WorldWideScience

Sample records for beam ion trap

  1. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future. PMID:20192368

  2. Electron beam ion traps and their applications

    Institute of Scientific and Technical Information of China (English)

    ZOU Ya-Ming; Roger HUTTON

    2003-01-01

    A brief introduction to the historical background and current status of electron beam ion traps (EBITs)is presented. The structure and principles of an EBIT for producing highly charged ions are described. Finally,EBITs as a potential tool in hot-plasma diagnostics and in studying frontier problems of highly charged ion physicsare discussed.

  3. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  4. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  5. Electron Beam Ion Trap and its Applications

    Science.gov (United States)

    Zou, Yaming

    2013-03-01

    Electron Beam Ion Traps (EBIT), initially developed at LLNL, are sophisticated devices capable of acting both as highly charged ion (HCI) light sources and ion sources. As a HCI light source, they can basically provide light from emission states of any charge state of any element in the periodic table, hence almost unique for spectroscopic research. Furthermore, the emitting ions are almost at rest compared to those produced by heavy ion accelerators or storage rings, much less bothered with Doppler shifts and line broadening. Because of its flexibility in producing various ions, it is very good for studies along iso-electronic sequences, and along iso-nuclear charge sequences to reveal physical properties behind experimental phenomenon. In an EBIT, a thin plasma can be formed with basically any elements, and more important with almost mono-energy electrons. On top of this, the electron energy can be tuned in the range of few hundreds eV to above one hundred keV. This property made it possible to use an EBIT for detail studies of processes in hot plasmas, so as to make disentangling studies of hot plasmas and to assist plasma diagnostics for temperature, density, electromagnetic field, as well as ion moving...

  6. Charge State Evolution of Uranium in Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Feng; YAO Ke; Roger Hutton; ZOU Ya-Ming

    2005-01-01

    @@ We present a calculation scheme with significant modifications and improvements for determining the ionization balance and the ion temperature evolution in an electron beam ion trap (EBIT). The scheme is applied to uranium and nitrogen ions using a specific set of EBIT operating parameters. The calculation results are compared to the experimental data. Rates for the individual atomic processes in EBIT, especially single and multiple charge exchange processes, are discussed. The time evolution of the ion temperatures for uranium and its coolant nitrogen are also given.

  7. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  8. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  9. Tests of a Laser Ion Source at the Heidelberg Electron Beam Ion Trap

    OpenAIRE

    Mironov, V; Trinczek, M.; Werdich, A.; González Martínez, A.; Guo, P; X. Zhang; Braun, J.; Crespo López-Urrutia, J.; Höhr, C.; Ullrich, J.

    2003-01-01

    A laser ion source (LIS) has been designed and successfully tested for loading the Heidelberg electron beam ion trap (H-EBIT) with ions of practically all solid-state elements. A pulsed YAG:Nd3þ laser (30 mJ, 8 ns) is used to produce plasma from a solid target. Lowly charged ions are extracted from the plasma and accelerated by a short high-voltage pulse, generating a pulsed ion beam with energy of up to 6 keV per charge. The ion beam is transported into the EBIT, decelerated and captured wit...

  10. Electron trapping and de-trapping in ion-beam-damaged diamond surfaces

    International Nuclear Information System (INIS)

    Full text: Ion beam damaged diamond surfaces subjected to electron irradiation are observed to develop a pronounced negative surface charge, the origin of which has remained a mystery. We show that this effect is associated with the capture of electrons into traps created by the ion irradiation process. The trapped charge increases with ion dose and incident electron current, and decreases with increasing sample temperature and laser illumination as the traps are depleted of charge. An activation energy for detrapping of about 1 5 eV is deduced from the temperature dependence of the charging. These results have important implications for the use of diamond in electron multipliers and cold cathode devices. Copyright (2005) Australian Institute of Physics

  11. The uses of electron beam ion traps in the study of highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  12. Ion bunch stacking in a Penning trap after purification in an electrostatic ion-beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbusch, M. [Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Collaboration: ISOLTRAP-Collaboration

    2014-07-01

    Measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics are often handicapped when the ion sources deliver contaminations, i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors. At the Penning-trap mass spectrometer ISOLTRAP (ISOLDE/CERN), ions are purified in a multi-reflection time-of-flight mass separator (MR-ToF MS), which reaches a mass resolving power in excess of 10{sup 5} in only tens of milliseconds. However, the subsequent Penning-trap mass measurements require durations in order of a second. If only a certain maximum amount of ions can be processed simultaneously and the major parts are contaminants, the number of purified ions per mass-measurement cycle is limited. An improvement for such situations has been developed and realized recently. The fast separation procedure of the MR-ToF MS is repeated several times while the purified ions are accumulated in a preparation Penning trap. In this contribution the method is described and proof-of-principle measurements are presented.

  13. Radiative and collisional processes of highly charged heavy ions studied with electron beam ion traps

    International Nuclear Information System (INIS)

    We have been studying radiative and collisional processes of highly charged heavy ions using two electron beam ion traps (EBITs) at the University of Electro-Communications (UEC/Tokyo); one is the Tokyo-EBIT constructed in 1995 for the operation with a high energy (up to 200 keV) electron beam, and another is “CoBIT” constructed recently for the operation with a low energy (< 1 keV) electron beam. Recent activities using the two EBITs are presented. (author)

  14. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions.

    Science.gov (United States)

    Aviv, O; Toker, Y; Errit, M; Bhushan, K G; Pedersen, H B; Rappaport, M L; Heber, O; Schwalm, D; Zajfman, D

    2008-08-01

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Al(n) (-) clusters after irradiation by a short laser pulse. PMID:19044339

  15. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions

    International Nuclear Information System (INIS)

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Aln- clusters after irradiation by a short laser pulse

  16. Trapping ions from a fast beam in a radio-frequency ion trap: Exploring the energy exchange with the longitudinal radio-frequency field

    DEFF Research Database (Denmark)

    Svendsen, Annette; Lammich, Lutz; Vad Andersen, John Erik;

    2013-01-01

    The possibility of injecting ions from an initially fast moving beam into a multipole radio-frequency (RF) ion trap without the use of buffer gas is described. The chosen trap geometry gives rise to an oscillating electric field along the direction of the incoming ions, and through an analytical...... kinetic energy even if their kinetic energy initially exceeds the depth of the trapping potential well. An experimental apparatus for trapping ions from a fast beam is described, and experimental investigations demonstrating the described trapping dynamics are presented....... model as well as numerical simulations it is demonstrated that the energy exchange between the injected ions and this oscillating field governs the trapping dynamics. Most notably, if ions arrive at the trap during specific phases of the RF field, they can be effectively decelerated and stored with low...

  17. Electron - Ion Recombination Data for Plasma Applications : Results from Electron Beam Ion Trap and Ion Storage Ring

    OpenAIRE

    Ali, Safdar

    2012-01-01

    This thesis contains results of electron-ion recombination processes in atomic ions relevant for plasma applications. The measurements were performed at the Stockholm Refrigerated Electron Beam Ion Trap (R-EBIT) and at the CRYRING heavy-ion storage ring. Dielectronic recombination (DR) cross sections, resonant strengths, rate coefficients and energy peak positions in H-like and He-like S are obtained for the first time from the EBIT measurements. Furthermore, the experimentally obtained DR re...

  18. Electron trapping and detrapping in ion-beam-damaged diamond surfaces

    International Nuclear Information System (INIS)

    Ion-beam-damaged diamond surfaces subjected to electron irradiation are observed to develop a pronounced negative surface charge. In this study, this effect is shown to be associated with the capture of electrons into traps created by the ion irradiation process. The trapped charge increases with ion dose and incident electron current, and decreases with increasing sample temperature and laser illumination as the traps are depleted of charge. An activation energy for detrapping of about 1.5 eV is deduced from the temperature dependence of the charging

  19. Anomalous slowing of a perpendicularly-injected ion beam in both quasilinear and trapping regimes

    International Nuclear Information System (INIS)

    The anomalous slowing of an ion beam injected perpendicularly to the confining magnetic field of a low β plasma is experimentally verified in the nonlinear stages of the excited lower-hybrid instability. Furthermore, a transition of the main nonlinear mechanism from the quasilinear to the particle trapping regime is demonstrated by varying beam parameters

  20. The ISOLDE Laser Ion Source and Trap (LIST): Towards pure ion beams

    International Nuclear Information System (INIS)

    The on-line isotope mass separator ISOLDE at CERN is a facility dedicated to the production of a large variety of radioactive ion beams. A high ionization efficiency combined with ultimate isotope selectivity is of utmost importance for all on-line experiments on exotic, short-lived radionuclides with the lowest production rates. The ionization technique that most closely meets this requirement is the element selective Resonance Ionization Laser Ion Source (RILIS). Unfortunately, even when the RILIS is used, many rare isotope beams produced at ISOLDE remain contaminated with surface ionized isobars. In order to suppress the surface ions, a radio-frequency quadrupole device known as the Laser Ion Source and Trap (LIST) has been developed at the University of Mainz and at CERN. After the first successful on-line test in 2011, the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE/CERN. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. A summary of the LIST technology and the results of the on-line characterization and experiments are given.

  1. Cascade emission in electron beam ion trap plasma of W25+ ion

    Science.gov (United States)

    Jonauskas, V.; Pütterich, T.; Kučas, S.; Masys, Š.; Kynienė, A.; Gaigalas, G.; Kisielius, R.; Radžiūtė, L.; Rynkun, P.; Merkelis, G.

    2015-07-01

    Spectra of the W25+ ion are studied using the collisional-radiative model (CRM) with an ensuing cascade emission. It is determined that the cascade emission boosts intensities only of a few lines in the 10-30 nm range. The cascade emission is responsible for the disappearance of structure of lines at about 6 nm in the electron beam ion trap plasma. Emission band at 4.5-5.3 nm is also affected by the cascade emission. The strongest lines in the CRM spectrum correspond to 4d9 4f4 → 4f3 transitions, while 4f2 5 d → 4f3 transitions arise after the cascade emission is taken into account.

  2. Cascade emission in electron beam ion trap plasma of W$^{25+}$ ion

    CERN Document Server

    Jonauskas, V; Kučas, S; Masys, Š; Kynienė, A; Gaigalas, G; Kisielius, R; Radžiūtė, L; Rynkun, P; Merkelis, G

    2015-01-01

    Spectra of the W$^{25+}$ ion are studied using the collisional-radiative model (CRM) with an ensuing cascade emission. It is determined that the cascade emission boosts intensities only of a few lines in the $10 - 3$ nm range. The cascade emission is responsible for the disappearance of structure of lines at about 6 nm in the electron beam ion trap plasma. Emission band at 4.5 to 5.3 nm is also affected by the cascade emission. The strongest lines in the CRM spectrum correspond to $4d^{9} 4f^{4} \\rightarrow 4f^{3}$ transitions, while $4f^{2} 5d \\rightarrow 4f^{3}$ transitions arise after the cascade emission is taken into account.

  3. 12th International Symposium on Electron Beam Ion Sources and Traps and Their Applications

    CERN Document Server

    Schwarz, Stefan; Baumann, Thomas M

    2014-01-01

    The EBIST symposia date back to 1977 and have taken place every 3 to 4 years to specifically discuss progress and exchange ideas in the design, development, applications of electron beam ion sources and traps, and the physics with highly charged ions. The topics to be covered in 2014 are: - Progress and status of EBIS/T facilities, - Atomic spectroscopy of highly charged ions, - Charge-exchange and surface interaction with highly charged ions, - Charge breeding of stable and radioactive isotopes, - Nuclear physics with highly charged ions.

  4. UV laser beam switching system for Yb trapped ion quantum information processing

    Science.gov (United States)

    Scherer, David R.; Hensley, Joel M.; Parameswaran, Krishnan R.; Bamford, Douglas J.; Mount, Emily; Crain, Stephen; Kim, Jungsang

    2012-02-01

    Qubits based on trapped ions are being investigated as a promising platform for scalable quantum information processing. One challenge associated with the scalability of such a multi-qubit trapped ion system is the need for an ultraviolet (UV) laser beam switching and control system to independently modulate and address large qubit arrays. In this work, we propose and experimentally demonstrate a novel architecture for a laser beam control system for trapped ion quantum computing based on fast electro-optic amplitude switching and high-fidelity electromechanical beam shuttering using a microelectromechanical systems (MEMS) deflector coupled into a single-mode optical fiber. We achieve a rise/fall time of 5 ns, power extinction of -31 dB, and pulse width repeatability of > 99.95% using an electrooptic switch based on a β-BaB2O4 (BBO) Pockels cell. A tilting MEMS mirror fabricated using a commercial foundry was used to steer UV light into a single-mode optical fiber, resulting in an electromechanical beam shutter that demonstrated a power extinction of -52 dB and a switching time of 2 μs. The combination of these two technologies allows for high-fidelity power extinction using a platform that does not suffer from temperature-induced beam steering due to changes in modulation duty cycle. The overall system is capable of UV laser beam switching to create the resolved sideband Raman cooling pulses, algorithm pulses, and read-out pulses required for quantum computing applications.

  5. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  6. M1 transition rate in Cl12+ from an electron-beam ion trap and heavy-ion storage ring

    International Nuclear Information System (INIS)

    The transition probability of the magnetic dipole (M1) transition 2s22p 2Po J=1/2 to J'=3/2 (λ=574.19 nm) in the B-like ion Cl12+ has been measured using two different light sources, the Heidelberg heavy-ion storage ring TSR and the Livermore electron-beam ion trap EBIT-I. Our results for the atomic level lifetime are 21.2±0.6 ms from the heavy-ion storage ring and 21.0±0.5 ms from the Livermore electron-beam ion trap. Particular attention has been paid to systematic errors, making this experiment a common reference for atomic level lifetime measurements in the visible spectrum

  7. The ReA electron-beam ion trap charge breeder for reacceleration of rare isotopes

    Science.gov (United States)

    Lapierre, A.; Schwarz, S.; Kittimanapun, K.; Fogleman, J.; Krause, S.; Nash, S.; Rencsok, R.; Tobos, L.; Perdikakis, G.; Portillo, M.; Rodriguez, J. A.; Wittmer, W.; Wu, X.; Bollen, G.; Leitner, D.; Syphers, M.; ReA Team

    2013-04-01

    ReA is a post-accelerator at the National Superconducting Cyclotron Laboratory at Michigan State University. ReA is designed to reaccelerate rare isotopes to energies of a few MeV/u following production by projectile fragmentation and thermalization in a gas cell. The facility consists of four main components: an electron-beam ion trap (EBIT) charge breeder, an achromatic charge-over-mass (Q/A) separator, a radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder was specifically designed to efficiently capture continuous beams of singly charged ions injected at low energy (breed in less than 50 ms, and extract highly charged ions to the Q/A separator for charge-state selection and reacceleration through the accelerator structures. The use of highly charged ions to reach high beam energies is a key aspect that makes ReA a compact and cost-efficient post-accelerator. The EBIT is characterized by a high-current electron gun, a long multi-electrode trap structure and a dual magnet to provide both the high electron-beam current density necessary for fast charge breeding of short-lived isotopes as well as the high capture probability of injected beams. This paper presents an overview and the status of the ReA EBIT, which has extracted for reacceleration tests stable 20Ne8+ ion beams produced from injected gas and more recently 39K16+ beams by injecting stable 39,41K+ ions from an external ion source.

  8. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    International Nuclear Information System (INIS)

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA's astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th80+ can be performed routinely. Measurements of the rates and cross sections for electron transfer from H2 performed to determine the lifetime of HCI up to Xeq+ and Thq+ (35 ≤ q ≤ 80) have been studied at mean energies estimated to be ∼ 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events

  9. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  10. Individual addressing of trapped $^{171}$Yb$^+$ ion qubits using a MEMS-based beam steering system

    CERN Document Server

    Crain, S; Baek, S; Kim, J

    2014-01-01

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple $^{171}$Yb$^+$ qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions ($< 3\\times 10^{-4}$), and switching speed comparable to typical single qubit gate times ($<$ 2 $\\mu$s).

  11. Electron beam ion trap bi-annual report 1996/1997

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D

    1999-01-05

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U92+), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime

  12. Electron beam ion trap bi-annual report 1996/1997

    International Nuclear Information System (INIS)

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U92+), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime and

  13. EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1996-10-01

    The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describes EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.

  14. A very low energy compact electron beam ion trap for spectroscopic research in Shanghai

    International Nuclear Information System (INIS)

    In this paper, a new compact low energy electron beam ion trap, SH-PermEBIT, is reported. This electron beam ion trap (EBIT) can operate in the electron energy range of 60-5000 eV, with a current density of up to 100 A/cm2. The low energy limit of this machine sets the record among the reported works so far. The magnetic field in the central drift tube region of this EBIT is around 0.5 T, produced by permanent magnets and soft iron. The design of this EBIT allows adjustment of the electron gun's axial position in the fringe field of the central magnetic field. This turned out to be very important for optimizing the magnetic field in the region of the electron gun and particularly important for low electron beam energy operation, since the magnetic field strength is not tunable with permanent magnets. In this work, transmission of the electron beam as well as the upper limit of the electron beam width under several conditions are measured. Spectral results from test operation of this EBIT at the electron energies of 60, 315, 2800, and 4100 eV are also reported.

  15. Production of highly charged argon ions from a room temperature electron beam ion trap

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; PENG Hai-Bo; Ovsyannikov V P; Kentsch U; Ullmann F; CHENG Rui; Zschornack G

    2008-01-01

    In this work.highly charged ions have been extracted from the advanced Electron Beam Ion Source (EBIS-A) developed in a scientific cooperation between the Dresden University of Technology and the DREEBIT GmbH Dresden.The charge state distributions of ions extracted from the EBIS-A are measured in and extracted in the leaky mode.3×105 Ar18+ ions per pulse are extracted in the pulse mode.The ion charge state distribution is a function of the ionization time.

  16. X-ray laser spectroscopy with an electron beam ion trap at the free electron laser LCLS

    International Nuclear Information System (INIS)

    We present a first laser spectroscopy experiment in the keV energy regime, performed at the Free-Electron Laser LCLS at Stanford. An electron beam ion trap was used to provide a target of highly charged O, F and Fe ions. The resonant fluorescence spectra obtained for various transitions were calibrated to simultaneously measured Lyman lines of hydrogenic ions.

  17. First experiments with cooled clusters at the Cryogenic Trap for fast ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Christian; Blaum, Klaus; George, Sebastian; Lange, Michael; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Breitenfeldt, Christian; Schweikhard, Lutz [Institut fuer Physik, Ernst-Moritz-Arndt Universitaet, 17487 Greifswald (Germany)

    2014-07-01

    The Cryogenic Trap for Fast ion beams (CTF) is an electrostatic ion beam trap for the investigation of charged particles in the gas phase located at the ''Max-Planck-Institut fuer Kernphysik'' in Heidelberg. It is suited to study thermionic and laser-induced electron emission of anions with complex multi-body structure such as clusters and molecules. They can be stored up to several minutes due to the low pressure of 10{sup -14} mbar in an ambient temperature down to 15 K. The experiments were so far hampered by the ion production in a sputter source leading to excited particles with high rovibrational states. In order to be able to investigate the ground state properties of such systems a new supersonic expansion source has been implemented. A laser-induced plasma is expanded into vacuum by short pulses (50 μs) of a helium carrier gas and thereby rovibrationally cooled. First test with metal cluster are presented and discussed.

  18. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  19. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    International Nuclear Information System (INIS)

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO2+ with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H2 densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH+, CH2+, and CH4+ have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  20. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST

    Science.gov (United States)

    Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team

    2016-06-01

    This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)

  1. Ion beam injected point defects in crystalline silicon: Migration, interaction, and trapping phenomena

    International Nuclear Information System (INIS)

    The recent work on the room temperature migration and trapping phenomena of ion beam generated point defects in crystalline Si is reviewed. It is shown that a small fraction (∼10-6) of the defects generated at the surface by a shallow implant is injected into the bulk. These defects undergo a long range trap-limited diffusion and interact with both impurities, dopants and preexisting defects along their path. In particular, these interactions result in dopant deactivation and/or partial annihilation of pre-existing vacancy-type defect markers. It is found that in highly pure, epitaxial Si layers, these effects extend to several microns from the surface, demonstrating a long range migration of point defects at room temperature. By a detailed analysis of the experimental evidences the authors have identified the Si self-interstitials as the major responsible for the observed phenomena. This allowed them to give a lower limit of 6 x 10-11 cm2/s for the room temperature diffusion coefficient of the Si self-interstitials. Room temperature trap-limited migration of vacancies is also detected as a broadening in the divacancy profile of as implanted samples. In this case the room temperature diffusion coefficient of vacancies has been found to be ≥3 x 10-12 cm2/s. These data are presented and their implications discussed

  2. Analysis of the fine structure of Sn$^{11+...14+}$ ions by optical spectroscopy in an electron beam ion trap

    CERN Document Server

    Windberger, A; Borschevsky, A; Ryabtsev, A; Dobrodey, S; Bekker, H; Eliav, E; Kaldor, U; Ubachs, W; Hoekstra, R; López-Urrutia, J R Crespo; Versolato, O O

    2016-01-01

    We experimentally re-evaluate the fine structure of Sn$^{11+...14+}$ ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole $M1$ transitions, in a wavelength range covering 260\\,nm to 780\\,nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of \\emph{ab initio} calculations based on Fock space coupled cluster theory. We validate our line identification using semi-empirical Cowan calculations with adjustable wavefunction parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  3. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams. PMID:22380156

  4. Electron beam density study using a portable slit imaging system at the Shanghai Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Lu Di; Pu Yun-Qing; Yao Ke; Chen wei-Dong; Xiao Jun; Geng Zhi-xian; Roger Hutton; Zou Ya-Ming

    2011-01-01

    In this work,a portable slit imaging system is developed to study both the electron beam diameter and the profile of the newly developed Shanghai Electron Beam Ion Trap(Shanghai EBIT).Images are detected by a charge coupled device(CCD)sensitive to both X rays and longer wavelength photons(up to visible).Large scale ray tracings were conducted for correcting the image broadening effects caused by the finite slit width and the finite width of the CCD pixels.A numerical de-convolution method was developed to analyse and reconstruct the electron beam density distribution in the EBIT.As an example of the measured beam diameter and current density,the FWHM(full width at half maximum)diameter of the electron beam at 81 keV and 120 mA is found to be 76.2 μm and the density 20.00×103 A·cm-2,under a magnetic field of 3 T,including all corrections.

  5. Progress of the spectroscopy research platform at the Shanghai electron beam ion trap

    Science.gov (United States)

    Hutton, Roger; Yao, Ke; Xiao, Jun; Yang, Yang; Lu, Di; Shen, Yang; Fu, Yunqing; Zhang, Xuemei; Zou, Yaming

    2009-04-01

    In this report we will focus on spectrometer development, spectroscopic studies and a few other recent developments at the Shanghai Electron Beam Ion Trap, EBIT laboratory. Currently the Shanghai EBIT has three spectrometers covering totally the wavelength region of 1 to 10000 Å. Two of these instruments are home made. A flat crystal spectrometer covers the wavelength range of around 1 - 20 Å while a flat field instrument covers the range of around 20 - 400 Å. The 3rd instrument is a commercial McPherson 225 normal incidence spectrometer. All spectrometers employ CCD cameras for photon detection. The Shanghai EBIT is also equipped with high purity Germanium detectors for, amongst other things, dielectronic recombination studies and time evolution studies of ion distributions. To back up these experimental studies computer codes have been developed for calculation of charge state balances etc. Parallel to the experimental program we have also developed experience at running a number of atomic structure codes (MCHF, MCDF, FAC) for various systems, e.g. the M3 decay of the 3d94s 3D3 for Ni-like ions.

  6. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  7. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    Science.gov (United States)

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  8. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  9. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

    Science.gov (United States)

    Beiersdorfer, P; Magee, E W; Brown, G V; Hell, N; Träbert, E; Widmann, K

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution. PMID:25430329

  10. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  11. Evolution of X-ray calorimeter spectrometers at the Lawrence Livermore Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    High-resolution broadband, non-dispersive x-ray calorimeter spectrometers have been under development for spaceflight since 1984. As an offshoot of the significant NASA investment in this technology, we have developed a series of calorimeter instruments for laboratory use and installed them at the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory. The calorimeter instruments at EBIT have significantly enhanced the capabilities of our laboratory astrophysics program including broad-band measurements of emission from charge exchange recombination and absolute cross sections for collisional excitation. The first Goddard Space Flight Center (GSFC) calorimeter instrument was installed at the EBIT facility in July of 2000 and has seen two major upgrades. The performance of the instrument has significantly improved from the initial instrument that had a resolving power of ∼500 at 6 keV, and essentially no quantum efficiency at energies above 20 keV, to the current instrument that has a resolving power of 1350 and 95% quantum efficiency at 6 keV, and a resolving power of 1800 and 32% quantum efficiency at 60 keV.

  12. Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system

    International Nuclear Information System (INIS)

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple 171Yb+ qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions (<3×10−4), and switching speed comparable to typical single qubit gate times (<2 μs)

  13. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (Cn- n=2-12), aluminium (Aln- n=2-7) and silver clusters (Agn- n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and silver

  14. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  15. EXPERIMENTAL INVESTIGATIONS OF ION CHARGE DISTRIBUTIONS, EFFECTIVE ELECTRON DENSITIES, AND ELECTRON-ION CLOUD OVERLAP IN ELECTRON BEAM ION TRAP PLASMA USING EXTREME-ULTRAVIOLET SPECTROSCOPY

    International Nuclear Information System (INIS)

    Spectra in the extreme ultraviolet range from 107 to 353 A emitted from Fe ions in various ionization stages have been observed at the Heidelberg electron beam ion trap (EBIT) with a flat-field grating spectrometer. A series of transition lines and their intensities have been analyzed and compared with collisional-radiative simulations. The present collisional-radiative model reproduces well the relative line intensities and facilitates line identification of ions produced in the EBIT. The polarization effect on the line intensities resulting from nonthermal unidirectional electron impact was explored and found to be significant (up to 24%) for a few transition lines. Based upon the observed line intensities, relative charge state distributions (CSD) of ions were determined, which peaked at Fe23+ tailing toward lower charge states. Another simulation on ion charge distributions including the ionization and electron capture processes generated CSDs which are in general agreement with the measurements. By observing intensity ratios of specific lines from levels collisionally populated directly from the ground state and those starting from the metastable levels of Fe XXI, Fe X and other ionic states, the effective electron densities were extracted and found to depend on the ionic charge. Furthermore, it was found that the overlap of the ion cloud with the electron beam estimated from the effective electron densities strongly depends on the charge state of the ion considered, i.e. under the same EBIT conditions, higher charge ions show less expansion in the radial direction.

  16. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  17. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  18. State-Selective Quantum Interference Observed in the Recombination of Highly Charged Hg75+···78+ Mercury Ions in an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    We present experimental data on the state-selective quantum interference between different pathways of photorecombination, namely, radiative and dielectronic recombination, in the KLL resonances of highly charged mercury ions. The interference, observed for well resolved electronic states in the Heidelberg electron beam ion trap, manifests itself in the asymmetry of line shapes, characterized by ''Fano factors,'' which have been determined with unprecedented precision, as well as their excitation energies, for several strong dielectronic resonances

  19. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Brown, G. V.; Clementson, J. [Physics Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Kilbourne, C. A.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Schweikhard, L. [Institute of Physics, Ernst-Moritz-Arndt University, D-17487 Greifswald (Germany)

    2013-04-19

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  20. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    International Nuclear Information System (INIS)

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  1. Transportation of a radioactive ion beam for precise laser-trapping experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirokazu; Inoue, T. [Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Köhler, L.; Sakamoto, K.; Uchiyama, A.; Sakemi, Y. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan)

    2016-02-15

    Francium is the heaviest species among the alkali elements. Due to its properties, francium is said to be of advantage in measurements of tiny observations, such as atomic parity violation and electric dipole moment. Before executing experiments with francium, it must be produced artificially because it is one of the most unstable elements. We produced francium with the nuclear fusion reaction of an oxygen beam and gold target, ionized the produced francium through a thermal ionization process, and extracted the ion with electrostatic fields. However, the thermal ionization process is known to ionize not only an objective atom but also other atomic species. Therefore, a Wien filter was installed to analyze the composition of the ion beam and purify the beam. This allowed us to improve the beam purity from ∼10{sup −6} to ∼10{sup −3}.

  2. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Schwarz, S.; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm2 has been reached when the EBIT magnet was operated at 4 T.

  3. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  4. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    Science.gov (United States)

    Arikawa, Hiroshi; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-02-01

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a 18O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  5. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  6. Ion trap device

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  7. Nonlinear integrable ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  8. Nonlinear integrable ion traps

    International Nuclear Information System (INIS)

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  9. X-ray Spectropolarimetry of high temperature and high density plasma supported by LLNL Electron Beam Ion Trap Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shlyaptseva, A S; Kantsyrev, V L; Ouart, N D; Fedin, D A; Neill, P; Harris, C; Hamasha, S M; Hansen, S B; Safronova, U I; Beiersdorfer, P; Petrashen, A G

    2004-03-15

    Plasma polarization spectroscopy work done by our group since the 3rd US-Japan PPS Workshop is overviewed. Theoretically, the polarization dependence on various electron distribution functions for He-like, Ne-like, and Ni-like x-ray transitions for a wide range of Z has been investigated. In particular, this study was focused on the polarization dependence for monoenergetic and steep electron distribution functions. The diagnostically important spectral lines and features of K-, L-, and M-shell ions were identified which can be used in x-ray spectropolarimetry of plasma. Importance of polarization-sensitive LLNL Electron Beam Ion Trap data is emphasized. The results of the UNR polarization-sensitive Ti and Mo x-pinch experiments are discussed.

