at high energies as reported by latest SAMPEX observations.

  7. Infrared imaging diagnostics for INTF ion beam

    Science.gov (United States)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  8. Confined ion beam sputtering device and method

    Science.gov (United States)

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  9. Lifetimes of metastable ion clouds in a Paul trap: Power-law scaling

    Science.gov (United States)

    Weiss, D. K.; Nam, Y. S.; Blümel, R.

    2016-04-01

    It is well known that ions stored in a Paul trap, one of the most versatile tools in atomic, molecular, and optical (AMO) physics, may undergo a transition from a disordered cloud state to a geometrically well-ordered crystalline state, the Wigner crystal. In this paper we predict that close to the transition, the average lifetime τ¯m of the metastable cloud follows a power law, τ¯m˜(γ-γc) -β , where γc is the value of the damping constant at which the transition occurs. The exponent β depends on the trap control parameter q , but is independent of both the number of particles N stored in the trap and the trap control parameter a , which determines the shape (oblate, prolate, or spherical) of the ion cloud. In addition, we find that for given a and q , γc scales approximately like γc=C ln[ln(N ) ] +D as a function of N , where C and D are constants. Our predictions may be tested experimentally with equipment already available at many AMO laboratories. In addition to their importance in AMO trap physics, we also discuss possible applications of our results to other periodically driven many-particle systems, such as, e.g., particle accelerator beams, and, based on our trap results, conjecture that power laws characterize the phase transition to the Wigner crystal in all such systems.

  10. Atom trapping in a bottle beam created by a diffractive optical element

    CERN Document Server

    Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

    2013-01-01

    A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

  11. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    Science.gov (United States)

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications.

  12. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    Science.gov (United States)

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications. PMID:27176945

  13. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; Garimella, Venkata BS; Zhang, Xing; Hamid, Ahmed M.; Deng, Liulin; Karnesky, William E.; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin Shammel; Smith, Richard D.

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. A linear increase in ion intensity was observed with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.

  14. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  15. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  16. A quantum parametric oscillator with trapped ions

    CERN Document Server

    Ding, Shiqian; Hablutzel, Roland; Loh, Huanqian; Matsukevich, Dzmitry

    2015-01-01

    A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion ...

  17. Neutralization of low energy broad ion beam

    International Nuclear Information System (INIS)

    The paper is devoted to experimental and theoretical investigation of a low energy broad ion beam space charge and current compensation and ion-beam plasma (IBP), which would be created in transport space of the beam. The beam had cylindrical symmetry. The continuous uniform and hole tube like ion beams are used in the experiments. Different channels of electron appearing have been investigated for cases of neutralization due to secondary γ-electrons from the target and by electrons from glow cathode-neutralizer with metal or dielectric target. Results of neutralizing electrons energy distributions function measurements are presented as well as dependences of electron temperature and self-consisted plasma potential vs. beam parameters, ambient gas pressure, neutralizer parameters. Role of the thermoelectrons and dependence of IBP parameters on neutralizer area, location and potential are discussed. Significant role in neutralization of spatial collisional processes has been revealed even in neutralization by thermocathode. On the base of the experimental results self-consistent theoretical model have been developed, which describes the behavior of intense ion beam passing through the neutral gas at low pressure within conductive walls. The collisionless approach is used which means absence of collisional relaxation of the beam. This theory is used to derive the plasma potential and electron temperature within the beam

  18. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  19. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.

    Science.gov (United States)

    Brzobohatý, Oto; Šiler, Martin; Ježek, Jan; Jákl, Petr; Zemánek, Pavel

    2013-11-15

    We present optical trapping and manipulation of pure water and salt water airborne droplets of various sizes ranging from sub-micrometers up to several tens of micrometers in a holographic dual and single beam trap. In the dual beam trap, successful fusion of droplets as well as precise delivery of many droplets and manipulation of multiple droplets are demonstrated. Furthermore, employing the transfer of the orbital angular momentum of light from Laguerre-Gaussian beams, we show that the water droplets orbit around the beam propagation axis and their tangential speed can be controlled by beam waist magnitude. We also demonstrate that sub-micrometer sized pure water droplets can be trapped and manipulated by a single beam trap with a relatively low numerical aperture. In this case, multiple stable trapping positions were observed, both theoretically and experimentally, which were due to the optical intensity oscillations in the focal region of the laser beam.

  20. Beta-delayed neutron spectroscopy using trapped radioactive ions

    OpenAIRE

    Yee, Ryan Matthew

    2013-01-01

    A novel technique for beta-delayed neutron spectroscopy has been developed using trapped radioactive ions. The neutron energy spectrum was reconstructed by measuring the time of flight (TOF) of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection such as backgrounds from scattered neutrons and gamma rays and complicated detector-response functions. A proof-of-principle measurement was conducted on 137I+ by delivering ions from a ...

  1. Arbitrary Waveform Generator for Quantum Information Processing with Trapped Ions

    OpenAIRE

    R. Bowler; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.

    2013-01-01

    Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logi...

  2. Generation of Vibrational Entangled Coherent States of Two Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    LIN Li-Hua; JIANG Yun-Kun; YANG Zhen-Biao; YE Sai-Yun

    2005-01-01

    We propose a scheme for the generation of entangled coherent states for the center-of-mass and relative vibrational modes of two trapped ions. In the scheme the ions are simultaneously illuminated by a single standing-wave laser tuned to the carrier. The scheme allows the production of an entangled coherent states with a considerably high speed as long as a laser field of sufficiently high intensity is available.

  3. Operation of a planar-electrode ion trap array with adjustable RF electrodes

    CERN Document Server

    Kumph, Muir; Langer, Kirsten; Niedermayr, Michael; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    One path to scaling-up trapped atomic ions for large-scale quantum computing and simulation is to create a two-dimensional array of ion traps in close proximity to each other. A method to control the interactions between nearest neighboring ions is demonstrated and characterized here, using an adjustable radio-frequency (RF) electrode between trapping sites. A printed circuit board planar-electrode ion trap is demonstrated, trapping laser-cooled $^{40}$Ca$^+$ ions. RF shuttling and secular-frequency adjustment are shown as a function of the power applied to the addressed RF electrode. The trapped ion's heating rate is measured via a fluorescence recooling method.

  4. Applications of focused ion beams in microelectronics

    International Nuclear Information System (INIS)

    We present the conclusions of the RSRE programme on the application of focused ion beams in microelectronics and review the literature published in this field. We discuss the design and performance of focused beam implanters and the viability of their application to semiconductor device fabrication. Applications in the areas of lithography, direct implantation and micromachining are discussed in detail. Comparisons are made between the use of focused ion beams and existing techniques for these fabrication processes with a strong emphasis placed on the relative throughputs. We present results on a novel spot size measurement technique and the effect of beam heating on resist. We also present the results of studies into implantation passivation of resist to oxygen plasma attack as basis for a dry development lithography scheme. A novel lithography system employing flood electron exposure from a photocathode which is patterned by a focused ion beam which can also be used to repair mask defects is considered. (author)

  5. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm2 have been obtained for pulse lengths on the order of 10-7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  6. Ion Beam Energy Calibration Method for Accelerator

    International Nuclear Information System (INIS)

    Ion beam energy calibration methods, i e : nuclear reaction method, magnetic field method and calorimeter method were elaborated and studied from its advantage and disadvantage in this paper. Ion beam energy calibration method for accelerator using the method of magnetic field on 3 MV Tandem Accelerator have been carried out at Tiara, JAERI, Japan. The result showed that the energy of ion beam current is 43.56 keV. The result of study conclude that nuclear reaction method generally used to calibrate ion beam energy at the accelerator of energy larger than 2 MeV, calorimetric method for the accelerator electron including linac, magnetic field method for all particle type of accelerator. (author)

  7. Real-time reconfigurable counter-propagating beam-traps

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;

    2010-01-01

    We present a versatile technique that enhances the axial stability and range in counter-propagating (CP) beam-geometry optical traps. It is based on computer vision to track objects in unison with software implementation of feedback to stabilize particles. In this paper, we experimentally...... which simulates biosamples. By working on differences rather than absolute values, this feedback based technique makes CPtrapping nullify many of the commonly encountered pertubations such as fluctuations in the laser power, vibrations due to mechanical instabilities and other distortions emphasizing...

  8. Optical two-beam traps in microfluidic systems

    Science.gov (United States)

    Berg-Sørensen, Kirstine

    2016-08-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast in a rapid prototyping manner, to hard polymers that could even be produced by injection moulding, or to silica in which waveguides may either be written directly, or with grooves for optical fibers. Here, we review different solutions to the system and also show results obtained in a polymer chip with DUV written waveguides and in an injection molded polymer chip with grooves for optical fibers.

  9. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... in a rapid prototyping manner, to hard polymers that could even be produced by injection moulding, or to silica in which waveguides may either be written directly, or with grooves for optical fibers. Here, we review different solutions to the system and also show results obtained in a polymer chip with DUV...

  10. Fast ignition by quasimonoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    Honrubia J.J.

    2013-11-01

    Full Text Available The potential of quasimonoenergetic ion beams for fast ignition (FI of fusion targets is investigated. Lithium, carbon, aluminium and vanadium ions have been considered here to determine the optimal kinetic energy for each ion type. Our calculations show that the ignition energies of those beams impinging on a standard fuel configuration are similar. However, they are obtained for very different ion energies. Assuming that the ions can be focused onto 10 μm spots, a new irradiation scheme that reduces substantially the ignition energies is proposed. The combination of using intermediate ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows one to reduce the number of ions required for ignition by roughly three orders of magnitude when compared with the standard proton FI scheme.

  11. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T/T>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  12. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  13. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  14. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  15. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  16. Experimental realization of fast ion separation in segmented Paul traps

    CERN Document Server

    Ruster, Thomas; Kaufmann, Henning; Schmiegelow, Christian T; Walther, A; Hettrich, Max; Pfister, Andreas; Kaushal, Vidyut; Schmidt-Kaler, Ferdinand; Poschinger, Ulrich G

    2014-01-01

    We experimentally demonstrate fast separation of a two-ion crystal in a microstructured segmented Paul trap. By the use of spectroscopic calibration routines for the electrostatic trap potentials, we achieve the required precise control of the ion trajectories near the \\textit{critical point}, where the harmonic confinement by the external potential vanishes. The separation procedure can be controlled by three parameters: A static potential tilt, a voltage offset at the critical point, and the total duration of the process. We show how to optimize the control parameters by measurements of ion distances, trap frequencies and the final motional excitation. At a separation duration of $80 \\mu$s, we achieve a minimum mean excitation of $\\bar{n} = 4.16(0.16)$ vibrational quanta per ion, which is consistent with the adiabatic limit given by our particular trap. We show that for fast separation times, oscillatory motion is excited, while a predominantly thermal state is obtained for long times. The presented techniq...

  17. Quantum Energy Teleportation with Trapped Ions

    CERN Document Server

    Hotta, Masahiro

    2009-01-01

    We analyze a protocol of quantum energy teleportation that transports energy from the left edge of a linear ion crystal to the right edge by local operations and classical communication at a speed much higher than the speed of the phonon in the crystal. A probe qubit is strongly coupled with the phonon fluctuation in the ground state during short time and is projectively measured in order to get information about this phonon fluctuation. During the measurement process, phonons are excited by the time-dependent measurement interaction and energy of the excited phonons must be infused from outside the system. The obtained information is announced to the right edge of the crystal through a classical channel. Even though the phonons excited at the left edge do not arrive at the right edge yet when the information arrives at the right edge, we are able to soon extract energy from the ion at the right edge by using the announced information. Because the intermediate ions of the crystal are not excited during the ex...

  18. Universal Control of Ion Qubits in a Scalable Microfabricated Planar Trap

    CERN Document Server

    Herold, Creston D; Merrill, J True; Meier, Adam M; Brown, Kenton R; Volin, Curtis; Amini, Jason M

    2015-01-01

    We demonstrate universal quantum control over chains of ions in a surface-electrode ion trap, including all the fundamental operations necessary to perform algorithms in a one-dimensional, nearest-neighbor quantum computing architecture. We realize both single-qubit operations and nearest-neighbor entangling gates with Raman laser beams, and we interleave the two gate types. We report average single-qubit gate fidelities as high as 0.970(1) for two-, three-, and four-ion chains, characterized with randomized benchmarking. We generate Bell states between the nearest-neighbor pairs of a three-ion chain, with fidelity up to 0.84(2). We combine one- and two-qubit gates to perform quantum process tomography of a CNOT gate in a two-ion chain, and we report an overall fidelity of 0.76(3).

