WorldWideScience

Sample records for beam injection

  1. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  2. EDITORIAL: Negative ion based neutral beam injection

    Science.gov (United States)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to 1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that meeting were asked if they were interested in rewriting and extending their contributions as a submission to Nuclear Fusion. Technology papers were accepted because of the very nature of the subject. The submissions underwent the regular double-referee peer-review process

  3. Challenges and plans for injection and beam dump

    CERN Document Server

    Barnes, M; Mertens, V; Uythoven, J

    2015-01-01

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  4. Cascaded injection resonator for coherent beam combining of laser arrays

    Science.gov (United States)

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  5. Beam injection with pulsed multipole magnet at UVSOR-III

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N., E-mail: naoto@nagoya-u.jp [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Zen, H. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hosaka, M. [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Konomi, T. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Adachi, M. [High Energy Accelerator Research Organization, KEK 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Hayashi, K.; Yamazaki, J. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Takashima, Y. [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Katoh, M. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)

    2014-12-11

    In this study, we designed and manufactured a pulsed multipole magnet for beam injection into the UVSOR-III ring. A sextupole-like magnetic field could be excited when using the multipole magnet. To compensate for the residual field at the center of the magnet caused by manufacturing imprecisions, thin ferrite sheets were used. The injection experiments at UVSOR-III demonstrated multi-turn injections with the pulsed multipole magnet. The injection efficiency was 23% and the electron beam was stored up to the normal operation current of 300 mA. Moreover, we confirmed that oscillations of stored beams caused by beam injection were drastically suppressed compared with conventional pulsed dipole injection.

  6. High intensity ion beam injection into the 88-inch cyclotron

    OpenAIRE

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner, Matthaeus A.; Lyneis, Claude M.

    2000-01-01

    Low cross section experiments to produce super-heavy elements have increased the demand for high intensity heavy ion beams at energies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. Therefore, efforts are underway to increase the overall ion beam transmission through the axial injection line and the cyclotron. The ion beam emittance has been measured for various ion masses and charge states. Beam transport simulations including space charge ...

  7. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  8. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  9. Efficient Injection of Electron Beams into Magnetic Guide Fields

    International Nuclear Information System (INIS)

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  10. Efficient Injection of Electron Beams into Magnetic Guide Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K,

    1999-06-08

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas.

  11. Telemetry signal damping during rocket electron beam injections

    International Nuclear Information System (INIS)

    We present here a preliminary analysis of telemetry signal damping associated with the injection of intense energetic electron beams in the ionosphere during the Zarnitza 2 and Araks experiments. It is suggested that the damping of the signal is due to an enhancement of density fluctuations generated by the beam

  12. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  13. LHC Injection Beam Quality During LHC Run I

    CERN Document Server

    AUTHOR|(CDS)2079186; Stapnes, Steinar

    The LHC at CERN was designed to accelerate proton beams from 450 GeV to 7 TeV and collide them in four large experiments. The 450 GeV beam is extracted from the last pre-accelerator, the SPS, and injected into the LHC via two 3 km long transfer lines, TI 2 and TI 8. The injection process is critical in terms of preservation of beam quality and machine protection. During LHC Run I (2009-2013) the LHC was filled with twelve high intensity injections per ring, in batches of up to 144 bunches of 1.7*10^11 protons per bunch. The stored beam energy of such a batch is already an order of magnitude above the damage level of accelerator equipment. Strict quality and machine protection requirements at injection have a significant impact on operational efficiency. During the first years of LHC operation, the injection phase was identified as one of the limiting factors for fast LHC turnaround time. The LHC Injection Quality Check (IQC) software framework was developed as a part of this thesis to monitor the beam quality...

  14. First neutral beam injection experiments on KSTAR tokamaka)

    Science.gov (United States)

    Jeong, S. H.; Chang, D. H.; Kim, T. S.; In, S. R.; Lee, K. W.; Jin, J. T.; Chang, D. S.; Oh, B. H.; Bae, Y. S.; Kim, J. S.; Park, H. T.; Watanabe, K.; Inoue, T.; Kashiwagi, M.; Dairaku, M.; Tobari, H.; Hanada, M.

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1/3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D+:D2+:D3+ = 75:20:5 at beam current density of 85 mA/cm2. The arc efficiency is more than 1.0 A/kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the Ti and Te profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  15. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  16. Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Day, H; Caspers, F; Métral, E; Salvant, B; Uythoven, J

    2014-01-01

    The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high beam currents circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam induced heating were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss for operation after long shutdown 1 and for proposed HL-LHC operational parameters.

  17. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  18. Optic diagnosis of neutral beam injection on HL-1M

    Institute of Scientific and Technical Information of China (English)

    郑银甲; 冯震; 雷光玖; 姜韶风; 卢大伦; 罗俊林

    2002-01-01

    During the operation of a high-power neutral beam injection (NBI) system on the H L-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize the NBI performance. The vacuum valve opening process and NBI period in the HL-1M experiment were displayed by a lot of photos taken with this means. Thus, the Hα emission profiles of the neutral beam (NB) and its interaction with plasma were given. Finally, the reason possible for plasma breakdown during NBI mode Ⅱ discharge was investigated. Therefore, this in-situ diagnosis can provide more information of the NBI.

  19. Conceptual design for the ZEPHYR neutral-beam injection system

    International Nuclear Information System (INIS)

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs

  20. Mechanical Design of the Injection Beam Line of Small Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The injection beam line is a key device for beam transport of the small medical cyclotron, giving direct influence to the beam quality of the cyclotron. According to the medical needs of the cyclotron, the overall length of the injection beam line is as short as possible,

  1. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  2. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    International Nuclear Information System (INIS)

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle of the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse

  3. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle of the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.

  4. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  5. The effects of injection beam parameters and foil scattering for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2012-01-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill large ring acceptance with the linac beam of small emittance. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS) of CSNS. The injection processes for different momentum spread, rms emittance of the injection beam, injection beam matching were simulated, then the beam losses, 99% and rms emittances were obtained and the optimized ranges of injection beam parameters were given. The interaction between the H- beam and the stripping foil was studied and the foil scattering was simulated. Then, the stripping efficiency was calculated and the suitable thickness of the stripping foil was obtained. The energy deposition on the foil and the beam losses due to the foil scattering were also studied.

  6. Injection of intense ion beam into a tokamak

    International Nuclear Information System (INIS)

    We describe an experiment to investigate the direct injection of an intense ion beam into a tokamak by means of the polarization drift. Confinement of 100 keV ions in the UCI tokamak (r = 15 cm, R = 60 cm, B/sub T/ = 6 kG) requires operation with a plasma current of 56 kA corresponding to q (limiter) = 2. Trapped ions are to be detected by a charge-exchange analyzer. The present status of the experiment will be discussed

  7. Control System of Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Hu Chundong; Liu Zhimin; Liu Sheng; Song Shihua; Yang Daoye

    2005-01-01

    Neutral Beam Injection control system (NBICS) is constructed to measure the plasma current, Magnet current, vacuum pressure, cryopump temperature, control water cooling, filament voltage, and power supply, etc. The NBICS, consisting mainly of a Programmable Logic Controller (PLC) subsystem, data acquisition and processing subsystem and cryopump and vacuum pressure monitoring subsystem, has successfully been used on a NBI device. In this article, the design of NBICS on HT-7 is discussed and each subsystem is described in particular.In addition, some experimental results are reported which are very important data for further research related to the HT-7 tokamak.

  8. Fast ion behavior during neutral beam injection in ATF

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H. [Oak Ridge National Lab., TN (United States); Aceto, S.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1993-09-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970`s. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations.

  9. Conceptual design of the JT-60 neutral beam injection system (interim report)

    International Nuclear Information System (INIS)

    This is an interim report on conceptual design of the JT-60 neutral beam injection system. Requirements for the JT-60 neutral beam injector are injection of a 20 MW neutral hydrogen beam into the plasma in the vicinity of energy 75 keV as long as 10 sec, keeping thermal gas flow rate into the torus vacuum chamber below 15% the neutral beam flux. On the basis of these requirements and recent results of research and development of ion sources and beam line components, system conceptual design is now proceeding. Scale of the JT-60 neutral beam injection system is discussed, indicating also future problems. (auth.)

  10. OTR Based Monitor of Injection Beam for Top-Up Operation of the SPring-8

    CERN Document Server

    Takano, S; Masuda, T; Yamashita, A

    2005-01-01

    We have developed an OTR based monitor of injection beam at the SPring-8. The monitor has been installed near the injection point of the storage ring downstream of the beam transport line from the booster synchrotron. A screen made of an aluminum coated polyimide film is used as a nondestructive OTR radiator. A CCD camera with an electric shutter is used to observe the OTR image of the injection beam. The electric shutter is synchronized with the external injection trigger signals. At every injection, the image signal from the CCD camera is captured and analyzed by a personal computer, and the position, size and intensity of the injection beam are recorded by the common database of the SPring-8 control system. The OTR injection beam monitor provides real time and continuous diagnostic tool useful for the top-up operation of the SPring-8 storage ring.

  11. Effects of injection beam parameters and foil scattering for CSNS/RCS

    Science.gov (United States)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  12. Inertial fusion energy target injection, tracking, and beam pointing

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  13. Inertial fusion energy target injection, tracking, and beam pointing

    International Nuclear Information System (INIS)

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive

  14. Enhancement of neutral beam deposition in hydrogen discharge using carbon pellet injection in LHD

    International Nuclear Information System (INIS)

    The central ion temperature in the large helical device (LHD), as measured by charge-exchange recombination spectroscopy, has been improved to a record 5.6 keV by combining 21 MW of neutral beam heating with the injection of a carbon pellet. The intensity of the neutral beam emission of the hydrogen Balmer line (Hα: n=3 → 2) was observed to weaken along the beam injection axis following the carbon pellet injection due to the increased beam attenuation. The beam-emission intensity was reconstructed by calculating the density distribution, and the beam-stopping coefficients, along a beam injection axis and was found to fit well to the measured beam-emission for a mixed hydrogen and carbon target plasma. The dynamics of the neutral beam deposition power and the carbon fraction were estimated from the beam-emission measurements using data from ADAS. We conclude that the beam deposition power in a carbon pellet discharge is enhanced over that of a pure hydrogen discharge. (author)

  15. Beam shaping element for compact fiber injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Weichman, L.S.; Dickey, F.M.; Shagam, R.N.

    2000-01-05

    Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

  16. Calculations of tangential neutral beam injection current drive efficiency for present moderate flux FRCs

    Science.gov (United States)

    Lifschitz, A. F.; Farengo, R.; Hoffman, A. L.

    2004-09-01

    A Monte Carlo code is employed to study tangential neutral beam injection into moderate flux field reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs). The dimensions of the FRC are similar to those obtained in the Translation, Confinement and Sustainment (TCS) experiment. Two injection geometries are considered. In one case the beam is injected through the ends, at a small angle to the FRC axis while in the other the beam is injected almost perpendicularly, at some point along the separatrix. The current drive efficiency and the deposited power are calculated employing plasma parameters that can be expected in future experiments on TCS. It is shown that, although the RMF degrades beam confinement, relatively high efficiencies can be obtained provided the RMF does not penetrate too deeply into the plasma. Since the torque deposited by the neutral beam can balance the torque deposited by the RMF, the simultaneous use of both methods appears to be a very attractive option.

  17. Beam Scraping in the SPS for LHC Injection Efficiency and Robustness Studies

    CERN Document Server

    Letnes, Paul/LPA; Myrheim, Jan

    2008-01-01

    The Large Hadron Collider (LHC) at CERN will be the world's most powerful accelerator when it is commissioned in fall 2008. Operation of the LHC will require injection of very high intensity beams. Fast transverse beam scrapers have been installed in the Super Proton Synchrotron (SPS) injector to detect and, if necessary, remove transverse beam tails. This will help to both diagnose and prevent beam quenches in the LHC. Scraping of a high intensity beam at top energy can potentially damage the scraper jaws. This has been studied with Monte Carlo simulations to find energy deposition and limits for hardware damage. Loss maps from scraping have been generated both with machine studies and tracking simulations. Time dependent Beam Loss Monitor (BLM) measurements have shown several interesting details about the beam. An analytical model of time dependent losses is compared with beam measurements and demonstrates that beam scraping can be used to estimate the beam size. Energy deposition simulations also give the ...

  18. Results and analysis of the TMX electron-beam injection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, P.; Grubb, D.P.

    1980-08-01

    Electron beams (e-beams) were injected into the Tandem Mirror Experiment (TMX) plasma in order to investigate the effect on the ion cyclotron fluctuations of the plasma. The power level of the e-beams was comparable to that of the injected neutral beams. It was found that injection of the e-beams produced no significant effect on the ion cyclotron fluctuations, the measured plasma parameters, or the particle and power flow of the plasma. The increase in bulk electron temperature and the production of mirror-confined electrons found in previous experiments in which e-beams were injected into a mirror-confined plasma were not observed in this experiment. Analysis of the regions and frequencies of wave creation and absorption within the plasma shows that the plasma density and magnetic field profiles through the plasma strongly affect the resonances encountered by the waves. The steep axial density profiles produced by neutral-beam injection in the TMX experiment are not conducive to efficient coupling of the e-beam energy to the plasma.

  19. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    Science.gov (United States)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  20. Preliminary test experiment for electron beam injection to JSR

    International Nuclear Information System (INIS)

    A preliminary test experiment has been carried out to investigate the property of electron beam from the JAERI linac which will be used as an injector for the JSR(JAERI Storage Ring). The electron beam was obtained within the energy resolution of 1.55 % and the peak current of 38 mA at 150 MeV. (author)

  1. Simulations of LEIR Injection Line Beam Position Monitors

    CERN Document Server

    Maltseva, Mariya

    2016-01-01

    In this paper sensitivity characteristics of a beam position monitor are described. Characteristics are obtained during the simulations in CST Studio, the results are compared with the calculated values. The results for a low-beta beam and with a wire are compared.

  2. Modeling of plasma heating with neutral beam injection in T-11 machine

    International Nuclear Information System (INIS)

    Computations of energy balance are presented for a tokamak with hot atom beam injection. Atom ionization, trapping of generated ions and energy transfer to plasma are examined. Energy loss in charge exchange is considered. Relationships are presented between the temperature and the injection power, the plasma density and other parameters. Possibilities are discussed for obtaining a collisionless ion regime

  3. Six-dimensional beam matching for axial injection into a cyclotron

    International Nuclear Information System (INIS)

    The general optical structure of a beam line for axial injection into a cyclotron is proposed. It provides the beam matching in the six-dimensional phase space at the entrance of the cyclotron. As an illustration, the hyperboloid and the spiral inflectors are considered

  4. Anomalous slowing of a perpendicularly-injected ion beam in both quasilinear and trapping regimes

    International Nuclear Information System (INIS)

    The anomalous slowing of an ion beam injected perpendicularly to the confining magnetic field of a low β plasma is experimentally verified in the nonlinear stages of the excited lower-hybrid instability. Furthermore, a transition of the main nonlinear mechanism from the quasilinear to the particle trapping regime is demonstrated by varying beam parameters

  5. Charge exchange momentum transfer due to ion beam injection in partially ionized plasmas

    International Nuclear Information System (INIS)

    Time responses of a helium plasma to helium gas puffing without and with helium beam injection in a linear plasma device are experimentally investigated. Increase in the neutral density due to gas puffing is suppressed by ion beam injection. The experimental results show that a momentum transport from the ion beam to the puffed neutral particles occurs due to the charge exchange interaction, suggesting that charge exchange momentum transport is one of the processes responsible for the spatial redistribution of neutral atoms in partially ionized plasmas. (author)

  6. The injection beam lines of the cryogenic storage ring (CSR)

    International Nuclear Information System (INIS)

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg an electrostatic cryogenic storage ring (CSR) is under construction. The ions for the CSR will be provided by two ion sources with up to 60kV and 300 kV potential, respectively. The layout of the beamlines connecting the ion sources with the CSR is presented. They will be merged using an electrostatic deflector with an opening in the outer electrode, thereby allowing quick switching between the two ion sources. In order to determine the influence of the opening on the beam optics the deflector has been modeled and a modified transport matrix has been derived. An additional beamline element is a detachment region for the neutralization of a negative ion beam by photodetachment. The potential of the detachment region defines the precise energy of the neutral particles. Calculations of the ion beam optics using the MAD X code are described.

  7. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    International Nuclear Information System (INIS)

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port

  8. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  9. Generation mechanism of whistler waves produced by electron beam injection in space

    Science.gov (United States)

    Pritchett, P. L.; Karimabadi, H.; Omidi, N.

    1989-01-01

    Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.

  10. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  11. Enhanced laser-driven electron beam acceleration due to ionization-induced injection

    CERN Document Server

    Li, Song; Mirzaie, Mohammed; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    We report an overall enhancement of a laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3 % nitrogen gas in 99.7 % helium gas. Upon the interaction of 30 TW, 30 fs laser pulses with a gas jet of the above gas mixture, > 300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5*10^18 cm^{-3}. Compared with the electron self-injection in pure helium gas jet, the ionization injection has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1 %, making them suitable for driving ultra-compact free-electron lasers

  12. Injection locking of a semiconductor laser to a multi-frequency reference beam

    CERN Document Server

    Yang, T; Giudici, Massimo; Wilkowski, David

    2013-01-01

    Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi-frequency seeding beam when slave laser provides sufficient frequency filtering. One relevant parameter turns out to be the frequency detuning between the free running slave laser and each injected frequency component. Stable selective locking to a set of three components separated of $1.2\\,$GHz is obtained for (positive) detuning values between zero and $1.5\\,$GHz depending on seeding power (ranging from 10 to 150 microwatt). This result suggests that, using distinct slave lasers for each line, a set of mutually coherent narrow-linewidth high-power radiation modes can be obtained.

  13. Beam emittance growth in a proton storage ring employing charge exchange injection

    International Nuclear Information System (INIS)

    Recently, it has been shown that very large currents can be accumulated in medium energy proton storage rings by multiturn injection of an H- beam through a charge stripping medium. Since the particles are injected continuously into the same phase space, it is possible to increase the circulating beam brightness with respect to that of the incoming beam by a large factor. The stored protons pass repeatedly through the stripper, however, so that this phase space is gradually enlarged by scattering. The dependence of the circulating beam phase space (emittance) growth rate on the nature of the scattering process and on where it occurs in the storage ring matrix is considered. Since the motivation for this work arose in connection with the design of the proposed high-current storage ring at LAMPF, the results are focused on the specific parameters of that device. (U.S.)

  14. Design of the beam transport line and injection system of the compact storage ring for TTX

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this article, we present the design of the beam transport line and injection system of the compact storage ring for the Tsinghua Thomson scattering X-ray (TTX) source. The layout of the beam transport line fits in with the limited available space. The injection system is simplified, consisting of only one single kicker; the stray field on the reference orbit is also reduced without the septum magnet. We choose a travelling wave kicker and present both 2D and 3D simulations for the structure design.

  15. Dispersion Matching of a Space Charge dominated Beam at Injection into the CERN PS Booster

    CERN Document Server

    Hanke, Klaus; Scrivens, Richard

    2005-01-01

    In order to match the dispersion at injection into the CERN PS Booster, the optics of the injection line was simulated using two different codes (MAD and TRACE). The simulations were benchmarked versus experimental results. The model of the line was then used to re-match the dispersion. Experimental results are presented for different optics of the line. Measurements with varying beam current show the independence of the measured quantity of space-charge effects.