  10. Asymmetric ion trap

    International Nuclear Information System (INIS)

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs

  11. Analysis of the fine structure of Sn11 +-Sn14 + ions by optical spectroscopy in an electron-beam ion trap

    Science.gov (United States)

    Windberger, A.; Torretti, F.; Borschevsky, A.; Ryabtsev, A.; Dobrodey, S.; Bekker, H.; Eliav, E.; Kaldor, U.; Ubachs, W.; Hoekstra, R.; Crespo López-Urrutia, J. R.; Versolato, O. O.

    2016-07-01

    We experimentally re-evaluate the fine structure of Sn11 +-Sn14 + ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole M 1 transitions, in a wavelength range covering 260 to 780 nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of ab initio calculations based on Fock space coupled cluster theory. We validate our line identification using semiempirical cowan calculations with adjustable wave-function parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  12. PREFACE: The ninth International Symposium on Electron Beam Ion Sources and Traps and Their Applications, 15 17 April 2004

    Science.gov (United States)

    Nakamura, Nobuyuki; Ohtani, Shunsuke

    2004-01-01

    The ninth International Symposium on Electron Beam Ion Sources and Traps and Their Applications — EBIS/T 2004 was held at the Tokyo Metropolitan University (TMU), 15-17 April 2004. There were about 40 participants and about 30 papers presented. The meeting has shown the remarkable progress in science and technology with the EBIS/T machines. In this meeting, besides the normal presentations related to the EBIS/T works, a special session was organized on the last day which was dedicated to Professors N Kobayashi and K Okuno, who have contributed to the EBIS/T development and to the physics of highly charged ions (HCI), to mark their retirement from the TMU in March 2004. In the evening of the first day, there was a laboratory tour where the participants enjoyed seeing the Tokyo EBIT facility and also a beer party in a small hall next to the laboratory. The banquet was held in a traditional Japanese restaurant in a village under Mt Takao with the Japanese meals and performances, after seeing the HCI-research activities in the TMU. The next EBIS/T symposium will be held in Heidelberg in the summer of 2007 as a satellite meeting of XXV ICPEAC. We are looking forward to the next exciting meeting there. Finally, we thank all of TMU staffs and students for their help during the meeting.

  13. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    International Nuclear Information System (INIS)

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm−3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed

  14. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  15. Electron-Beam Ion Source MIS-1

    International Nuclear Information System (INIS)

    INP develops and produces electron-beam ion sources of multicharged ions. These ion sources provide a high density of the electron beam in the ionization area at the ion trap ≥ 103 A/cm2. They produce multicharge ions of various elements, both gaseous and solid ones. These ion sources successfully employ the technique of the dozed inlet of solid elements atoms into the ion trap

  16. Micromotion Compensation and Photoionization of Ions in a Linear Trap

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; ZHOU Fei; CHEN Liang; WAN Wei; FENG Mang

    2011-01-01

    @@ e confinement of ions in an electromagnetic trap is a prerequisite of sideband cooling and quantum information processing.For a string of ions in a linear ion trap,we report our recent efforts of compensating for micromotion of the ions by three methods,which yields narrower fluorescence spectra and lower temperature.We also achieve a photoionization scheme that loads the ions deterministically into the linear trap from an atomic beam.%The stable confinement of ions in an electromagnetic trap is a prerequisite of sideband cooling and quantum information processing. For a string of ions in a linear ion trap, we report our recent efforts of compensating for micromotion of the ions by three methods, which yields narrower fluorescence spectra and lower temperature. We also achieve a photoionization scheme that loads the ions deterministically into the linear trap from an atomic beam.

  17. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  18. The NSCL electron beam ion trap for the reacceleration of rare isotopes coming to life: First extraction tests with a high-current electron gun

    International Nuclear Information System (INIS)

    NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.

  19. Highly charged ions trapping for lifetime measurements

    International Nuclear Information System (INIS)

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar9+, Ar13+ and Ar14+. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O+ to O6+, from Ar8+ to Ar13+, and from Kr13+ to Kr20+

  20. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  1. Buffer gas cooling of ion beams

    International Nuclear Information System (INIS)

    The cooling action of a buffer gas on ions contained within it can be used to cool an ion beam, thereby greatly improving its emittance and energy spread. It can also be used to greatly enhance the collection of an ion beam in an electromagnetic trap. The basic principles will be introduced in the context of a prototype system for such a beam cooler

  2. The use of an Electron Beam Ion Trap (EBIT) to measure electron impact ionisation cross-sections for highly charged argon ions

    International Nuclear Information System (INIS)

    A new technique for measuring electron impact ionisation cross-sections using an EBIT is presented. The method involves determining the charge distribution of ions extracted from the trap after well defined confinement times. Analysis of the onsets for the appearance of particular charge states in the trap gives ionisation rates which may be converted, under appropriate conditions, to relative cross-sections without theoretical input. The method has been used to make measurements for Ar15+, Ar16+ and Ar17+. (author)

  3. Universal collisional activation ion trap mass spectrometry

    Science.gov (United States)

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  4. Simulating cometary and stellar x-ray emission in the laboratory using microcalorimeters and an electron beam ion trap

    International Nuclear Information System (INIS)

    The mixing of atomic and macroscopic processes taking place in non-terrestrial objects creates complex, dynamic, and intriguing environments. High-resolution x-ray spectra from these sources measured by satellites such as Chandra, XMM-Newton, and the Solar Maximum Mission provide a means for understanding the physics governing these sources. Laboratory measurements of the atomic processes have proved crucial to the interpretation of these spectra. For example using the LLNL electron beam ion traps EBIT-I and EBIT-II a detailed study of the x-ray spectrum of Fe XVII has been conducted addressing the large ratio predicted by theory compared to observations of considerably smaller values of the relative intensity of the 2p-3d 1P1 resonant to the 3D1 intercombination line. The difference was often attributed to opacity effects. However, laboratory measurements in the optically thin limit agree with observations demonstrating that the prediction is too large and opacity need not be invoked. The laboratory results thus provide a benchmark in the optically thin limit for accurate estimates of opacity effects. To uncover the source of the discrepancy between theory and observation, we have performed a series of experiments that successively uncovered more details about the Fe XVII lines produced in coronal plasmas. Most recently, we used a 32 channel array microcalorimeter from the Astro-E x-ray satellite program to measure the excitation cross section of various Fe XVII lines in the laboratory. These measurements resolve long-standing issues thought to be associated with non-equilibrium processes. We have also used the Astro-E microcalorimeter, and more recently its upgrade from the Astro-E2 project, and the magnetic trapping mode of EBIT-I to accurately measure x-ray emission from charge exchange recombination and to simulate the x-ray line production process in comets. Using only the laboratory measurements, we fit the moderate resolution x-ray spectrum from the comet C

  5. Simulating Cometary and Stellar X-ray Emission in the Laboratory Using Microcalorimeters and an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    The mixing of atomic and macroscopic processes taking place in non-terrestrial objects creates complex, dynamic, and intriguing environments. High resolution x-ray spectra from these sources measured by satellites such as Chandra, XMM-Newton, and the Solar Maximum Mission provide a means for understanding the physics governing these sources. Laboratory measurements of the atomic processes have proved crucial to the interpretation of these spectra. For example using the LLNL electron beam ion traps EBIT-I and EBIT-II a detailed study of the x-ray spectrum of Fe XVII has been conducted addressing the large ratio predicted by theory compared to observations of considerably smaller values of the relative intensity of the 2p-3d 1P1 resonant to the 3D1 intercombination line. The difference was often attributed to opacity effects. However, laboratory measurements in the optically thin limit agree with observations demonstrating that the prediction is too large and opacity need not be invoked. The laboratory results thus provide a benchmark in the optically thin limit for accurate estimates of opacity effects . To uncover the source of the discrepancy between theory and observation, we have performed a series of experiments that successively uncovered more details about the Fe XVII lines produced in coronal plasmas. Most recently, we used a 32 channel array microcalorimeter from the Astro-E x-ray satellite program to measure the excitation cross section of various Fe XVII lines in the laboratory. These measurements resolve long-standing issues thought to be associated with non-equilibrium processes.We have also used the Astro-E microcalorimeter, and more recently its upgrade from the Astro-E2 project, and the magnetic trapping mode of EBIT-I to accurately measure x-ray emission from charge exchange recombination and to simulate the x-ray line production process in comets. Using only the laboratory measurements, we fit the moderate resolution x-ray spectrum from the comet C

  6. Measurements of the intercombination and forbidden lines from helium-like ions in Tokamaks and Electron Beam Ion Traps

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Hill, K W; von Goeler, S; Stodiek, W; Beiersdorfer, P; Rice, J E; Ince-Cushman, A

    2007-08-22

    The paper reviews the results from tokamak experiments for the line ratios x/w, y/w, and z/w from helium-like ions with Z in the range from 14 to 28. With exception of the DITE experiments, where these line ratios were found to be in agreement with theoretical predictions, all other tokamak experiments yielded values that were significantly larger than predicted. The reasons for these discrepancies are not yet understood. It is possible that radial profile effects were not properly taken into account in the majority of the tokamak experiments. The paper also gives a short historical review of the X-ray diagnostic developments and also presents very recent data from a new type of X-ray imaging crystal spectrometer, which records spatially resolved spectra with a spatial resolution of about 1 cm in the plasma. These new data can be Abel inverted, so that it will be possible to determine line ratios at each radial position in the plasma. Effects of radial profiles, which may have affected the chord-integrated measurements of the past, will thus be eliminated in the future.

  7. Ion traps for high resolution spectroscopy

    International Nuclear Information System (INIS)

    As applications of ion traps, direct mass measurement and laser spectroscopy are reported. The advantages of ion traps for high resolution spectroscopy are mentioned. Double resonance method for hfs measurement and problems on ion injection into trap are explained. The planning of laser and microwave spectroscopy, using an ion trap and ISOL at Tohoku cyclotron, is described. (author)

  8. Observation and mitigation of ion trapping in Indus-2

    Indian Academy of Sciences (India)

    Saroj Jena; A D Ghodke

    2015-12-01

    The presence of trapped ions in electron storage rings causes considerable degradation in the performances of the beam, such as increase in beam size, reduction in beam lifetime, shifting of betatron tune, beam instabilities etc. This paper discusses the effects of ion trapping and its mitigation in Indus-2 electron storage ring. Ion-induced instability generating partial beam loss is one of the main barriers in higher beam current accumulation in any electron storage ring. Though there are several techniques to clear the ions from the electron beam path, in Indus-2, it is addressed mainly by filling the storage ring in partial bunch filling pattern. In order to improve the electron beam performance and to mitigate the ion-related problem, a suitable bunch filling pattern has been determined. The theoretical prediction and the result of optimal bunch filling pattern are presented in this paper.

  9. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  10. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap

  11. Ball-grid array architecture for microfabricated ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Guise, Nicholas D., E-mail: nicholas.guise@gtri.gatech.edu; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M. [Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W. [Honeywell International, Golden Valley, Minnesota 55422 (United States)

    2015-05-07

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with {sup 40}Ca{sup +} ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with {sup 171}Yb{sup +} ions in a second BGA trap.

  12. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  13. Quantum Games in ion traps

    International Nuclear Information System (INIS)

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided

  14. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  15. A trapped ion source with improved ionizing efficiency for the production of multiply charged ions

    International Nuclear Information System (INIS)

    An ultrahigh vacuum 'trapped ion source' has been developed following closely Redhead's basic design. Positive ions have been trapped within the space charge of a magnetically confined electron beam with potential barriers at either end of the ionization region, resulting in the production of multiply charged ions. These highly stripped ions are formed by the successive collisions with low energy (0 mass spectrometer. The results obtained in the production of multiply charged ions of Au are presented. (auth.)

  16. An ion trap - laser experiment at the INS cyclotron

    International Nuclear Information System (INIS)

    A new nuclear instrument which comprises an ion guide behind a recoil mass separator, an RF trap, a Penning trap and a UV laser system is being built to perform a laser-microwave double resonance experiment. Initially the instrument will be used to measure hyperfine anomalies of Ca isotopes produced by a cyclotron beam. (author)

  17. Quantum search with trapped ions

    International Nuclear Information System (INIS)

    Full text: We propose an ion trap implementation of Grover's quantum search algorithm for an unstructured database of arbitrary length N. The experimental implementation is appealingly simple because the linear ion trap allows for a straightforward construction, in a single interaction step and without a multitude of Hadamard transforms, of the reflection operator, which is the engine of the Grover algorithm. Consequently, a dramatic reduction in the number of the required physical steps takes place, to just Ο(√N), the same as the number of the mathematical steps. The proposed setup allows for demonstration of both the original (probabilistic) Grover search and its deterministic variation, and is remarkably robust to imperfections in the register initialization. (author)

  18. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  19. Experimental investigation of planar ion traps

    CERN Document Server

    Pearson, C E; Brown, K R; Chuang, I L; Leibrandt, D R; Mallard, W J

    2005-01-01

    Chiaverini et al. [Quant. Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of 0.44 micron diameter charged particles in a vacuum of 15 Pa (0.1 torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through in...

  20. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  1. Charged-Particle Bean Transport for Ion Trapping Experiments.

    Science.gov (United States)

    Raichle, Brian W.; Wingfield, Love M.

    2001-11-01

    Electrostatic Einsel lenses are being developed for beam transport for use in two distinct metastable atomic lifetime experiments using two separate rf-ion traps. Each system has been modeled using Simion software, and the lenses have been designed from commercially available eV-parts. The first application is part of an electron gun source. Electrons are produced by a conventional dispenser cathode and are transported 25 cm to the trap. The design goal is to create a beam divergence to fully illuminate the active trap volume, and to provide tunable electron energies from 50 to 500 eV. The second application is to transport ions 1 m from a laser ablation ion source to an rf ion trap. Laser ablation involves essentially boiling ions from a solid target with intense laser pulses. Here, the design goal is to maximize flux by maximizing the solid angle of acceptance to the trap, minimize radial velocity, and minimize the spread in axial velocity. Development of a laser ablation ion source external to the trap volume will allow a very low base pressure in the trap region, which will make possible the study of species with lifetimes approaching 1 s. In addition, laser ablation will produce intermediately-charged ions from non-conductive solid targets.

  2. Quantum information processing with trapped ion chains

    Science.gov (United States)

    Manning, Timothy Andrew

    Trapped atomic ion systems are currently the most advanced platform for quantum information processing. Their long coherence times, pristine state initialization and detection, and precisely controllable and versatile interactions make them excellent quantum systems for experiments in quantum computation and quantum simulation. One of the more promising schemes for quantum computing consists of performing single and multi-qubit quantum gates on qubits in a linear ion crystal. Some of the key challenges of scaling such a system are the individual addressing of arbitrary subsets of ions and controlling the growing complexity of motional mode interactions as the number of qubits increases or when the gates are performed faster. Traditional entangling quantum gates between ion qubits use laser pulses to couple the qubit states to the collective motion of the crystal, thereby generating a spin-spin interaction that can produce entanglement between selected qubits. The intrinsic limitations on the performance of gates using this method can be alleviated by applying optimally shaped pulses instead of pulses with constant amplitude. This thesis explains the theory behind this pulse shaping scheme and how it is implemented on a chain of Yb ions held in a linear radiofrequency 'Paul' trap. Several experiments demonstrate the technique in chains of two, three, and five ions using various types of pulse shapes. A tightly focused individual addressing beam allows us to apply the entangling gates to a target pair of ions, and technical issues related to such tight focusing are discussed. Other advantages to the pulse shaping scheme include a robustness against detuning errors and the possibility of suppressing undesirable coupling due to optical spillover on neighboring ions. Combined with ion shuttling, we harness these features to perform sequential gates to different qubit pairs in order to create genuine tripartite entangled states and demonstrate the programmable quantum

  3. Cold highly charged ions in a cryogenic Paul trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Windberger, A.; Ullrich, J.; Schmidt, P.O.; Drewsen, M.; Crespo López-Urrutia, J.R.

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir...... linear Paul trap in which HCIs will be sympathetically cooled by 9Be +  ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will...

  4. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    OpenAIRE

    Guise, Nicholas D.; Brewer, Samuel M.; Tan, Joseph N.

    2012-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature p...

  5. Transparent ion trap with integrated photodetector

    CERN Document Server

    Eltony, Amira M; Akselrod, Gleb M; Herskind, Peter F; Chuang, Isaac L

    2012-01-01

    Fluorescence collection sets the efficiency of state detection and the rate of entanglement generation between remote trapped ion qubits. Despite efforts to improve light collection using various optical elements, solid angle capture is limited to ~10% for implementations that are scalable to many ions. We present an approach based on fluorescence detection through a transparent trap using an integrated photodetector, combining collection efficiency approaching 50% with scalability. We microfabricate transparent surface traps with indium tin oxide and verify stable trapping of single ions. The fluorescence from a cloud of ions is detected using a photodiode sandwiched with a transparent trap.

  6. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  7. Study of ion trapping phenomena in Indus-2 storage ring

    International Nuclear Information System (INIS)

    Electron beam in a synchrotron or storage ring ionizes the residual gas molecules present inside its vacuum chamber. These positive ions are trapped in the negative potential well of electron beam and limit the performance of the electron storage ring. During the commissioning of the Indus-2 storage ring, some features have shown up which may be related to ion trapping. In many storage rings, introduction of one long bunch gap in the stored beams has been found to be very effective in avoiding problems caused by ions. In this paper we discuss the phenomenon of ion trapping and its possible cure by optimization of the bunch gaps in Indus-2 storage ring. A suitable bunch-filling pattern with a single long gap appears suitable for Indus-2. (author)

  8. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  9. A low energy ion beamline for highly charged ions at SpecTrap

    International Nuclear Information System (INIS)

    One of the precision experiments of the HITRAP facility at GSI Darmstadt is SpecTrap, which aims to trap heavy Highly Charged Ions (HCI) in a Penning trap and cool them to cryogenic temperatures. Using laser spectroscopy it is possible to measure their hyperfine structure with an envisaged relative accuracy of the order of 10-7 which will serve as a test of strong-field quantum electrodynamics. This poster presents the current status of the SpecTrap experiment and give an overview of the associated beamline from the Electron Beam Ion Source (EBIS) to the Penning trap. The EBIS can produce HCI up to Xe44+ and the beamline is able to transport these ions with small kinetic energy with a few keV to SpecTrap or other experimental setups. Additionally the methods and first experimental results for detecting, cooling and manipulating the ions inside the trap are shown.

  10. Telecloning Quantum States with Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.

  11. Influence of magnetically trapped hot ions on warm plasma flowing

    International Nuclear Information System (INIS)

    Interesting and unexpected phenomenon was found on heating plasma experiments on trap open-quotes AMBAL-YUclose quotes: neutral beam injection results in decrease of target plasma density without change of its shape. The open-quotes AMBAL-YUclose quotes device is a classical mirror with minimum-B. Neutral beams injected into the trap perpendicularly to the magnetic field form hot-ion plasma. In the initial stage of hot-ion accumulation, target plasma is a plasma generated by gas-discharge source located behind the trap. Plasma penetrates into the trap along magnetic field lines. Injection leads to decrease of target plasma density (up to 2.5 times). Plasma density sudden leap moving from injection region to gas-discharge source had been observed. A considerable increase of energy of ions leaving the trap was experimentally registered. Plasma potential had been changed. It was cleared out that this effect is not explained by transversal losses of plasma or passing of momentum from beams to plasma. Rise of activity on ion cyclotron fluctuations had not been registered. The physical situation we wish to model is that of a warm plasma flowing along magnetic field lines in the presence of a magnetically trapped species of hot ions. Let us consider the plasma stream in the frames of two liquids magnetohydrodynamics. We consider the following set of momentum equations presented by Braginskiy in a slightly different form

  12. Ball-grid array architecture for microfabricated ion traps

    CERN Document Server

    Guise, Nicholas D; Stevens, Kelly E; Brown, K R; Volin, Curtis; Harter, Alexa W; Amini, Jason M; Higashi, Robert E; Lu, Son Thai; Chanhvongsak, Helen M; Nguyen, Thi A; Marcus, Matthew S; Ohnstein, Thomas R; Youngner, Daniel W

    2014-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized wit...

  13. Cryogenic resonator design for trapped ion experiments in Paul traps

    Science.gov (United States)

    Brandl, M. F.; Schindler, P.; Monz, T.; Blatt, R.

    2016-06-01

    Trapping ions in Paul traps require high radio frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  14. Cryogenic resonator design for trapped ion experiments in Paul traps

    CERN Document Server

    Brandl, Matthias F; Monz, Thomas; Blatt, Rainer

    2016-01-01

    Trapping ions in Paul traps requires high radio-frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  15. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers; Drewsen, Michael

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... access for laser cooling. All the parts for the trap have been made in our institute [1]. The electrodes and the spacers were laser cut in the collaboration with the group of P.  Balling. In our group we have developed a technique to manufacture lensed optical fibers. The trap is now assembled and...... installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  16. Focusing a deterministic single-ion beam

    International Nuclear Information System (INIS)

    We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few micrometers using an einzel lens. Starting from a segmented linear Paul trap, we have implemented a procedure that allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1σ-spot radius of (4.6±1.3) μm at a distance of 257 mm from the trap center. Compared to previous measurements without ion optics, the einzel lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.

  17. Light with orbital angular momentum interacting with trapped ions

    OpenAIRE

    Schmiegelow, Christian Tomás; Schmidt-Kaler, Ferdinand

    2011-01-01

    We study the interaction of a light beams carrying angular momentum with a single, trapped and well localized ion. We provide a detailed calculation of selection rules and excitation probabilities for quadrupole transitions. The results show the dependencies on the angular momentum and polarization of the laser beam as well as the direction of the quantization magnetic field. In order to observe optimally the specific effects, focusing the angular momentum beam close to the diffraction limit ...

  18. Thin-window high-efficiency position sensitive proportional counter for the vacuum flat crystal spectrometers on the Lawrence Livermore National Laboratory electron beam ion trap (abstract)

    International Nuclear Information System (INIS)

    We have mounted 1 μm thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties of these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 μm thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 μm aluminized polyimide windows to the 4 μm aluminized polypropylene windows. The comparison shows an average increase in efficiency of ∼40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region

  19. Ionization of polarized 3He+ ions in EBIS trap with slanted electrostatic mirror.

    Energy Technology Data Exchange (ETDEWEB)

    Pikin,A.; Zelenski, A.; Kponou, A.; Alessi, J.; Beebe, E.; Prelee, K.; Raparia, D.

    2007-09-10

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}H{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  20. Parallel Transport Quantum Logic Gates with Trapped Ions.

    Science.gov (United States)

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity. PMID:26967401

  1. Dynamical Decoupling Using Trapped Ions

    Science.gov (United States)

    Biercuk, Michael; Uys, Hermann; Vandevender, Aaron; Shiga, Nobuyasu; Itano, Wayne; Bollinger, John

    2009-05-01

    We present a detailed experimental study of the Uhrig Dynamical Decoupling (UDD) sequence in a variety of noise environments. Our qubit system consists of a crystalline array of ^9Be^+ ions confined in a Penning trap. We use an electron-spin-flip transition as our qubit manifold and drive qubit rotations using a quasi-optical 124 GHz microwave system. We study the effect of the UDD sequence in mitigating phase errors and compare against the well-known CPMG-style spin echo as a function of pulse number, rotation axis, noise spectrum, and noise strength. Our results show good agreement with theoretical predictions for qubit decoherence in the presence of classical phase noise, accounting for the effect of finite-duration π pulses. Finally, we demonstrate that the Uhrig sequence is more robust against systematic over/underrotation and detuning errors than is multipulse spin echo, despite the precise prescription for pulse-timing in UDD.

  2. Ion traps fabricated in a CMOS foundry

    International Nuclear Information System (INIS)

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  3. Active Stabilization of Ion Trap Radiofrequency Potentials

    CERN Document Server

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Monroe, C

    2016-01-01

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a rf Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to better than 10 Hz, or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  4. Atomic ion clock with two ion traps, and method to transfer ions

    Science.gov (United States)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  5. Cryptography, Quantum Computation and Trapped Ions

    OpenAIRE

    Hughes, Richard J.

    1997-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  6. Ion trap in a semiconductor chip

    Science.gov (United States)

    Stick, D.; Hensinger, W. K.; Olmschenk, S.; Madsen, M. J.; Schwab, K.; Monroe, C.

    2006-01-01

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ions. Work on miniaturizing electromagnetic traps to the micrometre scale promises even higher levels of control and reliability. Compared with `chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass-spectrometer arrays, compact atomic clocks and, most notably, large-scale quantum information processors. Here we report the operation of a micrometre-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium-arsenide heterostructure.

  7. Ion Trap in a Semiconductor Chip

    CERN Document Server

    Stick, D; Olmschenk, S; Madsen, M J; Schwab, K; Monroe, C

    2006-01-01

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium...

  8. Parallel transport quantum logic gates with trapped ions

    CERN Document Server

    de Clercq, Ludwig; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2015-01-01

    Quantum information processing will require combinations of gate operations and communication, with each applied in parallel to large numbers of quantum systems. These tasks are often performed sequentially, with gates implemented by pulsed fields and information transported either by moving the physical qubits or using photonic links. For trapped ions, an alternative approach is to implement quantum logic gates by transporting the ions through static laser beams, combining qubit operations with transport. This has significant advantages for scalability since the voltage waveforms required for transport can potentially be generated using micro-electronics integrated into the trap structure itself, while both optical and microwave control elements are significantly more bulky. Using a multi-zone ion trap, we demonstrate transport gates on a qubit encoded in the hyperfine structure of a beryllium ion. We show the ability to perform sequences of operations, and to perform parallel gates on two ions transported t...

  9. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  10. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit kτρbi much-lt 1, where ρbi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  11. Integrated Diffractive Optics for Surface Ion Traps

    Science.gov (United States)

    Streed, Erik; Ghadimi, Moji; Blums, Valdis; Norton, Benjamin; Connor, Paul; Amini, Jason; Volin, Curtis; Lobino, Mirko; Kielpinski, David

    2016-05-01

    Photonic interconnects are a bottleneck to achieving large-scale trapped ion quantum computing. We have modified a Georgia Tech Research Institute microwave chip trap by using e-beam lithography to write reflective diffractive collimating optics (80 μm x 127 μm, f=58.6 μm, λ=369.5nm) on the center electrode. The optics have an NA of 0.55 x 0.73, capturing 13.2% of the solid angle. To evaluate the optics 174Yb+ was loaded by isotope selective photo-ionization from a thermal oven and then shuttled to imaging sites. Near diffraction limited sub-wavelength ion images were obtained with an observed spot sized FWHM of 338 nm x 268 nm vs. a diffraction limit of 336 nm x 257 nm. The total photon collection efficiency was measured to be 5.2+/-1.2%. Coupling into a single mode fiber of up to 2.0+/-0.6% was observed, limited by mismatch in the coupling optics. Image mode quality indicates coupling up to 4% may be possible. Funding from Australian Research Council and IARPA.

  12. Microparticle trapping in an ultrasonic Bessel beam

    OpenAIRE

    Choe, Youngki; Kim, Jonathan W; Shung, K. Kirk; Kim, Eun Sok

    2011-01-01

    This paper describes an acoustic trap consisting of a multi-foci Fresnel lens on 127 μm thick lead zirconate titanate sheet. The multi-foci Fresnel lens was designed to have similar working mechanism to an Axicon lens and generates an acoustic Bessel beam, and has negative axial radiation force capable of trapping one or more microparticle(s). The fabricated acoustic tweezers trapped lipid particles ranging in diameter from 50 to 200 μm and microspheres ranging in diameter from 70 to 90 μm at...

  13. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  14. Nuclear spin quantum computing with trapped ions

    CERN Document Server

    Wang, Kunling; Feng, Mang; Mintert, Florian; Wunderlich, Christof

    2011-01-01

    Quantum computing with qubits encoded in nuclear spins of trapped ions is studied with particular attention to the Yb$^+$ ion. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. An efficient scheme is proposed to carry out gate operations on an array of trapped ions, and the feasibility of generating the required high magnetic field is discussed.

  15. Interchange mode excited by trapped energetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might be associated with the fishbone mode in helical systems.

  16. Scheme for teleportation of unknown states of trapped ion

    Institute of Scientific and Technical Information of China (English)

    Chen Mei-Feng; Ma Song-She

    2008-01-01

    A scheme is presented for teleporting an unknown state in a trapped ion system.The scheme only requires a single laser beam.It allows the trap to be in any state with a few phonons,e.g.a thermal motion.Furthermore,it works in the regime,where the Rabi frequency of the laser is on the order of the trap frequency.Thus,the teleportation speed is greatly increased,which is important for decreasing the decoherence effect.This idea can also be used to teleport an unknown ionic entangled state.

  17. Scheme for teleportation of unknown states of trapped ion

    Science.gov (United States)

    Chen, Mei-Feng; Ma, Song-She

    2008-02-01

    A scheme is presented for teleporting an unknown state in a trapped ion system. The scheme only requires a single laser beam. It allows the trap to be in any state with a few phonons, e.g. a thermal motion. Furthermore, it works in the regime, where the Rabi frequency of the laser is on the order of the trap frequency. Thus, the teleportation speed is greatly increased, which is important for decreasing the decoherence effect. This idea can also be used to teleport an unknown ionic entangled state.