  19. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    Science.gov (United States)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  20. JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, V.S.; Kopecky, S. E-mail: kopecky@phys.jyu.fi; Eronen, T.; Hager, U.; Hakala, J.; Huikari, J.; Jokinen, A.; Nieminen, A.; Rinta-Antila, S.; Szerypo, J.; Aeystoe, J

    2004-08-11

    A Penning trap has been installed for isobaric beam purification at the IGISOL-facility at the University of Jyvaeskylae. In this paper, the technical details of this new device together with results of the first tests are presented. The mass resolving power, depending on the excitation parameters and the ion species, can be as high as 145 000 and the total transmission has been determined to be 17%. In addition, it is shown that with this experimental setup it is possible to measure atomic masses up to A=120 with accuracies of approximately 50 keV.

  1. Rapid crystallization of externally produced ions in a Penning trap

    CERN Document Server

    Murboeck, T; Birkl, G; Noertershaeuser, W; Thompson, R C; Vogel, M

    2016-01-01

    We have studied the cooling dynamics, formation process and geometric structure of mesoscopic crystals of externally produced magnesium ions in a Penning trap. We present a cooling model and measurements for a combination of buffer gas cooling and laser cooling which has been found to reduce the ion kinetic energy by eight orders of magnitude from several hundreds of eV to micro-eV and below within seconds. With ion numbers of the order of 1000 to 100000, such cooling leads to the formation of ion Coulomb crystals which display a characteristic shell structure in agreement with theory of non-neutral plasmas. We show the production and characterization of two-species ion crystals as a means of sympathetic cooling of ions lacking a suitable laser-cooling transition.

  2. Microchip and wedge ion funnels and planar ion beam analyzers using same

    Science.gov (United States)

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  3. Effects of multiple ion species on two-dimensional trapped-electron modes

    International Nuclear Information System (INIS)

    Previous calculations for the two-dimensional spatial structure of drift and trapped-electron modes in tokamaks are generalized to include an arbitrary number of ion species. Thus, it is possible to determine the influence of light or heavy impurity ions, and of multiple hydrogen isotopes, on these instabilities. As an example, results are presented for the case of a single light impurity species. Here the effect is found to be either stabilizing or destabilizing, depending on specific parameters, such as the equilibrium density profiles. Moreover, if a sufficiently idealized model is adopted, beam ion effects can also be studied. In the case considered, corresponding to the neutral-beam-heated PLT, these effects are found to be stabilizing

  4. Observations of dust trapping phenomena in the TRISTAN accumulation ring and a study of dust removal in a beam chamber

    Science.gov (United States)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-04-01

    Using a gamma-ray detector and a television camera system for synchrotron light, high-energy bremsstrahlung and horizontal growth of the synchrotron light source were observed when sudden decrease in the electron-beam lifetime occurred due to dust trapping in the electron beam. Two types of beam current losses were found; one was a continuous beam current loss, and the other was a short-term beam current loss. High-energy bremsstrahlung at a location was observed in a short time and after that, the bremsstrahlung was not detected in spite of the occurrence of dust trapping phenomena. The fact suggests motions of the trapped dust particles in the longitudinal directions. Materials collected in the beam chamber are dust particles from ion pumps and dust particles made during the beam chamber processing for welding. Most of the collected dust particles were less than 2 mm in size and surfaces of some dust particles were melted with the electron beam. Simple analysis was carried out for the conditions necessary for a dust particle to be trapped, for motions of the trapped dust particle, and for interactions between the trapped dust particle and the electron beam. The analysis showed that a dust particle less than 3 mm in size, made of Al, can be trapped and that the trapped dust particle can move in the vertical and longitudinal directions. The analysis also suggested that a dust particle in size of about 2 mm can be continuously trapped around the electron beam without being destroyed by the electron beam. Furthermore, the analysis explained the difference between the two types of beam current losses observed in the ring. Experiments which simulate the electron beam using a Cu wire in an evacuated beam chamber show that a dust particle (less than 70 μm) is trapped sufficiently. The experiments also coincide with theory for an attractive force acting to a conducting small particle. The calculated electric field of the electron beam and the calculated electric charge

  5. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  6. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  7. Ion dynamics in a linear radio-frequency trap with a single cooling laser

    CERN Document Server

    Marciante, Mathieu; Calisti, Annette; Pedregosa-Guttierez, Jofre; Knoop, Martina

    2010-01-01

    We analyse the possibility of cooling ions with a single laser beam, thanks to the coupling between the three components of their motion, induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial plane. We use Molecular Dynamics simulations where the laser cooling is modeled by a stochastic process. For each component of the motion, we systematically study the dependence of the temperature with the anisotropy of the trapping potential. Results obtained using the full radio-frequency (rf) potential are compared to those of the corresponding pseudo-potential. In the rf case, the rotation symmetry of the potential has to be broken to keep ions inside the trap. Then, as for the pseudo-potential case, we show that the efficiency of the Coulomb coupling to thermalize the components of motion depends on the geometrical configuration of the cloud. Coulomb ...

  8. Precise formation of geometrically focused ion beams

    International Nuclear Information System (INIS)

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by ∼50%

  9. Maskless micro-ion-beam reduction lithography

    International Nuclear Information System (INIS)

    An ion projection lithography (IPL) technique called maskless micro-ion-beam reduction lithography (MMRL) is being studied for future dynamic random access memory and microprocessors manufacturing. In addition to minimum feature sizes of 50 nm or less required of next generation lithography, this MMRL system is proposed to completely eliminate the first stage of the conventional IPL system that contains the complicated beam optics design in front of the stencil mask and the mask itself. Its main components consist of a multi-cusp, rf plasma generator, a multi-beamlet extraction system, and an accelerator column for beam reduction. The viability of this MMRL system hinges upon the successful development of these components, most importantly the proposed all-electrostatic accelerator column. This article describes the different components of the MMRL system and its ion optics. Computational results of beam demagnification and optics optimization are also presented along with design progress of the prototype MMRL system. (c) 1999 American Vacuum Society

  10. Laser-cooled continuous ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  11. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...

  12. Photoionization and Photoelectric Loading of Barium Ion Traps

    OpenAIRE

    Steele, A. V.; Churchill, L. R.; Griffin, P. F.; Chapman, M. S.

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading t...

  13. Photoionization and Photoelectric Loading of Barium Ion Traps

    CERN Document Server

    Steele, A V; Churchill, L R; Griffin, P F

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.

  14. ELECTRON TRANSFER COLLISION OF NEON IONS WITH Ne IN A RF ION TRAP

    Institute of Scientific and Technical Information of China (English)

    满宝元; 王象泰; 等

    1995-01-01

    The pulsed electron beam rf ion stroage system is used to study neon ions electron transfer,The rate coefficients for electron transfer of the neon ions with the neon gas are measured.the results are better than those in other ion storage system.

  15. Surface Planar Ion Chip for Linear Radio-Frequency Paul Traps

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-Yin; QU Qiu-Zhi; ZHOU Zi-Chao; LI Xiao-Lin; WANG Yu-Zhu; LIU Liang

    2007-01-01

    We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.

  16. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  17. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  18. Cryogenic Linear Ion Trap for Large-Scale Quantum Simulations

    Science.gov (United States)

    Kaplan, H. B.; Hess, P. W.; Pagano, G.; Birckelbaw, E. J.; Hernandez, M.; Lee, A. C.; Smith, J.; Zhang, J.; Monroe, C.

    2016-05-01

    Ions confined in RF Paul traps are a useful tool for quantum simulation of long-range spin-spin interaction models. As the system size increases, classical simulation methods become incapable of modeling the exponentially growing Hilbert space, necessitating quantum simulation for precise predictions. Current experiments are limited to less than 30 qubits due to collisions with background gas that regularly destroys the ion crystal. We present progress toward the construction of a cryogenic ion trap apparatus, which uses differential cryopumping to reduce vacuum pressure to a level where collisions do not occur. This should allow robust trapping of about 100 ions/qubits in a single chain with long lifetimes. Such a long chain will provide a platform to investigate simultaneously cooling of various vibrational modes and will enable quantum simulations that outperform their classical counterpart. Our apparatus will provide a powerful test-bed to investigate a large variety of Hamiltonians, including spin 1 and spin 1/2 systems with Ising or XY interactions. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  19. Cryogenic Linear Ion Trap for Large-Scale Quantum Simulations

    Science.gov (United States)

    Pagano, Guido; Hess, Paul; Kaplan, Harvey; Birckelbaw, Eric; Hernanez, Micah; Lee, Aaron; Smith, Jake; Zhang, Jiehang; Monroe, Christopher

    2016-05-01

    Ions confined in RF Paul traps are a useful tool for quantum simulation of long-range spin-spin interaction models. As the system size increases, classical simulation methods become incapable of modeling the exponentially growing Hilbert space, necessitating quantum simulation for precise predictions. Current experiments are limited to less than 30 qubits due to collisions with background gas that regularly destroys the ion crystal. We present progress toward the construction of a cryogenic ion trap apparatus, which uses differential cryopumping to reduce vacuum pressure to a level where collisions do not occur. This should allow robust trapping of about 100 ions/qubits in a single chain with long lifetimes. Such a long chain will provide a platform to investigate simultaneously cooling of various vibrational modes and will enable quantum simulations that outperform their classical counterpart. Our apparatus will provide a powerful test-bed to investigate a large variety of Hamiltonians, including spin 1 and spin 1/2 systems with Ising or XY interactions. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, the IC Fellowship Program and the NSF Physics Frontier Center at JQI.

  20. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Murrell, J. [Defence Science and Detection Department (Dstl), Wiltshire, UK; Despeyroux, D. [Defence Science and Detection Department (Dstl), Wiltshire, UK; Lammert, Stephen {Steve} A [ORNL; Stephenson Jr, James {Jim} L [ORNL; Goeringer, Doug [ORNL

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  1. Beam halo collimation in heavy ion synchrotrons

    Science.gov (United States)

    Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.

    2015-08-01

    This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.

  2. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  3. Storage of Entangled States with Multiple Trapped Ions in Thermal Motion

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents an alternative scheme to realize the storage of entangled states for multiple trapped ions including W state, Bell states, and GHZ states even with ions which exchange vibrational energy with a heating surrounding. Our scheme requires that the ions be simultaneously excited by two laser beams with different frequencies.In this scheme the vibrational degrees of freedom are only regarded as intermediate states and the ions exchange energy via the mediation of the vibration of the vibrational mode in coupling processes. The scheme is insensitive to both the initial vibrational state and heating if the system remains in the Lamb-Dicke regime. Since the effective Rabi frequency has a small dependence on the vibrational quantum number the heating will have no direct effect on the internal state evolution.

  4. Industrial Application of Ion Beams in KOMAC

    International Nuclear Information System (INIS)

    For the last 5 years, we have performed extensive R and D efforts by ion beam to characterize metallic, ceramic, polymeric materials and have supported users from a broad range of institutions, including a large number of industries. So, in this study, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products. Through the ion beam service to users by using ion beam facilities in KOMAC, we are successfully achieved several industrial applications by ion beams. Based on verification on the industrialization feasibility by experiments, we hope to get it started to enter markets with developed technology and products. Ion implantation technology, which is one of ultramodern technologies, can be used in enhancing chemical and physical properties of materials, such as anti-corrosion, wear resistance and electrical conductivity. Comparing with conventional surface modification technologies, it does not generate toxic wastes, which can threaten the environment. It provides precise control of surface thickness and strong adherence of surface material. Therefore, this technology will be used in surface modification along with steady improvement of ion implantation technology

  5. Industrial Application of Ion Beams in KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Lee, Chanyoung; Kim, Bomsok; Choi, Hyukjun; Kim, Yongki; Kim, Hyungjin; Park, Jaewon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    For the last 5 years, we have performed extensive R and D efforts by ion beam to characterize metallic, ceramic, polymeric materials and have supported users from a broad range of institutions, including a large number of industries. So, in this study, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products. Through the ion beam service to users by using ion beam facilities in KOMAC, we are successfully achieved several industrial applications by ion beams. Based on verification on the industrialization feasibility by experiments, we hope to get it started to enter markets with developed technology and products. Ion implantation technology, which is one of ultramodern technologies, can be used in enhancing chemical and physical properties of materials, such as anti-corrosion, wear resistance and electrical conductivity. Comparing with conventional surface modification technologies, it does not generate toxic wastes, which can threaten the environment. It provides precise control of surface thickness and strong adherence of surface material. Therefore, this technology will be used in surface modification along with steady improvement of ion implantation technology.