  16. Power and particle balance during neutral beam injection in TFTR

    International Nuclear Information System (INIS)

    Detailed boundary plasma measurements on TFTR have been made during a NBI power scan in the range Ptot = 1MW--20MW in the L-mode regime. The behavior of the plasma density left-angle ne right-angle, radiated power Prad, carbon and deuterium fluxes ΓC, ΓD, and Ζeff can be summarized as, left-angle ne right-angle ∝ Ptot1/2, Prad, ΓC, ΓD ∝ Ptot, and Ζeff ∼ constant. It is shown that central fuelling by the neutral beams plays a minor role in the particle balance of the discharge. More important is the NBI role in the power balance. The TFTR data during NBI originate primarily at the graphite limiter

  17. Shielding considerations for neutral-beam injection systems

    International Nuclear Information System (INIS)

    Results of a study on the geometry of an FED-A Neutral Beam Injector beamline duct shield are presented. Also included is a calculation of dose rates, as a function of time, from an activated NBI. The shielding investigations consisted of varying the parameters of the geometry and transporting particles through it using the MCNP Monte-Carlo code. The dose rates were calculated by the ACDOS3 code using realistic MCNP results. A final-to-incident flux ratio of 6.5 x 10-7 can be achieved through the use of a 65.5 cm reentry duct. This is for a realistic source and pure water shielding material. The activated NBI produced a dose rate of 15.9 mrem/hr two and a half days after shutdown of the reactor

  18. Accelerator System Design, Injection, Extraction and Beam-Material Interaction: Working Group C Summary Report

    CERN Document Server

    Mokhov, N V

    2014-01-01

    The performance of high beam power accelerators is strongly dependent on appropriate injection, acceleration and extraction system designs as well as on the way interactions of the beam with machine components are handled. The experience of the previous ICFA High -Brightness Beam workshops has proven that it is quite beneficial to combine analyses and discussion of these issues in one group. A broad range of topics was presented and discussed at the Working Group C sessions at the HB2012 Workshop. Highlights from the talks, outstanding issues along with plans and proposals for future work are briefly described in this report.

  19. Drift distance survey in direct plasma injection scheme for high current beam production

    International Nuclear Information System (INIS)

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  20. Behavior of high-pressure gasses injected to vacuum through a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Devise (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device (CCD) camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at the high backing pressure of more than 3 - 4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  1. Numerical Simulation of Non-Inductive Current Driven Scenario in EAST Using Neutral Beam Injection

    Science.gov (United States)

    Li, Hao; Wu, Bin; Wang, Jinfang; Wang, Ji; Hu, Chundong

    2015-01-01

    For achieving the scientific mission of long pulse and high performance operation, experimental advanced superconducting tokamak (EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system. Besides RF (Radio Frequency) wave heating, neutral beam injection (NBI) is an effective heating and current drive method in fusion research. NBCD (Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak. The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code. At the condition of low plasma current and moderate plasma density, neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.

  2. Efficient, radiation-hardened, 800-keV neutral beam injection system

    International Nuclear Information System (INIS)

    Recent advances and new concepts in negative ion generation, transport, acceleration, and neutrailzation make it appear likely that an efficient, radiation-hardened neutral beam injection system could be developed in time for the proposed FED-A tokamak. These new developments include the operation of steady-state H- ion sources at over 5 A per meter of source length, the concept of using strong-focussing electrostatic structures for low-gradient dc acceleration of high-current sheet beams of negative ions and the transport of these beams around corners, and the development of powerful oxygen-iodine chemical lasers which will make possible the efficient conversion of the negative ions to neutrals using a photodetachment scheme in which the ion beam passes through the laser cavity

  3. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Science.gov (United States)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  4. Beam Commissioning Results of the J-PARC 3-GeV RCS Injection System with Upgraded 400 MeV Beam

    Science.gov (United States)

    Saha, P. K.

    In order to achieve 1 MW beam power, injection system of the 3-GeV Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) was upgraded to the design injection energy of 400 MeV in the 2013 from that of 181 MeV. The higher injection energy plays a key role to mitigate the space charge effect at lower energy region so as to realize 1 MW beam. The beam commissioning with newly installed and upgraded components was successful to demonstrate a more than 550 kW beam power in the RCS with sufficiently low beam loss. This is a milestone towards realizing 1 MW, which is scheduled in October 2014. A detail of the design criteria along with 1st stage beam commissioning results are presented.

  5. R & D on Beam Injection and Bunching Schemes in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-01-01

    Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developed an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.

  6. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2015-10-28

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.

  7. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Dario, E-mail: dario.nicolosi@lns.infn.it; Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  8. An RF driven H- source and a low energy beam injection system for RFQ operation

    International Nuclear Information System (INIS)

    An RF driven H- source has been developed at LBL for use in the Superconducting Super Collider (SSC). To date, an H- current of ∼40 mA can be obtained from a 5.6-cm-diam aperture with the source operated at a pressure of about 12 m Torr and 50 kW of RF power. In order to match the accelerated H- beam into the SSC RFQ, a low-energy H- injection system has been designed. This injector produces an outgoing H- beam free of electron contamination, with small radius, large convergent angle and small projectional emittance

  9. Rare-earth neutral metal injection into an electron beam ion trap plasma

    Energy Technology Data Exchange (ETDEWEB)

    Magee, E. W., E-mail: magee1@llnl.gov; Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  10. ELM mitigation by means of supersonic molecular beam and pellet injection on the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Sun, Z.; Li, C.Z.; Zhen, X.W.; Li, J.G.; Guo, H.Y.; Li, J.H.; Wang, L.; Gan, K.F.; Chen, Y.; Ren, J.; Zuo, G.Z.; Yao, X.J.; Hu, L.Q.; Gong, X.Z.; Wan, B.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Mansfield, D.K. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Liang, Y.F. [Forschungszentrum Jülich GmbH, Association EURATOM-FZ Jülich (Germany); Vinyar, I. [PELIN LLC, Saint Petersburg (Russian Federation)

    2015-08-15

    In this paper, we will present experimental results from EAST on the mitigation of edge localized modes (ELMs) using recently developed deuterium/lithium pellet injections as well as supersonic molecular beam injections (SMBI). Using a Laval nozzle, ELM mitigation with SMBI has been demonstrated in EAST in quasi-steady state. Using a D{sub 2} pellet injector, a giant ELM appears followed by a burst of high frequency ELMs at ∼300 Hz with duration of a few tens of milliseconds. Furthermore, for the first time, a novel technology using a simple rotating impeller to inject sub-millimeter size lithium (Li) granules at speeds of a few tens of meters per second was successfully used to pace ELMs. These experiments indicate that, on EAST, several technologies can contribute to the database supporting ELMs control in future fusion devices, such as ITER.

  11. Performance of magnetically-injected-plasma opening switches on the particle beam fusion accelerator 2

    International Nuclear Information System (INIS)

    Plasma opening switch (POS) experiments have been performed on the PBFA II ion beam accelerator to develop a switch which will provide voltage and power gain to an applied-B lithium ion diode. These experiments have successfully coupled power to electron and ion beam diodes using a Magnetically-Injected-Plasma (MIP) POS. Carbon plasma with electron densities of 1 x 1012 to 2 x 1013 /cm3 have been injected from the anode into the 8 cm gap of the 20-ohm Magnetically-Insulated-Transmission Line (MITL) of PBFA II along a Br,z magnetic field. The MIP switch uses the inertia of the plasma to keep the switch closed and the magnetic pressure of Bθ from the conduction current to open the switch. The configuration of the injecting magnetic field and the plasma source has a significant effect on the efficiency of coupling power to high impedance loads. Plasma near the center of the injecting magnetic field limits the opening impedance of the switch and subsequently the power delivered to the load. The axial location of the switch with respect to the load has also been identified as a critical parameter in increasing the coupling efficiency. A length of 10 to 20 cm of MITL between the POS and the load has increased the power delivered to the load. Data on switch performance with high impedance loads and factors which improved performance are discussed

  12. Sensibility Studies for the Neutral Beam Injection System in TJ-II

    International Nuclear Information System (INIS)

    The sensibility of the Neutral Beam Injection system of TJ-II to the changes of several parameters is analysed. Transmission, absorption and power loads at the intercepting structures are evaluated. The adopted values for the ion source distance, focal length and divergence are confirmed as optimal, showing a small sensitivity to changes, except for the divergence. The operational margins for beam misalignments has been found to be small but feasible, confirming also the reference directions as optimal. Finally four possible alternatives, intended to reduce the power loads at the beam entering structures, are analysed. All of them have been discarded since lead to the appearance of new risk zones, with unacceptable load levels, and reduce the transmitted power. (Author) 13 refs

  13. Laser photoionization of H0 beams for charge-changing injection

    International Nuclear Information System (INIS)

    The two-step charge-changing injection used in the Los Alamos Proton Storage Ring (PSR) requires stripping of H- to H0 by high magnetic fields and subsequent stripping of H0 to H+ by a carbon foil. The authors consider single- and multiphoton laser ionization as alternatives to using a fragile foil. The multiphoton case is of possible interest for selection of practical lasers, which tend to have increased power output at higher wavelengths. The formulas derived express the necessary laser powers for ionization of monoenergetic H0 beams; they also hold for beams of particles other than atomic hydrogen. The numerical examples given are for the 800-MeV PSR beam with momentum spread taken into account. Additionally, they discuss selective stripping as an implication of the inherent energy selectivity of the photoionization process

  14. Laser photoionization of H0 beams for charge-changing injection

    International Nuclear Information System (INIS)

    The two-step charge-changing injection used in the Los Alamos Proton Storage Ring (PSR) requires stripping of H- to H0 by high magnetic fields and subsequent stripping of H0 to H+ by a carbon foil. We consider single- and multiphoton laser ionization as alternatives to using a fragile foil. The multiphoton case is of possible interest for selection of practical lasers, which tend to have increased power output at higher wavelengths. The formulas derived express the necessary laser powers for ionization of monoenergetic H0 beams; they also hold for beams of particles other than atomic hydrogen. The numerical examples given are for the 800-MeV PSR beam with momentum spread taken into account. Additionally, we discuss selective stripping as an implication of the inherent energy selectivity of the photoionization process

  15. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    International Nuclear Information System (INIS)

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (≤ 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters

  16. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  17. High-beta experiments with neutral-beam injection on PDX

    International Nuclear Information System (INIS)

    Experimental investigations of high-beta plasmas produced in PDX with near-perpendicular neutral-beam injection are reported. Systematic power scans have been performed over a wide range of toroidal fields (νsub(T)q.7 T< Bsub(T)<2.2 T) and plasma currents (200 kA< Isub(p)<500 kA). At high toroidal fields, the change in total stored energy due to beam injection increases linearly with input power and also increases with plasma current. At lower toroidal fields and low injection power levels, the stored energy also increases with power and plasma current. However, at high power and low toroidal fields, a saturation in heating is observed. This result suggests the onset of a νsub(T) limit for circular cross-section tokamaks with near-perpendicular injection. Scaling experiments indicate that this νsub(T) limit increases with rising 1/q. Values of νsub(T)approx.=3% at qsub(PSI)=1.8 have been achieved. At high values of νsub(T)q, short bursts of MHD activity are observed, synchronized with sharply increased fluxes of perpendicular charge-exchange neutrals and rapid decreases in the rate of beam-driven neutron production. When strong bursts occur, there is a significant depletion of the fast-ion population. Estimates of the fast-ion loss indicate that it could explain the observed decrease in heating, although an additional reduction in thermal-plasma confinement cannot be ruled out. Numerical studies using measured pressure profiles predict that the equilibria obtained become unstable to the ideal n=1 internal mode, at about the same value of 0 where the new fluctuations are observed. (author)

  18. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Science.gov (United States)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  19. Study of the fast neutral atom beam injection on TFR tokamak

    International Nuclear Information System (INIS)

    During neutral beam injection experiments on TFR, the increase of the plasma temperature appears to be weak and is saturating at high power. This observation leads to question the classical scheme of power coupling to the thermal plasma and to check experimentally its successive steps. First of all, the neutral beam transmission and capture in the plasma, measured by calorimetric methods, are in agreement with the classical calculations. Next the confinement and thermalization of the fast ions is reviewed by means of three different measurements: charge exchange analysis of fast neutrals leaving the plasma (an auxiliary modulated neutral beam gives a spatially resolved measurement); neutron flux analysis during injection of deuterium ions into a deuterium plasma; measurement of the fast ions trapped in the toroidal magnetic field ripples. These experiments show that a non-classical mechanism transports the most energetic ions towards the plasma periphery. This phenomenon then limits the overall power that can be effectively absorbed in the plasma centre and contributes to deteriorate the energy confinement. Finally the respective role of thermal and non-thermal populations in the power balance is addressed

  20. Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-nica accelerator complex

    International Nuclear Information System (INIS)

    The NICA ion collider project at JINR is under development at present. As a part of the project the Nuclotron injector upgrade has been started. The work is provided in cooperation of JINR, MEPhI and ITEP. Up to now the Nuclotron injection system consist of a number of proton and ion sources, the 650 keV pulsed preinjector and DTL linac LU-20 (Alvarez type). Such system provides injection into Nuclotron of 20 MeV proton and 5 MeV/u (Z/A >0.3) ion beams. The ion beam acceleration is realized at the 2nd harmonic of bunch travelling mode. The 650 kV high-voltage platform will be replaced by new RFQ structure. The R ampersand D of this system is discussed in the report. Results of beam dynamics simulation in RFQ and MEBT between RFQ and LU-20, electrodynamics simulation, construction of RFQ resonator, RF feeding system construction will be presented. The RF power system is assembled and tested at equivalent load and RFQ resonator manufacturing is started

  1. Programmable extraction of different energy proton beam to an experimental facility in the process of injection into the IHEP synchrotron

    International Nuclear Information System (INIS)

    The programmable different energy proton beam extraction to an experimental facility of the IHEP under injection to the IHEP proton synchrotron is realized in the following way; after inquiry from the IHEP EF transfer to a lower extraction energy and beam extraction to EF are performed. 1 ref.; 1 fig

  2. Calorimeter design-aspects for neutral beam injection on W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Holtum, D., E-mail: holtum@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Froeschle, M.; Heinemann, B. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Liebe, T. [Fa. Xenos GmbH, Jugendstr. 2, D-81667 Muenchen (Germany); Nocentini, R.; Riedl, R.; Rong, P. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Schubert, W. [Fa. Xenos GmbH, Jugendstr. 2, D-81667 Muenchen (Germany); Staebler, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany)

    2011-10-15

    Neutral Beam Injection (NBI) is one of the heating systems for Wendelstein 7-X (W7-X). The beam power of the NBI is measured calorimetrically. Using the knowledge gained from ASDEX-Upgrade operation, the complete calorimeter was re-designed. The design-aspects and the necessary improvements for operation on W7-X are described in this paper. The main aspects improved concern: (i) the adapted slope of the winding drum at the lift, (ii) the adjustable acceleration/deceleration ramp and integrated position sensors, (iii) the improvements of panels in the body, (iv) the accessibility for mounting panels, (v) the water-distribution, and (vi) the centering of the body on the support to fix and reproduce the measuring position. The manufacturing is in progress, installation will start in 2011 and the commissioning is scheduled for the end of 2014.

  3. Calorimeter design-aspects for neutral beam injection on W7-X

    International Nuclear Information System (INIS)

    Neutral Beam Injection (NBI) is one of the heating systems for Wendelstein 7-X (W7-X). The beam power of the NBI is measured calorimetrically. Using the knowledge gained from ASDEX-Upgrade operation, the complete calorimeter was re-designed. The design-aspects and the necessary improvements for operation on W7-X are described in this paper. The main aspects improved concern: (i) the adapted slope of the winding drum at the lift, (ii) the adjustable acceleration/deceleration ramp and integrated position sensors, (iii) the improvements of panels in the body, (iv) the accessibility for mounting panels, (v) the water-distribution, and (vi) the centering of the body on the support to fix and reproduce the measuring position. The manufacturing is in progress, installation will start in 2011 and the commissioning is scheduled for the end of 2014.

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    Science.gov (United States)

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  6. Achieving a long-lived high-beta plasma state by energetic beam injection.

    Science.gov (United States)

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  7. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  8. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    Science.gov (United States)

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms. PMID:23004613

  9. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  10. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  11. A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection

    Science.gov (United States)

    Nelson, Jovan; Bhat, Chandrashekhara; Hendricks, Brian

    2016-03-01

    We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. Thank you to the SIST program at Fermilab.

  12. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  13. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  14. Beam diagnostics, collimation, injection/extraction, targetry, accidents and commissioning: Working group C&G summary report

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; /Fermilab; Hasegawa, K.; /JAEA, Ibaraki; Henderson, S.; /Oak Ridge; Schmidt, R.; /CERN; Tomizawa, M.; /KEK, Tsukuba; Wittenburg, K.; /DESY

    2006-11-01

    The performance of accelerators with high beam power or high stored beam energy is strongly dependent on the way the beam is handled, how beam parameters are measured and how the machine is commissioned. Two corresponding working groups have been organized for the Workshop: group C ''Beam diagnostics, collimation, injection/extraction and targetry'' and group G ''Commissioning strategies and procedures''. It has been realized that the issues to be discussed in these groups are interlaced with the participants involved and interested in the above topics, with an extremely important subject of beam-induced accidents as additional topic. Therefore, we have decided to combine the group sessions as well as this summary report. Status, performance and outstanding issues of each the topic are described in the sections below, with additional observations and proposals by the joint group at the end.

  15. Simulation of ionization-front-forming process at injection of relativistic electron beam with a gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dolya, S.N.; Zhidkov, E.P.; Rubin, S.B.; Semerdzhiev, Kh.I.

    1982-01-01

    The methodical work on creation of computer program for numerical study of the processes of forming and motion of a virtual cathode at the injection of relativistic electron beam into a short cylindrical chamber, filled with gas, has been carried out. The obtained plots of the distributions of fields, potential and density appearing out of ion and electron gas of the beam itself are presented. The dependence of cross-section ionization on the electron velocity has been taken into account at the calculation; the resonance contribution into summarized cross-section of ionization was simulated. It is shown that the injection into the chamber without gas, some oscillations of the virtual cathode are observed. At the presence of the final front of the beam, the fields level at the initial stage is smaller than for the beam with a sharp front. However, in some time the field amplitudes are compared. The motion of simulated probe ions in the chamber is analyzed.

  16. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  17. Explanation of Turbulent Suppression of Electron Heat Transfer in GOL-3 Facility at the Stage of Relativistic Electron Beam Injection

    International Nuclear Information System (INIS)

    The effect of the electron heat transfer suppression during the stage of relativistic electron beam injection into a plasma was discovered experimentally more than a decade ago. It is now widely adopted that the suppression is a side sequel of Langmuir turbulence excited by the beam, however neither quantitative theory nor even rough estimates of the phenomena were available so far. We argue that the coefficient of turbulent thermal conductivity can be evaluated from a robust judgement based on the energy balance consideration

  18. Low energy spread electron beams from ionization injection in a weakly relativistic laser wakefield accelerator

    International Nuclear Information System (INIS)

    We show via two-dimensional particle-in-cell simulations that low energy spread, relativistic electron beams (>120 MeV, <15%) can be produced in the weakly non-linear regime of a plasma wakefield, driven by a moderate power laser pulse (initial a0 < 1). Higher ionization states of a high-Z trace species, mixed in a background H plasma, provide the source of injected electrons. Injection occurs even though the laser intensity is initially well below the trapping threshold, as it is found that the laser pulse evolves until it fulfils the trapping requirements through self-compression. By careful control of intensity and density, the amount of evolution and hence of trapping can be controlled. Acceleration is terminated by depletion due to the extended evolution time, leading to narrow energy spread features even for long interaction lengths. Particle tracking shows that electrons ‘born’ at the periphery of the laser pulse are more likely to follow smoother trajectories inside the wakefield and subsequently to be trapped and accelerated. (paper)

  19. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    International Nuclear Information System (INIS)

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP

  20. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  1. Method of the ion beam emittance measurement in the injection beam line of DC-72 cyclotron in the presence of its space charge using the scanner to determine beam dimensions

    CERN Document Server

    Kasarinov, N Y; Kalagin, I V; Kazacha, V I

    2002-01-01

    The gradient method for measuring the transversal emittance of a high current ion beam in the injection channel of the cyclotron DC-72 is considered. The standard scanner is proposed for measuring the transversal dimensions of the beam. The formulae for determination of the mean square beam dimensions by current signals from the scanner needle are adduced. The method of the emittance recovery for axial-symmetric ion beam is set for the case when the space charge effect is essential. The algorithm for tuning of the quadrupole lenses in the injection channel of the cyclotron DC-72 for obtaining the axial-symmetric ion beam is proposed. The evaluations of the expected accuracy of the proposed method for the emittance recovery have been carried out.

  2. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    Science.gov (United States)

    Zeng, Ming; Luo, Ji; Chen, Min; Mori, Warren B.; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-06-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of 2.4 μ m and 0.8 μ m for wakefield excitation and triggering electron injection via field ionization, respectively. A laser pulse at 2.4 μ m wavelength enables one to drive an intense acceleration structure with a relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around 1%) and high charges (several tens of picocoulomb) can be obtained by the use of this scheme with laser peak power totaling sub-100 TW.