  18. Acceleration of trapped particles and beams

    CERN Document Server

    Granot, Er'el

    2011-01-01

    The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates a...

  19. High Density Pulsed Molecular Beam for Cold Ion Chemistry

    OpenAIRE

    Kokish, M. G.; V.Rajagopal; Marler, J. P.; Odom, B. C.

    2014-01-01

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this manuscript, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions ...

  20. Surface ion trap structures with excellent optical access for quantum information processing

    Science.gov (United States)

    Maunz, P.; Blain, M.; Benito, F.; Chou, C.; Clark, C.; Descour, M.; Ellis, R.; Haltli, R.; Heller, E.; Kemme, S.; Sterk, J.; Tabakov, B.; Tigges, C.; Stick, D.

    2013-05-01

    Microfabricated surface electrode ion traps are necessary for the advancement of trapped ion quantum information processing as it offers a scalable way for realizing complex trap structures capable of storing and controlling many ions. The most promising way of performing two-qubit quantum gates in a chain of trapped ions is to focus laser beams on individual ions of the chain to drive gates. However, in surface ion traps the close proximity of the ions to the surface and the size of the chips usually cannot accommodate the tightly focused laser beams necessary to address individual ions parallel to the chip surface. Here we present a surface electrode ion trap monolithically fabricated in standard silicon technology that implements a linear quadrupole trap on a bowtie shaped chip with a narrow section that is only 1.2 mm wide. Laser beams parallel to the surface can be focused down to a waist of 4 μm with enough separation from the trap chip to prevent light scattering. The trap structure incorporates two Y-junctions for reordering ions and is optimized for quantum information processing. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Ion Crystal Metamorphoses in a Paul trap

    CERN Document Server

    Ursekar, V; Nam, Y S; Blümel, R

    2016-01-01

    The standard second-order pseudo-oscillator potential used in many analytical investigations of the properties of ions stored in a Paul trap has serious limitations. In this paper we show that ion-crystal configurations exhibited by 2, 3, and 4 simultaneously stored ions in a Paul trap are not predicted by the standard pseudo-oscillator potential, but are all captured qualitatively and quantitatively by an extended pseudopotential derived in this paper. The power of our extended pseudopotential extends in particular to the prediction of the border lines between different crystal configurations (morphologies) in the Paul trap's $a$, $q$ stability diagram. In the three- and four-ion cases, several of the ion-crystal structures predicted by our improved pseudopotential have never been observed experimentally before. We present them here as a challenge for experiments.

  2. Cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, L

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  3. Note: High density pulsed molecular beam for cold ion chemistry

    International Nuclear Information System (INIS)

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure

  4. Stability analysis of surface ion traps

    CERN Document Server

    Ozakin, Arkadas

    2011-01-01

    Motivated by recent developments in ion trap design and fabrication, we investigate the stability of ion motion in asymmetrical, planar versions of the classic Paul trap. The equations of motion of an ion in such a trap are generally coupled due to a nonzero relative angle $\\theta$ between the principal axes of RF and DC fields, invalidating the assumptions behind the standard stability analysis for symmetric Paul traps. We obtain stability diagrams for the coupled system for various values of $\\theta$, generalizing the standard $q$-$a$ stability diagrams. We use multi-scale perturbation theory to obtain approximate formulas for the boundaries of the primary stability region and obtain some of the stability boundaries independently by using the method of infinite determinants. We cross-check the consistency of the results of these methods. Our results show that while the primary stability region is quite robust to changes in $\\theta$, a secondary stability region is highly variable, joining the primary stabil...

  5. Radiative trapping in intense laser beams

    Science.gov (United States)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  6. Radiative trapping in intense laser beams

    CERN Document Server

    Kirk, J G

    2016-01-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron-positron pairs can be optimized by a suitable choice of the intensity ratio.

  7. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  8. Quantum information processing with trapped ions

    International Nuclear Information System (INIS)

    Single Ca+ ions and crystals of Ca+ ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S1/2 ground state and the metastable D5/2 excited state of Ca+. Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)

  9. Collisionless trapped ion temperature gradient instabilities

    International Nuclear Information System (INIS)

    Under the fluid limit, the collisionless trapped ion temperature gradient instabilities with eigenfrequency approaching to ion bounce frequency are investigated by retaining the trapped ion parallel compressibility in the electrostatic case. The unstable eigenmodes are shown in entire range of parameter b. There exists a local unstable slab branch with a moderate ballooning structure at the relatively short wavelengths. Meanwhile, two nonlocal unstable branches, toroidal and slab, with mode structures of periodic oscillation overlapping on a secular variation are found in the relatively long wavelength limit. These unstable modes' eigenfrequencies, propagating properties, and eigenmode structures are given analytically and numerically. The numerical results are in good agreement with the analytical ones. (5 figs.)

  10. IMPROVEMENT OF THE CERN SPS ELECTROSTATIC SEPTA ION TRAPS

    CERN Multimedia

    Balhan, Bruno; Barlow, Roger Andrew; Raffaele, Graziano

    2016-01-01

    At CERN, the SPS synchrotron is equipped with a slow extraction channel towards the fixed target beam lines in the North Area This channel includes five consecutive electrostatic septa, where the field free region and the active high field region are separated by an array of tungsten-rhenium wires. The field-free region provides for the circulating beam, while the high field region is used to deflect the extracted beam. Since the residual gas can be ionized by the orbiting beam, low energy ions could cross the wire array and enter the high field region and cause high voltage breakdown when accelerated onto the cathode. To prevent low energy ions from entering this high electric field region, a vertical field is applied to the orbiting beam using so-called ‘ion traps’ for active protection. The vertical field is created by electrodes placed inside the region containing the circulating beam. Due to electromagnetic coupling onto the ion trap electrodes observed with the high frequency LHC beam (25 ns spaced ...

  11. Simulation of ion beam injection and extraction in an EBIS

    International Nuclear Information System (INIS)

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency

  12. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  13. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  14. Control of an ion trap in the 'Krion-C' ionizer

    International Nuclear Information System (INIS)

    Experiments on the production of multicharged ions are being carried out on the electron beam ion source Krion-C. The electron beam energy is within 10-80 keV and the current density is up to 300 A/cm2 and more. In addition to these factors for effective ionization, it is required to produce a potential distribution for ion retention along the electron beam axis (ion trap). The method of trap formation for any ionization time is described, and the experimental results are given. 5 refs.; 6 figs

  15. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812...

  16. A Single Laser Cooled Trapped 40Ca+ Ion in a Miniature Paul Trap

    Institute of Scientific and Technical Information of China (English)

    SHU Hua-Lin; GUAN Hua; HUANG Xue-Ren; LI Jiao-Mei; GAO Ke-Lin

    2005-01-01

    @@ We have observed the phenomenon of phase transition of a few trapped ions in a miniature Paul trap. Judging from the quantum jump signals, a single laser-cooled trapped Ca+ ion has been realized. The ion temperature is estimated to be 22mK. The result shows that the amplitude of ion micromotion is strongly dependent on the rf voltage.

  17. Deterministic cavity quantum electrodynamics with trapped ions

    International Nuclear Information System (INIS)

    We have employed radio-frequency trapping to localize a single 40Ca+-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion's wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2-P1/2 transition of 40Ca+ (λ 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates

  18. Applications of ion beams

    International Nuclear Information System (INIS)

    Charged particle accelerator was invented almost seven decades ago with the primary purpose to break the atomic nucleus. The broader inspiration, however, was to understand the structure of matter and the nature around us. Since then the accelerators have evolved enormously in terms of types, intricacies and sizes. They continue to play, primarily, the same role now also but have necessitated, over the years, invention and development of a large number of technologies that are being driven to cutting edge to meet the demands of scientists to carry their researches to unprecedented frontiers in various branches of science. While the first ever accelerator was built to break a 'simple' nucleus of lithium atom, the accelerators of today are trying to recreate the 'big bang' in the laboratory. They have been serving the scientists over the decades to discover new particles and fields. Charged particle accelerators are very commonly used to generate secondary beams for basic research and applications. The secondary beams include neutrons, antiprotons, mesons, neutrinos etc. In view of the experimentalists needs, accelerators have been developed both for electrons as well as ions. While the basic technologies do not differ much, the two varieties offer their own challenges. For each variety, the accelerator can be of linear type or circular type. Generally, a given accelerator accelerates either electrons or ions. In this report we shall be concerned only with the ion accelerators - more specifically about their applications. The accelerators most commonly used to accelerate ions are Cockroft Walton accelerator, Radio Frequency Quadrupole (RFQ) accelerator, Van-de- Graaff accelerator, linear accelerator (linac), cyclotron and synchrotron. In many situations they may operate in combination and, rarely, there exists hybrid variety also. (author)

  19. Scalable ion traps for quantum information processing

    CERN Document Server

    Amini, J M; Wesenberg, J H; Seidelin, S; Britton, J; Bollinger, J J; Leibfried, D; Ospelkaus, C; VanDevender, A P; Wineland, D J

    2009-01-01

    We report on the design, fabrication, and preliminary testing of a 150 zone array built in a `surface-electrode' geometry microfabricated on a single substrate. We demonstrate transport of atomic ions between legs of a `Y'-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment.

  20. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    Science.gov (United States)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  1. Fully ElectroStatic Ion Traps for β-decay Studies

    Science.gov (United States)

    Ron, Guy

    2010-11-01

    Using principles analogous to those of conventional optics it is possible to construct fully electrostatic ion traps which act as a resonant cavity for ion beams. Such traps exhibit an unexpected phenomenon of self-bunching which allows for long lifetimes of trapped ion bunches. Such a trap was originally conceived and developed at the Weimann Institute of Science. Based on this design we are constructing such a trap for use with the LBL IRIS beamline. I will present the principles and design of such a trap. I will further discuss the experimental possibilities afforded, with emphasis on mass spectroscopy and possible measurements of β decay correlations of trapped radioactive ions. Such measurements allow the study of possible standard model extensions affecting the structure of the weak interaction.

  2. Radioactive ion beams at SPIRAL

    International Nuclear Information System (INIS)

    The radioactive ion beam facility SPIRAL, presently under construction, will be based on the very high intensity heavy-ion beams (96AMeV at 6kW from He to Ar) at GANIL, France. The facility will produce radioactive ion beams using the ISOL method and a permanent magnet ECRIS which will allow for the production of multiple charged radioactive ions. The beam will be accelerated by a K=265 compact cyclotron and delivered into the existing experimental areas. The first tests for the production of radioactive ion beams have been undertaken with the test bench separator SIRa. A description of the facility, including the first results for the production of radioactive ion beams and perspectives are given. ((orig.))

  3. Radioactive ion beams at Spiral

    International Nuclear Information System (INIS)

    The radioactive ion beam facility SPIRAL, presently under construction, will be based on the very high intensity heavy-ion beams (96A MeV at 6kW from He to Ar) at GANIL, France. The facility will produce radioactive ion beams using the ISOL method and a permanent magnet ECRIS which will allow for the production of multiple charged radioactive ions. The beam will be accelerated by a K = 265 compact cyclotron and delivered into the existing experimental areas. The first tests for the production of radioactive ion beams has been undertaken with the test bench separator SIRa. A description of the facility, including the first results for the production of radioactive ion beams and perspectives are given. (authors). 10 refs., 3 figs., 1 tab

  4. Quantum simulations with cold trapped ions

    Science.gov (United States)

    Blatt, Rainer

    2016-05-01

    The quantum toolbox of the Innsbruck ion-trap quantum computer is applied to simulate the dynamics and to investigate the propagation of entanglement in a quantum many-body system represented by long chains of trapped-ion qubits. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behavior of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-lightcone picture does not apply. Moreover, a spectroscopic technique is presented to study artificial quantum matter and use it for characterizing quasiparticles in a many-body system of trapped atomic ions. Our approach is to excite combinations of the system's fundamental quasiparticle eigenmodes, given by delocalized spin waves. By observing the dynamical response to superpositions of such eigenmodes, we extract the system dispersion relation, magnetic order, and even detect signatures of quasiparticle interactions. In the second part of the talk, it will be shown how strings of trapped ions can be used for quantum simulations of a lattice gauge field theory. As an example, we map the real-time evolution of the Schwinger mechanism to a string of trapped ions in a few-qubit quantum computer, simulating the spontaneous creation of electron-positron pairs.

  5. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  6. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  7. Microfabrication techniques for trapped ion quantum information processing

    CERN Document Server

    Britton, Joe

    2010-01-01

    Quantum-mechanical principles can be used to process information (QIP). In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. The ion trap approach to QIP requires trapping and control of numerous ions in electrode structures with many trapping zones. I investigated microfabrication of structures to trap, transport and couple large numbers of ions. Using 24Mg+ I demonstrated loading and transport between zones in microtraps made of boron doped silicon. This thesis describes the fundamentals of ion trapping, the characteristics of silicon-based traps amenable to QIP work and apparatus to trap ions and characterize traps. Microfabrication instructions appropriate for nonexperts are included. Ion motional heating was measured. Using MEMs techniques I built a Si micro-mechanical oscillator and demonstrated a method to reduce the kinetic energy of its lowest order mechanical mode via capacitive coupling to a driven...

  8. Addressing single trapped ions for Rydberg quantum logic

    Science.gov (United States)

    Bachor, P.; Feldker, T.; Walz, J.; Schmidt-Kaler, F.

    2016-08-01

    We demonstrate the excitation of ions to the Rydberg state 22F by vacuum ultraviolet radiation at a wavelength of 123 nm combined with the coherent manipulation of the optical qubit transition in {}40{{Ca}}+. With a tightly focused beam at 729 nm wavelength we coherently excite a single ion from a linear string into the metastable 3{D}5/2 state before a VUV pulse excites it to the Rydberg state. In combination with ion shuttling in the trap, we extend this approach to the addressed excitation of multiple ions. The coherent initialization as well as the addressed Rydberg excitation are key prerequisites for more complex applications of Rydberg ions in quantum simulation or quantum information processing.

  9. Ion trap simulation program, ITSIM: A powerful heuristic and predictive tool in ion trap mass spectrometry

    Science.gov (United States)

    Bui, Huy Anh

    The multi-particle simulation program, ITSIM version 4.0, takes advantage of the enhanced performance of the Windows 95 and NT operating systems in areas such as memory management, user friendliness, flexibility of graphics and speed, to investigate the motion of ions in the quadrupole ion trap. The objective of this program is to use computer simulations based on mathematical models to improve the performance of the ion trap mass spectrometer. The simulation program can provide assistance in understanding fundamental aspects of ion trap mass spectrometry, precede and help to direct the course of experiments, as well as having didactic value in elucidating and allowing visualization of ion behavior under different experimental conditions. The program uses the improved Euler method to calculate ion trajectories as numerical solutions to the Mathieu differential equation. This Windows version can simultaneously simulate the trajectories of ions with a virtually unlimited number of different mass-to-charge ratios and hence allows realistic mass spectra, ion kinetic energy distributions and other experimentally measurable properties to be simulated. The large number of simulated ions allows examination of (i) the offsetting effects of mutual ion repulsion and collisional cooling in an ion trap and (ii) the effects of higher order fields. Field inhomogeneities arising from exit holes, electrode misalignment, imperfect electrode surfaces or new trap geometries can be simulated with the program. The simulated data are used to obtain mass spectra from mass-selective instability scans as well as by Fourier transformation of image currents induced by coherently moving ion clouds. Complete instruments, from an ion source through the ion trap mass analyzer to a detector, can now be simulated. Applications of the simulation program are presented and discussed. Comparisons are made between the simulations and experimental data. Fourier transformed experiments and a novel six

  10. The lensing effect of trapped particles in a dual-beam optical trap.

    Science.gov (United States)

    Grosser, Steffen; Fritsch, Anatol W; Kiessling, Tobias R; Stange, Roland; Käs, Josef A

    2015-02-23

    In dual-beam optical traps, two counterpropagating, divergent laser beams emitted from opposing laser fibers trap and manipulate dielectric particles. We investigate the lensing effect that trapped particles have on the beams. Our approach makes use of the intrinsic coupling of a beam to the opposing fiber after having passed the trapped particle. We present measurements of this coupling signal for PDMS particles, as well as a model for its dependence on size and refractive index of the trapped particle. As a more complex sample, the coupling of inhomogeneous biological cells is measured and discussed. We show that the lensing effect is well captured by the simple ray optics approximation. The measurements reveal intricate details, such as the thermal lens effect of the beam propagation in a dual-beam trap. For a particle of known size, the model further allows to infer its refractive index simply from the coupling signal. PMID:25836555

  11. Ideal Multipole Ion Traps from Planar Ring Electrodes

    CERN Document Server

    Clark, Robert J

    2012-01-01

    We present designs for multipole ion traps based on a set of planar, annular, concentric electrodes which require only rf potentials to confine ions. These traps have many desirable properties. Depending on one's choice of experimental parameters, we predict that mm-scale surface traps may have trap depths as high as tens of electron volts, or micromotion amplitudes in a 2-D ion crystal as low as tens of nanometers. Several example traps are studied, and the scaling of those properties with voltage, frequency, and trap scale, for small numbers of ions, is derived. Applications to quantum information science, frequency metrology, and cold ion-atom collisions are discussed.

  12. Generation of Pair Coherent States in Two-dimensional Trapped Ion

    Institute of Scientific and Technical Information of China (English)

    WANG Kai-Ge; S Maniscalco; A Napoli2, A Messina

    2001-01-01

    We consider a two-dimensional (2D) trapped ion model in which two laser beams drive the corresponding vibrational motions and are carrier resonant with the two-level of the ion. Due to the coherent superposition of two sub-Rabi oscillations involved in the bimodal vibrations, the Rabi frequency degeneration and offset may occur in this model. This provides the possibility of generating the pair coherent state in the 2D trapped ion.

  13. Single trapped cold ions: a testing ground for quantum mechanics

    International Nuclear Information System (INIS)

    In this article I review some results obtained during my PhD work in the group of Professor Messina, at the University of Palermo. I discuss some proposals aimed at exploring fundamental issues of quantum theory, e.g. entanglement and quantum superpositions, in the context of single trapped ions. This physical context turns out to be extremely well suited both for studying fundamental features of quantum mechanics, such as the quantum-classical border, and for technological applications such as quantum logic gates and quantum registers. I focus on some procedures for engineering nonclassical states of the vibrational motion of the centre of mass of the ion. I consider both the case in which the ion interacts with classical laser beams and the case of interaction with a quantized mode of light. In particular, I discuss the generation of Schroedinger cat-like states, Bell states and Greenberger-Horn-Zeilinger states. The schemes for generating nonclassical states stem from two different quantum processes: the parity effect and the quantum state manipulation via quantum non-demolition measurement. Finally, I consider a microscopic theory of the interaction of a quantum harmonic oscillator (the centre of mass of the ion in the trapped ion context) with a bosonic thermal environment. Using an exact approach to the dynamics, I discuss a quantum theory of heating of trapped ions able to describe both the short time non-Markovian regime and the thermalization process. I conclude showing briefly how the trapped ion systems can be used as simulators of key models of open quantum systems such as the Caldeira-Leggett model. (phd tutorial)

  14. Efficient Fiber Optic Detection of Trapped Ion Fluorescence

    OpenAIRE

    VanDevender, A. P.; Colombe, Y.; J. Amini; Leibfried, D.; Wineland, D. J.

    2010-01-01

    Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection numerical aperture is 0.37 and total collection efficiency is 2.1 %. The ion can be positioned betwee...

  15. EDITORIAL: Modern applications of trapped ions Modern applications of trapped ions

    Science.gov (United States)

    Knoop, Martina; Hilico, Laurent; Eschner, Jürgen

    2009-08-01

    Ion traps are fantastic tools to explore the world of electrons, atomic and molecular ions, or charged clusters, in the classical as well as in the quantum regime. Extremely long storage times allow probing even of single particles with very high precision. The mass selectivity of the trapping devices is exploited in many experiments, in particular for mass metrology. An overwhelming part of the experiments and ideas rely on the very high level of parameter control which is offered by the ion trap. Manipulation of individual ions and engineering of well defined quantum states are the fundamental techniques to take the experiments beyond existing frontiers and to unprecedented precision. This special issue presents state-of-the-art theory and experiments in a variety of tutorials, reviews and research papers. More than half of these contributions form a follow-up to the first workshop on Modern Applications of Trapped Ions held in Les Houches, France, in May 2008. A great number of topics is covered in atomic and molecular physics, with ion traps as a common tool. The variety of approaches is meant to make this digest a helpful resource to the whole ion trapping community. Among the contributions, four major - while still overlapping - domains can be identified. Novel ion trap design is the motor of future developments and applications. Spectacular progress has been made in the domain of quantum information processing, such as the realization of planar traps, which opens the way to large-scale quantum computation. In this issue, this enthralling subject is introduced by a tutorial and two review articles, completed by contributions on different experimental realizations. Precision measurements belong to a more traditional domain which nevertheless evolves at the forefront of research: metrology of frequencies and fundamental constants, measurements of g-factors or high-precision mass measurements are the foundations of atomic and molecular physics. The creation and

  16. Maskless, resistless ion beam lithography

    CERN Document Server

    Ji, Q

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements...

  17. Controlling the quantum state of trapped ions

    CERN Document Server

    Roos, C

    2000-01-01

    brace quadrupole transition enables the transfer of the ion's motional state into the ground state with up to 99.9 % probability. Different aspects of the cooling process are investigated. In particular, a measurement of the length of time that the ion spends on average in the final state after switching off the cooling lasers (heating time) is made. In contrast to prior experiments, this time is found to be orders of magnitude longer than the time required to manipulate the ion's quantum state. By coherently exciting the ion after preparing it in Fock states of motion, the coherence time is probed and found to be on the order of a millisecond, thus allowing the realization of a few quantum gates. Coherence-limiting processes have been investigated, as well as first steps towards extending the experiments to the case of two trapped ions. In addition to the experiments mentioned above, the possibility of performing cavity-QED experiments with trapped ions is explored. How to efficiently couple the quadrupole t...

  18. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  19. Study on space charge compensation in negative hydrogen ion beam

    Science.gov (United States)

    Zhang, A. L.; Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H- beam from a 2.45 GHz microwave driven H- ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  20. Study on space charge compensation in negative hydrogen ion beam

    International Nuclear Information System (INIS)

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H− beam from a 2.45 GHz microwave driven H− ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results

  1. Augmenting Ion Trap Mass Spectrometers Using a Frequency Modulated Drift Tube Ion Mobility Spectrometer.

    Science.gov (United States)

    Morrison, Kelsey A; Siems, William F; Clowers, Brian H

    2016-03-15

    Historically, high pressure ion mobility drift tubes have suffered from low ion duty cycles and this problem is magnified when such instrumentation is coupled with ion trap mass spectrometers. To significantly alleviate these issues, we outline the result from coupling an atmospheric pressure, dual-gate drift tube ion mobility spectrometer (IMS) to a linear ion trap mass spectrometer (LIT-MS) via modulation of the ion beam with a linear frequency chirp. The time-domain ion current, once Fourier transformed, reveals a standard ion mobility drift spectrum that corresponds to the standard mode of mobility analysis. By multiplexing the ion beam, it is possible to successfully obtain drift time spectra for an assortment of simple peptide and protein mixtures using an LIT-MS while showing improved signal intensity versus the more common signal averaging technique. Explored here are the effects of maximum injection time, solution concentration, total experiment time, and frequency swept on signal-to-noise ratios (SNRs) and resolving power. Increased inject time, concentration, and experiment time all generally led to an improvement in SNR, while a greater frequency swept increases the resolving power at the expense of SNR. Overall, chirp multiplexing of a dual-gate IMS system coupled to an LIT-MS improves ion transmission, lowers analyte detection limits, and improves spectral quality. PMID:26854901

  2. Ions beams. Theory and implementation

    International Nuclear Information System (INIS)

    After a presentation of the physical phenomena implied by ions beams (stopping power, defects creation), the implementation of ions beams is described (production, separation in terms of masses, experimental devices). Then, two use modes of ions beams are distinguished: analysis and synthesis. When the ion beam is destined to analysis, there are two possible experiments types. In the first case, the sample to be studied is the source of ions production and the analysis consists to separate in mass the ions extracted; this method is destructive. In the second case, the analysis results of the interaction between the light ions beam and a target: the sample. According to the nature of the analysis, different types of detectors can be used to quantify the energy of the particles diffused by the sample (fluorescence, back-scattering of particles). When ions beams are used as tools of controlled alterations of samples, several parameters (energy, flux, dose, nature of the beam, target temperature) are adjustable following to the searched objective (defects creation, ordering, synthesis of new phases or surfaces alteration). The typical experimental devices used for beams production (scheme of sources principle) and the environment of the sample are described in terms of the applications studied. (O.M.)

  3. Ion Beam Modification of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  4. The Stockholm Electron Beam Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E.; Liljeby, L.; Engstroem, A.; Bjoerkhage, M. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden))

    1993-03-01

    The electron beam ion source, CRYSIS, produces highly charged ions for injection into the heavy ion storage ring - CRYRING at the Manne Siegbahn Institute, and for low energy atomic physics experiments. It will also provide highly charged ions for the Stockholm-Mainz Penning trap scheduled for installation at MSI in early 1993. CRYSIS has produced ions up to Ar[sup 18+] and [sup 136]Xe[sup 49+] using electron beam currents of typically I[sub e] = 200-300 mA and current density j[sub e] = 100-200 A/cm[sup 2]. Continuous electron beams of energy E = 19 keV and current I[sub e] = 600 mA have been propagated through the source with transmission greater than 99.9%. Test beams of He[sup 2+] and N[sup 7+] extracted from the source in 50-100 [mu]s pulses have been injected into CRYRING with the entire CRYSIS platform raised to 20 kV. Ions of charge up to [sup 136]Xe[sup 44+] extracted in extended 50-100 ms pulses have been used in coincidence-type atomic physics experiments. The status of CRYSIS as of March 15, 1992 is reported. Improvements, modes of operation, and results are discussed. (orig.).

  5. A quantum information processor with trapped ions

    International Nuclear Information System (INIS)

    Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of 40Ca+ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm. (paper)

  6. Quantum Computation by Pairing Trapped Ultracold Ions

    Institute of Scientific and Technical Information of China (English)

    冯芒; 朱熙文; 高克林; 施磊

    2001-01-01

    Superpositional wavefunction oscillations for the implementation of quantum algorithms modify the desired interference required for the quantum computation. We propose a scheme with trapped ultracold ion-pairs beingqubits to diminish the detrimental effect of the wavefunction oscillations, which is applied to the two-qubitGrover's search. It can be also found that the qubits in our scheme are more robust against the decoherencecaused by the environment, and the model is scalable.

  7. Measured Quantum Dynamics of a Trapped Ion

    OpenAIRE

    Viola, Lorenza; Onofrio, Roberto

    1997-01-01

    The measurement process is taken into account in the dynamics of trapped ions prepared in nonclassical motional states. The induced decoherence is shown to manifest itself both in the inhibition of the internal population dynamics and in a damping of the vibrational motion without classical counterpart. Quantitative comparison with present experimental capabilities is discussed, leading to a proposal for the verification of the predicted effects.

  8. Direct frequency comb spectroscopy of trapped ions

    CERN Document Server

    Wolf, A L; Ubachs, W; Eikema, K S E

    2008-01-01

    Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.

  9. Equipment for ion beam production

    International Nuclear Information System (INIS)

    An equipment has been designed to extend the scope of control of ion beam flux for an intensive ion beam source used for plasma injection in magnetic vessels. The control equipment is connected to the electromagnet power supply. A consumption regulator is fitted in the operating gas supply to the hollow cathode of the ion source. A circuit is also included for discharge voltage maintenance consisting of a control element and a discharge voltage pick-up. (M.D.). 1 fig

  10. Micromachining using focused ion beams

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) systems prove to be useful precision micromachining tools for a wide variety of applications. This micromachining technique includes scanning ion microscopy (SIM), micromachining by physical sputtering, and the ion-beam induced surface chemistry for etching and deposition. This technique is applied to image and modify IC's, to micromechanical applications, to modify the tip shape of tungsten emitters, and to prepare cross sections of selected regions for inspection in a transmission electron microscope (TEM). (orig.)

  11. A grooved planar ion trap design for scalable quantum information processing

    Institute of Scientific and Technical Information of China (English)

    Ji Wei-Bang; Wan Jin-Yin; Cheng Hua-Dong; Liu Liang

    2012-01-01

    We describe a new electrode design for a grooved surface-electrode ion trap,which is fabricated in printed-circuitboard technology with segmented electrodes.This design allows a laser beam to get through the central groove to avoid optical access blocking and laser scattering from the ion trap surface.The confining potentials are modeled both analytically and numerically.We optimize the radio frequency (rf) electrodes and dc electrodes to achieve the maximum trap depth for a given ion height above the trap electrodes.We also compare our design with the reality ion chip MI I for practical considerations.Comparison results show that our design is superior to MI I.This ion trap design may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.

  12. Experimental study on dipole motion of an ion plasma confined in a linear Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K., E-mail: kzito@hiroshima-u.ac.jp; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan)

    2015-11-15

    The compact non-neutral plasma trap systems named “S-POD” have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.

  13. Experimental study on dipole motion of an ion plasma confined in a linear Paul trap

    Science.gov (United States)

    Ito, K.; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H.

    2015-11-01

    The compact non-neutral plasma trap systems named "S-POD" have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.

  14. Neutral beam production using negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.

    1978-06-14

    Techniques for producing intense negative ion beams are discussed. These beams are required for intense neutral beam development at energies greater than 150 keV. Handling, acceleration, and stripping of negative ion beams are described.