  6. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.;

    2011-01-01

    Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter...... deviating from using perfectly counter-propagating beams to use oblique beams can improve the axial stability of the traps and improve the axial trapping stiffness. These alternative geometries can be particularly useful for handling larger particles. These results hint at a rich potential for light shaping......-propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show that...

  7. Quantum-enhanced deliberation of learning agents using trapped ions

    Science.gov (United States)

    Dunjko, V.; Friis, N.; Briegel, H. J.

    2015-02-01

    A scheme that successfully employs quantum mechanics in the design of autonomous learning agents has recently been reported in the context of the projective simulation (PS) model for artificial intelligence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via random walks, was shown to be amenable to quantization, allowing for a speed-up. In this work we propose an implementation of such classical and quantum agents in systems of trapped ions. We employ a generic construction by which the classical agents are ‘upgraded’ to their quantum counterparts by a nested process of adding coherent control, and we outline how this construction can be realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents. Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of our proposal under certain noise models.

  8. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave

    Institute of Scientific and Technical Information of China (English)

    FANG Mao-Fa; ZHOU Peng; S. Swain

    2000-01-01

    By performing a unitary transformation, we transform the Hamiltonian of the trapped ion in any position of standing wave to that of the normal Jaynes-Cummings model in ionic bare basis and we obtain a general evolution operator of the trapped ion system. We study the quantum entropic dynamics of the phonons and trapped ion.Our results show that, when the trapped ion is located at the node of standing wave, the quantum entropic dynamics of phonons and trapped ion are the same as the one of the field in the Jaynes-Cummings model.When the trapped ion deviatesfrom the node of standing wave, the entropies of the phonons and ion keep their maximum value except at the initial stage, and the phonons and trapped ion become extremely entangled.

  9. From Transistor to Trapped-ion Computers for Quantum Chemistry

    OpenAIRE

    M.-H. Yung; Casanova, J.; A. Mezzacapo; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control...

  10. High repetition rate intense ion beam diode

    International Nuclear Information System (INIS)

    A magnetically insulated ion beam diode with a gas-breakdown plasma anode has been successfully developed recently. In this paper, the authors report the experiment results of operating a version of this diode at a 1-Hz repetition rate. Intense ion beams (100ns, 200Kv and 20kA per pulse) are generated by using an inductive voltage to breakdown an annular hydrogen gas puff (8.5cm mean radius, and 160cm2 in area), and magnetically driving the resulting plasma toward a magnetically insulated accelerating gap. The high voltage pulses on the accelerating gap are supplied using two thyratron switch chassises which are connected to the diode through a series of capacitors coupled with saturable inductors. To understand the operation of the diode, the anode plasma source and the extracted ion beams are characterized by using various diagnostics

  11. Heavy ion observation with MIDORI satellite: trapped ACR

    CERN Document Server

    Kohno, T; Yamagiwa, I; Kato, C; Goka, T; Matsumoto, H

    1999-01-01

    The Heavy Ion Telescope (HIT) on board the Japanese earth observation satellite MIDORI (ADEOS) has observed energetic heavy ions at the circular sun-synchronous orbit with an altitude of 800 km and an inclination of 98 deg. . Geomagnetically trapped oxygen and nitrogen at L=2 are clearly observed which is similar to the results of SAMPEX. Their geographical distribution at a long belt from the southern tip of South America to that of Africa is also very close to the SAMPEX observation. The adiabaticity parameter epsilon sub m sub a sub x can be deduced as <=0.1.

  12. Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions

    Science.gov (United States)

    Hegi, Gregor; Najafian, Kaveh; Germann, Matthias; Sergachev, Ilia; Willitsch, Stefan

    2016-06-01

    The ability to precisely control and manipulate single cold trapped particles has enabled spectroscopic studies on narrow transitions of ions at unprecedented levels of precision. This has opened up a wide range of applications, from tests of fundamental physical concepts, e.g., possible time-variations of fundamental constants, to new and improved frequency standards. So far most of these experiments have concentrated on atomic ions. Recently, however, attention has also been focused on molecular species, and molecular nitrogen ions have been identified as promising candidates for testing a possible time-variation of the proton/electron mass ratio. Here, we report progress towards precision-spectroscopic studies on dipole-forbidden vibrational transitions in single trapped N2+ ions. Our approach relies on the state-selective generation of single N2+ ions, subsequent infrared excitation using high intensity, narrow-band quantum-cascade lasers and a quantum-logic scheme for non-destructive state readout. We also characterize processes limiting the state lifetimes in our experiment, which impair the measurement fidelity. P. O. Schmidt et. al., Science 309 (2005), 749. M. Kajita et. al., Phys. Rev. A 89 (2014), 032509 M. Germann , X. Tong, S. Willitsch, Nature Physics 10 (2014), 820. X. Tong, A. Winney, S. Willitsch, Phys. Rev. Lett. 105 (2010), 143001

  13. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  14. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  15. Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

    CERN Document Server

    Allcock, D T C; Janacek, H A; Linke, N M; Ballance, C J; Steane, A M; Lucas, D M; Jarecki, R L; Habermehl, S D; Blain, M G; Stick, D; Moehring, D L

    2011-01-01

    We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.

  16. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  17. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  18. Negative ion beam formation, transport and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1981-01-01

    The BNL Neutral Beam Development Group is working on the development of negative ion based neutral beam systems, using high current density surface plasma sources of the magnetron and hollow cathode discharge (HCD) type. With the magnetron source, the plan is to transport a 2A D/sup -/ beam through a bending magnet before acceleration to 200 keV. In experiments with a pulsed magnetron, 0.4A of H/sup -/ was transported through a 90/sup 0/, n = 1, bending magnet with 80% transmission. With the lower operating pressure in the HCD source, close coupled acceleration will be applied. The MEQALAC, RFQ, and a dc accelerating scheme with periodic quadrupole focusing are considered for reaching higher energies. A preliminary experiment was performed with quadrupole beam transport and a 3.8 mA beam was transported through a series of twelve quadrupoles, with 3 mm apertures and a total length of 7.2 cm.

  19. Formation of molecular ions by radiative association of cold trapped atoms and ions

    OpenAIRE

    Silva Jr, Humberto Da; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier

    2015-01-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$) and Yb$^+$, and between Li and Yb$^+$, are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radia...

  20. Laser desorption lamp ionization source for ion trap mass spectrometry.

    Science.gov (United States)

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  1. Comparison experiments of neon and helium buffer gases cooling in trapped 199Hg+ ions linear trap

    International Nuclear Information System (INIS)

    The influences of different buffer gas, neon and helium, on 199Hg+ clock transition are compared in trapped 199Hg+linear trap. By the technique of time domain's Ramsey separated oscillatory fields, the buffer gas pressure frequency shifts of 199Hg+ clock transition are measured to be (df/dPNe)(1/f) = 1.8 × 10−8 Torr−1 for neon and (df/dPHe)(1/f) = 9.1×10−8 Torr−1 for helium. Meanwhile, the line-width of 199Hg+ clock transition spectrum with the buffer gas neon is narrower than that with helium at the same pressure. These experimental results show that neon is a more suitable buffer gas than helium in 199Hg+ ions microwave frequency standards because of the 199Hg+ clock transition is less sensitive to neon variations and the better cooling effect of neon. The optimum operating pressure for neon is found to be about 1.0×10−5 Torr in our linear ion trap system. (atomic and molecular physics)

  2. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  3. Study of ion beam mixing in Pt/Co bilayer by ion beam analysis

    International Nuclear Information System (INIS)

    Ion beam mixing of the Pt/Co bilayers (400 A/700 A) were carried out using 600 keV Pt+ ions with fluences ranging from 1 x 1015 ions/cm2 to 1.2 x 1016 ions/cm2 at room temperature. The sputtering of top Pt layer and the diffusion of platinum and cobalt caused by the ion beam at the interface were revealed by RBS. The interface broadening variance for each fluence was extracted from the RBS spectra after subtracting the contribution to broadening variance due to surface roughness as measured by AFM. The linear dependence of interface broadening variance with fluence shows that ion beam mixing is diffusion controlled in Pt/Co bilayers

  4. Laser spectroscopy on the heavy ion beams

    International Nuclear Information System (INIS)

    In the presented report the perspectives of the study of the electric charge and current space distributions in the nuclei by laser spectroscopy methods on the beams of the fast multiple charged ions are discussed. The calculations of both the level energies and widths in the H-like and He-like ions and of the isotopic shifts and hyperfine splitting in the optical spectra of these ions are performed. The project of the experimental set-up for these measurements is considered. (author)

  5. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  6. Target development for a radioactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J. (Universite Libre de Bruxelles (Belgium). Inst. d' Astronomie et d' Astrophysique); Baeten, F.; Dom, C. (Institut National des Radioelements, Fleurus (Belgium)); Darquennes, D.; Delbar, T.; Jongen, Y.; Lacroix, M.; Lipnik, P.; Loiselet, M.; Ryckewaert, G.; Wa Kitwanga, S.; Vervier, J.; Zaremba, S. (Louvain Univ., Louvain-la-Neuve (Belgium). Centre de Physique Nucleaire; Louvain Univ., Louvain-la-Neuve (Belgium). Lab. de Cyclotron); Huyse, M.; Reusen, G.; Duppen, P. van (Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika)

    1989-10-01

    A proton bombarded target coupled to an ion source is a key-equipment to produce a cyclotron accelerated Radioactive Ion Beam (RIB). This note concerns the target development for a {sup 13}N ion beam which will be the first one out of a more general project at Louvain-la-Neuve (Report RIB-1988-01). A 30-MeV proton beam of up to 300-{mu}A intensity from the CYCLONE 30 bombards a graphite target to produce the {sup 13}N isotope via the {sup 13}C(p, n){sup 13}N reaction. Two major problems have to be solved: The extraction and transport of {sup 13}N and the beam-heat dissipation. These aspects are somewhat correlated to the temperature dependence of the {sup 13}N release and to the heat conductivity of graphite. A disk shaped target can be cooled through its side-face or through its back-face, and in fact both designs are explored. The extraction yield of the first one varies with the beam intensity up to a maximum value of 46% at 170 {mu}A. For the second one, which is presently under development, the target temperature can be adjusted by a cooled finger of variable length. (orig.).

  7. Nanopillar Fabrication with Focused Ion Beam Cutting

    NARCIS (Netherlands)

    Kuzmin, Oleksii V.; Pei, Yutao T.; De Hosson, Jeff T. M.

    2014-01-01

    A versatile method to fabricate taper-free micro-/nanopillars of large aspect ratio was developed with focused ion beam (FIB) cutting. The key features of the fabrication are a FIB with an incident angle of 90 degrees to the long axis of the pillar that enables milling of the pillar sideways avoidin

  8. Graphene engineering by neon ion beams.

    Science.gov (United States)

    Iberi, Vighter; Ievlev, Anton V; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V; Joy, David C; Rondinone, Adam J; Belianinov, Alex; Ovchinnikova, Olga S

    2016-03-29

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  9. Optimization of focused ion beam performance

    NARCIS (Netherlands)

    Hagen, C.W.; Kruit, P.

    2009-01-01

    The authors have analyzed how much current can be obtained in the probe of an optimized two-lens focused ion beam (FIB) system. This becomes relevant, as systems become available that have the potential to image and/or fabricate structures smaller than 10 nm. The probe current versus probe size curv

  10. Metal assisted focused-ion beam nanopatterning

    Science.gov (United States)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  11. Metal assisted focused-ion beam nanopatterning.

    Science.gov (United States)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates. PMID:27479713

  12. Focused-ion-beam processing for photonics

    NARCIS (Netherlands)

    Ridder, de René M.; Hopman, Wico C.L.; Ay, Feridun

    2007-01-01

    Although focused ion beam (FIB) processing is a well-developed technology for many applications in electronics and physics, it has found limited application to photonics. Due to its very high spatial resolution in the order of 10 nm, and its ability to mill almost any material, it seems to have a go

  13. Graphene engineering by neon ion beams

    Science.gov (United States)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-03-01

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne+ beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  14. Radioactive ion beams in nuclear astrophysics

    Science.gov (United States)

    Gialanella, L.

    2016-09-01

    Unstable nuclei play a crucial role in the Universe. In this lecture, after a short introduction to the field of Nuclear Astrophysics, few selected cases in stellar evolution and nucleosynthesis are discussed to illustrate the importance and peculiarities of processes involving unstable species. Finally, some experimental techniques useful for measurements using radioactive ion beams and the perspectives in this field are presented.