  3. Evolution of High Intensity Beams in the CERN PS Booster after H⁻ Injection and Phase Space Painting

    CERN Document Server

    Cieslak-Kowalska, Magdalena; Benedetto, Elena; Bracco, Chiara

    2016-01-01

    With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H⁻ injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.

  4. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    CERN Document Server

    Zeng, Ming; Chen, Min; Mori, Warren B; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-01-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of $2.4\\rm \\mu m$ and $0.8\\rm \\mu m$ for wakefield excitation and for triggering electron injection via field ionization, respectively. A laser pulse at $2.4\\rm \\mu m$ wavelength enables one to drive an intense acceleration structure with relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our full three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around one percent) and high charges (several tens of picocoulomb) can be obtained by this scheme with laser parameters achievable in the near future.

  5. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Hu, Liqun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Yubao [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  6. Neutral beam injection in a D-{sup 3}He FRC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Hugo; Farengo, Ricardo [Centro Atomico Bariloche (CNEA) and Instituto Balseiro (UNC-CNEA) 8400 S. C. de Bariloche, RN (Argentina)

    2007-06-15

    The use of neutral beam injection (NBI) to sustain a fraction of the plasma current in a field reversed configuration (FRC) reactor operating with the D-{sup 3}He reaction is studied. A Monte Carlo code already used to study NBI in medium size FRCs is employed (Lifschitz A F, Farengo R and Arista N R 2002 Nucl. Fusion 42 863, Lifschitz A F, Farengo R and Arista N R 2002 Plasma Phys. Control. Fusion 44 1979, Lifschitz A F, Farengo R and Hoffman A L 2004 Nucl. Fusion 44 1015) and the plasma parameters are similar to those proposed in the ARTEMIS (Momota H, Ishida A, Kohzaki Y, Miley G, Ohi S, Ohnishi M, Sato K, Steinhauer L, Tomita Y and Tuszewki M 1992 Fusion Technol. 21 2307) conceptual reactor design. A simple analysis shows that the driven current cannot reach the values quoted in the ARTEMIS project and a procedure to search for plasma parameters that result in higher efficiencies is presented.

  7. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    International Nuclear Information System (INIS)

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well

  8. Characteristics of the SF6/H2 laser initiated by an axially injected electron-beam

    International Nuclear Information System (INIS)

    The experimental and analytical studies on the characteristics of SF6/H2 laser were performed. The experimental apparatus consisted of a low-impedance Marx generator, an electric field emission diode, a laser tube, and an axial field coil. The electron beam of 320 KeV and 2.5 kA was injected into SF6/H2 gas. A simulation model to derive laser parameters is the rate equation model which includes ignition reaction, excitation reaction and relaxation reaction. The laser energy, the wave form of laser pulses, photon production rate and the number of produced molecules of HF were derived from the model. The maximum laser power was 450 mJ with the FWHM of 160 ns, when the gas mixing ratio of SF6/H2 was 11 to 1 and the gas pressure was 120 Torr. The optimum length of a laser tube was about 500 mm. The generation efficiency of laser was 4.9 percent. The values of laser parameters obtained from the simulation were 2.0 x 10-3 of the F atom dissociation of SF6 and 15.7 eV/F of the production energy of one F atom. (Kato, T.)

  9. Quasi-monoenergetic Electron Beams from Laser-plasma Acceleration by Ionization-induced Injection in Low- density Pure Nitrogen

    CERN Document Server

    Tao, Mengze; Li, Song; Mirzaie, Mohammad; Chen, Liming; He, Fei; Cheng, Ya; Zhang, Jie

    2014-01-01

    We report a laser wakefield acceleration of electron beams up to 130 MeV from laser-driven 4-mm long nitrogen gas jet. By using a moderate laser intensity (3.5*10^18 W.cm^(-2) ) and relatively low plasma densities (0.8*10^18 cm^(-3) to 2.7*10^18 cm^(-3)) we have achieved a stable regime for laser propagation and consequently a stable generation of electron beams. We experimentally studied the dependence of the drive laser energy on the laser-plasma channel and electron beam parameters. The quality of the generated electron beams is discussed within the framework of the ionization-induced injection mechanism.

  10. Direct injection of intense heavy ion beams from a high performance ECR ion source into an RFQ

    International Nuclear Information System (INIS)

    Beam intensities achievable from high performance ECR sources for highly charged ions are limited by the high space charge. For high performance ECR sources, the stray magnetic field of the source can provide focusing against the space charge blow-up of the beam when used with the Direct Plasma Injection Scheme (DPIS) developed for laser ion sources. A combined extraction/matching system has been designed for direct injection into a radio frequency quadrupole (RFQ) accelerator, allowing a total beam current of 12 mA for the production of highly charged 238U40 +(0.49 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ionsource extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of the ion beam. The RFQ has been designed to suppress most of the charge states extracted from the ECR, acting as a filter for the desired 238U40+. This reduces the transport problem for the beam line as well as reduces the emittance for the transmitted charge states. Such an rfq-channel might be very effective and less q/m sensitive for the extraction system of all high performing ECR ion sources. This technique has promising applications for injecting and transporting very intense beams into RFQ accelerators for research, ADSS and more efficient, compact neutron generators. The accelerator driven sub-critical system (ADSS) being developed at various laboratories around the world to create nuclear energy may also benefit from this technique, both in terms of transporting intense beams of protons and making the low energy segment more compact. This RFQ is essentially a buncher configured as a charge filter, so RIB facilities can take advantage of this technique. The charge breeding concept can be utilised with a powerful ECR ion source directly coupled to this

  11. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    CERN Document Server

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  12. System for measuring parameters of electron beams injected into collective heavy ion accelerator

    International Nuclear Information System (INIS)

    The description of automation system for measurement of the intensive nanosecond electron beam characteristics of a collective heavy ion accelerator at JINR is presented. The system includes a set of the collector sensors for registering electronics for all sensors. The range of beam measured currents reaches 1000 A at repetition frequency of cycles up to 50 Hz

  13. Localization of the large-angle foil-scattering beam loss caused by the multiturn charge-exchange injection

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Yoshimoto, Masahiro; Harada, Hiroyuki; Kinsho, Michikazu

    2013-07-01

    In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, significant losses were observed at the branching of the H0 dump line and the beam position monitor that was inserted downstream of the H0 dump branch duct. These losses were caused by the large-angle scattering of the injection and circulating beams at the charge-exchange foil. To realize high-power operation, these losses must be mitigated. Therefore, a new collimation system was developed and installed in October 2011. To efficiently optimize this system, the behavior of particles scattered by the foil and produced by the absorber were simulated, and the optimal position and angle of the absorber were investigated. During this process, an angle regulation method for the absorber was devised. An outline of this system, the angle regulation method for the absorber, and the performance of this new collimation system are described.

  14. Modeling and control of plasma rotation for NSTX using Neoclassical Toroidal Viscosity (NTV) and Neutral Beam Injection (NBI)

    Science.gov (United States)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan

    2014-10-01

    A model-based system to control plasma rotation in a magnetically confined toroidal fusion device is developed to maintain plasma stability for long pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed to control plasma rotation by using momentum from injected neutral beams and viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the data driven model obtained, a feedback controller is designed to theoretically sustain the toroidal momentum of the plasma in a stable fashion and to achieve desired plasma rotation profiles. On going work includes extending this method to NSTX Upgrade which has more complete radial coverage of the neutral beams momentum sources which enable simultaneous control of plasma stored energy (Beta control).

  15. Investigation of the clustering condition for various gasses ejected from a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Device (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at high valve backing pressure of more than 3-4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  16. MHD Instabilities and Their Effects on Plasma Confinement in Large Helical Device Plasmas with Intense Neutral Beam Injection

    Institute of Scientific and Technical Information of China (English)

    K. Toi; K. Narihara; K. Tanaka; T. Tokuzawa; H. Yamada; Q. Yang; LHD experimental group; S. Ohdachi; S. Yamamoto; S. Sakakibara; K. Y. Watanabe; N. Nakajima; X. Ding; J. Li; S. Morita

    2004-01-01

    MHD stability of the Large Helical Device (LHD) plasmas produced with intense neutral beam injection is experimentally studied. When the steep pressure gradient near the edge is produced through L-H transition or linear density ramp experiment, interchange-like MHD modes whose rational surface is located very close to the last closed flux surface are strongly excited in a certain discharge condition and affect the plasma transport appreciably. In NBI-heated energetic ion loss, but also trigger the formation of internal and edge transport barriers.

  17. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    OpenAIRE

    K. Huang; Chen, L. M.; Y. F. Li; D.Z. Li; M. Z. Tao; M. Mirzaie; Y. Ma; J. R. Zhao; M. H. Li; M. Chen; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas un...

  18. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    Science.gov (United States)

    Hotchi, Hideaki; Tani, Norio; Watanabe, Yasuhiro

    2015-04-01

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations.

  19. ELF oscillations associated with electron beam injections from the space shuttle

    International Nuclear Information System (INIS)

    ELF oscillations (f < 500 Hz) were observed during the electron beam emissions of the space experiments with particle accelerators (SEPAC) flown on the Spacelab 1 shuttle mission. The beams had energies up to 5 keV and currents up to 300 mA, and the oscillations were present in the data from a Langmuir probe, a floating probe, an electron energy analyzer, and a photometer. The VLF (1 kHz < f < 10 kHz) wave stimulation monitored by a wave receiver during one particular beam sequence has already been reported by Neubert et al. (1986). The amplitudes of the ELF and VLF oscillations observed during this sequence have almost identical variations with beam pitch angle, the strongest emissions begin observed for parallel beams; the ELF power spectra for the strongest emissions have peaks about 10 dB above the broadband ELF noise at frequencies aroudn 50-60 Hz. In another beam sequence the power spectra had a harmonic structure with the fundamental frequency around 200 Hz. The power density and frequency of the fundamental increased with the shuttle charge-up potential. The emission level observed during the beam sequences increased with the charge-up potential of the orbiter, which largely depended on the wake structure. The authors find it most likely that the ELF oscillations are expressions of fluctuations in the return current and the shuttle potential and that these fluctuations are caused by processes involving charge imbalances in the near environment of the shuttle, possibly in a comoving plasma cloud. The observations suggest that the plasma cloud has a particle lifetime at least of the order of 100 ms

  20. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    Science.gov (United States)

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  1. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Wimmer, C. [Lst. f. Experimentelle Plasmaphysik, Universitaet Augsburg, 86135 Augsburg (Germany); Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Lst. f. Experimentelle Plasmaphysik, Universitaet Augsburg, 86135 Augsburg (Germany)

    2011-02-15

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  2. Logical and Timing Control for Diagnostic Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Du Shaowu; Ge Suoliang; Zhang Jian; Su Yu; Liu Baohua; Huang He

    2005-01-01

    The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.

  3. Development of an ion source for long-pulse (30-s) neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.M.; Barber, G.C.; Blue, C.W.; Dagenhart, W.K.; Gardner, W.L.; Haselton, H.H.; Moeller, J.A.; Ponte, N.S.; Ryan, P.M.; Schecter, D.E.

    1982-01-01

    This paper describes the development of a long-pulse positive ion source that has been designed to provide high brightness deuterium beams (divergence approx. = 0.25/sup 0/ rms, current density approx. = 0.15 A cm/sup -2/) of 40 to 45 A, at a beam energy of 80 keV, for pulse lengths up to 30 s. The design and construction of the ion source components are described with particular emphasis placed on the long-pulse cathode assembly and ion accelerator.

  4. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  5. Performance of magnetically injected plasma opening switches for the Particle Beam Fusion Accelerator 2 (PBFA 2)

    International Nuclear Information System (INIS)

    Plasma opening switch experiments using a magnetically injected plasma have been in progress since October 1988. Plasma densities of 1 x 1012 to 2 x 1013 e/cm3 have been injected from the anode side into the 8 cm gap of the 20 ohm magnetically insulated transmission line of PBFA II using a slowly rising Br,z magnetic field. This field confines the azimuthally-uniform plasma to produce switches up to 30 cm in length. Four MIP geometries have been investigated to find a higher electrical impedance when the switch opens. These studies have shown that a separation of 10 to 20 cm from the load is important to keep the POS from affecting the load performance. With such a separation, 20 to 30 TW of power at 7 to 11 MV has been delivered to electron and ion diode loads. Data on switch performance with various loads and factors that improve performance are discussed. 4 refs., 6 figs

  6. The influence of Laval nozzle throat size on supersonic molecular beam injection

    Institute of Scientific and Technical Information of China (English)

    Xinkui He; Xianfu Feng; Mingmin Zhong; Fujun Gou; Shuiquan Deng; Yong Zhao

    2014-01-01

    In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diam-eter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift pro-gressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.

  7. Microwave plasma source for neutral-beam injection systems. Quarterly technical progress report

    International Nuclear Information System (INIS)

    The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. We consider the general characteristics of plasma sources in the parameter regime of interest for neutral beam applications. The operatonal characteristics, advantages and potential problems of RFI and ECH sources are discussed. In these latter two sections we rely heavily on experience derived from developing RFI and ECH ion engine sources for NASA

  8. Electron gun with off-axis beam injection for a race-track microtron

    International Nuclear Information System (INIS)

    A miniature 12 MeV race-track microtron for medical applications is under construction at the Technical University of Catalonia in collaboration with several Spanish centers and companies and the Skobeltsyn Institute of Nuclear Physics of the Moscow State University. As a source of electrons a compact 3D on-axis electron gun with an off-axis cathode has been designed to allow a direct and efficient injection into the accelerating structure. Its prototype has been built and successfully tested. Results of the electron gun design simulations and of the prototype performance are herein described.

  9. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the Dα amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase

  10. Observation of edge filamentary structure motion during supersonic molecular-beam injection using a fast camera in Heliotron J

    International Nuclear Information System (INIS)

    A perpendicular-view fast video camera has been installed in Heliotron J to observe the behavior of filamentary structures of edge plasma turbulence across the last closed flux surface (LCFS). Supersonic molecular-beam injection (SMBI) can greatly increase the edge Hα emission; hence, we used the high imaging rate and shutter speed of the camera to capture the behavior of the fast propagating filamentary structures. A high-pass fast Fourier transform filter on the time dimension was adopted to extract the fluctuation component from the raw data for each pixel. The motion of the filamentary structures was clearly visible when we applied an amplitude threshold to identify the intense structures. In addition, a time-resolved 2D cross-correlation technique was adopted to estimate the poloidal phase velocity of turbulence. The motion direction was found to be reversed dramatically just after an SMBI pulse. (author)

  11. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    -nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver...

  12. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  13. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography.

    Science.gov (United States)

    Christensen, A N; Rydhög, J S; Søndergaard, R V; Andresen, T L; Holm, S; Munck Af Rosenschöld, P; Conradsen, K; Jølck, R I

    2016-06-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively. PMID:27174233

  14. A method of particle transport study using supersonic molecular beam injection and microwave reflectometry on HL-2A tokamak

    International Nuclear Information System (INIS)

    A method of the particle transport study using supersonic molecular beam injection (SMBI) and microwave reflectometry is reported in this paper. Experimental results confirm that pulsed SMBI is a good perturbation source with deeper penetration and better localization than the standard gas puffing. The local density modulation is induced using the pulsed SMBI and the perturbation density is measured by the microwave reflectometry. Using Fourier transform analysis for the local density perturbation, radial profiles of the amplitude and phase of the density modulation can be obtained. The experimental results in HL-2A show that the particle injected by SMBI is located at about r/a=0.65-0.75. The position of the main particle source can be determined through three aspects: the minimum of the phase of the first harmonic of the Fourier transform of the modulated density measured by microwave reflectometry; the Ha intensity profile and the local density increase ratio. The maximum of the amplitude of the first harmonic shifts often inward relative to the particle source location, which indicates clearly there is an inward particle pinch in this area. Good agreement has been found between the experimental results and the simulation using analytical transport model. The particle diffusivity D and the particle convection velocity V have been obtained by doing this simulation. The sensitivity in the transport coefficients of the amplitude and the phase of the density modulation has been discussed.

  15. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    Science.gov (United States)

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  16. Improvement of neutral beam injection heating efficiency with magnetic field well structures in a tokamak with a low magnetic field

    Science.gov (United States)

    Kim, S. K.; Na, D. H.; Lee, J. W.; Yoo, M. G.; Kim, H.-S.; Hwang, Y. S.; Hahm, T. S.; Na, Yong-Su

    2016-10-01

    Magnetic well structures are introduced as an effective means to reduce the prompt loss of fast ions, the so-called first orbit loss from neutral beam injection (NBI), which is beneficial to tokamaks with a low magnetic field strength such as small spherical torus devices. It is found by single-particle analysis that this additional field structure can modify the gradient of the magnetic field to reduce the shift of the guiding center trajectory of the fast ion. This result is verified by a numerical calculation of following the fast ion’s trajectory. We apply this concept to the Versatile Experiment Spherical Torus [1], where NBI is under design for the purpose of achieving high-performance plasma, to evaluate the effect of the magnetic well structure on NBI efficiency. A 1D NBI analysis code and the NUBEAM code are employed for detailed NBI calculations. The simulation results show that the orbit loss can be reduced by 70%-80%, thereby improving the beam efficiency twofold compared with the reference case without the well structure. The well-shaped magnetic field structure in the low-field side can significantly decrease orbit loss by broadening the non-orbit loss region and widening the range of the velocity direction, thus improving the heating efficiency. It is found that this magnetic well can also improve orbit loss during the slowing down process.

  17. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration

    Science.gov (United States)

    Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; Zhu, J.

    2016-09-01

    The SINBAD facility (Short and INnovative Bunches and Accelerators at Desy) is foreseen to host various experiments in the field of production of ultra-short electron bunches and novel high gradient acceleration techniques. Besides studying novel acceleration techniques aiming to produce high brightness short electron bunches, the ARD group at DESY is working on the design of a conventional RF accelerator that will allow the production of low charge (0.5 pC - few pC) ultra-short electron bunches (having full width half maximum, FWHM, length ≤ 1 fs - few fs). The setup will allow the direct experimental comparison of the performance achievable by using different compression techniques (velocity bunching, magnetic compression, hybrid compression schemes). At a later stage the SINBAD linac will be used to inject such electron bunches into a laser driven Plasma Wakefield Accelerator, which imposes strong requirements on parameters such as the arrival time jitter and the pointing stability of the beam. In this paper we review the compression techniques that are foreseen at SINBAD and we underline the differences in terms of peak current, beam quality and arrival time stability.

  18. Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System

    International Nuclear Information System (INIS)

    In order to realize steady-state operation of the neutral beam injection (NBI) system with high beam energy, an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux (HHF) components in the system are key issues. In this paper, taking the HHF ion dump with swirl tubes in NBI system as an example, an accurate thermal dynamic simulation method based on computational fluid dynamics (CFD) and the finite volume method is presented to predict performance of the HHF component. In this simulation method, the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling. The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube. The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components, and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way. The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system. (fusion engineering)

  19. VLF wave stimulation by pulsed electron beams injected from the Space Shuttle

    Science.gov (United States)

    Reeves, G. D.; Banks, P. M.; Frazer-Smith, A. C.; Neubert, T.; Bush, R. I.

    1988-01-01

    Among the investigations conducted on the Space Shuttle flight STS-3 of March 1982 was an experiment in which a 1-keV, 100-mA electron gun was pulsed at 3.25 and 4.87 kHz. The resultant waves were measured with a broadband plasma wave receiver. At the time of flight the experimental setup was unique in that the electron beam was square wave modulated and that the Shuttle offered relatively long times for in situ measurements of the ionospheric plasma response to the VLF pulsing sequences. In addition to electromagnetic response at the pulsing frequencies the wave exhibited various spectral harmonics as well as the unexpected occurrence of 'satellite lines' around those harmonics. Both phenomena occurred with a variety of different characteristics for different pulsing sequences.