  15. Longitudinal compression of ion beams

    International Nuclear Information System (INIS)

    This paper examines the longitudinal compression of ion beams which is necessary in some designs of drivers intended to realize inertial thermonuclear fusion by heavy ions. Taking space-charge forces in the beams into account, two compression schemes are investigated: the first preserves the longitudinal phase-space area of the beams, and the second allows an increase of the phase-space area. The compression-system parameters are optimized for an example of a driver for inertial thermonuclear fusion by heavy ions with an energy of 10 MJ and with a pulse length of 25 ns on the target

  16. Cluster States from Quantum Logic Gates with Trapped Ions in Thermal Motion

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-Xing; ZHAN Zhi-Ming; LI Jia-Hua

    2006-01-01

    Following the recent proposal by Briegel et al. [Phys. Rev. Lett. 86 (2001) 910], a procedure is proposed for one-step realizing quantum control phase gates with two trapped ions in thermal motion. It is shown that the scheme can also be used to create a new special type of entangled states, i.e., cluster states of many trapped ions. In the scheme the two-trapped ions are simultaneously excited by a single laser beam and the frequency of the laser beam is slightly off resonance with the first lower vibration sideband of the trapped ions. The distinct advantage of the scheme is that it does not use the vibrational mode as the data bus. Furthermore, our scheme is insensitive to both the initial motional state and heating (or decay) as long as the system remains in the Lamb-Dicke regime.

  17. Capture and isolation of highly-charged ions in a unitary Penning trap

    OpenAIRE

    Brewer, Samuel M.; Nicholas D. Guise; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, ...

  18. Vibratile Coherence and Squeezing in Two Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZENG HaoSheng; KUANG LeMan; ZHU XiWen; GAO KeLin

    2002-01-01

    It is shown that two trapped ions interacting with laser beams resonant to the first red side-band of center-of-mass mode, in Lamb Dicke regime and under rotating wave approximation, is described by a Jaynes-Cummingsmodel. For the initial condition that the motional state of center-of-mass mode is in vacuum state and the internal stateis prepared in a coherent superposition of states, coherence and squeezing for the vibratile motion of center-of-mass modeare discussed, particularly, a "weak" coherent state and a "weak" squeezed vacuum state are obtained. Collapse andrevival are also observed in this type of initial condition.

  19. Cold atom-ion experiments in hybrid traps

    OpenAIRE

    Härter, Arne; Denschlag, Johannes Hecker

    2013-01-01

    In the last 5 years, a novel field of physics and chemistry has developed in which cold trapped ions and ultracold atomic gases are brought into contact with each other. Combining ion traps with traps for neutral atoms yields a variety of new possibilities for research and experiments. These range from studies of cold atom-ion collisions and atom-ion chemistry to applications in quantum information science and condensed matter related research. In this article we give a brief introduction int...

  20. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Science.gov (United States)

    Full, S.; Bartnik, A.; Bazarov, I. V.; Dobbins, J.; Dunham, B.; Hoffstaetter, G. H.

    2016-03-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  1. Adiabatic cooling of a single trapped ion

    CERN Document Server

    Poulsen, Gregers

    2012-01-01

    We present experimental results on adiabatic cooling of a single 40Ca+ ion in a linear radiofrequency trap. After a period of laser cooling, the secular frequency along the rf-field-free axis is adiabatically lowered by nearly a factor of eight from 583 kHz to 75 kHz. For an ion originally Doppler laser cooled to a temperature of 0.65 +/- 0.03 mK, a temperature of 87 +/- 7 \\mu K is measured after the adiabatic expansion. Applying the same adiabatic cooling procedure to a single sideband cooled ion in the ground state (P0 = 0.978 +/- 0.002) resulted in a final ground state occupation of 0.947 +/- 0.005. Both results are in excellent agreement with an essentially fully adiabatic behavior. The results have a wide range of perspectives within such diverse fields as ion based quantum information science, high resolution molecular ion spectroscopy and ion chemistry at ultra-low temperatures.

  2. Using neutral beams as a light ion beam probe (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi, E-mail: chenxi@fusion.gat.com [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831 (United States); Heidbrink, W. W. [University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kramer, G. J.; Nazikian, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Hanson, J. M. [Columbia University, New York, New York 10027 (United States); Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  3. Cryogenic setup for trapped ion quantum computing

    CERN Document Server

    Brandl, M F; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-01-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120~dB reduction of 50~Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than $\\pm$20~nm over 2~s. In addition to the cryogenic apparatus, we describe the setup required for an operation with $^{\\mathrm{40}}$Ca$^{\\mathrm{+}}$ and $^{\\mathrm{88}}$Sr$^{\\mathrm{+}}$ ions. The instability of the laser manipulating the optical qubits in $^{\\mathrm{40}}$Ca$^{\\mathrm{+}}$ is characterized yielding a min...

  4. Universal digital quantum simulation with trapped ions

    CERN Document Server

    Lanyon, B P; Nigg, D; Müller, M; Gerritsma, R; Zähringer, F; Schindler, P; Barreiro, J T; Rambach, M; Kirchmair, G; Hennrich, M; Zoller, P; Blatt, R; Roos, C F

    2011-01-01

    A digital quantum simulator is an envisioned quantum device that can be pro- grammed to efficiently simulate any other local system. We demonstrate and investigate the digital approach to quantum simulation in a system of trapped ions. Using sequences of up to 100 gates and 6 qubits, the full time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally present in our simulator are accurately reproduced and quantitative bounds are provided for the overall simulation quality. Our results demon- strate the key principles of digital quantum simulation and provide evidence that the level of control required for a full-scale device is within reach.

  5. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  6. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  7. Laser-cooled bunched ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  8. Triple ion beam irradiation facility

    International Nuclear Information System (INIS)

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm2 in area. Typical depth ranges are 0.1 to 1.0 μm. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab

  9. Novel radio-frequency ion trap with spherical geometry

    CERN Document Server

    Noshad, Houshyar

    2014-01-01

    Confinement of single ions in a novel radio-frequency (RF) quadrupole ion trap with spherical shape is investigated. An optimization of this spherical ion trap (SIT) is carried out in order to suppress its nonlinearity substantially by eliminating the electric octupole moment. Hence, a trapping potential and consequently an electric field very similar to the ideal quadrupole ion trap (QIT) are obtained. Afterwards, three stability regions for the optimized SIT are numerically computed. The regions coincide well with those reported in the literature for the ideal QIT. The reason is attributed to the zero electric octupole moment of our proposed trap. The SIT simple geometry and relative ease of fabrication along with its increased trapping volume compared to the conventional hyperbolic quadrupole ion trap, make it an appropriate choice for miniaturization.

  10. Suitability of linear quadrupole ion traps for large Coulomb crystals

    OpenAIRE

    Tabor, D. A.; Rajagopal, V.; Lin, Y-W.; Odom, B.

    2011-01-01

    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial co...

  11. Toward spin squeezing with trapped ions

    Science.gov (United States)

    Uys, Hermann; Biercuk, Michael; Britton, Joe; Bollinger, John J.

    2012-09-01

    Building robust instruments capable ofmaking interferometric measurements with precision beyond the standard quantum limit remains an important goal in many metrology laboratories. We describe here the basic concepts underlying spin squeezing experiments that allow one to surpass this limit. In principle it is possible to reach the so-called Heisenberg limit, which constitutes an improvement in precision by a factorv √N , where N is the number of particles on which the measurement is carried out. In particular, we focus on recent progress toward implementing spin squeezing with a cloud of beryllium ions in a Penning ion trap, via the geometric phase gate used more commonly for performing two-qubit entangling operations in quantum computing experiments.

  12. Toward Spin Squeezing with Trapped Ions

    CERN Document Server

    Uys, Hermann; Britton, Joe; Bollinger, John J

    2011-01-01

    Building robust instruments capable of making interferometric measurements with precision beyond the standard quantum limit remains an important goal in many metrology laboratories. We describe here the basic concepts underlying spin squeezing experiments that allow one to surpass this limit. In priniciple it is possible to reach the so-called Heisenberg limit, which constitutes an improvement in precision by a factor $\\sqrt{N}$, where $N$ is the number of particles on which the measurement is carried out. In particular, we focus on recent progress toward implementing spin squeezing with a cloud of beryllium ions in a Penning ion trap, via the geometric phase gate used more commonly for performing two-qubit entangling operations in quantum computing experiments.

  13. Creation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Bryce; Freericks, James K. [Georgetown University, Department of Physics, Washington, DC (United States); Stork, Marybeth [Washington University, Department of Physics and Astronomy, St. Louis, Missouri (United States); Dadic, Danilo; Campbell, Wesley C. [University of California Los Angeles, Department of Physics and Astronomy, Los Angeles, CA (United States)

    2015-01-04

    We develop the theory to describe the equilibrium ion positions and phonon modes for a trapped ion quantum simulator in an oblate Paul trap that creates two-dimensional Coulomb crystals in a triangular lattice. By coupling the internal states of the ions to laser beams propagating along the symmetry axis, we study the effective Ising spin-spin interactions that are mediated via the axial phonons and are less sensitive to ion micromotion. We find that the axial mode frequencies permit the programming of Ising interactions with inverse power law spin-spin couplings that can be tuned from uniform to with DC voltages. Such a trap could allow for interesting new geometrical configurations for quantum simulations on moderately sized systems including frustrated magnetism on triangular lattices or Aharonov-Bohm effects on ion tunneling. The trap also incorporates periodic boundary conditions around loops which could be employed to examine time crystals. (orig.)

  14. Sympathetic cooling of 171 Yb+ qubit ions on a scalable ion trap chip using Yb isotopes

    Science.gov (United States)

    Kwon, Yeong-Dae; Ahn, Jun Sik; Hong, Seokjun; Lee, Minjae; Cheon, Hongjin; Cho, Dongil ``Dan''; Kim, Taehyun

    2016-05-01

    To achieve ion trap based large-scale quantum computing devices, motional states of qubit ions must be regulated against heating from ion transportation or noise on the chip surface while leaving internal states of the ions intact. Sympathetic cooling is a natural solution for this problem, but trapping two different species of ions generally requires two sets of optical devices including separate lasers for each ion type, increasing the complexity and the cost of the setup. We tested Doppler-cooled 174 Yb+ ions to sympathetically cool 171 Yb+ qubit ions. Since these two isotopes have energy levels close to each other, the optical setup can be vastly simplified. We also verified that the tail of non-ideally focused cooling beam and the scattered light from the surface create excited state population in the 171 Yb+ qubit ions, as expected. This leads to occasional spontaneous emission events, which currently limits the coherence time of our qubit to a few seconds. We will also discuss our plans for optimizing the experiment, which may increase the coherence time by one or two orders of magnitude. This work was partially supported by ICT R&D program of MSIP/IITP. [10043464, Development of quantum repeater technology for the application to communication systems].

  15. Ion Trapping in the SLAC B-factory High Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Villevald, D.; Heifets, S.; /SLAC

    2006-09-07

    The presence of trapped ions in electron storage rings has caused significant degradation in machine performance. The best known way to prevent the ion trapping is to leave a gap in the electron bunch train. The topic of this paper is the dynamics of ions in the field of the bunch train with uneven bunch filling. We consider High Energy Ring (HER) of the PEP-II B-factory. In the first section we summarize mechanisms of the ion production. Then the transverse and longitudinal dynamics are analyzed for a beam with and without gap. After that, the effect of the ions is considered separating all ions in the ring in several groups depending on their transverse and longitudinal stability. The main effects of the ions are the tune shift and the tune spread of the betatron oscillations of the electrons. The tune spread is produced by bunch to bunch variation of the electric field of ions and by nonlinearity of the field. It is shown that the main contribution to the shift and spread of the betatron tune of the beam is caused by two groups of ions: one-turn ions and trapped ions. One-turn ions are the ions generated during the last passage of the bunch train. Trapped ions are the ions with stable transverse and longitudinal motion. In the last section we discuss shortly related problems of parameters of the clearing electrodes, injection scenario, and collective effects. Clearing electrodes should be located at the defocusing in x-plane quadrupole magnets. An electric DC field of value 1.0 kv/cm will be enough to prevent the ion trapping process. During the injection, it is recommended to fill the bucket with the design number of the particles per bunch N{sub B} before going to the next bucket. In addition, it is recommended to have the sequential filling of the ring, i.e. the filling from one bucket to the next sequentially. It was shown that ions will not be trapped at the location of the interaction point. The reason for this is that the current of the positron beam is

  16. Ion beam surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Nak Bae; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Choi, Han Woo; Yoon, Yoon Yeol; Shim, Sang Kwun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Light elements in semiconductors, superconductors, magnetic or optical storage devices and surface hardened metals may have serious effects on the electrical, chemical and physical properties. Nevertheless, it is extremely difficult to quantitatively analyze their contents with conventional surface analysis tools like SIMS, AES, ESCA. The ERD-TOF (Elastic Recoil Detection - by Time Of Flight) method has recently been developed in a few prominent accelerator laboratories and proved to be very useful for such quantitative depth profiling of light elements. This project aims to construct an ERD-TOF system which can provide routine service of light elements analysis of thin films. The TOF spectrometer used in the system can be also utilized in HIRBS (Heavy Ion Rutherford Backscattering Spectrometry) for the better resolution and sensitivity than the conventional He RBS in certain cases. The works performed this year are: 1) Optimization of the ERD-TOF system for the practical use. 2) Construction of a separate HIRBS line. 3) Development of the analysis computer program and improvement of the data acquisition system. 4) Construction of the new vacuum chamber with an automatic target controller. The optimization has been done by considering such parameters as mass resolution, depth resolution, accessible depth, detection sensitivity. All these parameters have strong correlations with the sort, energy and dose of the beams to be used, the detection angle, target angle and flight length. In a practical analysis system, one cannot change the system parameter every time although there exists only one optimum condition for one measurement. Therefore, a condition is deduced which is applicable to majority of general semiconductor samples. For the practical analysis service a separate HIRBS line has been constructed. The line use the same TOF spectrometer as ERD line but the shape of the chambers are slightly modified. A computer program DoERD is written for the rapid analysis

  17. Teleportation with trapped ions in a magnetic field gradient

    OpenAIRE

    Deng, Z. J.; Feng, M; Gao, K. L.

    2005-01-01

    By means of the Ising terms generated by Coulomb interaction between ions and the magnetic field gradient, we carry out teleportation with insurance with trapped ions. We show the feasibility and the favorable feature of our scheme by comparing with the recently achieved teleportation experiments with trapped ions.

  18. The Los Alamos Trapped Ion Quantum Computer Experiment

    OpenAIRE

    Hughes, R. J.; James, D. F. V.; J.J. Gomez; Gulley, M. S.; Holzscheiter, M. H.; Kwiat, P. G.; Lamoreaux, S. K.; Peterson, C. G.; Sandberg, V. D.; Schauer, M. M.; Simmons, C. M.; Thorburn, C. E.; Tupa, D.; Wang, P Z; White, A.G.

    1997-01-01

    The development and theory of an experiment to investigate quantum computation with trapped calcium ions is described. The ion trap, laser and ion requirements are determined, and the parameters required for quantum logic operations as well as simple quantum factoring are described.

  19. Single-laser, one beam, tetrahedral magneto-optical trap

    CERN Document Server

    Vangeleyn, Matthieu; Riis, Erling; Arnold, Aidan S

    2009-01-01

    We have realised a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  20. The tripole linear ion trap with highly efficient orthogonal ion ejection designed by computer simulations.

    Science.gov (United States)

    Salazar, Gary A; Masujima, Tsutomu

    2008-05-01

    An ion guide, consisting of three rods carrying three alternating current (AC) voltages symmetrically delayed, called a tripole, was used as a linear ion trap (LIT) and studied by computer simulations. Radial containment of ions was also demonstrated with the pseudopotential which was calculated by approximating the tripole electric potential to the multipoles expansion. This work found a new analyte concentrator, which performs effective ion ejection, and is suitable for use with time-of-flight mass spectrometry. The efficiency of the overall process from the trapping until the ejection was higher than 90%, although some degree of ion spatial and kinetic energy spread which can be corrected with a reflectron was obtained. The reason for the ejection of this tripole linear ion trap (tLIT) lies in the high space available between the rods. The ejection is optimized with the application of focusing voltages, especially suitable for a tripole symmetry (one electrode has a pulse offset voltage and the other two have a fraction of that pulse). The beam is finally well parallelized with a rectangular Einzel lens. PMID:18384193

  1. Diagnosing light ion beam diodes

    International Nuclear Information System (INIS)

    This lecture begins with a discussion of diagnostics in ion-beam diodes. This will include electromagnetic measurements, measurements of the electron cloud, and measurements of anode plasmas. A few minutes will be spent on diagnostics of distributed ion sources required for one class of ion diodes, the plasma-filled versions, which require high-density, highly ionized sources of very uniform plasma. The measurements of the beam characteristics will then be discussed. This will be broken into two regions; the region near the diode where diagnostics are generally extensions of those used in other fields; and the region near focus where new diagnostics have been developed

  2. Trapping of Intact, Singly-Charged, Bovine Serum Albumin Ions Injected from the Atmosphere with a 10-cm Diameter, Frequency-Adjusted Linear Quadrupole Ion Trap

    International Nuclear Information System (INIS)

    High-resolution real-time particle mass measurements have not been achievable because the enormous amount of kinetic energy imparted to the particles upon expansion into vacuum competes with and overwhelms the forces applied to the charged particles within the mass spectrometer. It is possible to reduce the kinetic energy of a collimated particulate ion beam through collisions with a buffer gas while radially constraining their motion using a quadrupole guide or trap over a limited mass range. Controlling the pressure drop of the final expansion into a quadrupole trap permits a much broader mass range at the cost of sacrificing collimation. To achieve high-resolution mass analysis of massive particulate ions, an efficient trap with a large tolerance for radial divergence of the injected ions was developed that permits trapping a large range of ions for on-demand injection into an awaiting mass analyzer. The design specifications required that frequency of the trapping potential be adjustable to cover a large mass range and the trap radius be increased to increase the tolerance to divergent ion injection. The large-radius linear quadrupole ion trap was demonstrated by trapping singly-charged bovine serum albumin ions for on-demand injection into a mass analyzer. Additionally, this work demonstrates the ability to measure an electrophoretic mobility cross section (or ion mobility) of singly-charged intact proteins in the low-pressure regime. This work represents a large step toward the goal of high-resolution analysis of intact proteins, RNA, DNA, and viruses

  3. Ion-trap quantum information processing: experimental status

    OpenAIRE

    Kielpinski, D.

    2008-01-01

    Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex m...

  4. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    CERN Document Server

    Doret, S Charles; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C -S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/eleme...

  5. Optical trapping in secondary maxima of focused laser beam

    International Nuclear Information System (INIS)

    Single beam optical tweezers hold particles behind the focal plane due to the high gradients of optical intensity present in a focused laser beam. However, description of this optical field based on a vectorial theory of diffraction reveals that the high intensity focal area is accompanied by several secondary maxima on the optical axis as well as by a structure of rings away of the optical axis. Such a structure can be found in beams exhibiting spherical aberrations as well as in beams where aberration is corrected. Here, we discuss possibility to use these secondary maxima of aberration-corrected beams as the optical traps. We present the properties of such traps created by objective lenses of various numerical apertures that are focusing plane waves. - Highlights: • Secondary trapping sites in optical tweezers are revealed while using vectorial diffraction theory. • Secondary trapping sites exist both on the optical axis and the off-axis. • Trap stiffnesses in such locations are calculated and compared to trapping site behind beam focus

  6. Combined ion and atom trap for low temperature ion-atom physics

    OpenAIRE

    Ravi, K.; LEE, Seunghyun; Sharma, Arijit; Werth, G.; Rangwala, S. A.

    2010-01-01

    We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently ...

  7. Light-induced charging effects in microscopic ion traps

    International Nuclear Information System (INIS)

    Full text: Microfabricated ion traps are discussed as one of the most promising candidates for a quantum mechanical computer. By bringing the electrodes close to the ions a rich selection of trapping potentials can be created and many traps can, in principle, be operated in parallel. However, the proximity of the electrodes and other surfaces poses strong constraints on the materials used. In particular, near-by glass surfaces that may be used for high-finesse cavities around the ions or for light collection represent a challenge, since the dielectric surfaces may charge up and perturb the trapping potential. By bringing a glass substrate close to a surface ion trap, the charging can be studied in a controlled manner. Two distinct mechanisms of charging have been observed, both being light-induced with different wavelength dependence. The results allow an estimate of the rate of charge production and may be prove useful for the design of new integrated microscopic ion traps. (author)

  8. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  9. Charge state evolution in an ion trap irradiated by VUV synchrotron radiation

    International Nuclear Information System (INIS)

    The energies of photons obtainable from the VUV ring at the National Synchrotron Light Source (NSLS) are ideally suited for high-efficiency ionization of atomic outer-shell electrons. Given the high fluxes of photons available on a wiggler beam line, multiple photoionization in an ion trap can be easily achieved within times short compared to typical ion storage times in the trap. Measurements of the time evolution of ion populations in such a trap can yield ionic photoionization cross sections and charge-exchange interaction rates for ion-atom or ion-ion collisions. The various processes governing this time evolution are discussed and model calculations illustrating the relative importance of these processes under different conditions are presented. 8 refs., 5 figs., 1 tab

  10. Nonlinear theory of collisionless trapped ion modes

    International Nuclear Information System (INIS)

    A simplified two field nonlinear model for collisionless trapped-ion-mode turbulence has been derived from nonlinear bounce-averaged drift kinetic equations. The renormalized thermal diffusivity obtained from this analysis exhibits a Bohm-like scaling. A new nonlinearity associated with the neoclassical polarization density is found to introduce an isotope-dependent modification to this Bohm-like diffusivity. The asymptotic balance between the equilibrium variation and the finite banana width induced reduction of the fluctuation potential leads to the result that the radial correlation length decreases with increasing plasma current. Other important conclusions from the present analysis include the predictions that (i) the relative density fluctuation level δn/n0 is lower than the conventional mixing length estimate, Δr/Ln (ii) the ion temperature fluctuation level δTi/Ti significantly exceeds the density fluctuation level δn/n0; and (iii) the parallel ion velocity fluctuation level δviparallel/vTi is expected to be negligible

  11. All-optical ion generation for ion trap loading

    CERN Document Server

    Sheridan, Kevin; Keller, Matthias

    2011-01-01

    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

  12. Experimental Uhrig dynamical decoupling using trapped ions

    Science.gov (United States)

    Biercuk, Michael J.; Uys, Hermann; Vandevender, Aaron P.; Shiga, Nobuyasu; Itano, Wayne M.; Bollinger, John J.

    2009-06-01

    We present a detailed experimental study of the Uhrig dynamical decoupling (UDD) sequence in a variety of noise environments. Our qubit system consists of a crystalline array of B9e+ ions confined in a Penning trap. We use an electron-spin-flip transition as our qubit manifold and drive qubit rotations using a 124 GHz microwave system. We study the effect of the UDD sequence in mitigating phase errors and compare against the well known Carr-Purcell-Meiboom-Gill-style multipulse spin echo as a function of pulse number, rotation axis, noise spectrum, and noise strength. Our results agree well with theoretical predictions for qubit decoherence in the presence of classical phase noise, accounting for the effect of finite-duration π pulses. Finally, we demonstrate that the Uhrig sequence is more robust against systematic over- or under-rotation and detuning errors than is multipulse spin echo, despite the precise prescription for pulse timing in UDD.

  13. Trapped ion simulation of molecular spectrum

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2016-05-01

    Boson sampling had been suggested as a classically intractable and quantum mechanically manageable problem via computational complexity theory arguments. Recently, Huh and co-workers proposed theoretically a modified version of boson sampling, which is designed to simulate a molecular problem, as a practical application. Here, we report the experimental implementation of the theoretical proposal with a trapped ion system. As a first demonstration, we perform the quantum simulation of molecular vibronic profile of SO2, which incorporates squeezing, rotation and coherent displacements operations, and the collective projection measurement on phonon modes. This work was supported by the National Basic Research Program of China 11CBA00300, 2011CBA00301, National Natural Science Foundation of China 11374178, 11574002. Basic Science Research Program of Korea NRF-2015R1A6A3A04059773.

  14. Vibrational Spectroscopy on Trapped Cold Molecular Ions

    Science.gov (United States)

    Khanyile, Ncamiso B.; Brown, Kenneth R.

    2014-06-01

    We perform vibrational spectroscopy on the V0←10 overtone of a trapped and sympathetically cooled CaH+ molecular ion using a resonance enhanced two photon dissociation scheme. Our experiments are motivated by theoretical work that proposes comparing the vibrational overtones of CaH^+ with electronic transitions in atoms to detect possible time variation of in the mass ratio of the proton to electron. Due to the nonexistence of experimental data of the transition, we start the search with a broadband femtosecond Ti:Saph laser guided by theoretical calculations. Once the vibrational transition has been identified, we will move to CW lasers to perform rotationally resolved spectroscopy. M. Kajita and Y. Moriwaki, J. Phys. B. At. Mol. Opt.Phys., 42,154022(2009) Private communication

  15. An ion trap built with photonic crystal fibre technology

    International Nuclear Information System (INIS)

    We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787 ± 24 quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 μm and 10 μm

  16. Proposed precision laser spectrometer for trapped, highly charged ions

    OpenAIRE

    M. Vogel; Winters, D.F.A.; Segal, D. M.; Thompson, R. C.

    2005-01-01

    We propose a novel type of precision laser spectrometer for trapped, highly charged ions nearly at rest. It consists of a cylindrical open-endcap Penning trap in which an externally produced bunch of highly charged ions can be confined and investigated by means of laser spectroscopy. The combination of confinement, cooling and compression of a dense ion cloud will allow the ground state hyperfine splitting in highly charged ions to be measured with an accuracy three orders of magnitude better...

  17. Capture and isolation of highly-charged ions in a unitary Penning trap

    CERN Document Server

    Brewer, Samuel M; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, and storage of highly-charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply-charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is $\\approx$ 60 times narrower than typically...

  18. High energy ion beam mixing

    International Nuclear Information System (INIS)

    Experimental investigations have been made on the parameters which can be used to control the mixing profiles, and the width of intermixed layers in film-substrate systems being irradiated by high energy heavy ion beams. The samples were irradiated by ion beams of Au, Cu, and Si with energies of 1.5 to 3 MeV. Typical examples of the RBS spectra are presented and discussions are made on the extent of contribution of binary collisions on the interfacial mixing. The experimental and simulation results show that the interfacial mixing is dominated by the binary collisions. (author)

  19. Photodissociation of trapped Rb$^+_2$ : Implications for hybrid molecular ion-atom trapping

    CERN Document Server

    Jyothi, S; Dutta, Sourav; Allouche, A R; Vexiau, Romain; Dulieu, Olivier; Rangwala, S A

    2016-01-01

    We observe direct photodissociation of trapped $^{85}$Rb$_2^+$ molecular ions in the presence of cooling light for the $^{85}$Rb magneto optical trap (MOT). Vibrationally excited Rb$_{2}^{+}$ ions are created by photoionization of Rb$_{2}$ molecules formed photoassociatively in the rubidium (Rb) MOT and are trapped in a modified spherical Paul trap co-centric with the MOT. The decay rate of the trapped Rb$_{2}^{+}$ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is established. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  20. Technologies for trapped-ion quantum information systems

    CERN Document Server

    Eltony, Amira M; Shi, Molu; Bylinskii, Alexei; Vuletić, Vladan; Chuang, Isaac L

    2015-01-01

    Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

  1. Architecture for a scalable ion-trap quantum computer

    International Nuclear Information System (INIS)

    A scalable architecture for quantum information processing with trapped ions depends, among other things, on the ability to store and manipulate large numbers of ions within a single processing unit, i.e. the ion trap. To reliably control the ions these traps must be stable and well characterised. Furthermore, reliable ways of sharing the information between the ions have to be developed. This work presents the development of and the results from two segmented-trap experiments. First, the ions are used as electrical field probes which serves as the basis for a novel diagnostic tool. With these probes light-induced charging of trap structures was observed with a sensitivity of 40 elementary charges per root Hz. Second, a way to share quantum information in a multiplexed trap structure by direct coupling between two trapping sites is presented. A coherent exchange of the motional states between two ions, separated by 54 microns, was observed. The coupling strength between these two trap sites was increased using additional ions as near-field antennae. (author)

  2. Particle Dynamics in Damped Nonlinear Quadrupole Ion Traps

    OpenAIRE

    Vinitsky, Eugene A.; Black, Eric D; Libbrecht, Kenneth G.

    2014-01-01

    We examine the motions of particles in quadrupole ion traps as a function of damping and trapping forces, including cases where nonlinear damping or nonlinearities in the electric field geometry play significant roles. In the absence of nonlinearities, particles are either damped to the trap center or ejected, while their addition brings about a rich spectrum of stable closed particle trajectories. In three-dimensional (3D) quadrupole traps, the extended orbits are typically confined to the t...