  15. Laser spectroscopy on forbidden transitions in trapped highly charged Ar(13+) ions.

    Science.gov (United States)

    Mäckel, V; Klawitter, R; Brenner, G; Crespo López-Urrutia, J R; Ullrich, J

    2011-09-30

    We demonstrate resonant fluorescence laser spectroscopy in highly charged ions (HCI) stored in an electron beam ion trap by investigating the dipole-forbidden 1s(2)2s(2)2p (2)P(3/2)-(2)P(1/2) transition in boronlike Ar(13+) ions. Forced evaporative cooling yielded a high resolving power, resulting in an accurate wavelength determination to λ=441.255 68(26)  nm. By applying stronger cooling and two-photon excitation, new optical frequency standards based upon ultrastable transitions in such HCI could be realized in the future, e.g., for the search of time variations of the fine-structure constant.

  16. Beam-line considerations for experiments with highly-charged ions

    International Nuclear Information System (INIS)

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations

  17. Storage rings for radioactive ion beams

    Science.gov (United States)

    Nolden, F.; Dimopoulou, C.; Dolinskii, A.; Steck, M.

    2008-10-01

    Storage rings for radioactive heavy ions can be applied for a wide range of experiments in atomic and nuclear physics. The rare isotope beams are produced in flight via fragmentation or fission of high-intensity primary ions and they circulate in the storage ring at moderately relativistic energies (typically between 0.1 GeV/u up to 1 GeV/u). Due to their production mechanism they are usually highly charged or even fully stripped. The circulating radioactive heavy ion beams can be used to measure nuclear properties such as masses and decay times, which, in turn, can depend strongly on the ionic charge state. The storage rings must have large acceptances and dynamic apertures. The subsequent application of stochastic precooling of the secondary ions which are injected with large transverse and longitudinal emittances, and electron cooling to reach very high phase space densities has turned out to be a helpful tool for experiments with short-lived ions having lifetimes down to a few seconds. Some of these experiments have already been performed at the experimental storage ring ESR at GSI. The storage ring complex of the FAIR project is intended to enhance significantly the range of experimental possibilities. It is planned to extend the scope of experimental possibilities to collisions with electron or antiproton beams.

  18. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  19. Structural changes in bunched crystalline ion beams

    International Nuclear Information System (INIS)

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions

  20. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D

    2003-01-01

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  1. Arbitrary waveform generator for quantum information processing with trapped ions

    Science.gov (United States)

    Bowler, R.; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.

    2013-03-01

    Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of ±10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and demonstrate some of its uses in ion-based quantum information experiments, including speed-up of ion transport and the shaping of laser and microwave pulses.

  2. Conversion electron spectroscopy of isobarically purified trapped radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Rissanen, J.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Rahaman, S.; Rinta-Antila, S.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O.B. 35 (Finland)

    2007-11-15

    The feasibility of the JYFLTRAP for in-trap spectroscopy has been studied. Several internally converted transitions have been measured for isomers of fission products with good accuracy. High-resolution spectroscopic data free of source effects have been obtained proving that trapped radioactive ions can provide excellent conversion electron sources. The shortest-lived isomer studied in this work was {sup 117m} Pd with a half-life of 19.1 ms, for which a superior peak-to-total ratio and an excellent line shape at the 9.9 keV conversion electron line have been observed. Detection efficiencies and related phenomena of the present setup are analyzed. (orig.)

  3. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  4. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  5. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  6. A new precision measurement of the electron's electric dipole moment using trapped ions

    Science.gov (United States)

    Cairncross, William; Cossel, Kevin C.; Grau, Matt; Gresh, Daniel N.; Ng, Kia Boon; Ni, Yiqi; Zhou, Yan; Cornell, Eric A.; Ye, Jun

    2016-05-01

    A precision measurement of the permanent electric dipole moment of the electron (eEDM) can be used to place constraints on extensions to the Standard Model. The most sensitive measurements of the eEDM to date have used neutral atomic or molecular beams, and thus are all susceptible to similar classes of systematic errors. Here we present a competitive measurement of the eEDM in a radically different experimental scheme: a thermal cloud of HfF+ ions confined in an RF trap. The long coherence times achieved in the RF trap and the large effective electric field of a molecular system provide high sensitivity to an eEDM, while our new experimental platform permits studies of a different class of systematic errors. We will present our experimental setup, known sources of systematic error and our efforts to suppress them, and the results of our recent eEDM measurement.

  7. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  8. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, K.; Che, H.; Ge, Y. P.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H., E-mail: zehuanglu@mail.hust.edu.cn [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Lan, Y. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  9. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    International Nuclear Information System (INIS)

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle

  10. Applications of ion beam analysis workshop. Workshop handbook

    International Nuclear Information System (INIS)

    A workshop on applications of ion beam analysis was held at ANSTO, immediate prior to the IBMM-95 Conference in Canberra. It aims was to review developments and current status on use of ion beams for analysis, emphasizing the following aspects: fundamental ion beam research and secondary effects of ion beams; material sciences, geological, life sciences, environmental and industrial applications; computing codes for use in accelerator research; high energy heavy ion scattering and recoil; recent technological development using ion beams. The handbook contains the workshop's program, 29 abstracts and a list of participants

  11. High intensity ion beam injection into the 88-inch cyclotron

    OpenAIRE

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner, Matthaeus A.; Lyneis, Claude M.

    2000-01-01

    Low cross section experiments to produce super-heavy elements have increased the demand for high intensity heavy ion beams at energies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. Therefore, efforts are underway to increase the overall ion beam transmission through the axial injection line and the cyclotron. The ion beam emittance has been measured for various ion masses and charge states. Beam transport simulations including space charge ...

  12. Fast Laser Cooling of Long Lived Ion Beams

    OpenAIRE

    Bessonov, E. G.; Osipov, A. L.

    2013-01-01

    Some peculiarities of fast laser cooling of long-lived ion beams in storage rings are discussed. Selective interaction of ions and broadband laser beam with sharp frequency and geometric edges is used while laser and ion beams are partially overlapped. The rates of change of the ion beam density in different regions of the phase space and at different moments of time in this scheme of cooling differ. That is why the generalized Robinson theorem valid for the infinitesimal phase space regions ...

  13. Robust Collimation Control of Laser-Generated Ion Beam

    OpenAIRE

    Kawata, S; Takano, M.; Kamiyama, D.; T. Nagashima; Barada, D.; Gu, Y. J.; Li, X; Yu, Q; Kong, Q.; Wang, P. X.

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters a...

  14. Ion beam figuring system in NUDT

    Science.gov (United States)

    Zhou, Lin; Xie, Xuhui; Dai, Yifan; Jiao, Changjun; Li, Shengyi

    2007-12-01

    Ion beam figuring (IBF) is an optical fabrication technique that provides highly deterministic process to correct surface figure error of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Recently, an ion beam figuring system KDIFS-500 has been designed and built in National University of Defense Technology (NUDT) of the P.R. China. KDIFS-500 is capable of processing workpiece up to Φ500mm. Line scanning process was discussed in detail for estimating the parameters of the beam removal function (BRF) in process. Experiments were conducted to demonstrate that the BRF increases gradually in process and by employing a stability control, the BRF can be kept stable in process. Finally, a Φ95 mm plano optical sample of CVD coated SiC substrate has been figured in two process iterations for demonstrating the correction capability of the KDIFS-500. Their figure convergence ratios reached 5.8 and 2.1 respectively. The actual figure residual errors were basically consistent with the predicted error. These consistencies indicated that the IBF processes on KDIFS-500 are predictable deterministic processes.

  15. Quantum teleportation by entanglement swapping with trapped ions

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiao-Juan; Fang Mao-Fa; Cai Jian-Wu; Liao Xiang-Ping

    2006-01-01

    An effective teleportation scheme for an unknown ionic internal state via trapped ions is proposed without joint Bell-state measurement (BSM). In the constructed quantum channel process, we make use of entanglement swapping to avoid decrease in entanglement during the distributing of particles. Thus our scheme provides new prospects for quantum teleportation in a longer distance. The distinct advantage of our scheme is insensitive to the heating of vibrational mode. Furthermore, our scheme has no any individual optical access, and the successful probability also can reach 1.

  16. Decoherence limits to quantum computation using trapped ions

    OpenAIRE

    Plenio, M. B.; Knight, P.L.

    1996-01-01

    We investigate the problem of factorization of large numbers on a quantum computer which we imagine to be realized within a linear ion trap. We derive upper bounds on the size of the numbers that can be factorized on such a quantum computer. These upper bounds are independent of the power of the applied laser. We investigate two possible ways to implement qubits, in metastable optical transitions and in Zeeman sublevels of a stable ground state, and show that in both cases the numbers that ca...

  17. Bohr-Weisskopf effect. Experiment with an ion trap

    International Nuclear Information System (INIS)

    Recent developments of ion-trap and laser-microwave spectroscopy techniques enable us to measure the ground-state hyperfine structure with very high accuracy. The magnetic hyperfine coupling constant A shows a small but finite isotope dependence called hyperfine anomaly, the main part of which stems from the finite size of the magnetization distribution in the nucleus (Bohr-Weisskopf effect). This effect affords unique and interesting probe for the valence neutron distribution in a nucleus, particularly in a so called halo nucleus. (author)

  18. Trilinear hamiltonian with trapped ions and its applications

    Science.gov (United States)

    Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry

    2016-05-01

    The model of three harmonic oscillators coupled by the trilinear Hamiltonian of the form a† bc + ab†c† can describe wide range of physical processes. We experimentally realize such interaction between three modes of motion in the system of 3 trapped Yb ions. We discuss several application of this coupling, including implementation of the quantum absorption refrigerator, simulation of the interaction between light and atoms described by a Tavis-Cummings model, simulation of the non-degenerate parametric down conversion process in the fully quantum regime and studies of a simple model of Hawking radiation.

  19. Development of a beam ion velocity detector for the heavy ion beam probe

    Science.gov (United States)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-11-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  20. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  1. Ion beam emittance from an ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Spädtke, P., E-mail: p.spaedtke@gsi.de; Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K. [Gesellschaft für Schwerionenforschung (GSI), Darmstadt (Germany); Biri, S.; Rácz, R. [MTA Atomki, Debrecen (Hungary)

    2016-02-15

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  2. A two-dimensional lattice of blue detuned atom traps using a projected Gaussian beam array

    CERN Document Server

    Piotrowicz, M J; Maller, K; Li, G; Zhang, S; Isenhower, L; Saffman, M

    2013-01-01

    We describe a new type of blue detuned optical lattice for atom trapping which is intrinsically two dimensional, while providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it does not depend on field interference between distinct optical beams. The array is created using a novel arrangement of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and demonstrate trapping and detection of single Cs atoms in 6 and 49 site two-dimensional arrays.

  3. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    CERN Document Server

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A

    2015-01-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  4. Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

    Science.gov (United States)

    Schooss, Detlef

    2006-03-01

    The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED)^1. In brief, cluster ions are generated by a magnetron sputter source and injected into a cooled (95 K) quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the structural motif is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations. The structures of mass selected silver cluster cations Ag19^+, Ag38^+, Ag55^+, Ag59^+, Ag75^+ and Ag79^+ have been investigated^2. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out. Additionally, we present a comparison of the structures of Cu20^+/-, Ag20^+/- and Au20^+/-. Our findings show unambiguously that the structure of Au20^- is predominantly given by a tetrahedron in agreement with the results of L.S. Wang et al.^3 In contrast, structures of Ag20^- and Cu20^- based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed. (1) M. Maier-Borst, D. B. Cameron, M. Rokni, and J. H. Parks, Physical Review A 59 (5), R3162 (1999); S. Krückeberg, D. Schooss, M. Maier-Borst, and J. H. Parks, Physical Review Letters 85 (21), 4494 (2000). (2) D. Schooss, M.N. Blom, B. v. Issendorff, J. H. Parks, and M.M. Kappes, Nano Letters 5 (10), 1972 (2005). (3) J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science 299, 864 (2003)

  5. Low power RF amplifier circuit for ion trap applications

    Science.gov (United States)

    Noriega, J. R.; García-Delgado, L. A.; Gómez-Fuentes, R.; García-Juárez, A.

    2016-09-01

    A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.

  6. Digital quantum simulation of Dirac equation with a trapped ion

    Science.gov (United States)

    Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration

    2014-05-01

    Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.

  7. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  8. Linear Ion Trap for the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald

    2014-05-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.

  9. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  10. DESIREE: Physics with cold stored ion beams

    Directory of Open Access Journals (Sweden)

    Thomas R.D.