  20. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  1. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  2. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l-1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g-1 Cd and 1.6 μg g-1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  3. Charge injection properties of iridium oxide films produced on Ti-6Al-4V alloy substrates by ion-beam mixing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M. (Oak Ridge National Lab., TN (United States)); Lee, I-S.; Buchanan, R.A. (Tennessee Univ., Knoxville, TN (United States))

    1991-10-01

    The charge injection capabilities of iridium oxide films, as produced on Ti6Al-4V alloy substrates by ion beam mixing techniques, have been investigated. Iridium oxide is a valence change oxide, and therefore has high values of charge injection density upon voltage cycling in electrolytes. Because of this property, iridium oxide films are useful as working elements in neural prostheses. Iridium films of three thicknesses, produced by sputter deposition followed by ion beam mixing, were tested in cyclic voltammetry out to 1000 cycles or more. Two surface preparations, mechanical polishing and an acid passivation treatment, were also used as controls. Surface analysis was primarily by Rutherford backscattering spectrometry. Both the ion- beam mixing and the acid pretreatment increased the lifetimes of films, in comparison with the mechanically polished standards. Reductions in charge injection capability, when they occurred, were attributed to loss of Ir from the films, and there was a close correlation between the charge injection density and the Ir inventory. 13 refs., 5 figs.

  4. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  5. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  6. Detailed magnetic model simulations of the H- injection chicane magnets for the CERN PS Booster Upgrade, including eddy currents and influence on beam dynamics

    CERN Document Server

    Benedetto, E; Borburgh, J; Carli, C; Martini, M; Forte, V

    2014-01-01

    The CERN PS Booster will be upgraded with an H- injection system. The chicanemagnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The -beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and correction on beam dynamics.

  7. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  8. Design, fabrication and VNA testing of an auto-focussing buncher section for 40 keV, 500 mA DC electron beam injection

    International Nuclear Information System (INIS)

    A buncher section for the 40 keV, DC electron beam has been designed in such a way so that it will act as a buncher and focuser to the injected electron beam. The autofocussing effect is obtained by introducing a slow rise of the Eacc in the first buncher cell. The RF phase focusing force is proportional to the factor (βγ2)-1 and it damps out very quickly as the particle becomes relativistic. Taking this dependency into account, the field asymmetry is introduced only in the first bunching cavity. This paper presents the electromagnetic (EM) design of the RF structure, beam dynamics, fabrication and the measurements of the EM parameters with VNA. (author)

  9. Proof of the nonexistence of a linear solution for the CR2 injection region of the CLIC drive beam

    CERN Document Server

    Apsimon, Robert

    2014-01-01

    In this paper we present a mathematical proof to show that there exists no linear system of optics which can simultaneously close an orbit bump and correct the dispersion in the CR2 injection region. Due to the requirements of the CR2 injection region, several different trajectories will exist through the injection region which are off-axis; therefore the orbit and dispersion functions need to be corrected. In this paper, we determine the properties of a hypothetical linear lattice which is capable of closing the orbit and dispersion functions and then show that the resulting solutions are either unphysical or trivial. Geneva.

  10. Quasi-monoenergetic Electron Beams from Laser-plasma Acceleration by Ionization-induced Injection in Low- density Pure Nitrogen

    OpenAIRE

    Tao, Mengze; Hafz, Nasr A. M.; Li, Song; Mirzaie, Mohammad; Chen, Liming; He, Fei; Cheng, Ya; Jie ZHANG

    2014-01-01

    We report a laser wakefield acceleration of electron beams up to 130 MeV from laser-driven 4-mm long nitrogen gas jet. By using a moderate laser intensity (3.5*10^18 W.cm^(-2)) and relatively low plasma densities (0.8*10^18 cm^(-3) to 2.7*10^18 cm^(-3)) we have achieved a stable regime for laser propagation and consequently a stable generation of electron beams. We experimentally studied the dependence of the drive laser energy on the laser-plasma channel and electron beam parameters. The qua...

  11. Modeling and control of plasma rotation and βn for NSTX-U using Neoclassical Toroidal Viscosity and Neutral Beam Injection

    Science.gov (United States)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark

    2015-11-01

    A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.

  12. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  13. Experimental study of the dependence of beam current on injection magnetic field in 6.4 GHz ECR ion source

    Indian Academy of Sciences (India)

    G S Taki; P R Sarma; D K Chakraborty; R K Bhandari; P K Ray

    2006-09-01

    The ion current from an electron cyclotron resonance (ECR) heavy ion source depends on the confining axial and radial magnetic fields. Some efforts were made by earlier workers to investigate magnetic field scaling on the performance of the ECR source. In order to study the dependence of the ion current on the injection magnetic field in the 6.4 GHz ECR source, we have measured the current by varying the peak injection field and have inferred that the variation of the current is exponential up to our maximum design injection field of 7.5 kG. An attempt has been made to understand this exponential nature on the basis of ion confinement time.

  14. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation); Dinamica de Impurezas durante la Inyeccion de Haces Neutros en el TJ-II (simulacion)

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-07-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100{sub 4}4{sub 6}4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs.

  15. Feasibility study of an optical resonator for applications in neutral-beam injection systems for the next generation of nuclear fusion reactors

    International Nuclear Information System (INIS)

    This work is part of a larger project called SIPHORE (Single gap Photo-neutralizer energy Recovery injector), which aims to enhance the overall efficiency of one of the mechanisms through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection (NBI) system. An important component of a NBI system is the neutralizer of high energetic ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot cavities. This mechanism should allow a relevant NBI global efficiency of η≥ 60%, significantly higher than the one currently possible (η≤25% for ITER). The present work concerns the feasibility study of an optical cavity with suitable properties for applications in NBI systems. Within this context, the issue of the determination of an appropriated optical cavity design has been firstly considered and the theoretical and experimental analysis of a particular optical resonator has been carried on. The problems associated with the high levels of intracavity optical power (∼3 MW) required for an adequate photo-neutralization rate have then been faced. In this respect, we addressed both the problem of the thermal effects on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical resonator. (author)

  16. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  17. Patient-specific minimum-dose imaging protocols for statistical image reconstruction in C-arm cone-beam CT using correlated noise injection

    Science.gov (United States)

    Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.

    2014-03-01

    Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise injection method applied to images of an anthropomorphic head phantom and cadaveric torso across a range of lower-dose techniques. Results: Comparison of preview and real CBCT images across a full range of techniques demonstrated accurate noise magnitude (within ~5%) and correlation (matching noise-power spectrum, NPS). Other image quality characteristics (e.g., spatial resolution, contrast, and artifacts associated with beam hardening and scatter) were also realistically presented at all levels of dose and across reconstruction methods, including statistical reconstruction. Conclusion: Generating low-dose preview images for a broad range of protocols gives a useful method to select minimum-dose techniques that accounts for complex factors of imaging task, patient-specific anatomy, and observer preference. The ability to accurately simulate the influence of low-dose acquisition in statistical reconstruction provides an especially valuable means of identifying low-dose limits in a manner that does not rely on a model for the nonlinear

  18. Beam Dynamics Studies of ECR Injections for the Coupled Cyclotron Facility at NSCL%NSCL从ECR离子源向CCF注入的离子束流动力学研究

    Institute of Scientific and Technical Information of China (English)

    X.Wu; Q.Zhao; D.Cole; M.Doleans; G.Machicoane; F.Marti; P.Miller; J.Stetson; M.Steiner; P.Zavodszky

    2007-01-01

    The Coupled Cyclotron Facility(CCF)has been operating at the NSCL since 2001,providing up to 160MeV/u heavy ion beams for nuclear physics experiments.Recent steps,particularly the improvement of the ECR-to-K500 injection line,were taken to improve the CCF performance.For that purpose an off-line ECR source.ARTEMIS-B,was built and used to investigate the impact on beam brightness under various source operating conditions,different initial focusing systems and current analysis dipole.Beam dynamics simulations including space-charge and 3D electrostatic field effects were performed and beam diagnostics including emittance scanner were used,leading to a better understanding of the CCF beam injection process New initial electrostatic focusing elements such as a large-bore quadrupole triplet and a quadrupole doubledoublet with compensating octupole were tested,and a new beam tuning procedure was established to improve the beam brightness for the CCF.Following these efforts,a significant increase of primary beam power out of the CCF has been achieved.

  19. Electron beam injected into ground generates subsoil x-rays that may deactivate concealed electronics used to trigger explosive devices

    Science.gov (United States)

    Retsky, Michael

    2008-04-01

    Explosively formed projectiles (EFP) are a major problem in terrorism and asymmetrical warfare. EFPs are often triggered by ordinary infrared motion detectors. A potential weak link is that such electronics are not hardened to ionizing radiation and can latch-up or enter other inoperative states after exposure to a single short event of ionizing radiation. While these can often be repaired with a power restart, they also can produce shorts and permanent damage. A problem of course is that we do not want to add radiation exposure to the long list of war related hazards. Biological systems are highly sensitive to integrated dosage but show no particular sensitivity to short pulses. There may be a way to generate short pulsed subsoil radiation to deactivate concealed electronics without introducing radiation hazards to military personnel and civilian bystanders. Electron beams of 30 MeV that can be produced by portable linear accelerators (linacs) propagate >20 m in air and 10-12 cm in soil. X-radiation is produced by bremsstrahlung and occurs subsoil beneath the point of impact and is mostly forward directed. Linacs 1.5 m long can produce 66 MWatt pulses of subsoil x-radiation 1 microsecond or less in duration. Untested as yet, such a device could be mounted on a robotic vehicle that precedes a military convoy and deactivates any concealed electronics within 10-20 meters on either side of the road.

  20. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven E., E-mail: steven.finkelstein@moffitt.org [H. Lee Moffitt Cancer Center, Tampa, FL (United States); Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J. [H. Lee Moffitt Cancer Center, Tampa, FL (United States); Gabrilovich, Dmitry I., E-mail: dmitry.gabrilovich@moffitt.org [H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  1. Unenhanced Cone Beam Computed Tomography and Fusion Imaging in Direct Percutaneous Sac Injection for Treatment of Type II Endoleak: Technical Note

    Energy Technology Data Exchange (ETDEWEB)

    Carrafiello, Gianpaolo, E-mail: gcarraf@gmail.com; Ierardi, Anna Maria [Insubria University, Interventional Radiology, Department of Radiology (Italy); Radaelli, Alessandro [Philips Healthcare (Netherlands); Marchi, Giuseppe De; Floridi, Chiara [Insubria University, Interventional Radiology, Department of Radiology (Italy); Piffaretti, Gabriele [University of Insubria, Vascular Surgery Department (Italy); Federico, Fontana [Insubria University, Interventional Radiology, Department of Radiology (Italy)

    2016-03-15

    AimTo evaluate safety, feasibility, technical success, and clinical success of direct percutaneous sac injection (DPSI) for the treatment of type II endoleaks (T2EL) using anatomical landmarks on cone beam computed tomography (CBCT) and fusion imaging (FI).Materials and MethodsEight patients with T2EL were treated with DPSI using CBCT as imaging guidance. Anatomical landmarks on unenhanced CBCT were used for referencing T2EL location in the first five patients, while FI between unenhanced CBCT and pre-procedural computed tomography angiography (CTA) was used in the remaining three patients. Embolization was performed with thrombin, glue, and ethylene–vinyl alcohol copolymer. Technical and clinical success, iodinated contrast utilization, procedural time, fluoroscopy time, and mean radiation dose were registered.ResultsDPSI was technically successful in all patients: the needle was correctly positioned at the first attempt in six patients, while in two of the first five patients the needle was repositioned once. Neither minor nor major complications were registered. Average procedural time was 45 min and the average administered iodinated contrast was 13 ml. Mean radiation dose of the procedure was 60.43 Gy cm{sup 2} and mean fluoroscopy time was 18 min. Clinical success was achieved in all patients (mean follow-up of 36 months): no sign of T2EL was reported in seven patients until last CT follow-up, while it persisted in one patient with stability of sac diameter.ConclusionsDPSI using unenhanced CBCT and FI is feasible and provides the interventional radiologist with an accurate and safe alternative to endovascular treatment with limited iodinated contrast utilization.

  2. FINAL TECHNICAL REPORT FOR DE-FG02-05ER64097 Systems and Methods for Injecting Helium Beams into a Synchrotron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A

    2008-09-30

    A research grant was approved to fund development of requirements and concepts for extracting a helium-ion beam at the LLUMC proton accelerator facility, thus enabling the facility to better simulate the deep space environment via beams sufficient to study biological effects of accelerated helium ions in living tissues. A biologically meaningful helium-ion beam will be accomplished by implementing enhancements to increase the accelerator's maximum proton beam energy output from 250MeV to 300MeV. Additional benefits anticipated from the increased energy include the capability to compare possible benefits from helium-beam radiation treatment with proton-beam treatment, and to provide a platform for developing a future proton computed tomography imaging system.

  3. Injection and Dump Systems

    CERN Document Server

    Bracco, C; Barnes, M J; Carlier, E; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Performance and failures of the LHC injection and ex- traction systems are presented. In particular, a comparison with the 2010 run, lessons learnt during operation with high intensity beams and foreseen upgrades are described. UFOs, vacuum and impedance problems related to the injection and extraction equipment are analysed together with possible improvements and solutions. New implemented features, diagnostics, critical issues of XPOC and IQC applications are addressed.

  4. PS injection area

    CERN Multimedia

    1974-01-01

    Looking against the direction of protons in the main ring (left): the beam coming from the linac 1 either goes to the booster (on the right) or is deflected towards the PS to be directly injected into section 26 (facing the camera). Also shown the start of the TT2 line, ejected from straight section 16 to go towards the ISR passing over the beam line from the linac. (see Photo Archive 7409009)

  5. MKI UFOs at Injection

    CERN Document Server

    Baer, T; Bartmann, W; Bracco, C; Carlier, E; Chanavat, C; Drosdal, L; Garrel, N; Goddard, B; Kain, V; Mertens, V; Uythoven, J; Wenninger, J; Zerlauth, M

    2011-01-01

    During the MD, the production mechanism of UFOs at the injection kicker magnets (MKIs) was studied. This was done by pulsing the MKIs on a gap in the circulating beam, which led to an increased number of UFOs. In total 43 UFO type beam loss patterns at the MKIs were observed during the MD. The MD showed that pulsing the MKIs directly induces UFO type beam loss patterns. From the temporal characteristics of the loss profile, estimations about the dynamics of the UFOs are made.

  6. Self-modulation of a long externally injected relativistic charged-particle beam in a laser wake field acceleration scheme. A preliminary quantum-like investigation

    International Nuclear Information System (INIS)

    Recent investigations indicate that sufficiently long beams of charged particles, travelling in a plasma, experience the phenomenon of self-modulation. The self-modulation is driven by the plasma wake field excitation due to the beam itself, and it may become unstable under certain conditions. A preliminary theoretical investigation of the self-modulation of a relativistic charged-particle beam in overdense plasma in the presence of a preformed plasma wave is carried out, within the quantum-like description of charged particle beams provided by the Thermal Wave Model. A simple physical model for the self-modulation is put forward, described by a nonlinear Schrödinger equation coupled with the Poisson-like equation for the plasma wake potential (so-called Fedele–Shukla equations). The physical mechanism is based on the interplay of three concomitant effects, the radial thermal dispersion (associated with the emittance ε), the radial ponderomotive effects of a preexisting plasma wave (which provides the guidance for the beam), and the self-interaction of the plasma wake field generated by the beam itself

  7. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  8. Injection method using the third order resonance at TARN II

    International Nuclear Information System (INIS)

    The beam was successfully stored in the TARN II ring by an injection method using the third order resonance. Beam intensity obtained by the resonance injection is comparable with that by the multiturn injection. A new stacking method utilizing the resonance injection and the electron cooling is introduced. (author)

  9. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  10. Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling

    DEFF Research Database (Denmark)

    Mantica, P.; Tala, T.; Ferreira, J.S.;

    2010-01-01

    Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power or by modu......Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power...... or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum...

  11. Transverse emittance blow-up of the heavy ion beam injected into the SPS from the proposed MSI-V septum

    CERN Document Server

    Velotti, Francesco Maria; Uythoven, Jan; CERN. Geneva. ATS Department

    2014-01-01

    The initial specification for the MSI-V current ripples was 1000 ppm, but recent developments asked for a maximum ripple between 100 and 1000 ppm. The effect of such errors has to be properly evaluated, together with the other sources of injection errors (MSI, MKP).

  12. Transient Enhancement ('Spike-on-Tail') Observed on Neutral-Beam-Injected Energetic Ion Spectra Using the E||B Neutral Particle Analyzer in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, N. N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Roquemore, A. L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2010-06-01

    An increase of up to four-fold in the E||B Neutral Particle Analyzer (NPA) charge exchange neutral flux localized at the Neutral Beam (NB) injection full energy is observed in the National Spherical Torus Experiment (NSTX). Termed the High-Energy Feature (HEF), it appears on the NB-injected energetic ion spectrum only in discharges where tearing or kink-type modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak (δBrms < 75 mGauss) and CAE/GAE activity (f ~ 400 – 1200 kHz) is robust. The feature exhibits a growth time of ~ 20 - 80 ms and occasionally develops a slowing down distribution that continues to evolve over periods of 100's of milliseconds, a time scale long compared with the typical ~ 10's ms equilibration time of the NB injected particles. The HEF is observed only in H-mode (not L-mode) discharges with injected NB power of 4 MW or greater and in the field pitch range v||/v ~ 0.7 – 0.9; i.e. only for passing (never trapped) energetic ions. The HEF is suppressed by vessel conditioning using lithium deposition at rates ~ 100 mg/shot, a level sufficient to suppress ELM activity. Increases of ~ 10 - 30 % in the measured neutron yield and total stored energy are observed to coincide with the feature along with broadening of measured Te(r), Ti(r) and ne(r) profiles. However, TRANSP analysis shows that such increases are driven by plasma profile changes and not the HEF phenomenon itself. Though a definitive mechanism has yet to be developed, the HEF appears to be caused by a form of TAE/CAE wave-particle interaction that distorts of the NB fast ion distribution in phase space.

  13. Part 1, Angular distribution measurement of beam-foil muonium, Part 2, Muon injection simulation for a new muon g-2 experiment

    International Nuclear Information System (INIS)

    The angular and energy distributions of positive muons μ+ and muonium M produced by the beam-foil method have been measured for the first time. A 7 MeV/c subsurface μ+ beam was delivered to our apparatus from the Stopped Muon Channel at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The μ+ formed M by electron capture in a thin Al target foil. A low pressure multi-wire proportional chamber upstream of the target foil was used both as a moderator and as a muon counter. To observe muonium, muons sere swept away by a bending magnet which was placed downstream of the target foil. This magnet was turned off while measuring the μ+ distribution. Beyond the magnetic field, particles were collimated and then stopped by a microchannel plate detector located at various angles to the incident muon beam axis. Two pairs of scintillators mounted above (St) and below (Sb) the MC-P were used to detect the decay positrons to verify from the lifetime spectrum that the particles detected by the MCP are muons. The intensities of μ+ and M emerging from the Al foil at different angles were obtained from both a time-of-flight spectrum and a lifetime spectrum

  14. Temozolomide Injection

    Science.gov (United States)

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called alkylating ... Temozolomide injection comes as a powder to be added to fluid and injected over 90 minutes intravenously ( ...

  15. Methotrexate Injection

    Science.gov (United States)

    Methotrexate injection is used alone or in combination with other medications to treat gestational trophoblastic tumors (a ... in bones) after surgery to remove the tumor. Methotrexate injection is also used to treat severe psoriasis ( ...

  16. Leucovorin Injection

    Science.gov (United States)

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall; cancer chemotherapy medication) when methotrexate is used to to treat certain types of cancer. Leucovorin injection is used to treat people who ...

  17. Pembrolizumab Injection

    Science.gov (United States)

    Pembrolizumab injection is used to treat melanoma (a type of skin cancer) that cannot be treated with ... who have a specific type of melanoma tumor. Pembrolizumab injection is also used to treat a certain ...

  18. Paclitaxel Injection

    Science.gov (United States)

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  19. Evolocumab Injection

    Science.gov (United States)

    Evolocumab injection is used along with diet and certain cholesterol-lowering medications, HMG-CoA reductase inhibitors (statins), ... cholesterol cannot be removed from the body normally). Evolocumab injection is in a class of medications called ...

  20. Octreotide Injection

    Science.gov (United States)

    Octreotide immediate-release injection is used to decrease the amount of growth hormone (a natural substance) produced ... be treated with surgery, radiation, or another medication. Octreotide immediate-release injection is also used to control ...