  3. SMILETRAP - A Penning trap facility for precision mass measurements using highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, I.; Carlberg, C.; Fritioff, T.; Douysset, G.; Schoenfelder, J.; Schuch, R. E-mail: schuch@physto.se

    2002-07-21

    The precision of mass measurements in a Penning trap increases linearly with the charge of the ion. Therefore we have attached a Penning trap, named SMILETRAP, to the electron beam ion source CRYSIS at MSL. CRYSIS is via an isotope separator connected to an ion source that can deliver singly charged ions of practically any element. In CRYSIS charge state breeding occurs by intense electron bombardment. We have shown that it is possible to produce, catch and measure the cyclotron frequencies of ions in the charge region 1+ to 52+. The relevant observable in mass measurements using a Penning trap is the ratio of the cyclotron frequencies of the ion of interest and ion used as a mass reference. High precision requires that the two frequencies are measured after one another in the shortest possible time. For reasons of convenience the precision trap operates at room temperature. So far it has been believed that warm traps working at 4 K are required for high mass precision with exactly one ion in the trap at a time. In this paper we demonstrate that mass precision of a few parts in 10{sup 10} also can be obtained in a warm trap at a pressure of about 5x10{sup -12} mbar by stabilizing the pressure in the He-dewar, the trap temperature and the frequency synthesizer. In order to reduce the influence of changes of the magnetic field to a level below 10{sup -10}, the scanning of the frequencies close to the resonances of both the ion of interest and the reference ion is done in a total time <2 min. Trapping of ions is a statistical procedure, allowing more than one ion to be trapped in each measurement cycle. However, after completing the measurements it is possible to reject all information except for events based on 1 and 2 trapped ions. The procedures of producing, transporting, catching, exciting and measuring the cyclotron resonance frequencies of highly charged ions and the mass reference ions with the time-of-flight method are described. In routine measurements with

  4. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  5. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P+ beam implantation at

  6. Laser spectroscopy of trapped thorium ions

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Sancho, Oscar-Andrey; Okhapkin, Maxim; Zimmermann, Kai; Tamm, Christian; Peik, Ekkehard [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Taichenachev, Alexey; Yudin, Valeriy [Institute of Laser Physics, Siberian Branch of RAS, Novosibirsk 630090 (Russian Federation)

    2011-07-01

    In our experiment more than 10{sup 5} {sup 232}Th{sup +} ions are stored in a linear Paul trap after creation by laser ablation from thorium metal. Single-frequency laser excitation in the complex spectrum of Th{sup +} poses the problem that spontaneous decay populates a number of metastable levels that are decoupled from the laser. Helium and Argon buffer gas are used for collisional cooling and quenching of those levels. We observe laser excitation of the strong resonance line at 401.9 nm with an extended-cavity diode laser and laser excitation of several other transitions around 400 nm and 270 nm with harmonics of a pico-second Ti:Sa laser. In a theoretical analysis we approximate the dense electronic level structure of Th{sup +} ions by just four levels: the ground state and an excited state are coupled by the primary laser, one metastable state is depopulated by a repumper laser and one level by collisions only. The model agrees with experimental results for the fluorescence rate as a function of the laser intensities and can be used to deduce populations and quenching rates. First investigations on two-photon excitation of the Th{sup +} electron shell to the energy range 7.8 eV of the nuclear transition of {sup 229}Th are in progress.

  7. The dynamics of radiation damage by focused ion beams in the ion beam synthesis

    International Nuclear Information System (INIS)

    The following topics were covered: direct ion implantation, focused ion beams, cobalt silicides (CoSi2), RBS, ion beam synthesis, CoSi2 ion beam synthesis by focused ion beams in Si(111), germanium FIB implantation in Si(111), radiation damage at FIB implantation, models and simulation. (WL)

  8. Detection and clearing of trapped ions in the high current Cornell photoinjector

    CERN Document Server

    Full, Steven; Bazarov, Ivan; Dobbins, John; Dunham, Bruce; Hoffstaetter, Georg

    2015-01-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high CW beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and CW beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates...

  9. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  10. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B10H14) and carborane (C2B10H12) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  11. Intense ion beam applications to magnetic confinement fusion

    International Nuclear Information System (INIS)

    The ion ring project objective is to trap a ring of high energy, axis-encircling ions in a magnetic mirror. The number of ring ions should be such as to produce deltaB/B on the ring axis of order 10%. The second experiment, LONGSHOT, is directed to producing a long pulse ion beam source so that the total number of protons required for an ion ring can be provided a lower diode power and, hence, at much less cost than that of 100 nsec pulsed power generators like the NRL GAMBLE II. A detailed report of the progress on IREX and LONGSHOT is given

  12. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  13. Systematics in a measurement of the electron's electric dipole moment using trapped molecular ions

    Science.gov (United States)

    Grau, Matt; Cossel, Kevin; Cairncross, William; Gresh, Dan; Zhou, Yan; Ye, Jun; Cornell, Eric

    2015-05-01

    A precision measurement of the electron's electric dipole moment (EDM) has important implications for physics beyond the Standard Model. Trapped molecular ions offer high sensitivity in such an experiment because of the large effective electric fields and long coherence times that are possible. Our experiment uses Ramsey spectroscopy of HfF+ ions in a linear RF trap with rotating bias fields, achieving coherence times beyond 1 second for 1000 trapped ions. Compared to other electron EDM experiments that use molecular beams, we will be sensitive to a different class of systematic errors. In this work we investigate systematic errors arising from all fields involved in the experiment, including the trapping and polarizing electric fields, magnetic field gradients, and motional effects such as geometric phases. This work was supported by NIST and NSF.

  14. A Scalable Microfabricated Ion Trap for Quantum Information Processing

    Science.gov (United States)

    Maunz, Peter; Haltli, Raymond; Hollowell, Andrew; Lobser, Daniel; Mizrahi, Jonathan; Rembetski, John; Resnick, Paul; Sterk, Jonathan D.; Stick, Daniel L.; Blain, Matthew G.

    2016-05-01

    Trapped Ion Quantum Information Processing (QIP) relies on complex microfabricated trap structures to enable scaling of the number of quantum bits. Building on previous demonstrations of surface-electrode ion traps, we have designed and characterized the Sandia high-optical-access (HOA-2) microfabricated ion trap. This trap features high optical access, high trap frequencies, low heating rates, and negligible charging of dielectric trap components. We have observed trap lifetimes of more than 100h, measured trap heating rates for ytterbium of less than 40quanta/s, and demonstrated shuttling of ions from a slotted to an above surface region and through a Y-junction. Furthermore, we summarize demonstrations of high-fidelity single and two-qubit gates realized in this trap. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA).

  15. Theory and simulation of ion Coulomb crystal formation in a Penning trap

    Science.gov (United States)

    Asprusten, Martin; Worthington, Simon; Thompson, Richard C.

    2014-01-01

    Ion Coulomb crystals (ICCs) are formed by laser-cooled ions in both radio-frequency and Penning traps. In radio-frequency traps, the crystals are generally stationary. In Penning traps, ICCs always rotate. The frequency of rotation is often set by an applied rotating wall drive that forces the crystal to rotate at the same frequency as the drive. In the absence of any applied rotating or oscillating fields, ICCs in a Penning trap can be in stable equilibrium with a range of rotation frequencies. The density and shape of the crystal adjust with the rotation frequency to ensure that equilibrium is reached. Here, we show that the parameters of the radial laser-cooling beam determine the rotation frequency of a small crystal in a Penning trap when no driving fields are present. We demonstrate, using an approximate theoretical treatment and realistic simulations, that the crystal rotation frequency is independent of the number of ions and the trap parameters, so long as the crystal radius remains smaller than the cooling laser beam waist. As the rotation frequency increases, the crystal eventually becomes a linear string, at which point it is no longer able to adjust its density. Instead, a small amplitude vibration in the zigzag mode of oscillation manifests itself as a rotation of the crystal at a fixed frequency that depends only on the applied trap potential.

  16. An Integrated Mirror and Surface Ion Trap with a Tunable Trap Location

    CERN Document Server

    Van Rynbach, Andre; Kim, Jungsang

    2016-01-01

    We report a demonstration of a surface ion trap fabricated directly on a highly reflective mirror surface, which includes a secondary set of radio frequency (RF) electrodes allowing for translation of the quadrupole RF null location. We introduce a position-dependent photon scattering rate for a $^{174}$Yb$^+$ ion in the direction perpendicular to the trap surface using a standing wave of retroreflected light off the mirror surface directly below the trap. Using this setup, we demonstrate the capability of fine-tuning the RF trap location with nanometer scale precision and characterize the charging effects of the dielectric mirror surface upon exposure to ultra-violet light.

  17. Wave heating of an ion beam in a tokamak plasma

    International Nuclear Information System (INIS)

    Heating of a 26-keV trapped-ion beam by interaction with incident lower-hybrid RF power (as low as 5kW) was observed in the ATC plasma. We suggest that ion-cyclotron damping of lower hybrid waves by beam ions can account for the increase in beam energy. This process can explain the main features of the experiment: (1) preferential absorption in the perpendicular direction, (2) lack of absorption by the background plasma ions, and (3) low power requirement for absorption. Theory requires ksub(perpendicular)rhosub(i) approximately > (ω/ωsub(ci))sup(1/2). The relatively high perpendicular temperature of the beam ions (approximately 1keV), combined with one of several possibilities for RF energy at large ksub(perpendicular), allows the condition on ksub(perpendicular)rhosub(i) to be satisfied. Moreover, the large parallel energy of the beam ions plays a major role in broadening the harmonic resonances, thus making it possible for a large number of beam ions to resonate with the wave. Though the primary process is perpendicular absorption, there is also a net gain in parallel energy during a collision time due to pitch-angle scattering. The importance of this heating mechanism for large machines such as TFTR is discussed. For these machines, ions will be injected with large rhosub(i), making ion heating possible even with moderate values of ksub(perpendicular). (author)

  18. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    OpenAIRE

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocho...

  19. Toward scalable ion traps for quantum information processing

    International Nuclear Information System (INIS)

    In this paper, we report the design, fabrication and preliminary testing of a 150 zone ion trap array built in a 'surface-electrode' geometry microfabricated on a single substrate. We demonstrate the transport of atomic ions between the legs of a 'Y'-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates the use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment.

  20. Toward scalable ion traps for quantum information processing

    Science.gov (United States)

    Amini, J. M.; Uys, H.; Wesenberg, J. H.; Seidelin, S.; Britton, J.; Bollinger, J. J.; Leibfried, D.; Ospelkaus, C.; VanDevender, A. P.; Wineland, D. J.

    2010-03-01

    In this paper, we report the design, fabrication and preliminary testing of a 150 zone ion trap array built in a 'surface-electrode' geometry microfabricated on a single substrate. We demonstrate the transport of atomic ions between the legs of a 'Y'-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates the use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment.

  1. Ion-beam-driven lower-hybrid instability and resultant anomalous beam slowing

    International Nuclear Information System (INIS)

    A lower-hybrid instability with ion cyclotron harmonics is observed to be driven by an ion beam injected obliquely to the magnetic field confining the isothermal plasma of the Q-1 double plasma device. The instability occurs with the injection of a low density, low velocity beam and propagates normal to the field with phase velocity ω/k/sub perpendicular/ approximately equal to u/sub b//sub perpendicular/, the perpendicular velocity component of the spiraling ions. The frequency spectrum, propagation, and growth rate are all in good agreement with a numerical calculation based on linear kinetic theory. Pulsed beams are used to follow the instability from the linearly growing stage to nonlinear saturation. The anomalous perpendicular momentum loss of the beam is examined by both direct energy analysis and by measurements of the resultant beam orbit modifications. By varying the beam parameters, a transition of the nonlinear saturation mechanism from the quasilinear to the trapping regime is demonstrated

  2. Microlocalization during ion beam analysis

    International Nuclear Information System (INIS)

    Three techniques were investigated for identifying microregions of the sample examined by an ion beam during analysis. First, the feasibility of obtaining topographic information by detecting bursts of secondary electrons as individual ions strike the sample was studied. The efficiency of detection was sensitive to sample/detector geometry and to detector operation parameters. Second, the author wanted to determine the location where each ion passed through the sample by detecting the ions with a phosphor coupled with a position sensitive detector. Initially, he used a photomultiplier tube (PMT) to detect light from the phosphor. The PMT was sufficiently sensitive both to detect the light emitted upon bombardment of the phosphor by a single ion and to provide a start signal for particle-induced desorption time-of-flight mass spectroscopy. Third, two track recording materials for locating where the ions passed through the sample were evaluated. The polycarbonate track detector recorded the integrated beam spot image, which was revealed with post-analysis etching and SEM observation. The fluorophlogopite track detector recorded tracks which could be observed by TEM without etching

  3. Vibratile Coherence and Squeezing in Two Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZENGHao-Sheng; KUANGLe-Man; 等

    2002-01-01

    It is shown that two trapped ions interacting with laser beams resonant to the first red side-band of center-of-mass mode,in Lamb-Dicke regime and under rotating wave approximation,is described by a Jaynes-Cummings model.For the initial condition that the motional state of center-of-mass mode is in vacuum state and the internal state is prepared in a coherent superposition of states,coherence and squeezing for the vibratile motion of center-of-mass mode are discussed,particularly,a“weak” coherent state and a “weak” squeezed vacuum state are obtained.Collapse and revival are also observed in this type of initial condition.

  4. Ion-trap electrode preparation with Ne$^+$ bombardment

    CERN Document Server

    McKay, K S; Colombe, Y; Jördens, R; Wilson, A C; Slichter, D H; Allcock, D T C; Leibfried, D; Wineland, D J; Pappas, D P

    2014-01-01

    We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electrode surfaces and interelectrode gaps of microfabricated traps. This procedure helps to minimize redeposition in the gaps between electrodes that can cause electrical shorts. We report heating rates in a stylus-type ion trap prepared in this way that are lower by one order of magnitude compared to a similar untreated stylus-type trap using the same experimental setup.

  5. Nanoscale focused ion beam from laser-cooled lithium atoms

    International Nuclear Information System (INIS)

    We demonstrate a new type of nanoscale focused ion beam (FIB) based on photoionizing laser-cooled atoms held at millikelvin temperatures in a magneto-optical trap (MOT). This new source expands the range of available ionic species and accessible ion beam energies for FIBs, enhancing their role as one of the most important tools for nanoscale characterization and fabrication. We show examples of microscopy with lithium ions obtained by scanning the FIB and collecting the resulting secondary electrons, and characterize the beam focus by a 25-75% rise distance measurement of (26.7 ± 1.0) nm at a beam energy of 2 keV. We also examine the dependence of the focal size on MOT temperature and beam energy. (paper)

  6. Real-time reconfigurable counter-propagating beam-traps

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;

    2010-01-01

    We present a versatile technique that enhances the axial stability and range in counter-propagating (CP) beam-geometry optical traps. It is based on computer vision to track objects in unison with software implementation of feedback to stabilize particles. In this paper, we experimentally...... demonstrate the application of this technique by real-time rapid repositioning coupled with a strongly enhanced axial trapping for a plurality of particles of varying sizes. Also exhibited is an interesting feature of this approach in its ability to automatically adapt and trap objects of varying dimensions...

  7. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl; Bilenberg, Brian; Vannahme, Christoph; Kristensen, Anders; Berg-Sørensen, Kirstine

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the...... microfluidic chip or with optical fibers mounted in the chip....

  8. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    Science.gov (United States)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  9. Multi-element logic gates for trapped-ion qubits.

    Science.gov (United States)

    Tan, T R; Gaebler, J P; Lin, Y; Wan, Y; Bowler, R; Leibfried, D; Wineland, D J

    2015-12-17

    Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network. For trapped ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. Ions of different elements have previously been used in QIP experiments for sympathetic cooling, creation of entanglement through dissipation, and quantum non-demolition measurement of one species with another. Here we demonstrate an entangling quantum gate between ions of different elements which can serve as an important building block of QIP, quantum networking, precision spectroscopy, metrology, and quantum simulation. A geometric phase gate between a (9)Be(+) ion and a (25)Mg(+) ion is realized through an effective spin-spin interaction generated by state-dependent forces induced with laser beams. Combined with single-qubit gates and same-species entangling gates, this mixed-element entangling gate provides a complete set of gates over such a hybrid system for universal QIP. Using a sequence of such gates, we demonstrate a CNOT (controlled-NOT) gate and a SWAP gate. We further demonstrate the robustness of these gates against thermal excitation and show improved detection in quantum logic spectroscopy. We also observe a strong violation of a CHSH (Clauser-Horne-Shimony-Holt)-type Bell inequality on entangled states composed of different ion species. PMID:26672553

  10. Development of ion trap technique for rare isotope measurement

    International Nuclear Information System (INIS)

    We have developed the experimental apparatus which combines an ion trap with the laser cooling technique in order to detect single ions, which enables one to apply to the trace analysis of the rare isotope such as 41Ca. The characteristics of the ion trap apparatus and a laboratory-made diode laser system were measured and reported. The ions generated by the laser ablation were successfully trapped and the simultaneous irradiations of two different diode lasers were performed to observe the laser cooling of the ions. The spectrum of the fluorescence of the Ca ions had the asymmetrical peak as a function of the laser wavelength, which showed the temperature of the Ca ions was decreased. The outlook to observe the single 41Ca was discussed. (author)

  11. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  12. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...... motional state onto one of the collective modes of the ion pair. The quantum state of this vibrational eigenmode is subsequently measured through sideband excitation of the bright ion. Physical processes to implement the desired state transfer are derived and the accomplishment of the scheme is evaluated...

  13. Optimal surface-electrode trap lattices for quantum simulation with trapped ions.

    Science.gov (United States)

    Schmied, Roman; Wesenberg, Janus H; Leibfried, Dietrich

    2009-06-12

    Trapped ions offer long internal state (spin) coherence times and strong interparticle interactions mediated by the Coulomb force. This makes them interesting candidates for quantum simulation of coupled lattices. To this end, it is desirable to be able to trap ions in arbitrary conformations with precisely controlled local potentials. We provide a general method for optimizing periodic planar radio-frequency electrodes for generating ion trapping potentials with specified trap locations and curvatures above the electrode plane. A linear-programming algorithm guarantees globally optimal electrode shapes that require only a single radio-frequency voltage source for operation. The optimization method produces final electrode shapes that are smooth and exhibit low fragmentation. Such characteristics are desirable for practical fabrication of surface-electrode trap lattices. PMID:19658931

  14. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO2, Al2O3, Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW)

  15. Obliquely incident ion beam figuring

    Science.gov (United States)

    Zhou, Lin; Dai, Yifan; Xie, Xuhui; Li, Shengyi

    2015-10-01

    A new ion beam figuring (IBF) technique, obliquely incident IBF (OI-IBF), is proposed. In OI-IBF, the ion beam bombards the optical surface obliquely with an invariable incident angle instead of perpendicularly as in the normal IBF. Due to the higher removal rate in oblique incidence, the process time in OI-IBF can be significantly shortened. The removal rates at different incident angles were first tested, and then a test mirror was processed by OI-IBF. Comparison shows that in the OI-IBF technique with a 30 deg incident angle, the process time was reduced by 56.8%, while keeping the same figure correcting ability. The experimental results indicate that the OI-IBF technique is feasible and effective to improve the surface correction process efficiency.

  16. Production of Arq+ ions with a tandem linear Paul trap

    International Nuclear Information System (INIS)

    A tandem linear Paul trap was used to create highly charged Argon ions by electron impact ionizations. By improving the operation scheme, the production of Ar4+ ions was confirmed. Possible improvements for the future experiments with laser cooled Ca+ ions are suggested

  17. Electron attachment to anionic clusters in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Franklin, E-mail: franklin.martinez@uni-rostock.de [University of Rostock, Institute of Physics (Germany); Bandelow, Steffi; Marx, Gerrit; Schweikhard, Lutz; Vass, Albert [Ernst-Moritz-Arndt University, Institute of Physics (Germany)

    2015-11-15

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented.

  18. Electron attachment to anionic clusters in ion traps

    International Nuclear Information System (INIS)

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented

  19. Ion bunch stacking in a Penning trap after purification in an electrostatic mirror trap

    CERN Document Server

    Rosenbusch, M; Blaum, K; Borgmann, Ch; Kreim, S; Lunney, D; Manea, V; Schweikhard, L; Wienholtz, F; Wolf, R N

    2014-01-01

    The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver ``contaminations'', i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors-if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury-Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with Cs-133(+) ions from an off-line ion source and by applicati...

  20. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  1. Multilayer Interconnects for Microfabricated Surface Electrode Ion Traps

    Science.gov (United States)

    Amini, Jason; Seidelin, Signe; Wesenberg, Janus; Britton, Joe; Blakestad, Brad; Brown, Kenton; Epstein, Ryan; Home, Jonathan; Jost, John; Langer, Chris; Leibfried, Dietrich; Ozeri, Roee; Wineland, David

    2007-06-01

    Microfabricated surface electrode traps for ions are a promising technology for building scalable trapping geometries for quantum information processing. We have expanded upon our single layer gold-on-fused-silica surface electrode trap [1] to include a second patterned conducting layer under the trapping electrodes and have demonstrated the fabrication of this architecture using standard microfabrication techniques. The multilayer approach allows for a significant increase in multi-zone trapping complexity and permits improved trapping structures that are otherwise unattainable in single layer designs without vertical interconnects through the wafer. Using improved calculational methods [2], we are in the process of optimizing the planar designs to create modular elements that can be joined into larger multi-zone trapping structures. Work supported by DTO and NIST. 1. S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006). Also, see the abstract by S. Seidelin. 2. See the abstract by J. H. Wesenberg.

  2. Trapped Ion Chain Thermometry and Mass Analysis Through Imaging

    CERN Document Server

    Rajagopal, V; Kokish, M G; Odom, B C

    2014-01-01

    We demonstrate the temperature measurement of individual laser cooled ions in a linear Coulomb crystal by relating their imaged spatial extent along the linear Paul trap axis to the normal modes of vibration of coupled oscillators in a harmonic potential. We also use the thermal spatial spread of `bright' ions in the case of a two-species mixed chain to measure the secular resonance frequency of vibration of the center-of-mass mode of the entire chain and infer the molecular composition of the co-trapped `dark' ions. These techniques create new possibilities for better understanding of sympathetic cooling in mixed-ion chains and under conditions of non-uniform heat load, improving few-ion mass spectrometry, and making in-situ temperature measurements of individual trapped ions without requiring a scan over the Doppler cooling parameters.

  3. Fast Preparation of W States for Hot Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZHENGShi-Biao

    2005-01-01

    A scheme is presented for generating W states for three or four trapped ions in thermal motion. The scheme works in the regime, where the Rabi frequency of the laser field is on the order of the trap frequency, resulting a fast entanglement speed, which is of importance in view of decoherence.

  4. Fast Preparation of W States for Hot Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2005-01-01

    A scheme is presented for generating W states for three o()four trapped ions in thermal motion. The scheme works in the regime, where the Rabi frequency of the laser field is on the order of the trap frequency, resulting a fast entanglement speed, which is of importance in view of decoherence.

  5. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  6. Trapping of the PHERMEX beam in a mirror field

    International Nuclear Information System (INIS)

    An experiment is underway at Los Alamos National Laboratory to trap the 1-kA, 30-MeV PHERMEX beam in a magnetic mirror. The eventual aim is to accelerate the beam to 50 MeV by ramping up the magnetic field. Tangential injection of the beam through a soft iron nozzle is employed. Because the nozzle is placed within the magnetic mirror, energy must be extracted from the beam in one bounce time to prevent particles returning to the nozzle. A design to make the bounce time as long as possible is described, and two schemes to damp the axial motion are considered. Numerical simulations of the device show considerable axial spreading of the beam in one bounce time. Estimates are made of negative mass instability growth rates and the damping to be expected from the experimentally measured beam energy spread. Experimental results obtained to date are described

  7. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  8. Relative dispersion of trapped ion granulations in sheared flows

    International Nuclear Information System (INIS)

    The life time of trapped ion granulations (trapped ions correlated by resonance) in sheared flows is calculated. The dynamics of trapped ion granulations, in the presence of sheared flows, is formulated in terms of two point correlation function of phase space density fluctuations. The evolution equation is closed by a simplified closure calculation of the triplet term. Based on the closed equation, the life time of the relative dispersion of trapped ion granulations is calculated. The result shows that 1) a relevant time scale enters via a hybrid of decorrelation and shearing, (Δωcv'y2)1/3 and 2) small scale singularities in the absence of collisional dissipation enters through logarithmic divergence. (author)

  9. Effects on focused ion beam irradiation on MOS transistors

    International Nuclear Information System (INIS)

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 μm minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga+ focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated

  10. Effects on focused ion beam irradiation on MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-04-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 {mu}m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga{sup +} focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.

  11. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  12. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162. ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.216, year: 2014

  13. Atomic physics experiments with trapped and cooled highly charged ions

    OpenAIRE

    Kluge, H.-J.; Quint, W; Winters, D. F. A

    2007-01-01

    Trapping and cooling techniques have become very important for many fundamental experiments in atomic physics. When applied to highly charged ions confined in Penning traps, these procedures are very effective for testing quantum electrodynamics in extreme electromagnetic fields produced by heavy highly charged ions such as uranium U$^{91+}$. In addition, fundamental constants or nuclear ground state properties can be determined with high accuracy in these simple systems. Finally, by studying...

  14. Photodetachment of cold OH- in a multipole ion trap

    OpenAIRE

    Trippel, S.; Mikosch, J.; Berhane, R.; Otto, R; Weidemüller, M.; Wester, R.

    2006-01-01

    The absolute photodetachment cross section of OH- anions at a rotational and translational temperature of 170K is determined by measuring the detachment-induced decay rate of the anions in a multipole radio-frequency ion trap. In comparison with previous results, the obtained cross section shows the importance of the initial rotational state distribution. Using a tomography scan of the photodetachment laser through the trapped ion cloud, the derived cross section is model-independent and thus...

  15. Poly-anion production in Penning and RFQ ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Bandelow, Steffi; Martinez, Franklin; Marx, Gerrit; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt University, 17487 Greifswald (Germany)

    2014-07-01

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Au{sup n-1}, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  16. Poly-anion production in Penning and RFQ ion traps

    International Nuclear Information System (INIS)

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Aun-1, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  17. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  18. Implementation schemes for unsharp measurements with trapped ions

    Science.gov (United States)

    Choudhary, Sujit K.; Konrad, T.; Uys, H.

    2013-01-01

    Unsharp positive operator-valued measurements allow a variety of measurement applications which minimally disrupt the state of the quantum system. Experimental schemes are proposed for implementing unsharp measurements on the qubit levels of a trapped ion. The schemes rely on introducing weak entanglement between the state of a target ion and that of an auxiliary ion, using standard ion-trap quantum logic operations, and then realizing an unsharp measurement through projective measurement on the auxiliary atom. We analyze common sources of error and their effect on different applications of unsharp measurements.

  19. Photon collection from a trapped ion--cavity system

    OpenAIRE

    Sterk, J. D.; Luo, L.; Manning, T. A.; P. Maunz; Monroe, C.

    2011-01-01

    We present the design and implementation of a trapped ion cavity QED system. A single ytterbium ion is confined by a micron-scale ion trap inside a 2 mm optical cavity. The ion is coherently pumped by near resonant laser light while the cavity output is monitored as a function of pump intensity and cavity detuning. We observe a Purcell enhancement of scattered light into the solid angle subtended by the optical cavity, as well as a three-peak structure arising from strongly driving the atom. ...

  20. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  1. Sympathetic cooling of $^4$He$^+$ ions in a radiofrequency trap

    OpenAIRE

    Roth, B.(Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, 44780, Germany); Fröhlich, U.; S.SCHILLER

    2004-01-01

    We have generated Coulomb crystals of ultracold $^4$He$^+$ ions in a linear radiofrequency trap, by sympathetic cooling via laser--cooled $^9$Be$^+$. Stable crystals containing up to 150 localized He$^+$ ions at $\\sim$20 mK were obtained. Ensembles or single ultracold He$^+$ ions open up interesting perspectives for performing precision tests of QED and measurements of nuclear radii. The present work also indicates the feasibility of cooling and crystallizing highly charged atomic ions using ...

  2. Experimental demonstration of a surface-electrode multipole ion trap

    CERN Document Server

    Maurice, Mark; Green, Dylan; Farr, Andrew; Burke, Timothy; Hilleke, Russell; Clark, Robert

    2015-01-01

    We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model, and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.

  3. Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.M.; Goeringer, D.E.; McLuckey, S.A.; Glish, G.L. (Oak Ridge National Laboratory, TN (United States))

    1993-01-01

    Matrix-assisted laser desorption (MALD), which has been proven to be an effective ionization technique for biological molecules, has been implemented on a quadrupole ion trap mass spectrometer (ITMS). In the instrumental configuration used for this work both the sample probe and the laser beam are brought through holes in the ring electrode, thereby enabling MALD-generated ions to expand directly into the ion trap cavity. This approach for directly introducing MALD-generated ions compliments the capabilities of the ITMS to obtain low detection limits and to perform tandem mass spectrometric analysis. For example, detection limits in the single-unit femtomole regime have been achieved for small polypeptides such as leucine enkephalin, bradykinin, and neuromedin U-8. Furthermore, structural information has been acquired via multiple stages of mass spectrometry. One limitation that currently exists is an unanticipated drop in sensitivity and resolution as the mass/charge ratio for ions exceeds 3000. 42 refs., 11 figs., 1 tab.

  4. Electrospray ionization combined with ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, G.J.; Glish, G.L.; McLuckey, S.A. (Oak Ridge National Laboratory, TN (USA))

    1990-07-01

    Ions from a variety of molecules, formed via electrospray, have been injected into and analyzed with a quadrupole ion trap mass spectrometer. Examples are shown in which one or more stages of mass spectrometry (e.g., mass spectrometry/mass spectrometry) have been performed on both multiply charged anions and cations. Compounds for which data are described include the disodium salt of 2-hydroxynapthalene-3,6-disulfonic acid, Direct Red 81, bradykinin, melittin, cytochrome c, myoglobin, and bovine albumin. For some compounds, notable the sulfonates, evidence is presented for the injection of highly solvated ions that desolvate within the ion trap. The cations derived from the peptides, on the other hand, appear to be essentially desolvated prior to injection into the ion trap.