    2015-01-01

    Full Text Available Here we will briefly describe the commissioning of the Double ElectroStatic Ion Ring ExpEriment (DESIREE facility at Stockholm University, Sweden. This device uses purely electrostatic focussing and deflection elements and allows ion beams of opposite charge to be confined under extreme high vacuum and cryogenic conditions in separate “rings” and then merged over a common straight section. This apparatus allows for studies of interactions between cations and anions at very low and well-defined centre-of-mass energies (down to a few meV and at very low internal temperatures (down to a few K.

  11. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  12. A novel ion cooling trap for multi-reflection time-of-flight mass spectrograph

    CERN Document Server

    Ito, Y; Wada, M; Naimi, S; Smorra, C; Sonoda, T; Mita, H; Takamine, A; Okada, K; Ozawa, A; Wollnik, H

    2013-01-01

    A radiofrequency quadrupole ion trap system for use with a multi-reflection time-of-flight mass spectrograph (MRTOF) for short-lived nuclei has been developed. The trap system consists of two different parts, an asymmetric taper trap and a flat trap. The ions are cooled to a sufficient small bunch for precise mass measurement with MRTOF in only 2 ms cooling time in the flat trap, then orthogonally ejected to the MRTOF for mass analysis. A trapping efficiency of ~27% for 23Na+ and ~5.1% for 7Li+ has been achieved.

  13. Collisional cooling of light ions by co-trapped heavy atoms

    CERN Document Server

    Dutta, Sourav; Rangwala, S A

    2015-01-01

    The most generic cooling and thermalization pathway at the lowest temperatures is via elastic collisions. In hybrid ion-atom traps, ion cooling to temperatures where low partial wave collisions dominate require the collisional cooling mechanism to be well understood and controlled. There exists great uncertainty on whether cooling of light ions by heavier neutral atoms is possible. Here we experimentally demonstrate the cooling of light ions by co-trapped heavy atoms for the first time. We show that trapped 39K+ ions are cooled by localized ultracold neutral 85Rb atoms for an ion-atom mass ratio where most theoretical models predict ion heating. We demonstrate, based on detailed numerical simulation of our ion-cooling model, which is in excellent agreement with experiments, that cooling of ions by localized cold atoms is possible for any mass ratio. Our result opens up the possibility of studying quantum collisions and chemistry in trapped atom-ion systems.

  14. Trapped-ion antennae for the transmission of quantum information

    CERN Document Server

    Harlander, Maximilian; Brownnutt, Micheal; Blatt, Rainer; Hänsel, Wolfgang

    2010-01-01

    More than one hundred years ago Heinrich Hertz succeeded in transmitting signals over a few meters to a receiving antenna using an electromagnetic oscillator and thus proving the electromagnetic theory developed by James C. Maxwell[1]. Since then, technology has developed, and today a variety of oscillators is available at the quantum mechanical level. For quantized electromagnetic oscillations atoms in cavities can be used to couple electric fields[2, 3]. For mechanical oscillators realized, for example, with cantilevers[4, 5] or vibrational modes of trapped atoms[6] or ions[7, 8], a quantum mechanical link between two such oscillators has, to date, been demonstrated in very few cases and has only been achieved in indirect ways. Examples of this include the mechanical transport of atoms carrying the quantum information[9] or the use of spontaneously emitted photons[10]. In this work, direct coupling between the motional dipoles of separately trapped ions is achieved over a distance of 54 {\\mu}m, using the di...

  15. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  16. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  17. An undergraduate ion beam analysis laboratory

    International Nuclear Information System (INIS)

    Hope College (in Holland, Michigan) purchased a 1.7 MV tandem pelletron with nuclear micro-probe capability with funding from the US National Science Foundation in 2004. The purpose of this facility is to perform publishable research in a variety of applied fields, and to provide educational opportunities and sophisticated technical training for undergraduates that will enter the workforce in science, technology, engineering and mathematics. Hope College has two senior investigators with experience in nuclear science and expertise with accelerators, and an institution with approximately 3200 undergraduates. The college also has a rich history of involving undergraduates in research and producing future Ph.D. scientists. The facility was installed and commissioned in October, 2004 and since that time hundreds of separate ion beam analysis experiments have been performed in fields as diverse as solid state physics, biochemistry, forensic science, electrochemistry, environmental science, mineralogy and palaeontology. Over 90% of the work has involved on-campus collaborations between different faculty members, and there are already over 50 different undergraduate research students that have been involved in ion beam analysis research. There are six manuscripts published or in press from this facility, with more than two dozen undergraduate co-authors. During the first four years, the facility has been operated entirely with undergraduates and a single technician who was trained to help maintain the facility. We have recently added a post-doctoral fellow to our research group to help with the large number of students that are interested in the research projects that have become possible with the new ion beam analysis facility. A brief tour of our facility and an overview of some of the successful research projects will be presented, plus some insights into best operating practices we have learned for maintaining a productive an ion beam analysis facility at an

  18. EDITORIAL: Negative ion based neutral beam injection

    Science.gov (United States)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to 1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that meeting were asked if they were interested in rewriting and extending their contributions as a submission to Nuclear Fusion. Technology papers were accepted because of the very nature of the subject. The submissions underwent the regular double-referee peer-review process

  19. Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays

    Science.gov (United States)

    Cruz, D.; Chang, J. P.; Fico, M.; Guymon, A. J.; Austin, D. E.; Blain, M. G.

    2007-01-01

    A description of the design and microfabrication of arrays of micrometer-scale cylindrical ion traps is offered. Electrical characterization and initial ion trapping experiments with a massively parallel array of 5μm internal radius (r0) sized cylindrical ion traps (CITs) are also described. The ion trap, materials, and design are presented and shown to be critical in achieving minimal trapping potential while maintaining minimal power consumption. The ion traps, fabricated with metal electrodes, have inner radii of 1, 2, 5, and 10μm and range from 5to24μm in height. The electrical characteristics of packaged ion trap arrays were measured with a vector network analyzer. The testing focused on trapping toluene (C7H8), mass 91, 92, or 93amu, in the 5μm sized CITs. Ions were formed via electron impact ionization and were ejected by turning off the rf voltage applied to the ring electrode; a current signal was collected at this time. Optimum ionization and trapping conditions, such as a sufficient pseudopotential well and high ionization to ion loss rate ratio (as determined by simulation), proved to be difficult to establish due to the high device capacitance and the presence of exposed dielectric material in the trapping region. However, evidence was obtained suggesting the trapping of ions in 1%-15% of the traps in the array. These first tests on micrometer-scale CITs indicated the necessary materials and device design modifications for realizing ultrasmall and low power ion traps.

  20. Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards

    Science.gov (United States)

    Burt, Eric A.; Tjoelker, Robert L.; Taghavi, Shervin

    2011-01-01

    The use of the mercury ion isotope (201)Hg(+) was examined for an atomic clock. Taking advantage of the faster optical pumping time in (201)Hg(+) reduces both the state preparation and the state readout times, thereby decreasing the overall cycle time of the clock and reducing the impact of medium-term LO noise on the performance of the frequency standard. The spectral overlap between the plasma discharge lamp used for (201)Hg(+) state preparation and readout is much larger than that of the lamp used for the more conventional (199)Hg(+). There has been little study of (201)Hg(+) for clock applications (in fact, all trapped ion clock work in mercury has been with (199)Hg(+); however, recently the optical pumping time in (201)Hg(+) has been measured and found to be 0.45 second, or about three times faster than in (199)Hg(+) due largely to the better spectral overlap. This can be used to reduce the overall clock cycle time by over 2 seconds, or up to a factor of 2 improvement. The use of the (201)Hg(+) for an atomic clock is totally new. Most attempts to reduce the impact of LO noise have focused on reducing the interrogation time. In the trapped ion frequency standards built so far at JPL, the optical pumping time is already at its minimum so that no enhancement can be had by shortening it. However, by using (201)Hg(+), this is no longer the case. Furthermore, integrity monitoring, the mechanism that determines whether the clock is functioning normally, cannot happen faster than the clock cycle time. Therefore, a shorter cycle time will enable quicker detection of failure modes and recovery from them.

  1. Hong-Ou-Mandel interference of two phonons in trapped ions

    Science.gov (United States)

    Toyoda, Kenji; Hiji, Ryoto; Noguchi, Atsushi; Urabe, Shinji

    2015-11-01

    The quantum statistics of bosons and fermions manifest themselves in the manner in which two indistinguishable particles interfere quantum mechanically. When two photons, which are bosonic particles, enter a beam-splitter with one photon in each input port, they bunch together at either of the two output ports. The corresponding disappearance of the coincidence count is the Hong-Ou-Mandel effect. Here we show the phonon counterpart of this effect in a system of trapped-ion phonons, which are collective excitations derived by quantizing vibrational motions that obey Bose-Einstein statistics. We realize a beam-splitter transformation of the phonons by employing the mutual Coulomb repulsion between ions, and perform a two-phonon quantum interference experiment using that transformation. We observe an almost perfect disappearance of the phonon coincidence between two ion sites, confirming that phonons can be considered indistinguishable bosonic particles. The two-particle interference demonstrated here is purely a quantum effect, without a classical counterpart, hence it should be possible to demonstrate the existence of entanglement on this basis. We attempt to generate an entangled state of phonons at the centre of the Hong-Ou-Mandel dip in the coincidence temporal profile, under the assumption that the entangled phonon state is successfully generated if the fidelity of the analysis pulses is taken into account adequately. Two-phonon interference, as demonstrated here, proves the bosonic nature of phonons in a trapped-ion system. It opens the way to establishing phonon modes as carriers of quantum information in their own right, and could have implications for the quantum simulation of bosonic particles and analogue quantum computation via boson sampling.

  2. Propagation of whistler waves driven by fine structured ion beams in the magnetotail

    Science.gov (United States)

    Burinskaya, T.; Schriver, D.; Ashour-Abdalla, M.

    1994-01-01

    In a previous paper, which examined the propagation of low-frequency whistler waves generated by ion beams in the Earth's plasma sheet boundary layer (PSBL), it was found that whistler waves driven in the PSBL are focused toward the central plasma sheet due to the global magnetotail inhomogeneities; this finding may help explain the observations of magnetic noise bursts in the tail (Burinskaya et al., 1993). In this paper the same phenomenon is examined, but this time a much more realistic model is used for the ion beam in the PSBL. While the PSBL has been modeled as a solid, homogeneous ion beams with a width of one Earth radius, observations and theoretical considerations have shown that PSBL ion beams actually have a decreasing velocity profile toward the plasma sheet and that the density of the beams within the PSBL can vary locally. We consider again the propagation and generation of electromagnetic waves but in the presence of fine structured ion beams in the PSBL. Our results show that whistler waves, generated quasi-parallel to the background magnetic field, can be trapped locally within small spatial regions where the ion beam density is enhanced compared to the density of the adjacent PSBL region. Wave spectra and nonlinear saturation mechanisms are discussed.

  3. Two regimes in the decay behavior of ions from a linear r.f. Paul trap

    Science.gov (United States)

    Kwolek, Jonathan; Wells, James; Goodman, Douglas; Blümel, Reinhold; Smith, Winthrop

    2016-05-01

    A linear Paul trap (LPT) enables ions to be trapped for use in a variety of experiments. In many of these experiments, such as those measuring charge exchange or sympathetic cooling, the decay of ions from the trap is used to measure some quantity of interest. This decay is typically modeled as a single exponential. We have found that in cases where the trap is loaded to high numbers of ions, the ion decay is better described by a double exponential decay function. We have experimentally examined the decay of ions from an LPT loaded by photoionization from a magneto-optical trap as a function of the q stability parameter of the Paul trap. The LPT is loaded to steady-state, then the loading is stopped and the number of trapped ions as a function of time is monitored to determine the decay. We present numerical simulations and experimental results that demonstrate two distinct regions in the decay. For high steady-state values, the trap exhibits a double-exponential behavior. However, if the trap is filled to a steady-state value below a threshold, the decay recovers the typical single-exponential behavior. This behavior should be universal to any Paul trap regardless of the geometry or species trapped. NSF Grant No. PHY-1307874.