  1. Naltrexone Injection

    Science.gov (United States)

    Naltrexone injection is used along with counseling and social support to help people who have stopped drinking large amounts of alcohol to avoid drinking again. Naltrexone injection is also used along with counseling and ...

  2. Vancomycin Injection

    Science.gov (United States)

    Vancomycin injection is used alone or in combination with other medications to treat certain serious infections such ... infections of the lungs, skin, blood, and bones. Vancomycin injection is in a class of medications called ...

  3. Naloxone Injection

    Science.gov (United States)

    ... doctor to get a new injection device.The automatic injection device has an electronic voice system that provides step by step directions ... guard has been removed, safely dispose of the automatic injection ... local garbage/recycling department to learn about take-back programs in ...

  4. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    at the injection site was influenced by the needle length and the injected volume. Several imaging analysis tools were optimized for the characterization, and these tools were implemented also on subcutaneous injections in rats, visualized by low dose μCT, and used for characterization of the morphology in mouse...

  5. Ustekinumab Injection

    Science.gov (United States)

    ... Do not inject into an area where the skin is tender, bruised, red, or hard or where you have scars or stretch marks.Your doctor or pharmacist will ... injection.you should know that ustekinumab injection may decrease your ability ... new or changing skin lesions, minor infections (such as open cuts or ...

  6. Charge exchange produced K-shell x-ray emission from Ar16+ in a tokamak plasma with neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Bitter, M; Marion, M; Olson, R E

    2004-12-27

    High-resolution spectroscopy of hot tokamak plasma seeded with argon ions and interacting with an energetic, short-pulse neutral hydrogen beam was used to obtain the first high-resolution K-shell x-ray spectrum formed solely by charge exchange. The observed K-shell emission of Ar{sup 16+} is dominated by the intercombination and forbidden lines, providing clear signatures of charge exchange. Results from an ab initio atomic cascade model provide excellent agreement, validating a semiclassical approach for calculating charge exchange cross sections.

  7. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    Science.gov (United States)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  8. High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers

    CERN Document Server

    Maciariello, Fausto; Butcher, Mark; Calviani, Marco; Folch, Ramon; Kain, Verena; Karagiannis, Konstantinos; Lamas Garcia, Inigo; Lechner, Anton; Nuiry, Francois-Xavier; Steele, Genevieve; Uythoven, Jan

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the resul...

  9. The power supply system of a prototype EAST ion source in the neutral beam injection test stand%EAST NBI综合测试台离子源电源系统的测试研究

    Institute of Scientific and Technical Information of China (English)

    刘智民; 蒋才超; 刘胜; 谢亚红; 胡纯栋

    2014-01-01

    EAST NBI束线综合测试台已研制完成并具备一台兆瓦级离子源测试运行的全套电源设备,包括离子源灯丝电源、弧电源、加速器电源、抑制极电源、偏转磁体电源及缓冲器电源等。介绍了EAST兆瓦级离子源进行起弧放电调试运行的方式,叙述了各套离子源电源系统的设计结构、技术特点及运行控制方式,分析了离子源电源系统稳定可靠运行需要解决的各个难点,给出了EAST束线样机进行高功率及长脉冲束引出测试运行的实验结果。%A prototype EAST neutral beam injection (NBI) test stand has been developed to test a multi-megawatt EAST ion source at the designed beam power. The power supplies system of the NBI test stand include a filament power supply, an arc power supply, an acceleration power supply,a deceleration power supply, a bending magnet power supply, and a snubber bias power supply. The paper explained the design structure、technical features and operation control mode of each ion source power supply. The difficulties which required to be solved for stable and reliable operation of ion source power supply were analyzed. The necessary tests of the prototype EAST NBI system have been done with high power, long pulse beams.

  10. 高能聚束微波热疗联合沙培林胸腔注射治疗恶性胸水%High power focused-beam microwave hyperthermia combined with intrapleural injection of Shapeilin in the treatment of patients with malignant hydrothorax

    Institute of Scientific and Technical Information of China (English)

    Lingqin Song; Jianjun He; Xijing Wang; Hongbing Ma; Shuqun Zhang; Zhijun Dai; Baofeng Wang; Xiaobin Ma

    2011-01-01

    Objective: The aim of the study was to evaluate the efficacy and toxicity of high power focused-beam microwave hyperthermia with intrapleural injection of Shapeilin for patients with malignant hydrothorax. Methods: Fifty-eight patients with malignant hydrothorax were divided into group A and group B randomly. All patients underwent indwelling pleural catheter and were treated by intrapleural injection of Shapeilin once three days. Treatment was composed of 3 times injection. Patients of group B received high power focused-beam microwave hyperthermia after injection of Shapeilin. Results: The response rate of group B (79.3%) was higher than that of group A (48.3%) (P < 0.05). Incidence of main adverse reactions, associated with Shapeilin, of two groups including fever and thoracodynia were similar (P > 0.05). Patients of group B didn't encounter severe toxicities of microwave hyperthermia. Conclusion: High power focused-beam microwave hyperthermia combined with intrapleural injection of Shapeilin is effective and tolerable for patients with malignant hydrothorax.

  11. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  12. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    Science.gov (United States)

    Burrell, K. H.; Barada, K.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Rhodes, T. L.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; Zeng, L.

    2016-05-01

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H98y2 international tokamak energy confinement scaling (H98y2 = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant βN = 1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with

  13. Construction of tangential injection NBI system

    International Nuclear Information System (INIS)

    In the Upgrading of the JT-60, the vacuum vessel has been modified to a larger bore. This larger bore vacuum vessel yields a larger toroidal field ripple in the vicinity of a plasma surface because of closing the toroidal field coils and plasmas. A ripple loss of injected neutral beams, then, estimated to be 30-40% through ripple field in the beam injection with the present NBI system that injects the beam perpendicularly to the plasma. An effective way to decrease the ripple loss in the plasma is to inject the beam tangentially. Meanwhile, it has been determined possible with the JT-60 upgrading to use a horizontal port as a tangential beam injection, because of eliminating a group of outer horizontal poloidal coils which are used as a divertor coil in the former JT-60. The modification from perpendicular beamline to tangential one has been executed in four beamlines out of 14 units. Four tangential beamlines are installed in two beamline tanks which are newly fabricated and positioned co- and counter-injection, respectively. Most of the beamline components are reused except a couple of cancellation coils. The modification to the tangential beamline completed in 1993, and the beam injection experiments with the tangential have been conducted successfully since 1993. (author)

  14. Certolizumab Injection

    Science.gov (United States)

    ... and swelling and scales on the skin), active ankylosing spondylitis (a condition in which the body attacks the ... continues. When certolizumab injection is used to treat ankylosing spondylitis, it is usually given every 2 weeks for ...

  15. Olanzapine Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Olanzapine injection is used to treat episodes of ... this medication affects you.you should know that alcohol can add to the drowsiness caused by this ...

  16. Haloperidol Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Haloperidol injection is also used to control motor ... this medication affects you.you should know that alcohol can add to the drowsiness caused by this ...

  17. Tigecycline Injection

    Science.gov (United States)

    ... in a person who was not in the hospital), skin infections, and infections of the abdomen (area between the ... that developed in people who were in a hospital or foot infections in people who have diabetes. Tigecycline injection is ...

  18. Golimumab Injection

    Science.gov (United States)

    Golimumab injection is used alone or with other medications to relieve the symptoms of certain autoimmune disorders ( ... did not help or could not be tolerated. Golimumab is in a class of medications called tumor ...

  19. Ferumoxytol Injection

    Science.gov (United States)

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  20. Aripiprazole Injection

    Science.gov (United States)

    ... mixed with water (Abilify Maintena) and as a suspension (liquid) (Aristada) to be injected into a muscle ... decisions, and react quickly. Do not drive a car or operate machinery until you know how this ...

  1. Ertapenem Injection

    Science.gov (United States)

    Ertapenem injection is used to treat certain serious infections, including pneumonia and urinary tract, skin, diabetic foot, ... for the prevention of infections following colorectal surgery. Ertapenem is in a class of medications called carbapenem ...

  2. Testosterone Injection

    Science.gov (United States)

    Testosterone cypionate (Depo-Testosterone), testosterone enanthate (Delatestryl), testosterone undecanoate (Aveed), and testosterone pellet (Testopel) are forms of testosterone injection used to treat symptoms of low testosterone in men who have hypogonadism (a ...

  3. Fludarabine Injection

    Science.gov (United States)

    ... also sometimes used to treat non-Hodgkin's lymphoma (NHL; cancer that begins in a type of white ... this medication. You should not plan to have children while receiving fludarabine injection or for at least ...

  4. Ramucirumab Injection

    Science.gov (United States)

    ... dose of ramucirumab injection. Tell your doctor or nurse if you experience any of the following while you receive ramucirumab: uncontrollable shaking of a part of the body; back pain or spasms; chest pain and tightness; chills; flushing; ...

  5. Basiliximab Injection

    Science.gov (United States)

    ... prescribed for other uses; ask your doctor or pharmacist for more information. ... Ask your pharmacist any questions you have about basiliximab injection.It is important for you to keep a written list of ...

  6. Nafcillin Injection

    Science.gov (United States)

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to nafcillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin, cefdinir, ...

  7. Oxacillin Injection

    Science.gov (United States)

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to oxacillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin, cefdinir, ...

  8. Ampicillin Injection

    Science.gov (United States)

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to ampicillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin (Ancef, ...

  9. Levofloxacin Injection

    Science.gov (United States)

    ... injection is used to treat infections such as pneumonia; chronic bronchitis; and sinus, urinary tract, kidney, prostate ( ... skin or eyes dark urine decreased urination seizures unusual bruising or bleeding joint or muscle pain Levofloxacin ...

  10. Linezolid Injection

    Science.gov (United States)

    Linezolid injection is used to treat infections, including pneumonia, and infections of the skin and blood. Linezolid ... to 2 months or more after your treatment) unusual bleeding or bruising cough, chills, sore throat, and ...

  11. Cefazolin Injection

    Science.gov (United States)

    ... joint, genital, blood, heart valve, respiratory tract (including pneumonia), biliary tract, and urinary tract infections. Cefazolin injection ... effects. Call your doctor if you have any unusual problems while using this medication.If you experience ...

  12. Moxifloxacin Injection

    Science.gov (United States)

    ... appropriate for them to remain available as a therapeutic option.FDA is continuing to assess safety issues ... review has shown that fluoroquinolones when used systemically (i.e. tablets, capsules, and injectable) are associated with disabling ...

  13. Gemcitabine Injection

    Science.gov (United States)

    ... with surgery. Gemcitabine is also used to treat cancer of the pancreas that has spread to other parts of the ... 4 weeks. When gemcitabine is used to treat cancer of pancreas it may be injected once every week. The ...

  14. Fluconazole Injection

    Science.gov (United States)

    ... and fungal infections of the eye, prostate (a male reproductive organ), skin and nails. Fluconazole injection is ... Motrin, others) and naproxen (Aleve, Anaprox, Naprelan); oral contraceptives (birth control pills); oral medication for diabetes such ...

  15. Insulin Injection

    Science.gov (United States)

    ... or buttocks. Do not inject insulin into muscles, scars, or moles. Use a different site for each ... you are using insulin.Alcohol may cause a decrease in blood sugar. Ask your doctor about the ...

  16. Tesamorelin Injection

    Science.gov (United States)

    ... is colored, cloudy, contains particles, or if the expiration date on the bottle has passed.Never reuse ... swelling of the face or throat shortness of breath difficulty breathing fast heartbeat dizziness fainting Tesamorelin injection ...

  17. Secukinumab Injection

    Science.gov (United States)

    ... secukinumab solution before injecting it. Check that the expiration date has not passed and that the liquid ... fever, sweats, or chills, muscle aches, shortness of breath, warm, red, or painful skin or sores on ...

  18. Alirocumab Injection

    Science.gov (United States)

    ... further decrease the amount of low-density lipoprotein (LDL) cholesterol ('bad cholesterol') in the blood. Alirocumab injection is ... antibodies. It works by blocking the production of LDL cholesterol in the body to decrease the amount of ...

  19. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    Science.gov (United States)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (areas (REAs) (Hemes et al., 2013).

  20. Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes with chemically assisted ion beam etched facets

    Science.gov (United States)

    Becerra, Daniel L.; Kuritzky, Leah Y.; Nedy, Joseph; Saud Abbas, Arwa; Pourhashemi, Arash; Farrell, Robert M.; Cohen, Daniel A.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2016-02-01

    Continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes were fabricated with highly vertical, smooth, and uniform mirror facets produced by chemically assisted ion beam etching. Uniform mirror facets are a requirement for accurate experimental determination of internal laser parameters, including internal loss and injection efficiency, which were determined to be 9 cm-1 and 73%, respectively, using the cavity length dependent method. The cavity length of the uncoated devices was varied from 900 μm to 1800 μm, with threshold current densities ranging from 3 kA/cm2 to 9 kA/cm2 and threshold voltages ranging from 5.5 V to 7 V. The experimentally determined internal loss was found to be in good agreement with a calculated value of 9.5 cm-1 using a 1D mode solver. The loss in each layer was calculated and in light of the analysis several modifications to the laser design are proposed.

  1. Beam buncher for the K130-cyclotron

    Science.gov (United States)

    Saario, J.; Gustafsson, J.; Kotilainen, P.; Kaski, K.; Lassila, A.; Liukkonen, E.

    1996-02-01

    A beam buncher, developed to improve the beam efficiency in the K130 cyclotron at University of Jyväskylä, is described. The basic acceleration frequency and the second harmonic component were used to simulate a saw-tooth wave, needed for axial injection of the beam. With this method up to eight times increase in the beam intensity was achieved.

  2. Beam buncher for the K130-cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Saario, J. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Gustafsson, J. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Kotilainen, P. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Kaski, K. [Tampere Univ. of Technol. (Finland). Microelectronics Lab.; Lassila, A. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Liukkonen, E. [Jyvaeskylae Univ. (Finland). Dept. of Physics

    1996-02-21

    A beam buncher, developed to improve the beam efficiency in the K130 cyclotron at University of Jyvaeskylae, is described. The basic acceleration frequency and the second harmonic component were used to simulate a saw-tooth wave, needed for axial injection of the beam. With this method up to eight times increase in the beam intensity was achieved. (orig.).

  3. Four orbit bump and injection software for Indus-2 storage ring

    International Nuclear Information System (INIS)

    The injection into Indus-2 takes place in horizontal plane with two injection septa and four kicker magnets in the injection straight. The symmetric and asymmetric orbit bumps generation is required to accept the injected beam. The bump simulation has been done using accelerator toolbox and a graphical user interface has been developed in MATLAB environment. We describe the injection system and software with graphical user interface (GUI) to generate an orbit bump to inject the beam into Indus-2. (author)

  4. Ibritumomab Injection

    Science.gov (United States)

    ... have received ibritumomab injection.do not have any vaccinations without talking to your doctor.you should know ... cells) and myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  5. Tositumomab Injection

    Science.gov (United States)

    ... have received tositumomab injection.do not have any vaccinations without talking to your doctor.you should know ... blood cells), myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  6. Doxycycline Injection

    Science.gov (United States)

    ... call your doctor.plan to avoid unnecessary or prolonged exposure to sunlight and to wear protective clothing, sunglasses, and sunscreen. Doxycycline injection may make your skin sensitive to sunlight.you should know that when doxycycline is used during pregnancy or in babies or children up to age ...

  7. Adalimumab Injection

    Science.gov (United States)

    ... swelling and scales on the skin), chronic plaque psoriasis (a skin disease in which red, scaly patches form on some areas of the body). Adalimumab injection is in a class of medications called tumor necrosis factor (TNF) inhibitors. It works by blocking the action ...

  8. Medroxyprogesterone Injection

    Science.gov (United States)

    ... injection when you are a teenager or young adult. Tell your doctor if you or anyone in your family has osteoporosis; if you have or have ever had any other bone disease or anorexia nervosa (an eating disorder); or if you drink a ...

  9. Lanreotide Injection

    Science.gov (United States)

    Lanreotide injection is used to treat people with acromegaly (condition in which the body produces too much growth hormone, causing enlargement of the hands, feet, and facial features; joint pain; and other symptoms) who have not successfully, or cannot be treated ...

  10. Paliperidone Injection

    Science.gov (United States)

    Invega® Trinza® ... Paliperidone extended-release injections (Invega® Sustenna, Invega® Trinza) are used to treat schizophrenia (a mental illness that causes disturbed or unusual thinking, loss of interest in life, and strong or ...

  11. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  12. Innovative Drug Injection via Laser Induced Plasma

    Science.gov (United States)

    Han, Tae-hee; Yoh, Jack J.

    2010-10-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of the nozzle is 125 um and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  13. Beam catcher/dump

    International Nuclear Information System (INIS)

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted accelerations or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel

  14. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  15. Beam Transfer and Machine Protection

    CERN Document Server

    Kain, V

    2016-01-01

    Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.

  16. A computer code for computing the beam profiles in the NBI beam line 'BEMPROF'

    International Nuclear Information System (INIS)

    A computer code was developed which can compute the beam profiles and the percentage heat loadings on the various components in the NBI beam line such as the beam target, the beam limiters and the calorimeter. The geometrical injection efficiency of NBI and the heat input pattern on the counter surface of the injection port of the torus can also be computed. The major feature of this code is that the effects of the beamlet intensity distribution, the beamlet deflection, the beam screening by the upstream limiters and also the plasma density distribution and the divergence angle distribution over the beam extraction area can be taken into account. (author)

  17. Development of target injection and tracking for IFE in Japan

    International Nuclear Information System (INIS)

    The study of target injection, detection, measurement of laser focal point, and laser beam steering have started under co-research in Japan. The smooth-bore gas gun is developed for accurate injection. The applications of divergent laser beam and Arago spot are described for accurate measurement of target position and laser focal point. Magnetic lens for target trajectory adjustment by centering force is proposed. The piezoelectric actuator driven mirror is studied for laser beam steering device. (author)

  18. LEP beam separator at L3

    CERN Multimedia

    1989-01-01

    During injection and acceleration, separators like this were used to keep the electron and positron beams apart while they travelled in the vacuum chamber. When the beams reached maximum energy the separators at the experiments were turned off, allowing the beams to collide. This one was located near the L3 experiment, whose huge red solenoid magnet can be seen in the background.

  19. Injection and extraction for cyclotrons

    CERN Document Server

    Kleeven, W

    2006-01-01

    The main design goals for beam injection are explained and special problems related to a central region with internal ion source are considered. The principle of a PIG source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different ways of (axial) injection are briefly outlined. A proposal for a magnetostatic axial inflector is given. Different solutions for beam extraction are treated. These include the internal target, extraction by stripping, resonant extraction using a deflector and self-extraction. The different ways of creating a turn-separation are explained. The purpose of different types of extraction devices such as harmonic coils, deflectors and gradient corrector channels are outlined. Several illustrations are given in the form of photographs and drawings.

  20. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    胡纯栋

    2012-01-01

    The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.

  1. FLUKA Simulation of Particle Fluences to ALICE due to LHC Injection Kicker Failures

    CERN Document Server

    Shetty, N V; Di Mauro, A; Lechner, A; Leogrande, E; Uythoven, J

    2014-01-01

    The counter-rotating beams of the LHC are injected in insertion regions which also accommodate the ALICE and LHCb experiments. An assembly of beam absorbers ensures the protection of machine elements in case of injection kicker failures, which can affect either the injected or the stored beam. In the first years of LHC operation, secondary particle showers due to beam impact on the injection beam stopper caused damage to the MOS injectors of the ALICE silicon drift detector as well as high-voltage trips in other ALICE subdetectors. In this study, we present FLUKA [1,2] simulations of particle fluences to the ALICE cavern for injection failures encountered during operation. Two different cases are reported, one where the miskicked beam is fully intercepted and one where the beam grazes the beam stopper.

  2. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  3. Electron beam electromagnetic field interaction in one-dimensional coaxial vircator

    Science.gov (United States)

    Shao, H.; Liu, G. Z.; Yang, Z. F.

    2005-10-01

    A one-dimensional model of the interaction between an injected electron beam and an electromagnetic (EM) field inside a coaxial vircator is presented. The effects of the injected electron beam energy spread, anode absorption rate, feedback and injected current premodulation are analyzed. The EM-gains of interaction between the electron beam and TM01, TE11 modes are derived and discussed.