  5. Coulomb crystal mass spectrometry in a digital ion trap

    CERN Document Server

    Deb, Nabanita; Smith, Alexander D; Keller, Matthias; Rennick, Christopher J; Heazlewood, Brianna R; Softley, Timothy P

    2015-01-01

    We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radiofrequency waveform is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields subsequently applied to the trap electrodes for ion ejection. Excellent detection efficiency is demonstrated for Ca+ and CaF+ ions from bi-component Ca+/CaF+ Coulomb crystals prepared by reaction of Ca+ with CH3F. A quantitative linear relationship is observed between ion number and the corresponding integrated TOF peak, independent of the ionic species. The technique is applicable to a diverse range of multi-component Coulomb crystals - demonstrated here for Ca+/NH3+/NH4+ and Ca+/CaOH+/CaOD+ crystals - and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.

  6. Atomic physics experiments with trapped and cooled highly charged ions

    CERN Document Server

    Kluge, H -J; Winters, D F A

    2007-01-01

    Trapping and cooling techniques have become very important for many fundamental experiments in atomic physics. When applied to highly charged ions confined in Penning traps, these procedures are very effective for testing quantum electrodynamics in extreme electromagnetic fields produced by heavy highly charged ions such as uranium U$^{91+}$. In addition, fundamental constants or nuclear ground state properties can be determined with high accuracy in these simple systems. Finally, by studying a single trapped radioactive ion, its nuclear decay can be studied in detail by observing the disappearance of the signal of the mother and the appearance of that of the daughter isotope. Such experiments on highly charged ions at extremely low energy will become possible by the HITRAP facility which is currently being built up at GSI. Also the future Facility for Antiproton and Ion Research (FAIR) will be briefly described which is expected to be operational by 2014.

  7. Particle dynamics in damped nonlinear quadrupole ion traps

    Science.gov (United States)

    Vinitsky, Eugene A.; Black, Eric D.; Libbrecht, Kenneth G.

    2015-04-01

    We examine the motions of particles in quadrupole ion traps as a function of damping and trapping forces, including cases where nonlinear damping or nonlinearities in the electric field geometry play significant roles. In the absence of nonlinearities, particles are either damped to the trap center or ejected, while their addition brings about a rich spectrum of stable closed particle trajectories. In three-dimensional (3D) quadrupole traps, the extended orbits are typically confined to the trap axis, and for this case we present a 1D analysis of the relevant equation of motion. We follow this with an analysis of 2D quadrupole traps that frequently show diamond-shaped closed orbits. For both the 1D and 2D cases, we present experimental observations of the calculated trajectories in microparticle ion traps. We also report the discovery of a new collective behavior in damped 2D microparticle ion traps, where particles spontaneously assemble into a remarkable knot of overlapping, corotating diamond orbits, self-stabilized by air currents arising from the particle motion.

  8. Particle Dynamics in Damped Nonlinear Quadrupole Ion Traps

    CERN Document Server

    Vinitsky, Eugene A; Libbrecht, Kenneth G

    2014-01-01

    We examine the motions of particles in quadrupole ion traps as a function of damping and trapping forces, including cases where nonlinear damping or nonlinearities in the electric field geometry play significant roles. In the absence of nonlinearities, particles are either damped to the trap center or ejected, while their addition brings about a rich spectrum of stable closed particle trajectories. In three-dimensional (3D) quadrupole traps, the extended orbits are typically confined to the trap axis, and for this case we present a 1D analysis of the relevant equation of motion. We follow this with an analysis of 2D quadrupole traps that frequently show diamond-shaped closed orbits. For both the 1D and 2D cases we present experimental observations of the calculated trajectories in microparticle ion traps. We also report the discovery of a new collective behavior in damped 2D microparticle ion traps, where particles spontaneously assemble into a remarkable knot of overlapping, corotating diamond orbits, self-s...

  9. Suitability of linear quadrupole ion traps for large Coulomb crystals

    CERN Document Server

    Tabor, D A; Odom, B

    2011-01-01

    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of diff...

  10. Is the Penning Ion Trap Suitable for Quantum Computation?

    Science.gov (United States)

    Bollinger, J. J.; Kriesel, J. M.; Itano, W. M.; Mitchell, T. B.

    2001-10-01

    There is a great deal of interest in finding a physical system which can perform computations through quantum unitary operations and be scaled to large numbers of qubits. rf ion traps have been used in pioneering experiments on a few qubits. The Penning ion trap has some potential advantages compared to the rf trap. In rf traps, heating and decoherence rates of ion motional states have been observed to scale inversely with the size of the electrodes. Penning traps can have large electrodes while still retaining the large (5-10 MHz) motional frequencies required for quantum logic operations. This is because large static fields are more easily generated than large amplitude rf fields. Addressing of individual ions in the Penning trap is complicated by the plasma rotation, but should be possible with crystallized, planar plasmas controlled by a combination of rotating fields (a ``hard disk" geometry). We will discuss the pros and cons as well as some initial experiments to investigate the suitability of the Penning trap for quantum computation.

  11. Multiply charged ion beams from solid substances

    International Nuclear Information System (INIS)

    The mVINIS Ion Source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: a) the evaporation of metals by using the inlet system based on mini-oven and b) the metal-ions-from volatile-compounds method (MIVOC) by using the modified gas inlet system. In the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg) were made great efforts. The B3+ ion beam current of over 300 μA is one of the most intensive beams extracted until now. The obtained multiply charged ion beam spectra of solid substances (B, Fe and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials and fullerenes. (author)

  12. Towards Non-Equilibrium Dynamics with Trapped Ions

    Science.gov (United States)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  13. A Single-Ion Trap with Minimized Ion-Environment Interactions

    CERN Document Server

    Nisbet-Jones, P B R; Jones, J M; Godun, R M; Baynham, C F A; Bongs, K; Doležal, M; Balling, P; Gill, P

    2015-01-01

    We present a new single-ion endcap trap for high precision spectroscopy that has been designed to minimize ion-environment interactions. We describe the design in detail and then characterize the working trap using a single trapped 171 Yb ion. Excess micromotion has been eliminated to the resolution of the detection method and the trap exhibits an anomalous phonon heating rate of d /dt = 24 +30/-24 per second. The thermal properties of the trap structure have also been measured with an effective temperature rise at the ion's position of 0.14 +/- 0.14 K. The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the 10^-18 level.

  14. Entangling a Series of Trapped Ions by Moving Cavity Bus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Miao; JIA Huan-Yu; WEI Lian-Fu

    2011-01-01

    Entangling multiple qubits is one of the central tasks of quantum information processing. We propose an approach to entangle a number of cold ions (individually trapped in a string of microtraps) by a moved cavity. The cavity is pushed to include the ions one by one with a uniform velocity and thus the information stored in former ions could be transferred to the latter ones by such a moving cavity bus. Since the positions of the trapped ions are precisely located, the strengths and durations of the ion-cavity interactions can be exactly controlled. As a consequence, by properly setting the relevant parameters, typical multi-ion entangled states, e.g., W state for 10 ions, could be deterministically generated. The feasibility of the proposal is also discussed.%@@ Entangling multiple qubits is one of the central tasks of quantum information processing.We propose an approach to entangle a number of cold ions (individually trapped in a string of microtraps) by a moved cavity.The cavity is pushed to include the ions one by one with a uniform velocity and thus the information stored in former ions could be transferred to the latter ones by such a moving cavity bus.Since the positions of the trapped ions are precisely located, the strengths and durations of the ion-cavity interactions can be exactly controlled.As a consequence, by properly setting the relevant parameters, typical multi-ion entangled states, e.g., W state for 10 ions, could be deterministically generated.The feasibility of the proposal is also discussed.

  15. Simulations of beta-decay of 6He in an Electrostatic Ion Trap

    CERN Document Server

    Vaintraub, S; Hass, M; Heber, O; Aviv, O; Rappaport, M; Dhal, A; Mardor, I; Wolf, A

    2014-01-01

    Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar terms in the weak interaction. Such scalar or tensor terms affect, e.g., the angular correlation between a neutrino and an electron in the beta-decay process, thus probing new physics of beyond-the-standard-model nature. The present system focuses on a novel use of an innovative ion trapping device, the Electrostatic Ion Beam Trap. Such a trap has not been previously considered for Fundamental Interaction studies and exhibits potentially very significant advantages over other schemes. These advantages include improved injection efficiency of the radionuclide under study, an extended field-free region, ion-beam kinematics for better efficiency and ease-of operation and the potential for a much larger solid angle for the electron and recoiling atom counters. The beta-d...

  16. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  17. Cryogenic linear Paul trap for cold highly charged ion experiments

    DEFF Research Database (Denmark)

    Schwarz, Maria; Versolato, Oscar; Windberger, Alexander;

    2012-01-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H2 partial pressure of about 10−15 mbar...

  18. Trapped-ion antennae for the transmission of quantum information.

    Science.gov (United States)

    Harlander, M; Lechner, R; Brownnutt, M; Blatt, R; Hänsel, W

    2011-03-10

    More than 100 years ago, Hertz succeeded in transmitting signals over a few metres to a receiving antenna using an electromagnetic oscillator, thus proving the electromagnetic theory developed by Maxwell. Since this seminal work, technology has developed, and various oscillators are now available at the quantum mechanical level. For quantized electromagnetic oscillations, atoms in cavities can be used to couple electric fields. However, a quantum mechanical link between two mechanical oscillators (such as cantilevers or the vibrational modes of trapped atoms or ions) has been rarely demonstrated and has been achieved only indirectly. Examples include the mechanical transport of atoms carrying quantum information or the use of spontaneously emitted photons. Here we achieve direct coupling between the motional dipoles of separately trapped ions over a distance of 54 micrometres, using the dipole-dipole interaction as a quantum mechanical transmission line. This interaction is small between single trapped ions, but the coupling is amplified by using additional trapped ions as antennae. With three ions in each well, the interaction is increased by a factor of seven compared to the single-ion case. This enhancement facilitates bridging of larger distances and relaxes the constraints on the miniaturization of trap electrodes. The system provides a building block for quantum computers and opportunities for coupling different types of quantum systems. PMID:21346764

  19. Injection of intense ion beam into a tokamak

    International Nuclear Information System (INIS)

    We describe an experiment to investigate the direct injection of an intense ion beam into a tokamak by means of the polarization drift. Confinement of 100 keV ions in the UCI tokamak (r = 15 cm, R = 60 cm, B/sub T/ = 6 kG) requires operation with a plasma current of 56 kA corresponding to q (limiter) = 2. Trapped ions are to be detected by a charge-exchange analyzer. The present status of the experiment will be discussed

  20. Beam-line considerations for experiments with highly-charged ions

    International Nuclear Information System (INIS)

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ion traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations

  1. Toward scalable ion traps for quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Amini, J M; Uys, H; Wesenberg, J H; Seidelin, S; Britton, J; Bollinger, J J; Leibfried, D; Ospelkaus, C; VanDevender, A P; Wineland, D J [National Institute of Standards and Technology, Time and Frequency Division, 325 Broadway, Boulder, CO 80305 (United States)], E-mail: Jason.Amini@gtri.gatech.edu

    2010-03-15

    In this paper, we report the design, fabrication and preliminary testing of a 150 zone ion trap array built in a 'surface-electrode' geometry microfabricated on a single substrate. We demonstrate the transport of atomic ions between the legs of a 'Y'-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates the use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment.

  2. Laser ablation loading of a surface-electrode ion trap

    OpenAIRE

    Leibrandt, David R.; Clark, Robert J.; Labaziewicz, Jaroslaw; Antohi, Paul; Bakr, Waseem; Brown, Kenneth R.; Chuang, Isaac L.

    2007-01-01

    We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Addi...

  3. A high-performance electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  4. A Linear RFQ Ion Trap for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Flatt, B.; Green, M.; Wodin, J.; DeVoe, R.; Fierlinger, P.; Gratta, G.; LePort, F.; Montero Diez, M.; Neilson, R.; O' Sullivan, K.; Pocar, A.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank Jr., W.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Hauger, M.; Hodgson, J.; /Stanford U., Phys. Dept. /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U.

    2008-01-14

    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of {sup 136}Xe to {sup 136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus ({sup 136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.

  5. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U92+. The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7Li+ ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7Li+ beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI)

  6. Wavelength scale imaging of trapped ions for quantum networking

    Science.gov (United States)

    Streed, Erik; Norton, Benjamin; Jechow, Andreas; Petrasiunas, Matt; Kielpinski, David

    2011-05-01

    We have demonstrated wavelength scale imaging of Ytterbium ions with a microfabricated phase Fresnel lens. Near diffraction limited ion spot sizes of 440 nm (FWHM) were observed by fluorescence imaging on the 369.5 nm transition. The phase Fresnel lens was integrated in-vacuum with a needle style radio frequency Paul trap. To reduce the ion motion below the imaging resolution the ions were laser cooled close to the Doppler limit on the 369.5 nm transition This is the first demonstration of imaging trapped ions with a resolution on the order of the transition wavelength, an important step towards obtaining high efficiency mode-matching of the ion fluorescence emission to a single optical mode. Funded by the Australian Research Council and the US Air Force Office of Scientific Research.

  7. Scalable Trapped Ion Quantum Computation with a Probabilistic Ion-Photon Mapping

    CERN Document Server

    Duan, L M; Möhring, D L; Monroe, C

    2004-01-01

    We propose a method for scaling trapped ions for large-scale quantum computation and communication based on a probabilistic ion-photon mapping. Deterministic quantum gates between remotely located trapped ions can be achieved through detection of spontaneously-emitted photons, accompanied by the local Coulomb interaction between neighboring ions. We discuss gate speeds and tolerance to experimental noise for different probabilistic entanglement schemes.

  8. The ion beam opening switch

    International Nuclear Information System (INIS)

    Plasma opening switches (POS's) have shown excellent characteristics in pulsed power applications. Proposed POS scaling predicts that the fastest opening time for a given conducted current should occur using a high-velocity low-density plasma as the switch medium. The ion beam opening switch (IBOS) uses a charge-neutral ion beam of 100-300 kV, ≤ 120 A/cm/sup 2/ as the switch ''plasma''. Its velocity of up to 600 cm/μs and density of -- 10/sup 12//cm/sup 3/ make this a very fast low-density plasma compared with typical 10 cm/μs and 10/sup 13//cm/sup 3/ POS plasmas. The IBOS has conducted ≥ 70 kA flowing in a parallel-plate transmission line driven by a 4-Ω pulser. IBOS opening time is load dependent, being ≤4 ns into a 15-nH load and about twice as long into a 4-Ω electron diode load. However, switch impedance is not zero during the entire conduction time, rising to ≥ 3 Ω by the time of peak current. Peak current conducted before opening does not vary linearly with either injected ion current or switch axial length. Instead, the conduction current scales with plasma density in the switch, and is nearly independent of switch area until the area is restricted to a narrow (-- 1 cm) strip. In this experimental geometry, replacing the IBOS with a standard POS gave essentially identical behavior, except first, an order of magnitude less injected flux was required to conduct a given current with the POS than with IBOS, corresponding to similar injected plasma densities for the two types of switches; second, clear evidence of J X B motion of the POS plasma was seen, while none was evident with IBOS

  9. Optical trapping in secondary maxima of focused laser beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Zemánek, Pavel

    2015-01-01

    Roč. 162, SI (2015), s. 114-121. ISSN 0022-4073 R&D Projects: GA ČR GPP205/12/P868; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : optical tweezers * optical traps * optical trapstiffness * focused beam Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.645, year: 2014

  10. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J; Sage, J M

    2015-01-01

    We describe rapid, random-access loading of a two-dimensional (2D) surface-electrode ion-trap array based on two crossed photo-ionization laser beams. With the use of a continuous flux of pre-cooled neutral atoms from a remotely-located source, we achieve loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive 2D arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.

  11. Low energy ion beam dynamics of NANOGAN ECR ion source

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  12. Collisional activation with random noise in ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L. [Oak Ridge National Lab., TN (United States)

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  13. Tool steel ion beam assisted nitrocarburization

    Energy Technology Data Exchange (ETDEWEB)

    Zagonel, L.F. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, Sao Paulo (Brazil)], E-mail: zagonel@ifi.unicamp.br; Alvarez, F. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, Sao Paulo (Brazil)

    2007-09-15

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth.

  14. Tool steel ion beam assisted nitrocarburization

    International Nuclear Information System (INIS)

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth

  15. An ion source with bunched beam release

    International Nuclear Information System (INIS)

    As a continuation of a preceding study, the possibility of bunched beam release from a FEBIAD-B2 ion source was investigated for the alkali metals, the alkaline-earths, aluminum, the transition elements scandium to nickel and for ytterbium. With an appropriate choice of the cooling/heating system and of the trap material, efficient bunching is reached for the alkalies, calcium, manganese and ytterbium, which have enthalpies of adsorption within the range 2.6 ≤ΔH, < 5 eV, the window useful for bunching. Utilizing deduced values of the mean sticking time at a surface of defined temperature, ΔH/sub a/-values up to approximately 6 eV can be determined. Thus the conditions can be specified which should allow bunching and chemical separation for various other elements that are too refractory for the present device. Experimental and semi-empirical ΔH/sub a/-values are in good agreement for the transition elements and aluminium but exhibit strong deviations for the alkali metals, the alkaline-earths, ytterbium and probably some other lanthanides. On-line mass separation of neutron-deficient isotopes of cadmium, indium and tin with a high degree of selectivity demonstrates the chemical separation power of bunched beam release

  16. T-junction ion trap array for two-dimensional ion shuttling, storage and manipulation

    CERN Document Server

    Hensinger, W K; Deslauriers, L; Hucul, D; Monroe, C; Olmschenk, S; Rabchuk, J; Stick, D; Yeo, M

    2005-01-01

    We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf ion trap sections that are joined at a 90 degree angle to form a T-shaped structure. We shuttle a single ion around the corners of the T-junction and swap the positions of two crystallized ions using voltage sequences designed to accommodate the nontrivial electrical potential near the junction. Full two-dimensional control of multiple ions demonstrated in this system may be crucial for the realization of scalable ion trap quantum computation and the implementation of quantum networks.

  17. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  18. Ion beam steering with a high intensity electron beam

    International Nuclear Information System (INIS)

    In conventional theory, steering or bending an ion beam of high energy and high current requires very intense magnetic fields, which are both uneconomical and bulky. This problem is even more severe for a singly charged ion beam with very high atomic number, which requires large magnetic field energy both to bend and also to focus the beam against its self electric field. In this paper we present a new and simple technique, which will substantially alleviate these problems

  19. Simulation studies for ion beam extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, M.M.; Zakhary, S.G. [Atomic Energy, Cairo (Egypt). Nuclear Research Center. Accelerators and Ion Sources Dept.], e-mail: moustafa82003@yahoo.com

    2009-06-15

    The characteristics of the ion beam extracted from an ion sources were investigated using computer code SIMION 3 D Version 7.0. It has been used to evaluate the extraction system in order to produce an ion beam with high current and low beam emittance. The results show that the shape of the extraction electrode plays an important role in ion beam formation. Comparison has been made between two extraction systems, Pierce extraction electrode and spherical extraction electrode. The results show that the spherical extraction system yields ion extraction beam with lower emittance and radius than that the Pierce system. The simulation can provide the basis for optimizing the extraction system and the acceleration gap for ion source. (author)

  20. Characteristics of Ion Activation and Collision Induced Dissociation Using Digital Ion Trap Technology

    Science.gov (United States)

    Xu, Fuxing; Dang, Qiankun; Dai, Xinhua; Fang, Xiang; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2016-05-01

    Collision induced dissociation (CID) is one of the most established techniques for tandem mass spectrometry analysis. The CID of mass selected ion could be realized by ion resonance excitation with a digital rectangular waveform. The method is simple, and highly efficient CID result could be obtained by optimizing the experimental parameters, such as digital waveform voltage, frequency, and q value. In this work, the relationship between ion trapping waveform voltage and frequency at preselected q value, the relationship between waveform frequency and the q value at certain ion trapping voltage for optimum CID efficiency were investigated. Experiment results showed that the max CID efficiency of precursor reserpine ions can be obtained at different trapping waveform voltage and frequency when q and β are different. Based on systematic experimental analysis, the optimum experimental conditions for high CID efficiency can be calculated at any selected β or q. By using digital ion trap technology, the CID process and efficient fragmentation of parent ions can be realized by simply changing the trapping waveform amplitude, frequency, and the β values in the digital ion trap mass spectrometry. The technology and method are simple. It has potential use in ion trap mass spectrometry.

  1. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens;

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  2. Experiments towards quantum information with trapped Calcium ions

    CERN Document Server

    Leibfried, D; Barton, P; Rohde, H; Gulde, S T; Mundt, A B; Reymond, G; Lederbauer, M; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2000-01-01

    Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap is the prerequisite for quantum information experiments with trapped ions. With resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we have cooled one and two 40Ca+ ions to the ground state of vibration with up to 99.9% probability. With a novel cooling scheme utilizing electromagnetically induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the motional ground state we have demonstrated coherent quantum state manipulation on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations within 1.4 ms have been observed in the motional ground state and in the n=1 Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more than 5 micron for up to 4 ions. We are able to cool two ions to the ground state in...

  3. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  4. Towards Laser Cooling Trapped Ions with Telecom Light

    Science.gov (United States)

    Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  5. Quantum computing with trapped ions, atoms and light

    International Nuclear Information System (INIS)

    We consider experimental issues relevant to quantum computing, and discuss the best way to achieve the essential requirements of reliable quantum memory and gate operations. Nuclear spins in trapped ions or atoms are a very promising candidate for the qubits. We estimate the parameters required to couple atoms using light via cavity QED in order to achieve quantum gates. We briefly comment on recent improvements to the Cirac-Zoller method for coupling trapped ions via their vibrational degree of freedom. Error processes result in a trade-off between quantum gate speed and failure probability. A useful quantum computer does appear to be feasible using a combination of ion trap and optical methods. The best understood method to stabilize a large computer relies on quantum error correction. The essential ideas of this are discussed, and recent estimates of the noise requirements in a quantum computing device are given

  6. Scalable Digital Hardware for a Trapped Ion Quantum Computer

    CERN Document Server

    Mount, Emily; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-01-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for trapping and cooling the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  7. Laser ablation loading of a radiofrequency ion trap

    CERN Document Server

    Zimmermann, K; Herrera-Sancho, O A; Peik, E

    2012-01-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 10^5 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  8. Laser ablation loading of a radiofrequency ion trap

    Science.gov (United States)

    Zimmermann, K.; Okhapkin, M. V.; Herrera-Sancho, O. A.; Peik, E.

    2012-06-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10-7 to 10-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  9. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens;

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewha...... smaller than that of the beam. The dispersion relation was in good agreement with theory.......Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  10. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  11. Laser cooling of a stored ion beam: A first step towards crystalline beams

    International Nuclear Information System (INIS)

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid

  12. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    Science.gov (United States)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  13. Preparation of multicomponent motional coherent and squeezed coherent states of a trapped ion

    Institute of Scientific and Technical Information of China (English)

    Li Jia-Hua; Yang Wen-Xing; Peng Ju-Cun

    2004-01-01

    In this paper, we present a scheme for preparation of multicomponent motional coherent and squeezed coherent states of the quantized centre of mass of an ion trapped in a one-dimensional harmonic potential and driven by two travelling-wave laser beams tuned to the nth red and blue vibrational sidebands, respectively. In addition, our scheme also provides experimental possibility for quantum state engineering.

  14. Focused Ion Beam Technology for Optoelectronic Devices

    Science.gov (United States)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  15. Kingdon trap apparatus and technique for precise measurement of the lifetimes of metastable levels of ions

    International Nuclear Information System (INIS)

    A portable system consisting of a Kingdon electrostatic ion trap and associated vacuum system and electronics has been especially designed to capture multiply charged ions from a beam produced by an electron cyclotron resonance ion source and to measure the lifetimes of the decays of metastable levels of these ions, which are excited in the source. Measurements on ion charge states as high as 14+ have been completed, with precisions exceeding 1% achieved with a few hours of data collection time in favorable cases. Gaseous and metallic ions of astrophysical interest have been studied. The measured lifetime of the 3s23p21D2 level of Mn11+, τ=11.16±0.10 ms, is discussed as an example of the apparatus capabilities. copyright 1998 American Institute of Physics

  16. Lifetimes of metastable ion clouds in a Paul trap: Power-law scaling

    Science.gov (United States)

    Weiss, D. K.; Nam, Y. S.; Blümel, R.

    2016-04-01

    It is well known that ions stored in a Paul trap, one of the most versatile tools in atomic, molecular, and optical (AMO) physics, may undergo a transition from a disordered cloud state to a geometrically well-ordered crystalline state, the Wigner crystal. In this paper we predict that close to the transition, the average lifetime τ¯m of the metastable cloud follows a power law, τ¯m˜(γ-γc) -β , where γc is the value of the damping constant at which the transition occurs. The exponent β depends on the trap control parameter q , but is independent of both the number of particles N stored in the trap and the trap control parameter a , which determines the shape (oblate, prolate, or spherical) of the ion cloud. In addition, we find that for given a and q , γc scales approximately like γc=C ln[ln(N ) ] +D as a function of N , where C and D are constants. Our predictions may be tested experimentally with equipment already available at many AMO laboratories. In addition to their importance in AMO trap physics, we also discuss possible applications of our results to other periodically driven many-particle systems, such as, e.g., particle accelerator beams, and, based on our trap results, conjecture that power laws characterize the phase transition to the Wigner crystal in all such systems.

  17. A quantum parametric oscillator with trapped ions

    CERN Document Server

    Ding, Shiqian; Hablutzel, Roland; Loh, Huanqian; Matsukevich, Dzmitry

    2015-01-01

    A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion ...

  18. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; Garimella, Venkata BS; Zhang, Xing; Hamid, Ahmed M.; Deng, Liulin; Karnesky, William E.; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin Shammel; Smith, Richard D.

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. A linear increase in ion intensity was observed with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.

  19. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  20. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  1. Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces

    CERN Document Server

    Kireeff-Covo, Michel; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Friedman, Alex; Grote, D P; Kwan, Joe W; Lund, Steven M; Molvik, Arthur; Seidl, Peter; Vay, Jean-Luc; Vujic, Jasmina L; Westenskow, Glen

    2005-01-01

    The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

  2. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  3. Atom trapping in a bottle beam created by a diffractive optical element

    CERN Document Server

    Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

    2013-01-01

    A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

  4. Beta-delayed neutron spectroscopy using trapped radioactive ions

    OpenAIRE

    Yee, Ryan Matthew

    2013-01-01

    A novel technique for beta-delayed neutron spectroscopy has been developed using trapped radioactive ions. The neutron energy spectrum was reconstructed by measuring the time of flight (TOF) of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection such as backgrounds from scattered neutrons and gamma rays and complicated detector-response functions. A proof-of-principle measurement was conducted on 137I+ by delivering ions from a ...

  5. Fast generation of cluster states in a linear ion trap

    International Nuclear Information System (INIS)

    We propose a practical scheme to generate cluster states by simultaneously accomplishing two-qubit conditional gating on an array of equidistant ions by using transverse modes. Our operation is robust to heating and insensitive to Lamb–Dicke parameter. Meanwhile, as it is carried out in a geometric quantum computing fashion, our scheme enables the fast and high-fidelity generation of cluster states. The experimental feasibility is discussed with sophisticated ion trap techniques. (general)

  6. Arbitrary Waveform Generator for Quantum Information Processing with Trapped Ions

    OpenAIRE

    R. Bowler; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.

    2013-01-01

    Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logi...

  7. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  8. Establishment of Ion Beam Technology for Breeding

    International Nuclear Information System (INIS)

    We have begun to investigate the characteristics of ion beams for inducing mutation from a molecular to a phenotypic level. Mutation induction rates were investigated using known visible Arabidopsis mutant phenotypes, such as glabra (gl) and transparent testa (tt). These observations indicated that mutation frequencies induced by carbon ions were twenty-fold higher than those induced by electrons. Molecular analyses showed that half of the mutants induced by ion beams possessed large DNA alterations, while the rest had point-like mutations. The common feature of mutations induced by ion beams is the deletion of several bases. It is possible that ion beams induce a limited number of large and irreparable DNA lesions, resulting in the production of null mutations that show a new mutant phenotype. Novel mutants, such as those that are UV-B resistant, have serrated petals and sepals, or lack anthocyanins, have been induced by 220 MeV carbon ions in Arabidopsis. The mutated genes were found to encode novel and key proteins for each process. In chrysanthemum and carnation, several kinds of flower-color and flower-form mutants that have never been produced by Gamma-rays or X-rays were induced by carbon ions. These observations indicate that the characteristics of mutations induced by ion beams are high frequency and broad spectrum, and produce novel mutants. Many breeding programmes are using mutants induced by ion beams and successfully producing useful new crop varieties. (author)

  9. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T/T>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  10. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  11. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Czech Academy of Sciences Publication Activity Database

    Souček, Jan; Escoubet, C. P.