  4. Ion beam treatment of functional layers in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendi

    2013-10-01

    In silicon thin-film solar cells, transparent conductive layers have to fulfill the following requirements: high conductivity as effective contact, high transparency to transmit the light into the cell, and a textured surface which provides light scattering. Magnetron sputtered and wet-chemically textured aluminum doped zinc oxide (ZnO:Al) films are widely used as the transparent conductor. The technological goal of this dissertation is to develop an alternative to the wet etching process for light trapping in the thin silicon absorber layers through modification of the glass/ZnO:Al or ZnO:Al/Si interfaces by ion beam treatment. The study focuses on the textured growth of ZnO:Al films on ion beam pretreated glass substrates, and the preparation and application of textured glass for light trapping. The technological aspects such as the etch rates of the glass substrate and ZnO:Al films with different ion beam configurations were studied. The experimental etch rates are compared with simulated and theoretically predicted values. With regard to the ion beam treatment of glass substrate, the influence of the ion pretreated glass on the growth of ZnO:Al films was investigated. The ZnO:Al films grown on ion beam pretreated glass substrates exhibit self-textured morphology with surface roughness of 40 nm while remaining highly conductive. Silicon thin-film solar cells prepared on the as-grown rough ZnO:Al films show that this front contact can provide excellent light trapping effect. The highest initial efficiencies for amorphous single junction solar cells on as-grown rough ZnO:Al films was 9.4%. The as-grown rough morphology was attributed to large conical ZnO:Al grains initiated from the ion pretreated glass surface. It was found that the roughness of the as-grown rough ZnO:Al film is proportional to the number of O dangling bonds created by ion beam treatment on the glass substrate. A growth model was proposed to explain the growth mechanism of ZnO:Al films on Zn- and

  5. Adsorption of ions onto nanosolids dispersed in liquid crystals: Towards understanding the ion trapping effect in nanocolloids

    Science.gov (United States)

    Garbovskiy, Yuriy

    2016-05-01

    The ion capturing effect in liquid crystal nanocolloids was quantified by means of the ion trapping coefficient. The dependence of the ion trapping coefficient on the concentration of nano-dopants and their ionic purity was calculated for a variety of nanosolids dispersed in liquid crystals: carbon nanotubes, graphene nano-flakes, diamond nanoparticles, anatase nanoparticles, and ferroelectric nanoparticles. The proposed method perfectly fits existing experimental data and can be useful in the design of highly efficient ion capturing nanomaterials.

  6. High intensity ion guides and purification techniques for low energy radioactive ion beams

    Science.gov (United States)

    Grévy, S.

    2016-06-01

    This report gives an overview of the different devices which can be used for the purification of high intensity low energy radioactive ion beams: high resolution magnetic separators (HRS), multi-reflection time-of-flight mass separators (MR-TOF-MS) and Penning traps (PT). An overview of HRS, existing or in development, and the methods to increase the resolving power are presented. The MR-TOF-MS of ISOLTRAP and other projects having been presented during this conference, only the main characteristics of such devices are discussed. Concerning the PT, intensively used to measure masses with high precisions, we will present the PIPERADE project which aims to provide pure beams of exotic nuclei with unprecedent intensities at the future DESIR/SPIRAL2 facility.

  7. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    胡纯栋

    2012-01-01

    The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.

  8. Ion Beam Shepherd for Contactless Space Debris Removal

    OpenAIRE

    Bombardelli, C.; Pelaez, J.

    2011-01-01

    A novel concept for contactless active removal of large space debris is proposed exploiting the use of a high-speed targeted ion beam. The ion beam shepherd spacecraft (IBS) is equipped with an electric propulsion system generating a quasi-neutral plasma pointed against the space debris to remotely modify its orbit without physical contact with the latter. The beam shepherd must be equipped with a secondary propulsion system which counteracts the reaction force exerted by the ion beam hence k...

  9. Dynamic axial stabilization of counterpropagating beam-traps with feedback control

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;

    2010-01-01

    Optical trapping in a counter-propagating (CP) beam-geometry provides unique advantages in terms of working distance, aberration requirements and intensity hotspots. However, its axial performance is governed by the wave propagation of the opposing beams, which can limit the practical geometries....... Advanced implementation of this feedback-driven approach can help make CP-trapping resistant to a host of perturbations such as laser fluctuations, mechanical vibrations and other distortions emphasizing its experimental versatility....

  10. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    Science.gov (United States)

    Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.

    2010-05-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non

  11. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  12. Buffer gas loading and Doppler cooling of strontium ions in a planar Paul trap

    Science.gov (United States)

    Clark, Robert; Brown, Kenneth; Labaziewicz, Jaroslaw; Richerme, Philip; Chuang, Isaac

    2006-05-01

    Traditional geometries for ion traps involve three dimensional structures which may be difficult to assemble in complex geometries demanded by applications such as large-scale quantum computation. Planar Paul traps provide an alternative approach [Chiaverini et. al., Quant. Inf. Comput. 5, 419 (2005)], in which the RF and DC electrodes are placed in a single plane, providing simpler fabrication and greater optical access to the trapped ions. We have designed and constructed a planar Paul trap using copper electrodes on a Rogers 4350 substrate. Strontium ions were loaded into this structure at UHV, and also at high vacuum using helium buffer gas cooling. The temperature of the ion cloud as a function of buffer gas pressure is compared to predictions from a model which includes ion-helium collisions and RF heating. The measured trap parameters, including secular frequencies, trap depth, and RF heating rates, agree well with a pseudopotential model based on finite-element electrostatic calculations.

  13. Space charge effect on parametric resonances of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P; De Munshi, D; Dutta, T; Mukherjee, M

    2013-01-01

    The effect of the presence of a finite number of ions on their parametric resonances inside a Paul trap has been investigated both experimentally and theoretically. The Coulomb coupling among the charged particles results in two distinct phenomena: one is the frequency shift of the trapped ion oscillators and second is the collective oscillation of the trapped ion cloud. We observe both in a linear trap configuration. It is found that the strength and the secular frequency of individual ion-oscillation decrease while the strength of the collective oscillation increases with increasing number of trapped ions. The observation has been modeled by considering the space charge potential as an effective dc potential inside the trap. It describes the observations well within the experimental uncertainties.

  14. Physical properties of a trapped two-level ion decaying by thermal and squeezed vacuum reservoirs

    Science.gov (United States)

    Yazdanpanah, N.; Tavassoly, M. K.

    2016-01-01

    In this paper, we first study the interaction between a trapped two-level ion with a field reservoir in a general form. Then, we use thermal and squeezed vacuum reservoirs to continue our investigation. We try to find the equation of motion for the whole system density operator by applying the Weisskopf theory. Next, we evaluate the explicit form of the density matrix elements analytically. In the obtained density matrix elements, we arrive at some physical parameters of the trapped ion system as well as the applied field reservoirs by which one can control the transition probabilities between the trapped ionic states. We also introduce some hermitian operators for the trapped ion system and calculate the expectation values of their time evolution by considering the mentioned two reservoirs. In the continuation, we design a system for measuring the hermitian trapped ion's operators theoretically. Finally, we find a way to transport the information of the trapped ion system by our proposed quantum processor.

  15. Operation of a planar-electrode ion-trap array with adjustable RF electrodes

    Science.gov (United States)

    Kumph, M.; Holz, P.; Langer, K.; Meraner, M.; Niedermayr, M.; Brownnutt, M.; Blatt, R.

    2016-02-01

    One path to realizing systems of trapped atomic ions suitable for large-scale quantum computing and simulation is to create a two-dimensional (2D) array of ion traps. Interactions between nearest-neighbouring ions could then be turned on and off by tuning the ions’ relative positions and frequencies. We demonstrate and characterize the operation of a planar-electrode ion-trap array. By driving the trap with a network of phase-locked radio-frequency resonators which provide independently variable voltage amplitudes we vary the position and motional frequency of a Ca+ ion in two-dimensions within the trap array. Work on fabricating a miniaturised form of this 2D trap array is also described, which could ultimately provide a viable architecture for large-scale quantum simulations.

  16. Accelerated ion beams for in-beam e-gamma spectroscopy

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Meunier, R; Ledu, D; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Varley, BJ; Durell, JL; Dagnall, PG; Dorning, SJ; Jones, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Folger, H; Vanhorenbeeck, J; Urban, W

    1998-01-01

    A few accelerated ion beam requirements for in-beam e-gamma spectroscopy are briefly reviewed as well as several features of the MP Tandem accelerator of IPN-Orsay and the accelerated ion-beam transport devices leading to the experimental area of in-beam e-gamma spectroscopy. In particular, the main

  17. Integrated Fiber-Mirror Ion Trap for Strong Ion-Cavity Coupling

    CERN Document Server

    Brandstätter, Birgit; Schüppert, Klemens; Casabone, Bernardo; Friebe, Konstantin; Stute, Andreas; Schmidt, Piet O; Deutsch, Christian; Reichel, Jakob; Blatt, Rainer; Northup, Tracy E

    2013-01-01

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements we infer a single-atom cooperativity of up to $12$ for FFPCs longer than $200 \\mu$m in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We discuss experiments to anneal fiber m...

  18. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics

    Science.gov (United States)

    Silveira, Joshua A.; Michelmann, Karsten; Ridgeway, Mark E.; Park, Melvin A.

    2016-04-01

    Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory.

  19. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q = 31eV for O{sup 7+}, while it is kT{sub q}/q = 25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  20. Conformation-Specific Spectroscopy of Peptide Fragment Ions in a Low-Temperature Ion Trap

    Science.gov (United States)

    Wassermann, Tobias N.; Boyarkin, Oleg V.; Paizs, Béla; Rizzo, Thomas R.

    2012-06-01

    We have applied conformer-selective infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy at low temperatures in an ion trap mass spectrometer for the spectroscopic characterization of peptide fragment ions. We investigate b- and a-type ions formed by collision-induced dissociation from protonated leucine-enkephalin. The vibrational analysis and assignment are supported by nitrogen-15 isotopic substitution of individual amino acid residues and assisted by density functional theory calculations. Under such conditions, b-type ions of different size are found to appear exclusively as linear oxazolone structures with protonation on the N-terminus, while a rearrangement reaction is confirmed for the a 4 ion in which the side chain of the C-terminal phenylalanine residue is transferred to the N-terminal side of the molecule. The vibrational spectra that we present here provide a particularly stringent test for theoretical approaches.

  1. Formation of molecular ions by radiative association of cold trapped atoms and ions

    Science.gov (United States)

    Dulieu, Olivier; da Silva, Humberto, Jr.; Aymar, Mireille; Raoult, Maurice

    2015-05-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca+ , Sr+ , Ba+) and Yb+ are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radiative charge transfer one. Partial and total rate constants are also calculated and compared to available experiments. Narrow shape resonances are expected, which could be detectable at low temperature with an experimental resolution at the limit of the present standards. Vibrational distributions show that the final molecular ions are not created in their ground state level. Supported by the Marie-Curie ITN ``COMIQ: Cold Molecular Ions at the Quantum limit'' of the EU (#607491).

  2. Conformation-specific spectroscopy of peptide fragment ions in a low-temperature ion trap.

    Science.gov (United States)

    Wassermann, Tobias N; Boyarkin, Oleg V; Paizs, Béla; Rizzo, Thomas R

    2012-06-01

    We have applied conformer-selective infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy at low temperatures in an ion trap mass spectrometer for the spectroscopic characterization of peptide fragment ions. We investigate b- and a-type ions formed by collision-induced dissociation from protonated leucine-enkephalin. The vibrational analysis and assignment are supported by nitrogen-15 isotopic substitution of individual amino acid residues and assisted by density functional theory calculations. Under such conditions, b-type ions of different size are found to appear exclusively as linear oxazolone structures with protonation on the N-terminus, while a rearrangement reaction is confirmed for the a (4) ion in which the side chain of the C-terminal phenylalanine residue is transferred to the N-terminal side of the molecule. The vibrational spectra that we present here provide a particularly stringent test for theoretical approaches.

  3. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source.

    Science.gov (United States)

    Pikin, A; Beebe, E N; Raparia, D

    2013-03-01

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  4. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Beebe, E. N.; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  5. Radioactive ion beam line in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    詹文龙; 郭忠言; 刘冠华; 党建荣; 何锐荣; 周嗣信; 尹全民; 罗亦孝; 王义芳; 魏宝文; 孙志宇; 肖国青; 王金川; 江山红; 李加兴; 孟祥伟; 张万生; 秦礼军; 王全进

    1999-01-01

    Radioactive ion beam line in Lanzhou (RIBLL) has been constructed for the production of short-lived radioactive nuclei and studies of exotic nuclei far from the β-stability line. It has been put into operation recently at the National Laboratory of Heavy Ion Accelerator Lanzhou. RIBLL consists of two doubly achromatic parts with a solid acceptance ΔΩ≥6.5 msr, momentum acceptance Δp/p=±5% and maximum magnetic rigidity Bρmax=4.2 Tm. The second part of RIBLL serving as a spectrometer gives an element resolution Z/ΔZ>150 and mass resolution A/ΔA>300. The polarized secondary beams can be obtained by using a swinger dipole magnet to change the incident direction of primary projectile from 0°to 5°. The shortest lift time for secondary beams on RIBLL is less than 1μs. First experiments were performed with neutron rich nuclei for understanding the properties of halo nuclei and exotic nuclear reactions.