  4. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  5. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  6. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  7. Pulsed magnetic field for PHERMEX-injected circular accelerator

    International Nuclear Information System (INIS)

    The PHERMEX accelerator is a standing wave, 50 MHz rf linear accelerator. The rf fields in three cavities are pulsed for a period of 3 ms. The experiments described are directed toward studying injection and trapping of electron rings at modes field strengths (approximately 1 T). A single 200 ns beam macropulse is to be injected transverse to a solenoidal field, which is tilted at a small angle relative to the beam normal so that a beam micropulse does not return and strike the injection point. The pulsed field coils and vacuum chamber are reported under construction, and the capacitor bank being tested

  8. Measurement and Simulation of Beam Centering on CYCIAE-10

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The beam centering is very important for the compact cyclotron, especially for the cyclotrons with the axial injection. It is critical that the cyclotron has a good beam centering to increase the beam current and reduce the beam loss. In the accelerating process,

  9. Development of beam flattening system using non-linear beam optics at J-PARC/JSNS

    International Nuclear Information System (INIS)

    As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak intensity is important for the beam injection system. At the JSNS, beam profile can be described by the clear Gaussian functions. To reduce peak intensity, we have developed a beam transport system by non-linear beam optics using octupole magnets. (author)

  10. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  11. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to treat ... in the treatment of certain serious infections. Penicillin G procaine injection is in a class of medications ...

  12. Vertical distributor in the Booster injection line

    CERN Multimedia

    1979-01-01

    The beam from the 50 MeV linac filled the 4 rings of the PS Booster(originally 800 MeV, now 1.4 GeV) one after the other (in multiturn injection). A fast-switchable vertical steering magnet, the "distributor", directed the beam first to the top ring (nb.4), and after a preset number of turns to next lower ring, and so on. After filling the bottom ring, the tail of the linac beam was directed into a dump.

  13. Crystal Collimation with protons at injection energy

    CERN Document Server

    Rossi, Roberto; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Redaelli, Stefano; Valentino, Gianluca; Scandale, Walter; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on August 30th, 2015, bent silicon crystals were tested with protons beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals, providing a crucial test of the hardware for precise crystal angle adjustments (goniometers). Proton channeling was observed for the first time with LHC beams and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  14. Equipment for ion beam production

    International Nuclear Information System (INIS)

    An equipment has been designed to extend the scope of control of ion beam flux for an intensive ion beam source used for plasma injection in magnetic vessels. The control equipment is connected to the electromagnet power supply. A consumption regulator is fitted in the operating gas supply to the hollow cathode of the ion source. A circuit is also included for discharge voltage maintenance consisting of a control element and a discharge voltage pick-up. (M.D.). 1 fig

  15. On injection of polarized electrons into a cyclic accelerator

    International Nuclear Information System (INIS)

    A magnetic system, which allows to transform the longitudinal polarization of electron beams into a transverse one for definite values of energy of particles when injected into a cyclic accelerator is considered. 2 figs

  16. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  17. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Indian Academy of Sciences (India)

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  18. Beam emittance reduction during operation of Indus-2

    Science.gov (United States)

    Fakhri, Ali Akbar; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam

    2015-11-01

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  19. Beam emittance reduction during operation of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  20. Beam emittance reduction during operation of Indus-2

    International Nuclear Information System (INIS)

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed

  1. Beam emittance reduction during operation of Indus-2.

    Science.gov (United States)

    Fakhri, Ali Akbar; Kant, Pradeep; Ghodke, A D; Singh, Gurnam

    2015-11-01

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed. PMID:26628127

  2. Injection locked oscillator system for pulsed metal vapor lasers

    Science.gov (United States)

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  3. Transmission of the Neutral Beam Heating Beams at TJ-II

    International Nuclear Information System (INIS)

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs

  4. Injection quality measurements with diamond based particle detectors

    CERN Document Server

    Stein, Oliver; CERN. Geneva. ATS Department

    2016-01-01

    During the re-commissioning phase of the LHC after the long shutdown 1 very high beam losses were observed at the TDI during beam injection. The losses reached up to 90% of the dump threshold. To decrease the through beam losses induced stress on the accelerator components these loss levels need to be reduced. Measurements with diamond based particle detectors (dBLMs), which have nano-second time resolution, revealed that the majority of these losses come from recaptured SPS beam surrounding the nominal bunch train. In this MD the injection loss patterns and loss intensities were investigated in greater detail. Performed calibration shots on the TDI (internal beam absorber for injection) gave a conversion factor from impacting particles intensities to signal in the dBLMs (0.1Vs/109 protons). Using the SPS tune kicker for cleaning the recaptured beam in the SPS and changing the LHC injection kicker settings resulted in a reduction of the injection losses. For 144 bunch injections the loss levels were decreased...

  5. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  6. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    International Nuclear Information System (INIS)

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper

  7. Layout considerations for the PSB H- injection system

    CERN Document Server

    Aiba, M; Carli, C; Chanel, M; Fowler, A; Goddard, B; Weterings, W

    2009-01-01

    The layout of the PSB H- injection system is described, including the arguments for the geometry and the required equipment performance parameters. The longitudinal positions of the main elements are specified, together with the injected and circulating beam axes. The assumptions used in determining the geometry are listed.

  8. Neutral beam data systems at ORNL

    International Nuclear Information System (INIS)

    A control system for neutral injection beam lines has been designed, implemented, and used with much success. Despite the problems with very high power levels this system is very successful in relieving the operators burdens of slow conditioning, data recording, and mode switching. The use of computer control with multiple beam lines now appears very promising

  9. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  10. Optimization of the Multi-turn Injection Efficiency for Medical Synchrotron

    CERN Document Server

    Kim, J; Yoon, M

    2016-01-01

    We present a method for optimization of the multi-turn injection effciency for medical synchrotron. We show that for given injection energy the injection efficiency can be greatly enhanced by choosing transverse tunes appropriately as well as optimizing the injection bump and the number of turns required for beam injection. We verify our study by applying the method to the Korea Heavy Ion Medical Accelerator (KHIMA) synchrotron which is currently built at the campus of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Busan, Korea. First the frequency map analysis is performed with the help of ELEGANT and ACCSIM codes. The tunes which yield the good injection efficiency are then selected. With these tunes the injection bump and the number of turns required for injection are then optimized by tracking a number of particles up to one thousand turns after injection beyond which there is no further beam loss. Results for optimization of the injection efficiency for proton ion are presented.

  11. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  12. On Maximal Injectivity

    Institute of Scientific and Technical Information of China (English)

    Ming Yi WANG; Guo ZHAO

    2005-01-01

    A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f' : R → E. In this paper, we first construct an example to show that maximal injectivity is a proper generalization of injectivity. Then we prove that any right R-module over a left perfect ring R is maximally injective if and only if it is injective. We also give a partial affirmative answer to Faith's conjecture by further investigating the property of maximally injective rings. Finally, we get an approximation to Faith's conjecture, which asserts that every injective right R-module over any left perfect right self-injective ring R is the injective hull of a projective submodule.

  13. Measurement of axial injection displacement with trim coil current unbalance

    Science.gov (United States)

    Covo, Michel Kireeff

    2014-08-01

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  14. The LHC injection kicker magnet

    CERN Document Server

    Ducimetière, Laurent; Barnes, M J; Wait, G D

    2003-01-01

    Proton beams will be injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 900 ns rise time and up to 7.86 s flat top duration. One of the stringent design requirements of these systems is a flat top ripple of less than ± 0.5%. Both injection systems are composed of 4 travelling wave kicker magnets of 2.7 m length each, powered by pulse forming networks (PFN's). To achieve the required kick strength of 1.2 Tm, a low characteristic impedance has been chosen and ceramic plate capacitors are used to obtain 5 Omega. Conductive stripes in the aperture of the magnets limit the beam impedance and screen the ferrite. The electrical circuit has been designed with the help of PSpice computer modelling. A full size magnet prototype has been built and tested up to 60 kV with the magnet under ultra high vacuum (UHV). The pulse shape has been precision measured at a voltage of 15 kV. After reviewing the performance requirements the paper presents the magnet...

  15. AA injection kicker in its tank

    CERN Multimedia

    1980-01-01

    For single-turn injection of the antiprotons, a septum at the end of the injection line made the beam parallel to the injection orbit, and a quarter of a betatron-wavelength downstream a fast kicker corrected the angle. Kicker type: lumped delay line. PFN voltage 56 kV. Bending angle 7.5 mrad; kick-strength 0.9 Tm; fall-time 95%-5% in 150 ns. The injection orbit is to the left, the stack orbit to the far right. A fast shutter near the central orbit had to be closed before the kicker fired, so as to protect the stack core from being shaken by the kicker's fringe field. The shutter is shown in closed position.

  16. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  17. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  18. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  19. Beam Instrumentation of the PXIE LEBT Beamline

    Energy Technology Data Exchange (ETDEWEB)

    D' Arcy, R. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Scarpine, v. [Fermilab; Shemyakin, A. [Fermilab

    2015-06-01

    The PXIE accelerator [1] is the front-end test stand of the proposed Proton Improvement Plan (PIP-II) [2] initiative: a CW-compatible pulsed H- superconducting RF linac upgrade to Fermilab’s injection system. The PXIE Ion Source and Low-Energy Beam Transport (LEBT) section are designed to create and transfer a 1-10 mA $H^{-}$ beam, in either pulsed (0.001–16 ms) or DC mode, from the ion source through to the injection point of the RFQ. This paper discusses the range of diagnostic tools – Allison-type Emittance Scanner, Faraday Cup, Toroid, DCCT, electrically isolated diaphragms – involved in the commissioning of the beam line and preparation of the beam for injection into the RFQ.

  20. RimabotulinumtoxinB Injection

    Science.gov (United States)

    (rim a bott' you lye num bee)RimabotulinumtoxinB injection may spread from the area of injection and ... Event Reporting program online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  1. Iron Sucrose Injection

    Science.gov (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called ...

  2. Urinary incontinence - injectable implant

    Science.gov (United States)

    Injectable implants are injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a ... into the tissue next to the sphincter. The implant procedure is usually done in the hospital. Or ...

  3. Corticotropin, Repository Injection

    Science.gov (United States)

    ... hard, or sensitive, or that has tattoos, warts, scars, or birthmarks. Do not inject the medication into ... you are injecting the medication. You can help decrease your child's pain by placing an ice cube ...

  4. Laser-Assisted H- Charge Exchange Injection in Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, Timofey V [ORNL; Danilov, Viatcheslav V [ORNL; Shishlo, Andrei P [ORNL

    2010-01-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving excitation point into a strong magnetic field.

  5. Laser-assisted H- charge exchange injection in magnetic fields

    Science.gov (United States)

    Gorlov, T.; Danilov, V.; Shishlo, A.

    2010-05-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization, and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving the excitation point into a strong magnetic field.

  6. Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    Science.gov (United States)

    Corde, S.; Thaury, C.; Lifschitz, A.; Lambert, G.; Ta Phuoc, K.; Davoine, X.; Lehe, R.; Douillet, D.; Rousse, A.; Malka, V.

    2013-02-01

    Laser-plasma accelerators can produce high-quality electron beams, up to giga electronvolts in energy, from a centimetre scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor-quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher-quality electron beams.

  7. Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    CERN Document Server

    Corde, S; Lifschitz, A; Lambert, G; Phuoc, K Ta; Davoine, X; Lehe, R; Douillet, D; Rousse, A; Malka, V

    2013-01-01

    Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.

  8. Magnetic configuration effects on plasma transport under Neutral Beam Injection at TJ-II (Simulation); Efectos de Configuracion Magnetica en el Transporte de Plasma durante la Inyeccion de Haces Neutros en el TJ-II (Simulacion)

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-07-01

    A systematic analysis of magnetic configurations (27 in total), using a Transport model including impurity dynamics and sputtering effects has been done. For small size configurations or those close to rational t values there is radioactive collapse, independently of the external gas puffing (GP) strategy chosen. The reason is the insufficiency of observed power, either by the high shine through losses due to their low radii, or by the increase of fast ion orbit losses near the resonances. For the majority of configurations without collapse, fast ion orbit losses for CO injection (going in the same direction than the toroidal magnetic field) are higher, and in consequence the power absorption and the plasma {beta} achieved are laser, than for the opposite direction. Nevertheless in the region placed just above the main resonances (1/3 and 1/2 per period) this situation reverses. The reasons have been analysed and explained at previous studies. A consequence of this fact is that the optima of confinement for the Counter case are shifted towards higher t values than the CO one, with higher plasma {beta}, except near the resonances. As usual the balanced case is in between. The optima achieving stationary state are very close (and often are coincident) with those lacking that restriction. The best configuration (highest average {beta}) for balanced injection, with <{beta}>=1.1% and central value 3.2%, although in this region the results are rather insensitive to configuration and GP strategy. The configurations placed around the 100{sub 4}4 would need also the lowest power entering the torus in order to avoid collapse and to achieve an acceptable NBI absorption level. (Author) 12 refs.

  9. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  10. Parametric injection for monoenergetic electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, A; Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 Japan (Japan); Zhidkov, A [Central Research Instistute of Electric Power Industry 2-6-1 Nagasaka Yokosuka Kanagawa 240-0196 Japan (Japan); Nakajima, K [High Energy Accelerator Research Organization, KEK 1-1 Oho Tsukuba Ibaraki 305-0801 Japan (Japan)], E-mail: blue-ayu@plasma.es.titech.ac.jp

    2008-05-01

    Electrons are accelerated in the laser wakefield (LWFA). This mechanism has been studied by 2D or 3D Particle In Cell simulation. However, how the electrons are injected in the wakefield is not understood. In this paper, we consider about the process of self -injection and propose new scheme. When plasma electron density modulates, parametric resonance of electron momentum is induced. The parametric resonance depends on laser waist modulation. We carried out 2D PIC simulation with the initial condition decided from resonance condition. Moreover, we analyze experimental result that generated 200-250 MeV monoenergetic electron beam with 400TW intense laser in CAEP in China.

  11. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  12. A Logic of Injectivity

    CERN Document Server

    Adamek, J; Souza, L

    2007-01-01

    Injectivity of objects with respect to a set $\\ch$ of morphisms is an important concept of algebra, model theory and homotopy theory. Here we study the logic of injectivity consequences of $\\ch$, by which we understand morphisms $h$ such that injectivity with respect to $\\ch$ implies injectivity with respect to $h$. We formulate three simple deduction rules for the injectivity logic and for its finitary version where \\mor s between finitely ranked objects are considered only, and prove that they are sound in all categories, and complete in all "reasonable" categories.

  13. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  14. Beam dynamics with new booster dipoles

    International Nuclear Information System (INIS)

    New bending magnets are being designed for the booster synchrotron at RRCAT, Indore with the same effective length and field which will be installed in the existing ring with the same configuration of drifts and quadrupole magnets. Presently sector type dipoles are in use. It is easier to fabricate parallel edge (rectangular type) dipoles but the beam optics gets modified due to edges which provide additional focusing. The effect on tune point can be corrected using two quadrupole families. Studies indicate that the beam emittance is lower in the optics with rectangular type dipoles but the beam injection and extraction are more difficult. In this paper, the beam optics, beam emittance, injection and extraction with two configurations of the dipole magnets are compared. (author)

  15. Beam position measurements of Indus-2 using X-Ray beam position monitor

    International Nuclear Information System (INIS)

    A staggered pair metal blade X-ray beam position monitor (XBPM) is designed, fabricated and commissioned on Indus-2 bending magnet front end. Calibration of XBPM is done by scanning the metal blades in the path of synchrotron radiation and by giving controlled electron asymmetric bump. The vertical beam position stability of the source measured during various injections and storages are reported.

  16. Ion-beam-driven lower-hybrid instability and resultant anomalous beam slowing

    International Nuclear Information System (INIS)

    A lower-hybrid instability with ion cyclotron harmonics is observed to be driven by an ion beam injected obliquely to the magnetic field confining the isothermal plasma of the Q-1 double plasma device. The instability occurs with the injection of a low density, low velocity beam and propagates normal to the field with phase velocity ω/k/sub perpendicular/ approximately equal to u/sub b//sub perpendicular/, the perpendicular velocity component of the spiraling ions. The frequency spectrum, propagation, and growth rate are all in good agreement with a numerical calculation based on linear kinetic theory. Pulsed beams are used to follow the instability from the linearly growing stage to nonlinear saturation. The anomalous perpendicular momentum loss of the beam is examined by both direct energy analysis and by measurements of the resultant beam orbit modifications. By varying the beam parameters, a transition of the nonlinear saturation mechanism from the quasilinear to the trapping regime is demonstrated

  17. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (1014 particles/cm3) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  18. Los Alamos Proton Storage Ring (PSR) injection deflector system

    International Nuclear Information System (INIS)

    We describe a pulsed magnetic deflector system planned for the injection system of the PSR. Two sets of magnets, appropriately placed in the optical systems of both the ring and the injection transport line, provide control of the rate at which particles are injected into a given portion of transverse phase space and limit the interaction of stored beam with the injection stripping foil. High-current modulators that produce relatively complex waveforms are required for this purpose. Solid-state drivers using direct feedback to produce the necessary waveforms are discussed as replacements for the more conventional high-voltage tube technology

  19. AA, beam stopper with scintillator screen

    CERN Multimedia

    1980-01-01

    An insertable steel-plate beam stopper was located after nearly a full turn downstream of the injection point. It was fitted with a scintillator screen, a thin plate of Cr-doped alumina, imprinted with a grid and reference points. The screen was illuminated through a window and observed with a highly sensitive TV camera plus image intensifier. This allowed observation of beam position and size of a proton test beam and of the beam from the target, which consisted not only of antiprotons but contained as well electrons, pions and muons of the same momentum.

  20. A study on the steady-state solutions of a Bursian diode in the presence of transverse magnetic field, when the electrons of the injected beam are turned back partially or totally

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Sourav; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kuznetsov, V. I. [Ioffe Institute, 194021 St. Petersburg (Russian Federation)

    2015-11-15

    The properties of a steady-state planar vacuum diode driven by a cold electron beam have been investigated in the presence of an external transverse magnetic field, employing both the Eulerian and the Lagrangian formalism. With the help of a numerical scheme, the features of the steady-state solutions have been explored in the Eulerian frame, particularly for the case that corresponds to the potential distributions with a virtual cathode. However, exact analytical formulae for the potential and velocity profiles within the inter-electrode region have been derived with the Lagrangian description. In contrast to the previous work [Phys. Plasmas 22, 042110 (2015)], here we have emphasized the situation when electrons are reflected back to the emitter by the magnetic field. Both partial and complete reflection of the electrons due to the magnetic field have been taken into account. Using the emitter electric field as a characteristic parameter, steady-state solutions have been evaluated for specific values of diode length, applied voltage, and magnetic field strength. It has been shown that, due to the inclusion of the magnetic field, a new region of non-unique solutions appears. An external magnetic field seems to have a profound effect in controlling fast electronic switches based on the Bursian diode.

  1. Epidural injections for back pain

    Science.gov (United States)

    ESI; Spinal injection for back pain; Back pain injection; Steroid injection - epidural; Steroid injection - back ... pillow under your stomach. If this position causes pain, you either sit up or lie on your ...

  2. The Injection Laser System on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M; Jedlovec, D

    2006-12-13

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed.

  3. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  4. Analysis of transmission efficiency of SSRF electron beam transfer lines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, the main factors which influence transmission efficiency of the SSRF electron beam transfer lines are described, including physical requirements for magnet system, vacuum system, beam diagnostic system,trajectory correction system, etc. The dynamic simulation calculation and transmission efficiency analysis of the SSRF electron beam transfer lines are presented, and the studies show that the design purpose of efficient beam transmission and injection will be achieved.

  5. Injection Efficiency Monitor for the Australian Synchrotron

    Directory of Open Access Journals (Sweden)

    Rassool R. P.

    2012-10-01

    Full Text Available The Australian Synchrotron AS is moving towards a continuous injection mode called top-up. During top-up the linac and booster synchrotron injection system will be in continuous operation rather than usedevery eight hours the way they are used at present. In order to monitor the performance of the injection system areal-time injection efficiency monitoring system has been developed. The system consists of several Fast CurrentTransformers [1] and matching digitisers [2] and is designed to count every beam pulse and measure the transmission efficiency through the whole accelerator complex. After calibrating the system using a properly matchedFaraday Cup at the electron gun, a transmission efficiency is then calculated at each stage of transferring the beamfrom 90 keV out of the gun to 3 GeV in the storage ring. The system is used to optimise the injection process inorder to maximise the injection efficiency and as an early warning system when equipment starts to fail and theinjection efficiency decreases.