    2011-01-01

    Roč. 29, - (2011), s. 1049-1060. ISSN 0992-7689 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror mode waves * trapped particles * magnetosheath ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.842, year: 2011 http://www.ann-geophys.net/29/1049/2011/angeo-29-1049-2011.pdf

  12. Experimental realization of fast ion separation in segmented Paul traps

    CERN Document Server

    Ruster, Thomas; Kaufmann, Henning; Schmiegelow, Christian T; Walther, A; Hettrich, Max; Pfister, Andreas; Kaushal, Vidyut; Schmidt-Kaler, Ferdinand; Poschinger, Ulrich G

    2014-01-01

    We experimentally demonstrate fast separation of a two-ion crystal in a microstructured segmented Paul trap. By the use of spectroscopic calibration routines for the electrostatic trap potentials, we achieve the required precise control of the ion trajectories near the \\textit{critical point}, where the harmonic confinement by the external potential vanishes. The separation procedure can be controlled by three parameters: A static potential tilt, a voltage offset at the critical point, and the total duration of the process. We show how to optimize the control parameters by measurements of ion distances, trap frequencies and the final motional excitation. At a separation duration of $80 \\mu$s, we achieve a minimum mean excitation of $\\bar{n} = 4.16(0.16)$ vibrational quanta per ion, which is consistent with the adiabatic limit given by our particular trap. We show that for fast separation times, oscillatory motion is excited, while a predominantly thermal state is obtained for long times. The presented techniq...

  13. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  14. Quantum Communication in the Ion-Trapped System

    Science.gov (United States)

    Xu, Xiong

    2016-03-01

    A theoretical scheme of quantum communication is proposed in the context of ion-trapped systems. According to the results, the receiver can obtain different secret messages in a deterministic way. Our scheme is insensitive to both the initial vibrational state and heating. The probability of the success in our scheme is 1.0.

  15. Ion-beam nitriding of steels

    Science.gov (United States)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  16. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  17. Ion-optically driven depth compensation for ion beam tracking

    International Nuclear Information System (INIS)

    The beam delivery system for scanned carbon ion beam radiotherapy at GSI has been extended in research mode to irradiate moving targets. For beam tracking, the ion beam is adapted laterally as well as in range corresponding to the target's three dimensional (3D) motion. A beam tracking system with a motorized double wedge system for fast and accurate range adaptation has been developed. In addition to the current range adaptation system a much faster method for online energy modulation is being investigated where a fine focused ion beam is dynamically positioned, controlled by fast dipole magnets, on a small static wedge shaped absorber within the beam line. Experiments were performed at the therapy beam line to study the beam shift from central axis by the first dipole magnet up to the maximum limit where the beam can be deflected back to central axis by the second dipole magnet. Beam profiles were measured at different locations of the beam delivery system. The particle transmission was measured as well at the target position. Experiments were supported by Monte Carlo simulations for energy variation studies and for assessing the influence on beam profiles using MOCADI code

  18. Quantum Energy Teleportation with Trapped Ions

    CERN Document Server

    Hotta, Masahiro

    2009-01-01

    We analyze a protocol of quantum energy teleportation that transports energy from the left edge of a linear ion crystal to the right edge by local operations and classical communication at a speed much higher than the speed of the phonon in the crystal. A probe qubit is strongly coupled with the phonon fluctuation in the ground state during short time and is projectively measured in order to get information about this phonon fluctuation. During the measurement process, phonons are excited by the time-dependent measurement interaction and energy of the excited phonons must be infused from outside the system. The obtained information is announced to the right edge of the crystal through a classical channel. Even though the phonons excited at the left edge do not arrive at the right edge yet when the information arrives at the right edge, we are able to soon extract energy from the ion at the right edge by using the announced information. Because the intermediate ions of the crystal are not excited during the ex...

  19. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  20. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    Science.gov (United States)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  1. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe26+ approximately 4x1010 h/s, Asub(r)sup(12+) approximately 1012 h/s intensive ion beams are produced. In the laser source a full number of C6+ ions during one laser pulse constitutes not less than 1010 from the 5x10mm2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached

  2. Overview of light-ion beam therapy

    International Nuclear Information System (INIS)

    This overview of light-ion beam therapy covers the following topics: a history of hadron therapy, light-ion beam therapy, beam fragmentation, the biological rationale for the clinical use of light ions, the physical parameters of clinical beams, distributions of relative biological effectiveness (RBE) and linear energy transfer (LET), verification of treatment planning and delivery using charged particle beams, ion beam research in space biology, clinical trials using light ions, and the relationship between the present report and other IAEA and ICRU reports. There are plans for four national centres using light ions, in Germany, France, Austria, and Italy. There is an increasing interest in further initiatives and more countries are expressing interest in creating national projects, in particular Sweden, the Netherlands, Belgium, Spain and the UK. In Japan, another carbon-ion therapy facility project has started, and three additional facilities are planned. There are other initiatives for light-ion facilities in several locations in the USA, in China, and in Korea. (author)

  3. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  4. Universal Control of Ion Qubits in a Scalable Microfabricated Planar Trap

    CERN Document Server

    Herold, Creston D; Merrill, J True; Meier, Adam M; Brown, Kenton R; Volin, Curtis; Amini, Jason M

    2015-01-01

    We demonstrate universal quantum control over chains of ions in a surface-electrode ion trap, including all the fundamental operations necessary to perform algorithms in a one-dimensional, nearest-neighbor quantum computing architecture. We realize both single-qubit operations and nearest-neighbor entangling gates with Raman laser beams, and we interleave the two gate types. We report average single-qubit gate fidelities as high as 0.970(1) for two-, three-, and four-ion chains, characterized with randomized benchmarking. We generate Bell states between the nearest-neighbor pairs of a three-ion chain, with fidelity up to 0.84(2). We combine one- and two-qubit gates to perform quantum process tomography of a CNOT gate in a two-ion chain, and we report an overall fidelity of 0.76(3).

  5. Silicon nitride layers on tool steel produced by ion beam mixing and ion beam assisted deposition

    International Nuclear Information System (INIS)

    Silicon nitride layers on tool steel are produced both, by Kr+ implantation into reactively sputtered Si3N4 on steel (ion beam mixing) and N2+ implantation into evaporated Si on steel (ion beam assisted deposition). Atomic concentration profiles of Fe and Si measured by RBS and XPS show interface mixing. After ion beam assisted deposition complete Si-N compound formation takes place as shown by XPS. Ion beam mixing of Si3N4/steel decreases the etch rate in hydrochloric acid by 50% with respect to uncovered steel. After flash lamp annealing the ion irradiated silicon nitride layer becomes stable against the aggressive acid used. (author)

  6. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  7. Scalable digital hardware for a trapped ion quantum computer

    Science.gov (United States)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-09-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  8. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    Science.gov (United States)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  9. Low energy hydrogen ion beams in silicon processing

    International Nuclear Information System (INIS)

    Effects of low energy hydrogen ion beams in silicon processing were studied. It was found that exposing Si to a beam of low energy ions induced extensive lattice damage at the Si surface. H passivation studies were extended to include point defects in the semiconductor bulk. These studies indicate that the role of H ions in altering the concentration of active traps in the semiconductor could be explained in a unifying manner, by taking into account the interaction of Si interstitials with point defects in the Si bulk. These interstitials are created at the Si surface when it is bombarded by energetic ions. Shallow acceptor neutralization was seen in the bulk of boron-doped, Ar+ or H+ bombarded Si, when the sample temperature during the ion-beam exposure was kept below 600C. Although these results strongly suggest that the compensation effect is not H related, the possibility of H contamination of Si from water vapor in the vacuum chamber prevented the author from completely ruling out H induced compensation as the cause of acceptor compensation. Finally, using H as a passivating agent, a novel process to fabricate ion-implanted junctions using low-temperature (T 0C), was demonstrated for both majority- and minority-carrier devices. The implications of this research have also been discussed

  10. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  11. Ion beam induced alignment of semiconductor nanowires

    International Nuclear Information System (INIS)

    Epitaxially grown GaAs nanowires were irradiated with different kinds of energetic ions. The growth substrates were GaAs, and the nanowires grow under an angle of 35 circle. A bending of the nanowires was observed under ion beam irradiation, where the direction and magnitude of the bending depends on the energy, the species, and fluence of the incident ions. By choosing suitable ion beam parameters the nanowires could be realigned towards the ion beam direction. In order to understand the underlying mechanisms, computer simulations of the ion irradiation were done using a special version of TRIM which accounts for the geometry of the nanowires. The simulated distributions indicate vacancy and interstitial formation within the implantation cascade as the key mechanism for bending.

  12. Effects of multiple ion species on two-dimensional trapped-electron modes

    International Nuclear Information System (INIS)

    Previous calculations for the two-dimensional spatial structure of drift and trapped-electron modes in tokamaks are generalized to include an arbitrary number of ion species. Thus, it is possible to determine the influence of light or heavy impurity ions, and of multiple hydrogen isotopes, on these instabilities. As an example, results are presented for the case of a single light impurity species. Here the effect is found to be either stabilizing or destabilizing, depending on specific parameters, such as the equilibrium density profiles. Moreover, if a sufficiently idealized model is adopted, beam ion effects can also be studied. In the case considered, corresponding to the neutral-beam-heated PLT, these effects are found to be stabilizing

  13. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    Science.gov (United States)

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications. PMID:27176945

  14. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili

    2007-09-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 {micro}m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  15. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  16. Synthetic gauge fields for vibrational excitations of trapped ions.

    Science.gov (United States)

    Bermudez, Alejandro; Schaetz, Tobias; Porras, Diego

    2011-10-01

    The vibrations of a collection of ions in a microtrap array can be described in terms of tunneling phonons. We show that the vibrational couplings may be tailored by using a gradient of the trap frequencies together with a periodic driving of the trapping potentials. These ingredients allow us to induce effective gauge fields on the vibrational excitations, such that phonons mimic the behavior of charged particles in a magnetic field. In particular, microtrap arrays are well suited to realize a quantum simulator of the famous Aharonov-Bohm effect and observe the paradigmatic edge states typical from quantum-Hall samples and topological insulators. PMID:22107274

  17. Photoionization and Photoelectric Loading of Barium Ion Traps

    CERN Document Server

    Steele, A V; Churchill, L R; Griffin, P F

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.

  18. Photoionization and Photoelectric Loading of Barium Ion Traps

    OpenAIRE

    Steele, A. V.; Churchill, L. R.; Griffin, P. F.; Chapman, M. S.

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading t...

  19. Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions

    OpenAIRE

    Andelkovic, Z.; Cazan, R.; Nörtershäuser, W.(Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany); Bharadia, S.; Segal, D. M.; Thompson, R. C.; Jöhren, R. (Raphael); Vollbrecht, J.; Hannen, V.; M. Vogel

    2012-01-01

    We have performed laser cooling of Mg ions confined in a Penning trap. The externally produced ions were captured in flight, stored and laser cooled. Laser-induced fluorescence was observed perpendicular to the cooling laser axis. Optical detection down to the single ion level together with electronic detection of the ion oscillations inside the Penning trap have been used to acquire information on the ion storage time, ion number and ion temperature. Evidence for formation of ion crystals ha...

  20. Ion dynamics in a linear radio-frequency trap with a single cooling laser

    CERN Document Server

    Marciante, Mathieu; Calisti, Annette; Pedregosa-Guttierez, Jofre; Knoop, Martina

    2010-01-01

    We analyse the possibility of cooling ions with a single laser beam, thanks to the coupling between the three components of their motion, induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial plane. We use Molecular Dynamics simulations where the laser cooling is modeled by a stochastic process. For each component of the motion, we systematically study the dependence of the temperature with the anisotropy of the trapping potential. Results obtained using the full radio-frequency (rf) potential are compared to those of the corresponding pseudo-potential. In the rf case, the rotation symmetry of the potential has to be broken to keep ions inside the trap. Then, as for the pseudo-potential case, we show that the efficiency of the Coulomb coupling to thermalize the components of motion depends on the geometrical configuration of the cloud. Coulomb ...

  1. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  2. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  3. Neutralization of low energy broad ion beam

    International Nuclear Information System (INIS)

    The paper is devoted to experimental and theoretical investigation of a low energy broad ion beam space charge and current compensation and ion-beam plasma (IBP), which would be created in transport space of the beam. The beam had cylindrical symmetry. The continuous uniform and hole tube like ion beams are used in the experiments. Different channels of electron appearing have been investigated for cases of neutralization due to secondary γ-electrons from the target and by electrons from glow cathode-neutralizer with metal or dielectric target. Results of neutralizing electrons energy distributions function measurements are presented as well as dependences of electron temperature and self-consisted plasma potential vs. beam parameters, ambient gas pressure, neutralizer parameters. Role of the thermoelectrons and dependence of IBP parameters on neutralizer area, location and potential are discussed. Significant role in neutralization of spatial collisional processes has been revealed even in neutralization by thermocathode. On the base of the experimental results self-consistent theoretical model have been developed, which describes the behavior of intense ion beam passing through the neutral gas at low pressure within conductive walls. The collisionless approach is used which means absence of collisional relaxation of the beam. This theory is used to derive the plasma potential and electron temperature within the beam

  4. Surface Planar Ion Chip for Linear Radio-Frequency Paul Traps

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-Yin; QU Qiu-Zhi; ZHOU Zi-Chao; LI Xiao-Lin; WANG Yu-Zhu; LIU Liang

    2007-01-01

    We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.

  5. Establishment of ion beam breeding technology

    International Nuclear Information System (INIS)

    We have first begun to investigate the characteristics of ion beams for inducing mutation from at molecular level to phenotypic level. Mutation induction rates were investigated using visible known Arabidopsis mutant phenotypes such as glabra(gl) and transparent testa(tt), indicating that mutation frequencies induced by carbon ions were 17-fold higher than those by electrons. Molecular analysis showed that half of mutants induced by ion beams possessed large DNA alterations, while the rest had point-like mutations. Both mutations induced by ion beams have common feature that deletion of several bases are predominantly induced. It is plausible that ion beams induce limited number of large and irreparable DNA damage, resulting in effectively producing null mutation that shows new mutant phenotype. On the other hands, novel mutants such as UV-B resistant, serrated petals and sepals, anthocyaninless, etc. have been induced by 220 MeV carbon ions in Arabidopsis. Those genes were also found to encode novel and key proteins for each mechanism. In chrysanthemum and carnation, several kinds of flower-color and flower-form mutants that have never produced by gamma rays or X rays were also induced by carbon ions. It is, therefore, indicated that the characteristics of ion beams for the mutation induction are high mutation frequency, broad mutation spectrum, and producing novel mutants. From these basic researches, recently a lot of practical studies on mutation breeding are being actively carried out and successfully producing useful new varieties. (author)

  6. Primary beams of an electron beam ion source (EBIS)

    International Nuclear Information System (INIS)

    Electron guns for the ion sources of the SATURN II facility were tested and compared with models. The guns tested were a gun with 36 mm diameter cathode, 7 mm, 4 mm, 4 mm with insulated Whenelt, and 8 mm. A lanthanium hexaboride cathode is presented. For the primary ion beams, zeolite and plasma sources were realized. In DIONE, which will replace CRYEBIS as ion source in SATURNE, the density of the electron beam compressed within the maximum magnetic field can be evaluated. Results indicate a factor of 3 improvement compared with CRYEBIS. Lithium sources can be used, but gas sources do not produce significant improvements

  7. Ion Beam Energy Calibration Method for Accelerator

    International Nuclear Information System (INIS)

    Ion beam energy calibration methods, i e : nuclear reaction method, magnetic field method and calorimeter method were elaborated and studied from its advantage and disadvantage in this paper. Ion beam energy calibration method for accelerator using the method of magnetic field on 3 MV Tandem Accelerator have been carried out at Tiara, JAERI, Japan. The result showed that the energy of ion beam current is 43.56 keV. The result of study conclude that nuclear reaction method generally used to calibrate ion beam energy at the accelerator of energy larger than 2 MeV, calorimetric method for the accelerator electron including linac, magnetic field method for all particle type of accelerator. (author)

  8. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm2 have been obtained for pulse lengths on the order of 10-7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  9. Applications of focused ion beams in microelectronics

    International Nuclear Information System (INIS)

    We present the conclusions of the RSRE programme on the application of focused ion beams in microelectronics and review the literature published in this field. We discuss the design and performance of focused beam implanters and the viability of their application to semiconductor device fabrication. Applications in the areas of lithography, direct implantation and micromachining are discussed in detail. Comparisons are made between the use of focused ion beams and existing techniques for these fabrication processes with a strong emphasis placed on the relative throughputs. We present results on a novel spot size measurement technique and the effect of beam heating on resist. We also present the results of studies into implantation passivation of resist to oxygen plasma attack as basis for a dry development lithography scheme. A novel lithography system employing flood electron exposure from a photocathode which is patterned by a focused ion beam which can also be used to repair mask defects is considered. (author)

  10. Ultrasensitive detection of force and displacement using trapped ions

    Science.gov (United States)

    Biercuk, Michael J.; Uys, Hermann; Britton, Joe W.; Vandevender, Aaron P.; Bollinger, John J.

    2010-09-01

    The ability to detect extremely small forces and nanoscale displacements is vital for disciplines such as precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN Hz-1/2 (refs 6,7) through coupling of nanomechanical resonators to a variety of physical readout systems. Here, we demonstrate that crystals of trapped atomic ions behave as nanoscale mechanical oscillators and may form the core of exquisitely sensitive force and displacement detectors. We report the detection of forces with a sensitivity of 390 +/- 150 yN Hz-1/2, which is more than three orders of magnitude better than existing reports using nanofabricated devices7, and discriminate ion displacements of ~18 nm. Our technique is based on the excitation of tunable normal motional modes in an ion trap and detection through phase-coherent Doppler velocimetry, and should ultimately allow force detection with a sensitivity better than 1 yN Hz-1/2 (ref. 16). Trapped-ion-based sensors could enable scientists to explore new regimes in materials science where augmented force, field and displacement sensitivity may be traded against reduced spatial resolution.

  11. Cryogenic Linear Ion Trap for Large-Scale Quantum Simulations

    Science.gov (United States)

    Kaplan, H. B.; Hess, P. W.; Pagano, G.; Birckelbaw, E. J.; Hernandez, M.; Lee, A. C.; Smith, J.; Zhang, J.; Monroe, C.

    2016-05-01

    Ions confined in RF Paul traps are a useful tool for quantum simulation of long-range spin-spin interaction models. As the system size increases, classical simulation methods become incapable of modeling the exponentially growing Hilbert space, necessitating quantum simulation for precise predictions. Current experiments are limited to less than 30 qubits due to collisions with background gas that regularly destroys the ion crystal. We present progress toward the construction of a cryogenic ion trap apparatus, which uses differential cryopumping to reduce vacuum pressure to a level where collisions do not occur. This should allow robust trapping of about 100 ions/qubits in a single chain with long lifetimes. Such a long chain will provide a platform to investigate simultaneously cooling of various vibrational modes and will enable quantum simulations that outperform their classical counterpart. Our apparatus will provide a powerful test-bed to investigate a large variety of Hamiltonians, including spin 1 and spin 1/2 systems with Ising or XY interactions. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  12. Fast ignition by quasimonoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    Honrubia J.J.

    2013-11-01

    Full Text Available The potential of quasimonoenergetic ion beams for fast ignition (FI of fusion targets is investigated. Lithium, carbon, aluminium and vanadium ions have been considered here to determine the optimal kinetic energy for each ion type. Our calculations show that the ignition energies of those beams impinging on a standard fuel configuration are similar. However, they are obtained for very different ion energies. Assuming that the ions can be focused onto 10 μm spots, a new irradiation scheme that reduces substantially the ignition energies is proposed. The combination of using intermediate ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows one to reduce the number of ions required for ignition by roughly three orders of magnitude when compared with the standard proton FI scheme.

  13. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Murrell, J. [Defence Science and Detection Department (Dstl), Wiltshire, UK; Despeyroux, D. [Defence Science and Detection Department (Dstl), Wiltshire, UK; Lammert, Stephen {Steve} A [ORNL; Stephenson Jr, James {Jim} L [ORNL; Goeringer, Doug [ORNL

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  14. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  15. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  16. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  17. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  18. ELECTRON TRANSFER COLLISION OF NEON IONS WITH Ne IN A RF ION TRAP

    Institute of Scientific and Technical Information of China (English)

    满宝元; 王象泰; 等

    1995-01-01

    The pulsed electron beam rf ion stroage system is used to study neon ions electron transfer,The rate coefficients for electron transfer of the neon ions with the neon gas are measured.the results are better than those in other ion storage system.

  19. Superintense ion beam with high energy density

    Science.gov (United States)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  20. Microchip and wedge ion funnels and planar ion beam analyzers using same

    Science.gov (United States)

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  1. Dipole Field Effects On Ion Ejections From A Paul Ion Trap

    International Nuclear Information System (INIS)

    Attempts at improving the quality of mass spectra obtained from a Paul trap mass spectrometer prompted an investigation of the effects of additional fields to supplement the primary rf quadrupole trapping field. Reported here are the results of the first in a series of tests that focuses on the application of a single dipole field to augment the trapping and subsequent ejections of ions stored within a Paul trap. Measurements are presented for a fixed quadrupole frequency with varying dipole frequencies. The presence of the dipole field during the quadrupole trapping phase causes ion ejections of single m/z species at discrete dipole frequencies. During the mass analysis phase, the varying dipole frequency produces a complex set of resonant structures that impact ejection time (mass range), as well as mass spectral peak intensity and width.

  2. Plasma-Based Ion Beam Sources

    International Nuclear Information System (INIS)

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  3. Yocto-Newton force detection sensitivity using trapped ions

    CERN Document Server

    Biercuk, M J; Britton, J W; VanDevender, A P; Bollinger, J J

    2010-01-01

    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have reached $aN/\\sqrt{Hz}$ (atto $=10^{-18}$) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 $yN$ (yocto $=10^{-24}$), with a sensitivity 390$\\pm150$ $yN/\\sqrt{Hz}$ using crystals of $n=$ 60 $^{9}$Be$^{+}$ ions in a Penning trap. Our tech...

  4. Quantum-enhanced deliberation of learning agents using trapped ions

    International Nuclear Information System (INIS)

    A scheme that successfully employs quantum mechanics in the design of autonomous learning agents has recently been reported in the context of the projective simulation (PS) model for artificial intelligence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via random walks, was shown to be amenable to quantization, allowing for a speed-up. In this work we propose an implementation of such classical and quantum agents in systems of trapped ions. We employ a generic construction by which the classical agents are ‘upgraded’ to their quantum counterparts by a nested process of adding coherent control, and we outline how this construction can be realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents. Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of our proposal under certain noise models. (paper)

  5. Storage of Entangled States with Multiple Trapped Ions in Thermal Motion

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents an alternative scheme to realize the storage of entangled states for multiple trapped ions including W state, Bell states, and GHZ states even with ions which exchange vibrational energy with a heating surrounding. Our scheme requires that the ions be simultaneously excited by two laser beams with different frequencies.In this scheme the vibrational degrees of freedom are only regarded as intermediate states and the ions exchange energy via the mediation of the vibration of the vibrational mode in coupling processes. The scheme is insensitive to both the initial vibrational state and heating if the system remains in the Lamb-Dicke regime. Since the effective Rabi frequency has a small dependence on the vibrational quantum number the heating will have no direct effect on the internal state evolution.

  6. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  7. A synchronous beam sweeper for heavy ions

    International Nuclear Information System (INIS)

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs

  8. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave

    Institute of Scientific and Technical Information of China (English)

    FANG Mao-Fa; ZHOU Peng; S. Swain

    2000-01-01

    By performing a unitary transformation, we transform the Hamiltonian of the trapped ion in any position of standing wave to that of the normal Jaynes-Cummings model in ionic bare basis and we obtain a general evolution operator of the trapped ion system. We study the quantum entropic dynamics of the phonons and trapped ion.Our results show that, when the trapped ion is located at the node of standing wave, the quantum entropic dynamics of phonons and trapped ion are the same as the one of the field in the Jaynes-Cummings model.When the trapped ion deviatesfrom the node of standing wave, the entropies of the phonons and ion keep their maximum value except at the initial stage, and the phonons and trapped ion become extremely entangled.

  9. Symplectic tomography of nonclassical states of trapped ion

    International Nuclear Information System (INIS)

    The marginal distribution for two types of nonclassical states of trapped ion - for squeezed and correlated states and for squeezed even and odd coherent states (squeezed Schroedinger cat states) is studied. The obtained marginal distribution for the two types of states is shown to satisfy classical dynamical equation equivalent to standard quantum evolution equation for density matrix (wave function) derived in symplectic tomography scheme. (author). 20 refs

  10. From Transistor to Trapped-ion Computers for Quantum Chemistry

    OpenAIRE

    M.-H. Yung; Casanova, J.; A. Mezzacapo; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control...

  11. Topologically Decoherence-Protected Qubits with Trapped Ions

    International Nuclear Information System (INIS)

    We show that trapped ions can be used to simulate a highly symmetrical Hamiltonian with eigenstates naturally protected against local sources of decoherence. This Hamiltonian involves long-range coupling between particles and provides a more efficient protection than nearest neighbor models discussed in previous works. Our results open the perspective of experimentally realizing, in controlled atomic systems, complex entangled states with decoherence times up to 9 orders of magnitude longer than isolated quantum systems

  12. Blueprint for a microwave ion trap quantum computer

    OpenAIRE

    Lekitsch, B; Weidt, S.; Fowler, A. G.; Mølmer, K.; Devitt, S. J.; Wunderlich, C.; Hensinger, W K

    2015-01-01

    A universal quantum computer will have fundamental impact on a vast number of research fields and technologies. Therefore an increasingly large scientific and industrial community is working towards the realization of such a device. A large scale quantum computer is best constructed using a modular approach. We present the blueprint for an ion trap based scalable quantum computer module which makes it possible to create an arbitrarily large quantum computer architecture powered by long-wavele...

  13. Scalable Ion Trap Quantum Computation with Pairwise Interactions Only

    CERN Document Server

    Brown, K R; Whaley, K B

    2002-01-01

    Universal ion trap computation on Decoherence Free Subspaces (DFS) using only two qubit operations is presented. The DFS is constructed for the collective dephasing model. Encoded single and two-qubit logical operations are implemented via the Sorensen-Molmer interaction. Alternation of the effective Hamiltonians for two particular phase configurations of control fields approximates an anisotropic exchange interaction. This is universal over suitable encodings of one logical qubit into three physical qubits which are also DFS under collective decoherence.

  14. Ion-beam channeling in a quasicrystal

    International Nuclear Information System (INIS)

    We have observed ion-beam channeling in a quasicrystal. For 1-MeV 4He+ ions in icosahedral Al-Cu-Fe the maximum effect found is 36%. The full width at half maximum of the observed dips is 1.3 degree. The effect persists up to great depths (>200 nm), thus showing a high degree of ordering in this phase

  15. Heavy ion observation with MIDORI satellite: trapped ACR

    CERN Document Server

    Kohno, T; Yamagiwa, I; Kato, C; Goka, T; Matsumoto, H

    1999-01-01

    The Heavy Ion Telescope (HIT) on board the Japanese earth observation satellite MIDORI (ADEOS) has observed energetic heavy ions at the circular sun-synchronous orbit with an altitude of 800 km and an inclination of 98 deg. . Geomagnetically trapped oxygen and nitrogen at L=2 are clearly observed which is similar to the results of SAMPEX. Their geographical distribution at a long belt from the southern tip of South America to that of Africa is also very close to the SAMPEX observation. The adiabaticity parameter epsilon sub m sub a sub x can be deduced as <=0.1.

  16. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  17. Quantum simulation of the dynamical Casimir effect with trapped ions

    Science.gov (United States)

    Trautmann, N.; Hauke, P.

    2016-04-01

    Quantum vacuum fluctuations are a direct manifestation of Heisenberg’s uncertainty principle. The dynamical Casimir effect (DCE) allows for the observation of these vacuum fluctuations by turning them into real, observable photons. However, the observation of this effect in a cavity QED experiment would require the rapid variation of the length of a cavity with relativistic velocities, a daunting challenge. Here, we propose a quantum simulation of the DCE using an ion chain confined in a segmented ion trap. We derive a discrete model that enables us to map the dynamics of the multimode radiation field inside a variable-length cavity to radial phonons of the ion crystal. We perform a numerical study comparing the ion-chain quantum simulation under realistic experimental parameters to an ideal Fabry–Perot cavity, demonstrating the viability of the mapping. The proposed quantum simulator, therefore, allows for probing the photon (respectively phonon) production caused by the DCE on the single photon level.

  18. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.;

    2011-01-01

    Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter...... deviating from using perfectly counter-propagating beams to use oblique beams can improve the axial stability of the traps and improve the axial trapping stiffness. These alternative geometries can be particularly useful for handling larger particles. These results hint at a rich potential for light shaping......-propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show that...

  19. Computer simulation of the gap-tripole ion trap with linear injection, 3D ion accumulation, and versatile packet ejection.

    Science.gov (United States)

    Salazar, Gary A; Masujima, Tsutomu

    2008-09-01

    The behavior of a completely new ion trap is shown with SIMION 7.0 simulations. The simulated trap, which was a mix of a linear and a 3D trap, was made by axially setting two ion guides with a gap between them. Each guide consisted of three rods with three symmetrically delayed radio frequency (rf) voltages (tripole). The "injected" ions were linearly contained by pulsed potentials on the entrance and exit plates. Then the three-dimensional (3D) rf field in the gap, which was created by the tripole special rod arrangement, could trap the ions when the translational energy was dampened by collisions with low-pressure nitrogen. Because the injected ions were trapped in the small gap, the trapping cycle could be repeated many times before ion ejection, so a high concentrated ion cloud could be obtained. This trapping and accumulation methodology is not possible in most conventional multipole linear traps with even number of poles. Compared with quadrupole linear trap at the same rf amplitude, tripole lost more ions due to strong charge repulsion in the ion cloud. However, tripole could catch up the ions at higher voltage. Radial and axial mass-independent ejection of the ions localized in the tripole gap was very simple, compared with conventional linear ion traps that need extra and complicated electrodes for effective axial ejection. PMID:18635376

  20. Experimental dynamic trapping of electrostatically actuated bistable micro-beams

    Science.gov (United States)

    Medina, Lior; Gilat, Rivka; Robert Ilic, B.; Krylov, Slava

    2016-02-01

    We demonstrate a dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. The nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of the micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.