  6. Two-dimensional ion trap lattice on a microchip for quantum simulation

    CERN Document Server

    Sterling, R C; Weidt, S; Lake, K; Srinivasan, P; Webster, S C; Kraft, M; Hensinger, W K

    2013-01-01

    Using a controllable quantum system it is possible to simulate other highly complex quantum systems efficiently overcoming an in-principle limitation of classical computing. Trapped ions constitute such a highly controllable quantum system. So far, no dedicated architectures for the simulation of two-dimensional spin lattices using trapped ions in radio-frequency ion traps have been produced, limiting the possibility of carrying out such quantum simulations on a large scale. We report the operation of a two-dimensional ion trap lattice integrated in a microchip capable of implementing quantum simulations of two-dimensional spin lattices. Our device provides a scalable microfabricated architecture for trapping such ion lattices with coupling strengths between neighbouring ions sufficient to provide a powerful platform for the implementation of quantum simulations. In order to realize this device we developed a specialist fabrication process that allows for the application of very large voltages. We fabricated ...

  7. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  8. Investigating the origin of time with trapped ions

    CERN Document Server

    Massar, Serge; Varón, Andrés F; Wunderlich, Christof

    2014-01-01

    Even though quantum systems in energy eigenstates do not evolve in time, they can exhibit correlations between internal degrees of freedom in such a way that one of the internal degrees of freedom behaves like a clock variable, and thereby defines an internal time, that parametrises the evolution of the other degrees of freedom. This situation is of great interest in quantum cosmology where the invariance under reparametrisation of time implies that the temporal coordinate dissapears and is replaced by the Wheeler-DeWitt constraint. Here we show that this paradox can be investigated experimentally using the exquisite control now available on moderate size quantum systems. We describe in detail how to implement such an experimental demonstration using the spin and motional degrees of freedom of a single trapped ion.

  9. VECSEL systems for generation and manipulation of trapped magnesium ions

    CERN Document Server

    Burd, Shaun C; Leinonen, Tomi; Penttinen, Jussi-Pekka; Slichter, Daniel H; Srinivas, Raghavendra; Wilson, Andrew C; Jördens, Robert; Guina, Mircea; Leibfried, Dietrich; Wineland, David J

    2016-01-01

    Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here we present and characterize VECSEL systems that can perform all laser-based tasks for quantum information processing experiments with trapped magnesium ions. For photoionization of neutral magnesium, 570.6$\\,$nm light is generated with an intracavity frequency-doubled VECSEL containing a lithium triborate (LBO) crystal for second harmonic generation. External frequency doubling produces 285.3$\\,$nm light for resonant interaction with the $^{1}S_{0}\\leftrightarrow$ $^{1}P_{1}$ transition of neutral Mg. Using an externally frequency-quadrupled VECSEL, we implement Doppler cooling of $^{25}$Mg$^{+}$ on the 279.6$\\,$nm $^{2}S_{1/2}\\leftrightarrow...

  10. Detecting unambiguously non-Abelian geometric phases with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xinding; Hu Liangbin; Zhu Shiliang [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Z D [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Zhang Zhiming [Laboratory of Photonic Information Technology, South China Normal University, Guangzhou (China)], E-mail: slzhu@scnu.edu.cn

    2008-04-15

    We propose an experimentally feasible scheme to disclose the noncommutative effects induced by a light-induced non-Abelian gauge structure with trapped ions. Under an appropriate configuration, a true non-Abelian gauge potential naturally arises in connection with the geometric phase associated with two degenerated dark states in a four-state atomic system interacting with three pulsed laser fields. We show that the population in the atomic state at the end of a composed path formed by two closed loops C{sub 1} and C{sub 2} in the parameter space can be significantly different from the composed counter-ordered path. This population difference is directly induced by the noncommutative feature of non-Abelian geometric phases and can be detected unambiguously with current technology.

  11. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    Science.gov (United States)

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  12. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    Science.gov (United States)

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions. PMID:26406306

  13. Radioactive ion beam development in Berkeley

    CERN Document Server

    Wutte, D C; Leitner, M A; Xie, Z Q

    1999-01-01

    Two radioactive ion beam projects are under development at the 88" Cyclotron, BEARS (Berkeley Experiment with accelerated radioactive species) and the 14O experiment. The projects are initially focused on the production of 11C and 14O, but it is planned to expand the program to 17F, 18F, 13N and 76Kr. For the BEARS project, the radioactivity is produced in form of either CO2 or N2O in a small medical 10 MeV proton cyclotron. The activity is then transported through a 300 m long He-jet line to the 88" cyclotron building, injected into the AECR-U ion source and accelerated through the 88" cyclotron to energies between 1 to 30 MeV/ nucleon. The 14O experiment is a new experiment at the 88" cyclotron to measure the energy-shape of the beta decay spectrum. For this purpose, a target transfer line and a radioactive ion beam test stand has been constructed. The radioactivity is produced in form of CO in a hot carbon target with a 20 MeV 3He from the 88" Cyclotron. The activity diffuses through an 8m long stainless s...

  14. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  15. Investigation of beam purity after in-trap decay and Coulomb excitation of $^{62}$Mn-$^{62}$Fe

    CERN Multimedia

    Clement, E; Gernhaeuser, R A; Diriken, J V J; Huyse, M L

    2008-01-01

    The in-trap decay of short lived radioactive ions is not well understood. This poses a problem for Coulomb excitation experiments at MINIBALL, where the normalization of the experiment depends strongly on observed secondary target excitation, which in turn strongly depends on the knowledge of the beam composition. For pure ISOLDE beams of short lived isotopes, the in-trap decay becomes important since a large fraction of the beam is transformed in unwanted daughter isotopes. In this proposal we intend to quantify the production of these daughter products in the REXTRAP accurately by making use of the short lived isotopes $^{61,62}$Mn and the newly installed Bragg ionization chamber at the end of the REX linear accelerator. Apart from the technical interest, the A=62 beam provides as well a good physics case, concerning the development of collectivity in neutron-rich Fe isotopes. Coulomb excitation, utilizing the standard MINIBALL setup, is proposed on both A=62 Mn and Fe. The Fe beam would be the first post-a...

  16. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  17. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler, T

  18. Surface-electrode trap with an integrated permanent magnet for generating a magnetic-field gradient at trapped ions

    CERN Document Server

    Kawai, Yuji; Noguchi, Atsushi; Urabe, Shinji; Tanaka, Utako

    2016-01-01

    We report on a surface-electrode trap with SmCo magnets arranged in a quadrupole configuration underneath the trap electrode. Because the distance between the magnets and the trapped ions can be as little as several hundred micrometers, a large magnetic field is produced without any heat management. The magnetic-field gradient was measured using the Zeeman splitting of a single trapped $^{40}$Ca$^+$ ion at several positions, and a field gradient of 36 T/m was obtained. Such a field gradient is useful for the generation of a state-dependent force, which is important for quantum simulation and/or quantum gate operation using radio-frequency or microwave radiation.

  19. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1997-11-11

    Beams of light ions (Z=1-8) have favourable physical and biological properties for their use in radiotherapy. Their advantages are best pronounced if the beam is delivered in a tumour-shape conformed way. The highest degree of conformity could be achieved by combination of a rotating gantry with an active pencil-beam scanning. Ion-optics considerations on such a gantry beam delivery system for light-ion cancer therapy are presented. A low-angle magnetic beam scanning in two perpendicular directions is included in the beam transport system of the gantry. The optical properties of the beam transport system are discussed. (orig.). 29 refs.

  20. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    Science.gov (United States)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  1. Technologies for trapped-ion quantum information systems - Progress toward scalability with hybrid systems

    Science.gov (United States)

    Eltony, Amira M.; Gangloff, Dorian; Shi, Molu; Bylinskii, Alexei; Vuletić, Vladan; Chuang, Isaac L.

    2016-03-01

    Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

  2. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  3. Quantum computing with four-particle decoherence-free states in ion trap

    OpenAIRE

    Feng, Mang; Wang, Xiaoguang

    2001-01-01

    Quantum computing gates are proposed to apply on trapped ions in decoherence-free states. As phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum computing based on this model would be perfect. Possible application of our scheme in future ion-trap quantum computer is discussed.

  4. Practical aspects of trapped ion mass spectrometry, 4 theory and instrumentation

    CERN Document Server

    March, Raymond E

    2010-01-01

    The expansion of the use of ion trapping in different areas of mass spectrometry and different areas of application indicates the value of a single source of information drawing together diverse inputs. This book provides an account of the theory and instrumentation of mass spectrometric applications and an introduction to ion trapping devices.

  5. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  6. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, James, E-mail: alessi@bnl.gov; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  7. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  8. Quantum Simulation with 2D Arrays of Trapped Ions

    Science.gov (United States)

    Richerme, Philip

    2016-05-01

    The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.

  9. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    87Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na+ projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  10. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Natisin, M. R., E-mail: mnatisin@physics.ucsd.edu; Danielson, J. R.; Surko, C. M. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  11. The selective and efficient laser ion source and trap project LIST for on-line production of exotic nuclides

    International Nuclear Information System (INIS)

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.

  12. Ion collision cross section analyses in quadrupole ion traps using the filter diagonalization method: a theoretical study.

    Science.gov (United States)

    Jiang, Ting; He, Miyi; Guo, Dan; Zhai, Yanbing; Xu, Wei

    2016-04-28

    Previously, we have demonstrated the feasibility of measuring ion collision cross sections (CCSs) within a quadrupole ion trap by performing time-frequency analyses of simulated ion trajectories. In this study, an improved time-frequency analysis method, the filter diagonalization method (FDM), was applied for data analyses. Using the FDM, high resolution could be achieved in both time- and frequency-domains when calculating ion time-frequency curves. Owing to this high-resolution nature, ion-neutral collision induced ion motion frequency shifts were observed, which further cause the intermodulation of ion trajectories and thus accelerate image current attenuation. Therefore, ion trap operation parameters, such as the ion number, high-order field percentage and buffer gas pressure, were optimized for ion CCS measurements. Under optimized conditions, simulation results show that a resolving power from 30 to more than 200 could be achieved for ion CCS measurements. PMID:27066889

  13. Guidelines for Designing Surface Ion Traps Using the Boundary Element Method

    Science.gov (United States)

    Hong, Seokjun; Lee, Minjae; Cheon, Hongjin; Kim, Taehyun; Cho, Dong-il “Dan”

    2016-01-01

    Ion traps can provide both physical implementation of quantum information processing and direct observation of quantum systems. Recently, surface ion traps have been developed using microfabrication technologies and are considered to be a promising platform for scalable quantum devices. This paper presents detailed guidelines for designing the electrodes of surface ion traps. First, we define and explain the key specifications including trap depth, q-parameter, secular frequency, and ion height. Then, we present a numerical-simulation-based design procedure, which involves determining the basic assumptions, determining the shape and size of the chip, designing the dimensions of the radio frequency (RF) electrode, and analyzing the direct current (DC) control voltages. As an example of this design procedure, we present a case study with tutorial-like explanations. The proposed design procedure can provide a practical guideline for designing the electrodes of surface ion traps. PMID:27136559

  14. Ion-neutral sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap

    CERN Document Server

    Goodman, D S; Wells, J E; Narducci, F A; Smith, W W

    2012-01-01

    Long range polarization forces between ions and neutral atoms result in large elastic scattering cross sections, e.g., 10^6 a.u. for Na+ on Na or Ca+ on Na at cold and ultracold temperatures. This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present SIMION 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus, consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.

  15. Equilibrium ion distribution modeling in RF ion traps and guides with regard to Coulomb effects

    Energy Technology Data Exchange (ETDEWEB)

    Grinfeld, D.E., E-mail: dm.greenfield@yahoo.com [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Kopaev, I.A. [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Makarov, A.A. [Thermo Fisher Scientific, Bremen (Germany); Monastyrskiy, M.A. [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-07-21

    Considered is the problem of numerical simulation of the equilibrium ion distributions for ions with different m/z ratios in RF ion traps and guides, in which the ion confinement is due to the averaged RF pseudopotential field and collision cooling. The proposed algorithm takes into account the buffer gas temperature and Coulomb interaction between the particles. The original self-consistent problem for the Poisson equation is reduced to a variational problem for a thermodynamic potential, which is solved numerically basing on the smooth spline approximations and the conjugate gradients method. The algorithm is implemented as a separate program module of the MASIM 3D package and comprehensively tested. Some numerical results are discussed.