  6. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  7. The Evaluation of the Residual Dose Caused by the Large-Angle Foil Scattering Beam Loss for the High Intensity Beam Operation in the J-PARC RCS

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Harada, Hiroyuki; Hotchi, Hideaki; Saha, Pranab K.; Kinsho, Michikazu

    The Japan Proton Accelerator Research Complex 3-GeV rapid cycling synchrotron (RCS) has adopted the multi-turn charge-exchange injection scheme that uses H- beams. During injection, both the injected and circulating beams scatter from the charge-exchange foil. Therefore, the beam loss caused by the large-angle scattering from the foil occurs downstream of the injection point. For countermeasure against the uncontrolled beam loss, a new collimation system was developed and installed in the summer shutdown period in 2011. During beam commissioning, this uncontrolled beam loss was successfully localized for a 300 kW beam. Since the present target power of the RCS is 1 MW, the accurate simulation model to reproduce experimental results has been constructed in order to evaluate residual dose at higher power operation.

  8. Variable Current Transient Beam Loading Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2000-10-25

    The energy spread caused by transients during beam turn-on can be reduced by suitable timing of the beam turn-on[1]. If the beam is injected when the no-load voltage reaches the desired loaded voltage, then the energy spread is about 10%. To eliminate this energy spread, one can amplitude or phase modulate the section input power for one fill time, so that when the beam is turned on, the no-load voltage equals the desired loaded voltage and from then on, the change in no-load voltage tracks the beam induced voltage. It is known that for a constant gradient (CG) structure, and amplitude variation of the form E(t) = a{sub 0} + (1 - a{sub 0}) t{sub p} will reduce the energy spread to zero for a current that is determined by a{sub 0}. When one uses rf modulation for transient beam loading compensation, the beam is injected a fill time after the rf has been turned on, and one is forced to throw away a section's worth of rf energy. In addition, it requires extra components which use up additional rf energy. This note describes transient beam loading compensation with variable current. It will show that it increases the rf energy to beam energy transfer efficiency.

  9. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger;

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an...... injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...

  10. Urinary incontinence - injectable implant

    Science.gov (United States)

    ... repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... Blaivas JM, Gormley EA, et al. Female Stress Urinary Incontinence Update Panel of the American Urological Association Education ...

  11. Low emittance electron beam optics commissioning in Indus-2

    International Nuclear Information System (INIS)

    Currently Indus-2 is normally operated with beam emittance of 85 nmrad at 2.0 GeV. In order to reduce the beam emittance to half of this value its dispersion function has been modified by properly choosing the quadrupoles strengths of the lattice. At this low beam emittance optics dynamic aperture reduces and may not be sufficient for beam injection thus a procedure has been evolved and implemented to shift the beam emittance of stored beam at 2.0 GeV. (author)

  12. Beam-induced tensor pressure tokamak equilibria

    International Nuclear Information System (INIS)

    D-shaped tensor pressure tokamak equilibria induced by neutral-beam injection are computed. The beam pressure components are evaluated from the moments of a distribution function that is a solution of the Fokker-Planck equation in which the pitch-angle scattering operator is ignored. The level-psub(perpendicular) contours undergo a significant shift away from the outer edge of the device with respect to the flux surfaces for perpendicular beam injection into broad-pressure-profile equilibria. The psub(parallel) contours undergo a somewhat smaller inward shift with respect to the flux surfaces for both parallel and perpendicular injection into broad-pressure-profile equilibria. For peaked-pressure-profile equilibria, the level pressure contours nearly co-incide with the flux surfaces. (author)

  13. Feedback correction of injection errors using digital signal-processing techniques

    Science.gov (United States)

    Sereno, N. S.; Lenkszus, F. R.

    2007-01-01

    Efficient transfer of electron beams from one accelerator to another is important for 3rd-generation light sources that operate using top-up. In top-up mode, a constant amount of charge is injected at regular intervals into the storage ring to replenish beam lost primarily due to Touschek scattering. Top-up therefore requires that the complex of injector accelerators that fill the storage ring transport beam with a minimum amount of loss. Injection can be a source of significant beam loss if not carefully controlled. In this note we describe a method of processing injection transient signals produced by beam-position monitors and using the processed data in feedback. Feedback control using the technique described here has been incorporated in the Advanced Photon Source (APS) booster synchrotron to correct injection transients.

  14. Simulation of stripping injection into HITFiL with carbon ion

    CERN Document Server

    Xie, Xiucui; Zhang, Xiaohu

    2013-01-01

    Stripping injection is one of the crucial stages in the accumulation process of the hadron therapy synchrotron HITFiL (Heavy Ion Therapy Facility in Lanzhou). In order to simulate the stripping injection process of carbon ions for HITFiL, the interactions between carbon ions and foil has been studied, and simulated with a code developed by ourselves .The optimized parameters of the injecting beam and the scheme of the injection system have been presented for HITFiL.

  15. Simulation of stripping injection into HITFiL with carbon ion

    Institute of Scientific and Technical Information of China (English)

    XIE Xiu-Cui; SONG Ming-Tao; ZHANG Xiao-Hu

    2013-01-01

    Stripping injection is one of the crucial stages in the accumulation process of the hadron therapy synchrotron HITFiL (Heavy Ion Therapy Facility in Lanzhou).In order to simulate the stripping injection process of carbon ions for HITFiL,the interactions between carbon ions and foil has been studied,and simulated with a code developed by ourselves.The optimized parameters of the injecting beam and the scheme of the injection system have been presented for HITFiL.

  16. Separably injective Banach spaces

    CERN Document Server

    Avilés, Antonio; Castillo, Jesús M F; González, Manuel; Moreno, Yolanda

    2016-01-01

    This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l∞/c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L∞ spaces and spaces of universal disposition). It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines o...

  17. Perceptions of injections

    International Nuclear Information System (INIS)

    Based on interviews with experts in the petroleum and natural gas exploration industry and results of a workshop insight is given into the attitudes, opinions and perceptions on the possibility to store wastes from the exploration activities in the deep underground, e.g. by means of injection. In a separate report a comparison is made on injection and other waste processing options

  18. Spin injection into semiconductors

    Science.gov (United States)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  19. [Intra-articular injections].

    Science.gov (United States)

    Chapelle, Ch

    2015-09-01

    It is not unusual for a specialist or general practitioner to be presented with a pathology which necessitates the use of an intra-articular injection of corticosteroids, hyaluronic acid or a local anaesthetic. It would seem to be interesting to update and to precise the techniques and methods of intraarticular injections which have appeared in recent international publications, when we know that 30 % of the injections given into the knee and so called "dry" are incorrect and, therefore, inefficient. The indication of an articular injection depends, firstly, on the diagnosis which should be done with great care; after which should be an objective analysis complete with secondary effects linked to both the injection and the product used. The conditions of asepsis, the choice of needles and quantities of the injection and even the ways of the injections should be reviewed in detail. The last studies clearly question the secondary effects of the cartilage degradations of the cortisone given as an intra-articular injection and shows its efficiency on the pain and inflammatory phenomonen in osteoarthritis. Studies on hyaluronic acid are often contradictory going from a modest result to an important pain relief but it is necessary to be aware that the objective criteria are difficult to interpret. The use of local anaesthetics in intra-articular is limited by the few indications in view of the major risk of aggravating the pre-existing lesions by the disappearing signs of pain.

  20. Beam diagnostic suite for the SNS linac

    Science.gov (United States)

    Hardekopf, R. A.; Kurennoy, S. S.; Power, J. F.; Shafer, R. E.; Stovall, J. E.

    2000-11-01

    The Spallation Neutron Source (SNS) is the next-generation pulsed neutron source to be built in the United States. The accelerator chosen to produce the 2 MW beam power on the neutron-producing target is an H- linear accelerator (linac) to 1 GeV, followed by a proton accumulator ring. The ring compresses the 1 ms long beam bunches from the linac to less than 1 μs. The linac is pulsed at 60 Hz with a 6% duty factor. Stringent control of the pulse structure and stability of the high-intensity H- beam is needed to minimize beam loss in the linac and to optimize injection into the accumulator ring. This requires a set of beam diagnostics that can operate at high peak currents (˜52 mA) with high sensitivity and minimum beam interception.

  1. Beam loading compensation with variable group velocity

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.

    1992-08-01

    Consider a section with linearly variable group velocity and a beam pulse shorter than the section fill time. Choose the current amplitude so that the gradient of the last bunch equals the gradient of the first bunch. For beam pulses less than about 15% of fill time, the voltage deviation during the beam pulse is small, but as the pulse width increases the voltage deviation also increases. We show that by decreasing the output to input group velocity ratio, we can reduce the first order voltage deviation, and that we can remove the remaining second-order voltage deviation by linearly decreasing the section input power by a small amount starting at beam injection time. This way we can increase the beam pulse width to more than half the fill time, and thereby increase the RF to beam energy transfer efficiency and the luminosity without increasing the voltage deviation.

  2. Experimental analysis of multi-lambda injection locking in single mode Fabry-Pérot laser diode

    Science.gov (United States)

    Nakarmi, Bikash; Zhang, Xuping; Won, Yong Hyub

    2016-01-01

    In this paper, we propose multi-lambda injection locking in a single mode Fabry-Pérot laser diode and experimentally analyze its effect on various characteristics of Fabry-Pérot laser diode. We consider mode of the injected beam, number of input injected beams, wavelength detuning, and injected power as important parameters in the analysis of suppression of the dominant mode and hysteresis width. The power required for injection locking is proportional to wavelength detuning, which is one of the important parameters for implementing latching device, switching device, and various other optical devices using single mode Fabry-Pérot laser diode. In multi-lambda injection locking, the amount of power required for the injected beam with and without suppression of self-injected mode plays an important role, and hence, is taken into account in our experiment. The spectrum domain output of three- and four-input NAND gate is shown to verify the concept of multi-lambda injection locking. We observe ON/OFF contrast ratio of more than 40 dB when all beams are injection locked, whereas about 1.5 dB ON/OFF contrast ratio in all other combinations of input beam injection. The analysis of multi-lambda injection locking can be used for multi-input optical devices such as multi-input logic gates, latches, and switches.

  3. Injection Protection Upgrade for the HL-LHC

    CERN Document Server

    Uythoven, Jan; Bracco, Chiara; Frasciello, Oscar; Gentini, Luca; Goddard, Brennan; Lechner, Anton; Maciariello, Fausto; Perillo Marcone, Antonio; Salvant, Benoit; Shetty, Nikhil Vittal; Steele, Genevieve; Velotti, Francesco; Zobov, Mikhail

    2015-01-01

    The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.

  4. Phase Space Dynamics of Ionization Injection in Plasma Based Accelerators

    CERN Document Server

    Xu, X L; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C

    2013-01-01

    The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.

  5. First beam test of ΔΦ-A initial beam loading compensation for electron linacs

    International Nuclear Information System (INIS)

    The initial-beam-loading effect may cause serious beam loss in the electron linac of the Super SOR light source. Because of the large energy spread, it is difficult to compensate the beam loading with ordinary methods, such as the adjustment of injection timing and ECS (Energy Compensation System). A phase-amplitude (ΔΦ-A) modulation system has already been developed and tested. First beam test using this system was carried out at the 125 MeV electron linac of Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University. Its result shows that our system well corrects the energy spread due to initial beam loading effect. In this paper, we report the results of first beam test. (author)

  6. The first test experiment of H- charge-exchange injection in the KEK booster

    International Nuclear Information System (INIS)

    The H- charge-exchange injection method was applied to the 500 MeV booster of the 12 GeV proton synchrotron at KEK, as an alternative to the multi-turn injection method using direct injection of protons. The first test experiment of such injection was carried out during three weeks beginning in late September 1983. Experimental results showed that, in spite of the low injection energy used for our booster, such an injection method is promising for increasing the beam intensity of the booster. And also, some further improvements are proposed. (author)

  7. Injection and acceleration system of pulsed racetrack microtron

    CERN Document Server

    Ermakov, A N; Ishkhanov, B S

    2002-01-01

    Paper describes a pulsed racetrack microtron (RM) with 70 MeV beam maximal power. For this project one designed rare-earth permanent magnet base bending magnets, pattern to inject a bunched electron bean through a compact alpha-magnet and prismatic biperiodic accelerating structure (PBAS) characterized by compact transverse dimensions ensuring bar-free passing of electron beam through the first orbit. Besides, the PBAS has a high-frequency quadrupole focusing. These features facilitate essentially RM design and adjustment. Paper describes tests, technique of adjustment and of measuring of systems to inject and to accelerate a pulsed racetrack microtron

  8. TRANSVERSE PHASE SPACE PAINTING FOR SNS ACCUMULATOR RING INJECTION.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE-WANG,J.; LEE,Y.Y.; RAPARIA,D.; WEI,J.

    1999-03-29

    The result of investigation and comparison of a series of transverse phase space painting schemes for the injection of SNS accumulator ring [1] is reported. In this computer simulation study, the focus is on the creation of closed orbit bumps that give desired distributions at the target. Space charge effects such as tune shift, emittance growth and beam losses are considered. The results of pseudo end-to-end simulations from the injection to the target through the accumulator ring and Ring to Target Beam Transfer (RTBT) system [2] are presented and discussed.

  9. LHC Report: The beam is back at the LHC

    CERN Multimedia

    Reyes Alemany

    2015-01-01

    A series of sector beam tests paved the way for the start-up of the LHC in 2008 and 2009. These tests and the follow-up of the issues that arose were part of the process that led to a smooth start-up with beam.   Given this experience, sector tests were scheduled to take place several weeks before the 2015 start-up. On the weekend of 6-9 March, beam from the SPS was injected into both LHC injection regions, followed by a first pass through the downstream LHC sectors. For the clockwise LHC beam (called “beam 1”) this meant passing through ALICE and into Sector 2-3, while the anticlockwise beam (called “beam 2”) was threaded through LHCb and all the way from Point 8 to Point 6, where it was extracted by the beam dump kickers onto the beam dump block. The dry runs in the previous weeks were mainly targeted at preparation for the sector tests. The systems tested included: injection, timing, synchronisation and beam instrumentation. The beam interlock ...

  10. Laser Doppler instrument measures fluid velocity without reference beam

    Science.gov (United States)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  11. Antiproton source beam position system

    International Nuclear Information System (INIS)

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x109 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x107 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  12. Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [Brookhaven National Lab., Upton, NY (United States); Ko, S.K. [Ulsan Univ. (Korea, Republic of)

    1995-10-01

    We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

  13. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox-larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography-guided botulinum toxin treatment; Percutaneous indirect laryngoscopy-guided botulinum toxin Treatment; ...

  14. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  15. Epoetin Alfa Injection

    Science.gov (United States)

    ... a medication used to treat human immunodeficiency virus (HIV). Epoetin alfa injection is also used before and ... record book.If you are being treated with dialysis (treatment to remove waste from the blood when ...

  16. Giving an insulin injection

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000660.htm Giving an insulin injection To use the sharing features on this ... and syringes. Filling the Syringe - One Type of Insulin Wash your hands with soap and water. Dry ...

  17. Iron Dextran Injection

    Science.gov (United States)

    ... dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  18. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    ... gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  19. Soft tissue injections

    OpenAIRE

    Inês, Luís P. B. S.; Silva, José António P. da

    2005-01-01

    Soft tissue rheumatism includes a wide spectrum of common lesions of the tendons, enthesis, tendon sheaths, bursae, ligaments and fasciae as well as nerve compression syndromes. Studies on the pathogenesis of these lesions do not support a major role for inflammation, thus questioning the rationale for glucocorticoid injections. This chapter reviews current indications for local glucocorticoid injections and available evidence on its efficacy, as well as contraindications and potential risks....

  20. Tomography at Injection in the PSB

    CERN Document Server

    Hancock, Steven

    2016-01-01

    The PSB was conceived as an intensity booster for fixed-target physics. Consequently, no attempt was ever made to synchronize the turns injected into each ring with the rf in that ring because as many as a dozen such turns were expected to be superposed longitudinally [1]. When only a small, non-integer number of turns is injected, this asynchronism results in a particle distribution whose initial phase fluctuates wildly from shot to shot with respect to the rf bucket into which it is subsequently captured. This has long been suspected to be an ingredient in the intensity non-reproducibility observed for low-intensity beams, such as pilot beams for the LHC [2]. An MD cycle has been built to pursue this suspicion (in one ring, at least) by introducing, in a fully ppm fashion, distributor timings that are first resynchronized to the rf train of Ring3 and that then count 40 MHz clock ticks to reduce any jitter to just 25 ns (cf., the bucket duration at Booster injection is 1.67 μs). Leaving aside the origin...

  1. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  2. Injection and transfer lines of the PS Booster

    CERN Multimedia

    Photographic Service

    1972-01-01

    In the foreground is the vacuum chamber for the 50 MeV proton beam coming from the Linac. The tank held by white frames houses the "Vertical Distributor", which deflects the Linac beam to the levels of the Booster's 4 superposed rings. After acceleration in the Booster, originally to 800 MeV, today to 1.4 GeV, the beams from the 4 rings are combined in the vertical plane and transfered to the 26 GeV PS. The "Recombination Line", intersecting the injection line, crosses the picture from left to right.

  3. Active stabilization of a diode laser injection lock.

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed. PMID:27370428

  4. Active Stabilization of a Diode Laser Injection Lock

    CERN Document Server

    Saxberg, Brendan; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  5. Active stabilization of a diode laser injection lock

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  6. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  7. Multi-turn injection of 50 MeV protons into the CERN Proton Synchrotron booster

    CERN Document Server

    Raginel, V; Carli, C; Mikulec, B

    2013-01-01

    Since 1978, Linac2 produces beams of 50 MeV protons with a current around 160 mA, which are injected into the CERN Proton Synchrotron Booster (PSB) with conventional multi-turn injection using a horizontal septum. It is planned to replace Linac2 during a future long stop with a new H- linac, Linac4, injecting at higher energy (160 MeV) and making use of the modern chargeexchange injection principle. Due to the age of Linac2 and to a delicate vacuum situation the risk of a serious Linac2 breakdown has to be considered. Therefore it is necessary to study if the PSB could produce beams useful for the LHC and other experiments injecting a Linac4 proton beam at 50 MeV with much lower average current compared to Linac2 and without the need for a long installation of the 160 MeV H- injection hardware. Benchmarking of the PSB injection model with the existing injection system with Linac2 using the ORBIT code has been done for a LHC-type beam and then the injection model was used to estimate the brightness for LHC-typ...

  8. Multi-turn injection of 50 MeV protons into the CERN Proton Synchrotron Booster

    CERN Document Server

    Raginel, V; Carli, C; Mikulec, B

    2013-01-01

    Since 1978, Linac2 produces beams of 50 MeV protons with a current around 160 mA, which are injected into the CERN Proton Synchrotron Booster (PSB) with conventional multi-turn injection using a horizontal septum. It is planned to replace Linac2 during a future long stop with a new H- linac, Linac4, injecting at higher energy (160 MeV) and making use of the modern chargeexchange injection principle. Due to the age of Linac2 and to a delicate vacuum situation the risk of a serious Linac2 breakdown has to be considered. Therefore it is necessary to study if the PSB could produce beams useful for the LHC and other experiments injecting a Linac4 proton beam at 50 MeV with much lower average current compared to Linac2 and without the need for a long installation of the 160 MeV H- injection hardware. Benchmarking of the PSB injection model with the existing injection system with Linac2 using the ORBIT code has been done for a LHC-type beam and then the injection model was used to estimate the brightness for LHC-typ...

  9. Beam studies at the SPEAR3 synchrotron using a digital optical mask

    Science.gov (United States)

    Zhang, H. D.; Fiorito, R. B.; Corbett, J.; Shkvarunets, A. G.; Tian, K.; Fisher, A.