  1. Holifield Radioactive Ion Beam Facility Status

    International Nuclear Information System (INIS)

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) produces high-quality beams of short-lived radioactive isotopes for nuclear science research, and is currently unique worldwide in the ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier. HRIBF is undergoing a multi-phase upgrade. Phase I (completed 2005) was construction of the High Power Target Laboratory to provide the on-going Isotope Separator On-Line (ISOL) development program with a venue for testing new targets, ion sources, and radioactive ion beam (RIB) production techniques with high-power beams. Phase II, which is on schedule for completion in September 2009, is the Injector for Radioactive Ion Species 2 (IRIS2), a second RIB production station that will improve facility reliability and accommodate new ion sources, new RIB production targets, and some innovative RIB purification techniques, including laser applications. The Phase III goal is to substantially improve facility performance by replacing or supplementing the Oak Ridge Isochronous Cyclotron (ORIC) production accelerator with either a high-power 25-50 MeV electron accelerator or a high-current multi-beam commercial cyclotron. Either upgrade is applicable to R and D on isotope production for medical or other applications.

  2. Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

    CERN Document Server

    Allcock, D T C; Janacek, H A; Linke, N M; Ballance, C J; Steane, A M; Lucas, D M; Jarecki, R L; Habermehl, S D; Blain, M G; Stick, D; Moehring, D L

    2011-01-01

    We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.

  3. Laser-cooled continuous ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  4. Maskless micro-ion-beam reduction lithography

    International Nuclear Information System (INIS)

    An ion projection lithography (IPL) technique called maskless micro-ion-beam reduction lithography (MMRL) is being studied for future dynamic random access memory and microprocessors manufacturing. In addition to minimum feature sizes of 50 nm or less required of next generation lithography, this MMRL system is proposed to completely eliminate the first stage of the conventional IPL system that contains the complicated beam optics design in front of the stencil mask and the mask itself. Its main components consist of a multi-cusp, rf plasma generator, a multi-beamlet extraction system, and an accelerator column for beam reduction. The viability of this MMRL system hinges upon the successful development of these components, most importantly the proposed all-electrostatic accelerator column. This article describes the different components of the MMRL system and its ion optics. Computational results of beam demagnification and optics optimization are also presented along with design progress of the prototype MMRL system. (c) 1999 American Vacuum Society

  5. Precise formation of geometrically focused ion beams

    International Nuclear Information System (INIS)

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by ∼50%

  6. Ions beams and ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The

  7. Cleaning techniques for intense ion beam sources

    International Nuclear Information System (INIS)

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE. The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O2 can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated

  8. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  9. Injection line of 1+ ion beam for electron beam ion-charge breeding source and related beam elements

    International Nuclear Information System (INIS)

    Main purpose of the electron beam ion-charge breeding source (EBIBS) is to produce highly pure and highly charged ion beam from single charge ion of stable or radioactive species. It can accept low emittance ion beam from either online or offline ECR ion sources (ECRIS). The emittance of the extracted beam is low at lower RF frequencies and magnetic field of the ECRIS. The beam at the position of extraction is approximately reproduced at the entrance of the electron collector of the EBIBS. The beam moves forward under the influence of the negative potential deep of the electron beam and enters the ionization region in solenoid field of the EBIBS. The injection line starts at the extraction region of the ECRIS. The assumed parameters of the extracted beam of 20 keV energy and 0.0732 GeV/c momentum for injection are 10 mm diameter and 30 mrad beam divergence cone. As mass number of the ions decreases the energy decreases for constant momentum of the ion beam. The value of the momentum or the beam rigidity is judiciously chosen to encompass the most of the isotopes of various elements. The beam is focused by a quadrupole doublet and passes the beam through a 90° bending magnet. The beam is analyzed also by the dipole magnet to remove the contaminants and the selected ion beam is focused by a quadrupole doublet magnet to pass through an electrostatic 90° bending elements. The beam approaches the opening of 16 mm diameter of the electron collector. A round beam of 12 mm diameter is achieved here with the help of a quadrupole triplet through point-to-point imaging from start to the end. The transport matrices for the electrostatic bending elements were calculated and incorporated into the TRANSPORT code. (author)

  10. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...... that this instability actually evolves into such phase-space configurations. A small, but nonzero, ion-temperature turns out to be essential for the saturation into stationary structures...

  11. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  12. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  13. Ion beams replace chrome plating

    International Nuclear Information System (INIS)

    Metal ion implantation is the process of altering surface properties by bombarding with high-energy metal ions. Because the process does not produce a coating, dimensions and bulk properties of the part remain unchanged, and implanted surfaces have no problems with adhesion, residual stress, or poor microstructure. Implanted surfaces can provide wear and/or corrosion resistance comparable with, or superior to, chrome plating. Furthermore, it is a relatively low-temperature process, which enables treatment of materials such as plastics, aluminum, and low-alloy steel. Furthermore, the performance of coatings can be improved by bombarding with ions during or after the coating process. Specifically, high-energy ions applied during deposition have been shown to reduce the required temperature for physical vapor deposition (PVD) systems, overcoming one of the major obstacles to replacing chromium plating with PVD coatings. This article will review the latest advances in metal-ion implantation equipment, with particular reference to economics and applications

  14. Negative ion beam extraction in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Gourab, E-mail: bansal@ipr.res.in [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak [ITER-India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat 380025 (India)

    2013-10-15

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10{sup 12} cm{sup −3} is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm{sup 2} as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10{sup 11} cm{sup −3} has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.

  15. Comparison experiments of neon and helium buffer gases cooling in trapped 199Hg+ ions linear trap

    International Nuclear Information System (INIS)

    The influences of different buffer gas, neon and helium, on 199Hg+ clock transition are compared in trapped 199Hg+linear trap. By the technique of time domain's Ramsey separated oscillatory fields, the buffer gas pressure frequency shifts of 199Hg+ clock transition are measured to be (df/dPNe)(1/f) = 1.8 × 10−8 Torr−1 for neon and (df/dPHe)(1/f) = 9.1×10−8 Torr−1 for helium. Meanwhile, the line-width of 199Hg+ clock transition spectrum with the buffer gas neon is narrower than that with helium at the same pressure. These experimental results show that neon is a more suitable buffer gas than helium in 199Hg+ ions microwave frequency standards because of the 199Hg+ clock transition is less sensitive to neon variations and the better cooling effect of neon. The optimum operating pressure for neon is found to be about 1.0×10−5 Torr in our linear ion trap system. (atomic and molecular physics)

  16. Energy spread of ion beams generated in multicusp ion sources

    International Nuclear Information System (INIS)

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 μm patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations

  17. Laser desorption lamp ionization source for ion trap mass spectrometry.

    Science.gov (United States)

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  18. Formation of molecular ions by radiative association of cold trapped atoms and ions

    OpenAIRE

    Silva Jr, Humberto Da; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier

    2015-01-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$) and Yb$^+$, and between Li and Yb$^+$, are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radia...

  19. Ion beam processing of Au nanowires

    International Nuclear Information System (INIS)

    In nanoelectronics a nanowire forms an elemental building block enabling a charge transfer in complex nanostructures. Ion beam etching has been applied for downsizing of prefabricated Au nanowires in the sub-50 nm linewidth regime, aiming at achieving effective cross sections of less than 10 nm. Low energy Ar+ and Ga+ ions were employed for dry ion beam etching of Au nanowires. Nanometer-precise gradual downsizing to an effective diameter as small as 9 nm has been achieved when using Ar+ ions. In contrast, the chemical nature of Ga and its surface condensation into a nanosized phase turned out to act destructively on the nanowires' morphology, hampering the process of downsizing. In the surface nanocondensate Ga was found to coexist in both solid and liquid states, exhibiting polymorphism and peculiar dynamics under ion irradiation.

  20. Detection systems for radioactive ion beams

    International Nuclear Information System (INIS)

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  1. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  2. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  3. Industrial Application of Ion Beams in KOMAC

    International Nuclear Information System (INIS)

    For the last 5 years, we have performed extensive R and D efforts by ion beam to characterize metallic, ceramic, polymeric materials and have supported users from a broad range of institutions, including a large number of industries. So, in this study, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products. Through the ion beam service to users by using ion beam facilities in KOMAC, we are successfully achieved several industrial applications by ion beams. Based on verification on the industrialization feasibility by experiments, we hope to get it started to enter markets with developed technology and products. Ion implantation technology, which is one of ultramodern technologies, can be used in enhancing chemical and physical properties of materials, such as anti-corrosion, wear resistance and electrical conductivity. Comparing with conventional surface modification technologies, it does not generate toxic wastes, which can threaten the environment. It provides precise control of surface thickness and strong adherence of surface material. Therefore, this technology will be used in surface modification along with steady improvement of ion implantation technology

  4. Industrial Application of Ion Beams in KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Lee, Chanyoung; Kim, Bomsok; Choi, Hyukjun; Kim, Yongki; Kim, Hyungjin; Park, Jaewon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    For the last 5 years, we have performed extensive R and D efforts by ion beam to characterize metallic, ceramic, polymeric materials and have supported users from a broad range of institutions, including a large number of industries. So, in this study, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products. Through the ion beam service to users by using ion beam facilities in KOMAC, we are successfully achieved several industrial applications by ion beams. Based on verification on the industrialization feasibility by experiments, we hope to get it started to enter markets with developed technology and products. Ion implantation technology, which is one of ultramodern technologies, can be used in enhancing chemical and physical properties of materials, such as anti-corrosion, wear resistance and electrical conductivity. Comparing with conventional surface modification technologies, it does not generate toxic wastes, which can threaten the environment. It provides precise control of surface thickness and strong adherence of surface material. Therefore, this technology will be used in surface modification along with steady improvement of ion implantation technology.

  5. Ion beams in silicon processing and characterization

    International Nuclear Information System (INIS)

    General trends in integrated circuit technology toward smaller device dimensions, lower thermal budgets, and simplified processing steps present severe physical and engineering challenges to ion implantation. These challenges, together with the need for physically based models at exceedingly small dimensions, are leading to a new level of understanding of fundamental defect science in Si. In this article, we review the current status and future trends in ion implantation of Si at low and high energies with particular emphasis on areas where recent advances have been made and where further understanding is needed. Particularly interesting are the emerging approaches to defect and dopant distribution modeling, transient enhanced diffusion, high energy implantation and defect accumulation, and metal impurity gettering. Developments in the use of ion beams for analysis indicate much progress has been made in one-dimensional analysis, but that severe challenges for two-dimensional characterization remain. The breadth of ion beams in the semiconductor industry is illustrated by the successful use of focused beams for machining and repair, and the development of ion-based lithographic systems. This suite of ion beam processing, modeling, and analysis techniques will be explored both from the perspective of the emerging science issues and from the technological challenges. copyright 1997 American Institute of Physics

  6. Ion beam modification of buckminsterfullerene

    International Nuclear Information System (INIS)

    The response of thin films of buckminsterfullerene (C60) to energetic xenon ion impact is investigated. The diagnostics employed include Fourier Transform Infrared and Raman Spectroscopies, Cross-Sectional Transmission Electron Microscopy, and Atomic Force Microscopy. By combining the information obtained from these diagnostics with that from the dependence of the conductivity on ion dose, it is concluded that each C60 molecule completely disintegrates when hit by an energetic ion. The cross-section for the destruction of about 7 x 10-13 cm 2 for irradiation with 620 keV Xe ions. The disintegration occurs when C atoms are knocked-out of the molecule either directly by the impinging ion or by an energetic knock-on C atom with the damage cascade. This process is quite different from the Coulomb Explosion mechanism previously proposed in the literature. For very low ions doses (11 Xe/cm2) most of the C60 molecules remain intact; however this dose is sufficient to completely disrupt the ordering of the C60 molecules in the van der Waals bonded C60 solid. Disruption of the lattice ordering at such low doses is considered to be attributable to the weakness of the van der Waals forces which bind the C60 clusters together into the molecular solid. 13 refs., 7 figs

  7. Conversion electron spectroscopy of isobarically purified trapped radioactive ions

    International Nuclear Information System (INIS)

    The feasibility of the JYFLTRAP for in-trap spectroscopy has been studied. Several internally converted transitions have been measured for isomers of fission products with good accuracy. High-resolution spectroscopic data free of source effects have been obtained proving that trapped radioactive ions can provide excellent conversion electron sources. The shortest-lived isomer studied in this work was 117m Pd with a half-life of 19.1 ms, for which a superior peak-to-total ratio and an excellent line shape at the 9.9 keV conversion electron line have been observed. Detection efficiencies and related phenomena of the present setup are analyzed. (orig.)

  8. Precise determination of micromotion for trapped-ion optical clocks

    CERN Document Server

    Keller, J; Burgermeister, T; Mehlstäubler, T E

    2015-01-01

    As relative systematic frequency uncertainties in trapped-ion spectroscopy are approaching the low 10^{-18} range, motional frequency shifts account for a considerable fraction of the uncertainty budget. Micromotion, a driven motion fundamentally connected to the principle of the Paul trap, is a particular concern in these systems. In this article, we experimentally investigate at this level three common methods for minimizing and determining the micromotion amplitude. We develop a generalized model for a quantitative application of the photon-correlation technique, which is applicable in the commonly encountered regime where the transition linewidth is comparable to the rf drive frequency. We show that a fractional frequency uncertainty due to the 2nd-order Doppler shift below 1 x 10^{-20} can be achieved. The quantitative evaluation is verified in an interleaved measurement with the conceptually simpler resolved sideband method. If not performed deep within the Lamb-Dicke regime, a temperature-dependent off...

  9. High repetition rate intense ion beam diode

    International Nuclear Information System (INIS)

    A magnetically insulated ion beam diode with a gas-breakdown plasma anode has been successfully developed recently. In this paper, the authors report the experiment results of operating a version of this diode at a 1-Hz repetition rate. Intense ion beams (100ns, 200Kv and 20kA per pulse) are generated by using an inductive voltage to breakdown an annular hydrogen gas puff (8.5cm mean radius, and 160cm2 in area), and magnetically driving the resulting plasma toward a magnetically insulated accelerating gap. The high voltage pulses on the accelerating gap are supplied using two thyratron switch chassises which are connected to the diode through a series of capacitors coupled with saturable inductors. To understand the operation of the diode, the anode plasma source and the extracted ion beams are characterized by using various diagnostics

  10. Neutral Beam Ion Loss Modeling for NSTX

    International Nuclear Information System (INIS)

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: β = 23%, q0 = 0.8, and β = 40%, q0 = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case

  11. Arbitrary waveform generator for quantum information processing with trapped ions

    Science.gov (United States)

    Bowler, R.; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.

    2013-03-01

    Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of ±10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and demonstrate some of its uses in ion-based quantum information experiments, including speed-up of ion transport and the shaping of laser and microwave pulses.

  12. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    International Nuclear Information System (INIS)

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle

  13. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    International Nuclear Information System (INIS)

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction

  14. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  15. Plasma focus ion beam-scaling laws

    International Nuclear Information System (INIS)

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 – 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: Ebeam = 18.2E01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams. (author)

  16. Ion beam shaping and downsizing of nanostructures

    International Nuclear Information System (INIS)

    We report a new approach for progressive and well-controlled downsizing of nanostructures below the 10 nm scale. A low energetic ion beam (Ar+) is used for gentle surface erosion, progressively shrinking the dimensions with ∼1 nm accuracy. The method enables shaping of the nanostructure geometry and polishing of the surface. The process is clean room/high vacuum compatible being suitable for various applications. Apart from technological advantages, the method enables the study of various size phenomena on the same sample between sessions of ion beam treatment

  17. Ion beam irradiated optical channel waveguides

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Pelli, S.; Veres, M.; Himics, L.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    Vol. 8988. Washington: SPIE International, 2014, s. 898814. ISBN 978-0-8194-9901-1. ISSN 0277-786X. [Conference on Integrated Optics - Devices, materials, and Technologies XVIII. San Francisco (US), 03.02.2014-05.02.2014] R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * Er-doped tungsten-tellurite glass * bismuth germanate * SRIM simulation * phase contrast microscopy * micro Raman spectroscopy * focused ion beam Subject RIV: BH - Optics, Masers, Lasers

  18. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  19. A new precision measurement of the electron's electric dipole moment using trapped ions

    Science.gov (United States)

    Cairncross, William; Cossel, Kevin C.; Grau, Matt; Gresh, Daniel N.; Ng, Kia Boon; Ni, Yiqi; Zhou, Yan; Cornell, Eric A.; Ye, Jun

    2016-05-01

    A precision measurement of the permanent electric dipole moment of the electron (eEDM) can be used to place constraints on extensions to the Standard Model. The most sensitive measurements of the eEDM to date have used neutral atomic or molecular beams, and thus are all susceptible to similar classes of systematic errors. Here we present a competitive measurement of the eEDM in a radically different experimental scheme: a thermal cloud of HfF+ ions confined in an RF trap. The long coherence times achieved in the RF trap and the large effective electric field of a molecular system provide high sensitivity to an eEDM, while our new experimental platform permits studies of a different class of systematic errors. We will present our experimental setup, known sources of systematic error and our efforts to suppress them, and the results of our recent eEDM measurement.

  20. Electron beam dynamics and design of electron beam ion-charge breeding source

    International Nuclear Information System (INIS)

    There is a requirement to develop an electron beam ion-charge breeding source (EBIBS) to produce a highly charged and highly pure ion beam of common elements as well as rare isotopes. The EBIBS consists of an electron gun chamber, the main solenoid and ionization chamber and an electron collector chamber for attaining highly charged and pure ion beam of species. Some studies have been performed to reach appropriate design of the proposed source, The report explains certain design choices and constraints involved in developing the EBIBS. Trajectory simulation of electron beams in >5A range current has been done to determine the configuration of electrodes and magnet coils appropriate to obtain high current density electron pencil beam at the ionization region in high magnetic field of the superconducting solenoid. The electron beam starts from the high pervious electron gun and dumped on the water cooled electron collector. The background pressure in the trap region should be low enough that one does not produce a significant number of ions from the background gas. An impurity value of the order of ∼5% can be tolerated, so an acceptable range of vacuum in EBIBS, 10-10 - 10-12 mbar, is assumed. Physics design of high perveance electron gun, superconducting solenoid ionization region and the electron collector has been done and is under further study to achieve superior design of the source, The mechanical design of various components and the source bench has been started also. All these developments will be presented in the conference. (author)

  1. Ion-beam channeling in a quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    du Marchie van Voorthuysen, E.H.; Smulders, P.J.M. (Vakgroep Nucleaire Vaste Stof Fysica, University of Groningen, Westersingel 34, NL 9718 CM Groningen (Netherlands)); Werkman, R.D. (Vakgroep Vaste Stof Fysica, University of Groningen, Nijenborgh 18, NL 9747 AG Groningen (Netherlands)); de Boer, J.L.; van Smaalen, S. (Laboratory of Inorganic Chemistry, University of Groningen, Nijenborgh 16, NL 9747 AG Groningen (Netherlands))

    1992-05-01

    We have observed ion-beam channeling in a quasicrystal. For 1-MeV {sup 4}He{sup +} ions in icosahedral Al-Cu-Fe the maximum effect found is 36%. The full width at half maximum of the observed dips is 1.3{degree}. The effect persists up to great depths ({gt}200 nm), thus showing a high degree of ordering in this phase.

  2. Quantum teleportation by entanglement swapping with trapped ions

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiao-Juan; Fang Mao-Fa; Cai Jian-Wu; Liao Xiang-Ping

    2006-01-01

    An effective teleportation scheme for an unknown ionic internal state via trapped ions is proposed without joint Bell-state measurement (BSM). In the constructed quantum channel process, we make use of entanglement swapping to avoid decrease in entanglement during the distributing of particles. Thus our scheme provides new prospects for quantum teleportation in a longer distance. The distinct advantage of our scheme is insensitive to the heating of vibrational mode. Furthermore, our scheme has no any individual optical access, and the successful probability also can reach 1.

  3. Decoherence limits to quantum computation using trapped ions

    OpenAIRE

    Plenio, M. B.; Knight, P.L.

    1996-01-01

    We investigate the problem of factorization of large numbers on a quantum computer which we imagine to be realized within a linear ion trap. We derive upper bounds on the size of the numbers that can be factorized on such a quantum computer. These upper bounds are independent of the power of the applied laser. We investigate two possible ways to implement qubits, in metastable optical transitions and in Zeeman sublevels of a stable ground state, and show that in both cases the numbers that ca...

  4. Bohr-Weisskopf effect. Experiment with an ion trap

    International Nuclear Information System (INIS)

    Recent developments of ion-trap and laser-microwave spectroscopy techniques enable us to measure the ground-state hyperfine structure with very high accuracy. The magnetic hyperfine coupling constant A shows a small but finite isotope dependence called hyperfine anomaly, the main part of which stems from the finite size of the magnetization distribution in the nucleus (Bohr-Weisskopf effect). This effect affords unique and interesting probe for the valence neutron distribution in a nucleus, particularly in a so called halo nucleus. (author)

  5. Trilinear hamiltonian with trapped ions and its applications

    Science.gov (United States)

    Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry

    2016-05-01

    The model of three harmonic oscillators coupled by the trilinear Hamiltonian of the form a† bc + ab†c† can describe wide range of physical processes. We experimentally realize such interaction between three modes of motion in the system of 3 trapped Yb ions. We discuss several application of this coupling, including implementation of the quantum absorption refrigerator, simulation of the interaction between light and atoms described by a Tavis-Cummings model, simulation of the non-degenerate parametric down conversion process in the fully quantum regime and studies of a simple model of Hawking radiation.

  6. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  7. Negative ion beam formation, transport and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1981-01-01

    The BNL Neutral Beam Development Group is working on the development of negative ion based neutral beam systems, using high current density surface plasma sources of the magnetron and hollow cathode discharge (HCD) type. With the magnetron source, the plan is to transport a 2A D/sup -/ beam through a bending magnet before acceleration to 200 keV. In experiments with a pulsed magnetron, 0.4A of H/sup -/ was transported through a 90/sup 0/, n = 1, bending magnet with 80% transmission. With the lower operating pressure in the HCD source, close coupled acceleration will be applied. The MEQALAC, RFQ, and a dc accelerating scheme with periodic quadrupole focusing are considered for reaching higher energies. A preliminary experiment was performed with quadrupole beam transport and a 3.8 mA beam was transported through a series of twelve quadrupoles, with 3 mm apertures and a total length of 7.2 cm.

  8. From storage ion trap to effective accumulator-collider of accelerated fusion hydrogen nuclei

    International Nuclear Information System (INIS)

    There are a methods of electronuclear neutron generation with help of the height energy accelerator of the charged particles for transmutation of the radioactive nuclei and for production of energy. As alternative to these methods some proposal for a low-energy-consumption-electronuclear generation of the neutrons in reaction of vacuum collisions of two hydrogen ion beams, namely in the phenomenal reaction 2H+3H=4He+n having a very large resonance cross section (5.0 b) at very low energy (63.0 keV in the center-of-mass frame) is considered. Confinement, accumulation and colliding of the accelerated ions take place in the crossed magnetic field of a solenoid and electrostatic of the three-dimensional field using in mass spectrometric storage ion trap of the short-lived radioactive nuclei. It is considered head-on-head and side by side collisions of accelerated molecular hydrogen ions at equal kinetic energy 126 keV. The acceleration of deuterium and tritium ions up to the needed energy at large electric current of the beam is produced by linear static accelerator of direct operation using a new technique of electrostatic quasi-quadrupole alternating focusing, analogous to known RFQ focusing. The large electric current of hydrogen ions can be produced in the special gas-discharge ion source with high perveance of the bombarding electron flux contracted by the end fringing magnetic field of a solenoid. The proposed device allows to create at ion currents of 10 A (the ion current density is 0.1 A/cm2) a continuos neutron flux, for example, for the transmutation of fission fragments and minor actinides, with intensity of 1019 s-1. This device can used as a driver of a subcritical nuclear fission reactor with the coefficient of neutron multiplication k=0.975 for production of 10 GW of commercial electric power

  9. Effects of impurity ions on the trapped-ion instability and on the transport coefficient

    International Nuclear Information System (INIS)

    The dissipative trapped-ion instability is predicted to be one of the most dangerous instabilities in tokamak plasmas in the fusion-reactor regime. The important role of impurity ions have been widely recognized in determining the energy loss. The dissipative trapped-ion instability in a plasma with many species of ions is analysed in terms of Kadomtsev's weak-turbulence theory. Particle diffusion and thermal conduction are analysed by mode-coupling interaction. The basic equations used are a drift kinetic equation and Poisson's equation. From the equation for the fluctuation of the distribution function and Poisson's equation, the wave kinetic equation with wave-particle and wave-wave non-linear interactions is derived. The characteristic frequency, ωsub(k vector), does not satisfy the decay condition. The wave-wave non-linear interaction, therefore, vanishes. The saturation wave energy is determined by the non-linear damping of the wave on trapped ions, and the spectrum is isotropic. The equation for the ensemble average distribution function gives the diffusion coefficient and the thermal conductivity for electrons and each species of ions. The impurity ions present decrease the wave energy. Particle diffusion and thermal conduction will, therefore, be reduced, compared to that given by the Kadomtsev-Pogutse formula. Typical applications of the result will be presented. (author)

  10. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  11. Electron-beam diagnostic for space-charge measurement of an ion beam

    OpenAIRE

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2003-01-01

    An electron beam diagnostic system for measuring the charge distribution of an ion beam without changing its properties is presently under development for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but these capture it, or significantly alter its properties. In this new diagnostic a low energy, low current electron beam is scanned transversely across the ion beam; the measured electron beam deflection is use...

  12. Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

    Science.gov (United States)

    Schooss, Detlef

    2006-03-01

    The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED)^1. In brief, cluster ions are generated by a magnetron sputter source and injected into a cooled (95 K) quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the structural motif is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations. The structures of mass selected silver cluster cations Ag19^+, Ag38^+, Ag55^+, Ag59^+, Ag75^+ and Ag79^+ have been investigated^2. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out. Additionally, we present a comparison of the structures of Cu20^+/-, Ag20^+/- and Au20^+/-. Our findings show unambiguously that the structure of Au20^- is predominantly given by a tetrahedron in agreement with the results of L.S. Wang et al.^3 In contrast, structures of Ag20^- and Cu20^- based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed. (1) M. Maier-Borst, D. B. Cameron, M. Rokni, and J. H. Parks, Physical Review A 59 (5), R3162 (1999); S. Krückeberg, D. Schooss, M. Maier-Borst, and J. H. Parks, Physical Review Letters 85 (21), 4494 (2000). (2) D. Schooss, M.N. Blom, B. v. Issendorff, J. H. Parks, and M.M. Kappes, Nano Letters 5 (10), 1972 (2005). (3) J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science 299, 864 (2003)

  13. Study of ion beam mixing in Pt/Co bilayer by ion beam analysis

    International Nuclear Information System (INIS)

    Ion beam mixing of the Pt/Co bilayers (400 A/700 A) were carried out using 600 keV Pt+ ions with fluences ranging from 1 x 1015 ions/cm2 to 1.2 x 1016 ions/cm2 at room temperature. The sputtering of top Pt layer and the diffusion of platinum and cobalt caused by the ion beam at the interface were revealed by RBS. The interface broadening variance for each fluence was extracted from the RBS spectra after subtracting the contribution to broadening variance due to surface roughness as measured by AFM. The linear dependence of interface broadening variance with fluence shows that ion beam mixing is diffusion controlled in Pt/Co bilayers

  14. Digital quantum simulation of Dirac equation with a trapped ion

    Science.gov (United States)

    Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration

    2014-05-01

    Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.

  15. Beam-line considerations for experiments with highly-charged ions

    International Nuclear Information System (INIS)

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations

  16. Realization of a scanning ion beam monitor

    International Nuclear Information System (INIS)

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of ±4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  17. A two-dimensional lattice of blue detuned atom traps using a projected Gaussian beam array

    CERN Document Server

    Piotrowicz, M J; Maller, K; Li, G; Zhang, S; Isenhower, L; Saffman, M

    2013-01-01

    We describe a new type of blue detuned optical lattice for atom trapping which is intrinsically two dimensional, while providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it does not depend on field interference between distinct optical beams. The array is created using a novel arrangement of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and demonstrate trapping and detection of single Cs atoms in 6 and 49 site two-dimensional arrays.

  18. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    CERN Document Server

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A

    2015-01-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  19. Laser spectroscopy on the heavy ion beams

    International Nuclear Information System (INIS)

    In the presented report the perspectives of the study of the electric charge and current space distributions in the nuclei by laser spectroscopy methods on the beams of the fast multiple charged ions are discussed. The calculations of both the level energies and widths in the H-like and He-like ions and of the isotopic shifts and hyperfine splitting in the optical spectra of these ions are performed. The project of the experimental set-up for these measurements is considered. (author)

  20. Linear Ion Trap for the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald

    2014-05-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.