  16. Formation of molecular ions by radiative association of cold trapped atoms and ions

    CERN Document Server

    Silva, Humberto Da; Aymar, Mireille; Dulieu, Olivier

    2015-01-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca + , Sr + , Ba +) and Yb + are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radiative charge transfer one. Partial and total rate constants are also calculated and compared to available experiments. Narrow shape resonances are expected, which could be detectable at low temperature with an experimental resolution at the limit of the present standards. Vibrational distributions are also calculated, showing that the final molecular ions are not created in their ground state level.

  17. 9. Heavy ion beam driver and its interactions with matter

    International Nuclear Information System (INIS)

    This document gathers 15 articles whose titles are: 1) Perspectives of the GSI accelerator complex (Darmstadt, Germany) for fusion driver studies, 2) Energy loss of 6 MeV/u 56Fe ions in Z-pinch helium plasma as a function of charge state and plasma density, 3) Creation of high-energy-density matter using intense beams of energetic heavy ions, 4) Space resolved charge state distribution of fast ions inside matter, 5) Beam final transport and focusing in heavy ion beam inertial confinement fusion, 6) Beam-plasma interaction study with laser plasma induced from solid hydrogen, 7) Magnetized cylindrical targets for heavy ion fusion, 8) Beam-plasma experiments at Riken, 9) Repetitive induction module for ion acceleration, 10) Simulations of recent and future experiments on heating of rare gas solid by heavy ions, 11) Charge-changing processes of low-energy heavy ions in a dense non-hydrogenic plasma, 12) Development of high-brightness ion sources using moderate power lasers, 13) Induction beam buncher for relativistic heavy ion beams, 14) Simple calculation of surface layer thickness of various IFE reactor candidate material ablated by high fluence X-ray, and 15) Hydro processes in high temperature dense plasma under the impact of intense ion beams

  18. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  19. Ion beam requirements for fast ignition of inertial fusion targets

    CERN Document Server

    Honrubia, J J

    2015-01-01

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects such as ion beam divergence not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point have been analysed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  20. Strings of Ion Crystals in a Linear Trap for Quantum Information Processing

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fei; XIE Yi; XU You-Yang; HUANG Xue-Ren; FENG Mang

    2010-01-01

    @@ Strings of laser cooled 40 Ca+ crystals have been successfully confined in our home-built linear ion trap,and ready for quantum information processing.We find the cloud-crystal phase transition of the trapped ions to be strongly sensitive to the frequencies of the Doppler cooling lasers and to the trapping voltage.The quantum jump of a single ion has been observed by controlling the quadrupole transition of the ion by a weak laser with ultra-narrow bandwidth.

  1. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  2. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  3. The prospects of a subnanometer focused neon ion beam.

    Science.gov (United States)

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress.

  4. Recent progress in molecule modification with heavy ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research into heavy ion beam biology started in the 1960s, and so far it has become an important interdisciplinary study. Heavy ion beam is more suitable for molecule modification than other sorts of radiation, for it has many superiorities such as the energy transfer effect and the mass deposition effect. Molecule modification with heavy ion beam irradiation can be applied to developing new medicines and their precursors, genetic engineering, protein engi neering, outer space radiobiology, etc. Retrospect and prospect of the research and development of molecule modifica tion with heavy ion beam irradiation are given.

  5. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  6. Density and potential measurements in an intense ion beam-generated plasma

    International Nuclear Information System (INIS)

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented. Three refinements to existing models have been added. (1) The beam creates ions by charge exchange as well as by ionization. (2) In the ionization process most of the ions are born at rest but some of the ions are born through a molecular dissociation process which provides them with substantial energy. (3) Electrons are trapped in the potential well of the system. Their distribution will be truncated by the well and the usual Boltzmann relation for the density variation with potential will be altered slightly. Analytical expressions for these effects are obtained and included in the computer generated solution. The model and data are in good agreement only when locally determined beam current profiles are used in the solution. These profiles are broader than those determined from beam dump calorimetry

  7. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  8. Bessel beams in tunable acoustic gradient index lenses and optical trap assisted nanolithography

    Science.gov (United States)

    McLeod, Euan

    2009-12-01

    Bessel beams are laser beams whose shape gives them nondiffracting and self-healing properties. They find use in applications requiring a narrow laser beam with a high depth of field. The first part of this thesis presents the study of a new adaptive optical element capable of generating rapidly tunable Bessel beams: the tunable acoustic gradient index (TAG) lens. This device uses piezoelectrically-generated acoustic waves to modulate a fluid's density and refractive index, leading to electrically controllable lensing behavior. Both modeling and experiment are used to explain the observed multiscale Bessel beams. Because the TAG lens operates at frequencies of hundreds of kilohertz, the effective Bessel beam cone angle continuously varies at timescales on the order of microseconds or smaller-orders of magnitude faster than other existing technologies. In addition, the TAG lens may be driven with a Fourier superposition of multiple frequencies, which could enable the generation of arbitrary patterns. The second part of this thesis presents the application of Bessel beams in a new probe-based direct-write optical nanolithography method called optical trap assisted nanolithography (OTAN). When compared to alternative techniques, OTAN makes probe placement and parallelization easier. The method uses Bessel beam optical tweezers to trap dielectric microspheres in close proximity to a surface. These microspheres are then illuminated with pulses from a second laser beam, whose fluence is enhanced directly below the microsphere by focusing and near-field effects to a level great enough to modify the substrate. This technique is used to produce 100 nm features, which are less than lambda/3, and whose sizes agree well with finite-difference time-domain models of the experiment. A demonstration is given of how the technique can be parallelized by trapping multiple microspheres with multiple beams and exposing all spheres in unison with a single pulsed beam. Finally, modeling

  9. Regulation of free radical generation in a sample irradiated by heavy-ion beam. Density of hydroxyl radical

    International Nuclear Information System (INIS)

    Density of hydroxyl radical (·OH) in gelatin samples caused by irradiation of carbon ion beam was investigated. ·OH was detected by EPR spin trapping technique using DMPO as a spin trapping agent. Gelatin samples containing several concentrations (7.7 to 1650 mM) of DMPO were irradiated by 290 MeV carbon mono beam using Heavy Ion Medical Accelerator in Chiba (HIMAC), applying several linear energy transfer (LET) (20 to 180 keV/μm) at the surface of the gelatin. The dose at the surface of the gelatin sample was 32 Gy. DMPO-OH (spin trapped ·OH) in irradiated samples were detected by X-band EPR spectrometer. The experiments were repeated using X-ray. Amount of DMPO-OH generated by carbon-ion beam was markedly lower than that by X-ray. For carbon-ion beam, amount of DMPO-OH decreased with increasing LET. The EPR signal intensity of DMPO-OH in X-ray-irradiated sample reached plateau around 30 mM DMPO; however, amount of DMPO-OH in carbon-beam-irradiated sample increased with concentration of DMPO added in the sample. This result suggests that ·OH generation around the truck of carbon ion beam was much dense compared with X-ray. (author)

  10. On the propagation of a low energy oxygen ion beam

    International Nuclear Information System (INIS)

    Positive ion beams, in the range from about tens eV to several hundred eV are frequently used in RIE and RIBE etching systems. The experimental limitations in this energy range are severe and there are still many unsolved problems. Optimal ion beam focusing and maximum current beam at the substrate target are assured by the adequate ion beam neutralization. The electrons from the target plasma and also the secondary ones resulted from the ion-grid and ion-neutral interactions form a negative space charge that is involved in the ion beam neutralization. After the extraction, both the angular divergence and damping of the beam are essential to settle the position of the substrate. The beam angular divergence is established by the ion trajectories in the extraction region and also is strongly influenced by the ion beam neutralization. The shape and thickness of the space charge near the grid, which in turn is determined by the beam intensity, grid characteristics and target plasma parameters is necessary to be investigated. Positive ion bombardment plays an important role in the plasma treatments of polymers. This was the reason that investigations about the surface modifications of polymers in a positive oxygen ion beam-low density plasma (IB-LDP) system were carried out by our group [2-6]. In such system the electrons of the low-density target plasma neutralize the positive space charge of the beam and also that brought by the beam onto the polymer (insulator) surface. Results concerning the investigations of the IB-LDP system, in oxygen, by Langmuir probe method, in different experimental conditions are given in the present paper. They are compared with those obtained by using Monte Carlo method for elementary processes (ion charge transfer, electronic ionisation) in 'particle in cell' numerical simulation. (authors)

  11. Ion-beam excitation of liquid argon

    CERN Document Server

    Hofmann, M; Heindl, T; Neumeier, A; Oberauer, L; Potzel, W; Roth, S; Schönert, S; Wieser, J; Ulrich, A

    2015-01-01

    The scintillation light of liquid argon has been recorded wavelength and time resolved with very good statistics in a wavelength interval ranging from 118 nm through 970 nm. Three different ion beams, protons, sulfur ions and gold ions, were used to excite liquid argon. Only minor differences were observed in the wavelength-spectra obtained with the different incident particles. Light emission in the wavelength range of the third excimer continuum was found to be strongly suppressed in the liquid phase. In time-resolved measurements, the time structure of the scintillation light can be directly attributed to wavelength in our studies, as no wavelength shifter has been used. These measurements confirm that the singlet-to-triplet intensity ratio in the second excimer continuum range is a useful parameter for particle discrimination, which can also be employed in wavelength-integrated measurements as long as the sensitivity of the detector system does not rise steeply for wavelengths longer than 190 nm. Using ou...

  12. The HITRAP project at GSI: trapping and cooling of highly-charged ions in a Penning trap

    International Nuclear Information System (INIS)

    A decelerator will be installed at GSI in order to provide and study heavy nuclei without or with only few electrons at very low energies or even at rest. Highly-charged ions will be produced by stripping at relativistic energies. After electron cooling and deceleration in the Experimental Storage Ring (ESR) the ions are ejected out of the storage ring at 4 MeV/u and further decelerated in a combination of linear accelerator structures operated in reverse. Finally, they are injected into a Penning trap where the ions are cooled to 4 K by electron cooling in combination with resistive cooling. From here, the ions can be transferred in a quasi DC or in a pulsed mode to different experimental setups. This article describes the technical concepts of this project focused on the Penning trap.

  13. New method of beam bunching in free-ion lasers

    International Nuclear Information System (INIS)

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions (∼λ2) is much greater (∼ 10 divided-by 15 orders) then Thompson one (∼ re2). This position is valid even in the case of non-monochromatic laser light (Δω/ω ∼ 10-4). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time

  14. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    International Nuclear Information System (INIS)

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions’ charge states, and therefore, the ions’ energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  15. A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock

    CERN Document Server

    Pyka, Karsten; Keller, Jonas; Mehlstäubler, Tanja E

    2012-01-01

    We present an experiment to characterize our new linear ion trap designed for the operation of a many-ion optical clock using 115-In^+ as clock ions. For the characterization of the trap as well as the sympathetic cooling of the clock ions we use 172-Yb^+. The trap design has been derived from finite element method (FEM) calculations and a first prototype based on glass-reinforced thermoset laminates was built. This paper details on the trap manufacturing process and micromotion measurement. Excess micromotion is measured using photon-correlation spectroscopy with a resolution of 1.1nm in motional amplitude, and residual axial rf fields in this trap are compared to FEM calculations. With this method, we demonstrate a sensitivity to systematic clock shifts due to excess micromotion of |({\\Delta}{\

  16. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    Science.gov (United States)

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  17. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb+1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  18. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  19. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  20. New experimental measurements of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    We study electron clouds in high perveance beams (K = 8E-4) with a large tune depression of 0.2 (defined as the ratio of a single particle oscillation response to the applied focusing fields, with and without space charge). These 1 MeV, 180 mA, K+ beams have a beam potential of +2 kV when electron clouds are minimized. Simulation results are discussed in a companion paper [J-L. Vay, this Conference]. We have developed the first diagnostics that quantitatively measure the accumulation of electrons in a beam [1]. This, together with measurements of electron sources, will enable the electron particle balance to be measured, and electron-trapping efficiencies determined. We, along with colleagues from GSI and CERN, have also measured the scaling of gas desorption with beam energy and dE/dx [2]. Experiments where the heavy-ion beam is transported with solenoid magnetic fields, rather than with quadrupole magnetic or electrostatic fields, are being initiated. We will discuss initial results from experiments using electrode sets (in the middle and at the ends of magnets) to either expel or to trap electrons within the magnets. We observe electron oscillations in the last quadrupole magnet when we flood the beam with electrons from an end wall. These oscillations, of order 10 MHz, are observed to grow from the center of the magnet while drifting upstream against the beam, in good agreement with simulations