    2016-05-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  10. LHC Report: Towards stable beams and collisions

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Over the past two weeks, the LHC re-commissioning with beam has continued at a brisk pace. The first collisions of 2011 were produced on 2 March, with stable beams and collisions for physics planned for the coming days. Low intensity beams with just a few bunches of particles were used to test the energy ramp to 3.5 TeV and the squeeze. The results were successful and, as a by-product, the first collisions of 2011 were recorded 2 March. One of the main activities carried out by the operation teams has been the careful set-up of the collimation system, and the injection and beam dump protection devices. The collimation system provides essential beam cleaning, preventing stray particles from impacting other elements of the machine, particularly the superconducting magnets. In addition to the collimation system, also the injection and beam dump protection devices perform a vital machine protection role, as they detect any beam that might be mis-directed during rare, but not totally unavoidable, hardware hiccups...

  11. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 1018 to 1020 m-3. First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  12. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  13. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens;

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  14. Report on specification of the electron beam parameter suitable for emittance measurements

    CERN Document Server

    Malka, V

    2009-01-01

    The all optical external injection scheme that we will use with two colliding laser pulses allows a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. The charge and relative energy spread are also controllable by tuning parameters such as the injection intensity and its polarization. We report here on the control of the e-beam parameters, on the e-beam parameters that will be used for the conception and design of the emittance meter and on the experimental arrangement on which emittance measurement experiments will be achieved.

  15. 200 MeV RF linac for synchrotron injection

    International Nuclear Information System (INIS)

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  16. Laser Ablation Plasma Injection into the Frankfurt 14 GHz ECRIS

    CERN Document Server

    Mironov, V; Runkel, S; Schmidt, L; Shirkov, G D; Stiebing, K E; Schmidt-Böcking, H; Schempp, A

    1999-01-01

    A Q-switched YAG:Nd3+ laser was used to evaporate a metal (Cd) target mounted close to a biased disk in the vacuum chamber of the 14 GHz Frankfurt ECRIS. The formation of the laser ablation plasma and the pulsed injection of neutral particles into ECR plasma resulting from the evaporation were studied in order to optimise the production of metal-ion beams and to perform diagnostics of the ECR plasma. The pulsed highly charged Cadmium ion beams were detected under the injection of neutral atoms of Cadmium into an Argon ECR discharge. The ionisation and confinements times for these ions were determined by using time-resolved spectroscopy of the charge state spectra. At the moment of the Cadmium injection, a pulsed increase of the Argon beam currents was detected, which is attributed to changes of the plasma potential. The amplitudes of these pulses are comparable with afterglow currents. Further investigations may provide a chance to use this effect for the injection of ion beams into the pulsed accelerators.

  17. Investgation of gas puffing and supersonic molecular beam injection density feedback expriments on EAST*%基于超声分子束和普通充气的聚变等离子体密度反馈实验研究*

    Institute of Scientific and Technical Information of China (English)

    郑星炜; 李建刚; 胡建生; 李加宏; 曹斌; 吴金华

    2013-01-01

    To achieve desirable plasma density control, supersonic molecular beam injection (SMBI) feedback control system has been de-veloped on EAST tokamak recently. The performance of SMBI is compared with that of gas puffing feedback system. The performance of pulse width mode is better than that of pulse amplitude mode when gas puffing is used for density feedback control. In one-day experiment scenario, the variation of gas input and wall retention can be clarified into two stages. In the first stage the retention ratio is as high as 80%-90%, and the gas input is of about the order of 1022. However, in the second stage, the retention ratio is in a range of 50%-70%. The gas input of a single discharge is small and the net wall retention grows slowly. The result of SMBI feedback control experiment is also analyzed. The shorter delay time of SMBI makes it more quickly to feedback control the plasma density. Result shows that, compared with gas puffing, the gas input of SMBI decreaseds ∼ 30% and the wall retention is reduced ∼ 40%. This shows SMBI’s advantage for the long pulse high-density discharges in EAST.%  本文介绍了全超导托卡马克装置 EAST 实验中等离子体密度反馈的方法和结果. EAST 密度反馈采用普通充气(gas puffing)和超声分子束(supersonic molecule beam injection, SMBI)在放电过程中反馈进气,获得稳定、预期的等离子体密度.典型的一天放电实验中,每次放电的充气量和壁滞留的变化可分为两个阶段:第一阶段为初始约20次放电,该阶段充气量非常高且呈指数趋势下降,粒子滞留率为80%-90%,壁滞留迅速上升.第二阶段为随后的约50次放电,该阶段充气量较小且保持稳定,粒子滞留率为50%-70%,壁滞留缓慢上升. SMBI 的加料效率为15%-30%,延迟时间小于5 ms.因此使用 SMBI 进行密度反馈效果优于 gas puffing 反馈,相同条件下前者充气量较后者减少了∼30%,壁滞留减少了∼40%,

  18. Syringe-injectable electronics.

    Science.gov (United States)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  19. CERN Accelerator School - Beam injection, extraction and transfer

    CERN Multimedia

    2016-01-01

    Registration is now open for the CERN Accelerator School’s specialised course to be held in Erice, Italy, from 10 to 19 March, 2017.   The course will be of interest to staff and students in accelerator laboratories, university departments and companies manufacturing accelerator who wish to learn about accelerator science and technology. Further information can be found at: http://indico.cern.ch/event/451905/ http://cas.web.cern.ch/cas/IET2017/IET-advert.html

  20. TMX-Upgrade neutral-beam injection system

    International Nuclear Information System (INIS)

    The TMX experiment proved that axial confinement of central-cell ions is improved ninefold by the electrostatic potential of end-cell plasmas. The TMX Upgrade task is to improve this confinement further. This paper discusses the injector system aspects of the TMX Upgrade

  1. An injection system for a linear accelerator

    International Nuclear Information System (INIS)

    An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author)

  2. Beam Loss Control for the Fermilab Main Injector

    CERN Document Server

    Brown, Bruce C

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  3. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Burrell, K. H.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  4. Method for Converter Synchronization with RF Injection

    Directory of Open Access Journals (Sweden)

    Joshua P. Bruckmeyer

    2015-09-01

    Full Text Available This paper presents an injection method for synchronizing analog to digital converters (ADC. This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simulated to measure the effectiveness of the method. The results show near theoretical coherent processing gain.

  5. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  6. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    2004-01-01

    This chapter provides an introduction to automated chemical analysis, which essentially can be divided into two groups: batch assays, where the solution is stationary while the container is moved through a number of stations where various unit operations performed; and continuous-flow procedures......, where the system is stationary while the solution moves through a set of conduits in which all required manipulations are performed. Emphasis is placed on flow injection analysis (FIA) and its further developments, that is, sequential injection analysis (SIA) and the Lab-on-Valve (LOV) approach. Since...

  7. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    Energy Technology Data Exchange (ETDEWEB)

    Plateau, Guillaume; Geddes, Cameron; Matlis, Nicholas; Cormier-Michel, Estelle; Mittelberger, Daniel; Nakamura, Kei; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2011-07-19

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  8. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  9. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  10. Application of optical fiber beam loss monitor

    International Nuclear Information System (INIS)

    KEK is an accelerator complex consisting of an electron-positron injector linac and various types of circular accelerators. In order to protect instruments from radiation damage, discrete beam loss monitors have been installed inside the linac and rings. Although beam losses can be detected using the beam loss monitors (BLMs) or beam position monitors (BPMs), it is difficult to identify the exact position of the loss. The electrons, which strike the duct, lose a fraction of their beam energy, which produces a shower at the location and emits many electrons out of the duct. If an optical fiber is placed inside the beam duct, many of these electrons will pass through the optical fiber where the beam loss is generated. BLMs employing an optical fiber based on Cherenkov radiation are currently being developed and applied to our system. An optical fiber placed into the duct also can be used as a detector for a wire scanner system. Existing wire scanner detectors are set at a fixed position, and detect signals of different beam energies that correspond to the different injection modes. However, the fixed position is not always optimal. Conversely, owing to the optical fiber's distributing nature, optical fiber detector systems containing PMTs enables the effective detection of all signals from various beam modes. We can successfully obtain the clear wire scanner signal by employing this optical fiber system. The measurement of the beam loss at the incidence part of the circular accelerator is also described. The beam loss location as well as the turn-by-turn beam loss can be measured. (author)

  11. Hip joint injection

    Science.gov (United States)

    ... cause of the pain. For some, it can last weeks or months. Alternative Names Cortisone shot - hip; Hip injection; Intra-articular steroid ... writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Contact ... Institutes of Health Page last updated: 23 August 2016

  12. Water injection dredging

    NARCIS (Netherlands)

    Verhagen, H.J.

    2000-01-01

    Some twenty years ago WIS-dredging has been developed in the Netherlands. By injecting water into the mud layer, the water content of the mud becomes higher, it becomes fluid mud and will start to flow. The advantages of this system are that there is no need of transporting the mud in a hopper, and

  13. Other Injectable Medications

    Science.gov (United States)

    ... by Mail Close www.diabetes.org > Living With Diabetes > Treatment and Care > Medication > Insulin & Other Injectables Share: Print Page Text ... Gestational Myths Statistics Common Terms Genetics Living With Diabetes Recently Diagnosed Treatment & Care Complications Health Insurance For Parents & Kids Know Your ...

  14. Reducing the beam current in Linac4 in pulse to pulse mode.

    CERN Document Server

    Lallement, JB; CERN. Geneva. BE Department

    2009-01-01

    In order to deliver different beam intensities to users, we studied the possibility of varying the Linac4 beam current at PS Booster injection in pulse to pulse mode. This report gives the possible configurations of Linac4 Low and Medium Energy Beam Transport lines (LEBT and MEBT) that lead to a consistent current reduction.

  15. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H., E-mail: kashiwagi.hirotsugu@jaea.go.jp; Miyawaki, N.; Kurashima, S.; Okumura, S. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  16. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Propagation of a nonrelativistic electron beam in a plasma in a strong magnetic field has been studied using electrostatic one-dimensional particle simulation models. Electron beams of finite pulse length and of continuous injection are followed in time to study the effects of beam-plasma interaction on the beam propagation. For the case of pulsed beam propagation, it is found that the beam distribution rapidly spreads in velocity space generating a plateaulike distribution with a high energy tail extending beyond the initial beam velocity

  18. Present status of the electron beam diagnostics system of the PLS-II linac

    Science.gov (United States)

    Choi, Jae-Young; Kim, Changbum; Kim, Mungyung; Kim, Dotae; Kim, Jae Myung; Lee, Eunhee; Kim, Ghyung Hwa; Shin, Seunghwan; Huang, Jung Yun

    2015-02-01

    The PLS-II, the upgraded PLS (Pohang Light Source), has been providing users with photon beams in the top-up mode since March 2013. The requirements for the PLS-II linac to achieve the top-up injection are very demanding because it is a full energy injector with a very limited energy margin. One of the requirements is to ensure high injection efficiency in order to minimize the beam loss at the storage ring injection point and the experimental hall during injection because loss leads to a high radiation level in the experimental hall. The energy stability and energy spread of the accelerated electron beam are fundamental parameters to monitor and manage for high injection efficiency. An energy feedback system consisting of a stripline-type beam position monitor and the last klystron was implemented. To diagnose the injected beam's energy and energy spread in real time during top-up mode injection, we installed an optical transition radiation (OTR) monitor system upstream of the beam transport line (BTL) after the first bending magnet. The energy and the energy spread ranges can be controlled with a horizontal slit installed after the OTR monitor. The vertical beam size of the accelerated beam must be decreased for efficient injection because the electron beam is injected into the storage ring with many in-vacuum undulators of small gaps. For this purpose, two vertical slits were installed in the BTL region. We will describe mainly those instruments closely related to top-up operation, though other beam diagnostic instruments have been used since PLS.

  19. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall.

  20. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  1. Effect and Therapeutic Outcome of Biplane DSA and its C-arm Cone-beam CT Imaging in the Treatment of Ozone Injection Therapy for Lumbar Disc Herniation%双平板DSA引导下经皮穿刺臭氧消融术治疗腰椎间盘突出症的临床疗效观察(附37例报告)

    Institute of Scientific and Technical Information of China (English)

    杨超; 倪才方; 陈珑; 李智; 张帅

    2013-01-01

    Objective To observe the effect of biplane DSA and its C-arm cone-beam CT imaging in the treatment of ozone injection therapy for the lumbar disc herniation and to evaluate its therapeutic outcome. Meth-ods Retrospective analysis of 37 cases with lumbocrural pain or numbness patients, the mean age is (49.38±13.05) years, forty-four intervertebral discs were treated, CT or MRI conifrmed lumbar disc herniation. We perfomed ozone injection therapy under biplane DSA machine, during the procedure, 4 to 25 mL (mean 13.82±3.62 mL) ozone was injected in each lesion disc, and 0~15 mL was injected around the nerve root, then a total of 5mL tri-amcinolone acetonide was also injected in the disc and paraspinal. Then we observe the changes of lumbocrural pain pre-procedure, and 1 week, 1 month, 3 months, 6 months, 1 year after it. Besides, the intraoperative and post-operative complications were also recorded. Results In 37 patients, 34 cases got VAS score decrease in the lumbo-crural pain, and the pain relief time lasted more than 1 year. The total efifciency of modiifed Macnab evaluation is 91.89%, 3 cases with no obvious pain relief, including 1 case of intervertebral disc infection. Conclusion By the use of biplane DSA and its C-arm cone-beam CT imaging, ozone injection therapy for the lumbar disc herniation brings less trauma, less complications, and better analgesic effect.%目的:观察双平板DSA及其类CT功能在经皮穿刺臭氧消融术治疗腰椎间盘突出症中的应用及临床疗效。方法回顾性分析37例腰腿疼痛或麻木患者,平均年龄(49.38±13.05)岁,共44个病变椎间盘,经CT或MRI证实为腰椎间盘突出症,在双平板DSA设备透视引导下行经皮穿刺臭氧消融术,术中每个椎间盘内注射臭氧4~25 mL(平均13.82±3.62 mL),盘外神经根周围注射臭氧0~15 mL(平均7.73±2.87 mL),并于盘内外注射曲安奈德水针共5 mL。观察术前及术后1周、1个月、3个月、6

  2. Transmission of the Neutral Beam Heating Beams at TJ-II; Transmision del Haz de Neutros de Calentamiento en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Lopez, C.

    2007-09-27

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs.

  3. Laser triggered injection of electrons in a laser wakefield accelerator with the colliding pulse method

    International Nuclear Information System (INIS)

    An injection scheme for a laser wakefield accelerator that employs a counter propagating laser (colliding with the drive laser pulse, used to generate a plasma wake) is discussed. The threshold laser intensity for electron injection into the wakefield was analyzed using a heuristic model based on phase-space island overlap. Analysis shows that the injection can be performed using modest counter propagating laser intensity a1 0 = 1.0. Preliminary experiments were preformed using a drive beam and colliding beam. Charge enhancement by the colliding pulse was observed. Increasing the signal-to-noise ratio by means of a preformed plasma channel is discussed

  4. Beam kicker control system for CSR project in Lanzhou

    International Nuclear Information System (INIS)

    The beam kicker system is a key part for beam extraction and injection in ring-like accelerator, which works under high voltage and huge current. This paper introduces the kicker control system based on ARM+DSP+FPGA for CSR project in Lanzhou, which has nanosecond timing precision. ARM mainly completes the control signals with the network communication, and the time control precision for the beam kicker system is performed mainly by FPGA and DSP. The sequence control signals through the optic fiber transmission, synchronous to kicker power supply the voltage to assign uses the signal isolators and ferrites to suppress the disturbance pulses. Scene test has proved that this system can meet beam kicker control's request and work safely and stably. The control system has extracted and injected the CSR beam successfully in October 2007. (authors)

  5. Beam Loss Monitors for NSLS-II Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  6. SPS Beam Steering for LHC Extraction

    CERN Document Server

    Gianfelice Wendt, E; Cornelis, K; Norderhaug Drosdal, L; Goddard, B; Kain, V; Meddahi, M; Papaphilippou, Y; Wenninger, J

    2014-01-01

    Beside producing beams for fixed target operation, the CERN Super Proton Synchrotron (SPS) accelerates beams for injection into the Large Hadron Collider (LHC). During the 2012-2013 run drifts of the extracted beam horizontal trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. The feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, has been therefore investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed. As the observed drift is mainly horizontal, the horizontal plane only will be considered.

  7. Beam Position Monitor at the PLS BTL

    CERN Document Server

    Kim, Sung-Chul; Han, Yeung-Jin; Tae Kim, Do; Woo Lee, Wol; Yun Huang Jung

    2005-01-01

    Electron Linac at the Pohnag Accelerator Laboratory (PAL) has been operated continuously as the full energy injector for storage ring. Linac and storage ring energy has been 2.0 GeV since Dec. 1994, and 2.5 GeV since Oct. 2002. In Aug. 2004, thirteen BPMs are newly installed at BTL(Beam Transport Line) for beam trajectory measurement and feedback. These BPMs consist of 100mm strip-line electrodes in 150mm long chamber, and 500MHz log-ratio signal processing circuits. BPM data acquisition system is developed as EPICS IOC using NI S-series data acquisition board and NI LabView 7.1. BTL BPMs will be used for optic correction and beam energy feedback for PLS beam injection. This paper describes on design, test results, installation and data acquisition system of the PLS BTL BPM.

  8. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb+1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  9. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  10. Performance of the RHIC Injection Line Instrumentation Systems

    Science.gov (United States)

    Shea, T. J.; Witkover, R. L.; Cameron, P.; Connolly, R.; Ryan, W. A.; Smith, G.; Zitvogel, E.

    1997-05-01

    The beam injection line from the Alternating Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) transports proton and heavy ion bunches. This line and the RHIC first sextant currently contain thefollowing complement of beam instrumentation: stripline position monitors, ionization loss monitors, video profile monitors, and commercial current transformers. Over several years, these systems have been designed and bench tested to assure a desired performance level. The design criteria will be briefly reviewed. Then, using data from laboratory tests and the recent single pass beam tests, desired performance and attained performance will be compared. Finally, experience from the beam based tests will be applied to the design criteria for the future collider ring instrumentation.

  11. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  12. A hydrogen ion beam method of molecular density measurement inside a 4.2-K beam tube

    International Nuclear Information System (INIS)

    In our first experiments on synchrotron radiation-induced photodesorption in a 4.2-K beam tube, the moleculm density was measured by room temperature ion gauges and RGAs outside the beam tube. The molecular density inside the 4.2-K beam tube was therefore unknown, since the mean molecular speed of photodesorbed molecules had not been measured. To determine the density inside the 4.2-K beam tube we have developed a direct method of measurement utilizing the neutralization of H+ beams, which are proportional to gas density. The hydrogen ion beams (up to 20 keV, ∼1 μA) are extracted from an rf ion source and guided into the cold beam tube by a bending magnet. The H0 and H- produced in the beam tube are magnetically separated from H- and detected with secondary electron multipliers (SEMs). Small superconducting dipole magnets located near the center of the beam tube allow a ∼20-cm segment of the injected ion beam to be offset a few mm from the injection axis; detection of H0 and H- produced along this offset segment provides a localized density measurement. If necessary, detector background due to synchrotron radiation photons can be discriminated against by gating the detector on between the bursts of synchrotron radiation. The experimental setup and initial data will be presented

  13. A hydrogen ion beam method of molecular density measurement inside a 4.2-K beam tube

    Energy Technology Data Exchange (ETDEWEB)

    Alinovsky, N.; Anashin, V.; Beschasny, P. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1994-06-01

    In our first experiments on synchrotron radiation-induced photodesorption in a 4.2-K beam tube, the moleculm density was measured by room temperature ion gauges and RGAs outside the beam tube. The molecular density inside the 4.2-K beam tube was therefore unknown, since the mean molecular speed of photodesorbed molecules had not been measured. To determine the density inside the 4.2-K beam tube we have developed a direct method of measurement utilizing the neutralization of H{sup +} beams, which are proportional to gas density. The hydrogen ion beams (up to 20 keV, {approximately}1 {mu}A) are extracted from an rf ion source and guided into the cold beam tube by a bending magnet. The H{sup 0} and H{sup {minus}} produced in the beam tube are magnetically separated from H{sup {minus}} and detected with secondary electron multipliers (SEMs). Small superconducting dipole magnets located near the center of the beam tube allow a {approximately}20-cm segment of the injected ion beam to be offset a few mm from the injection axis; detection of H{sup 0} and H{sup {minus}} produced along this offset segment provides a localized density measurement. If necessary, detector background due to synchrotron radiation photons can be discriminated against by gating the detector on between the bursts of synchrotron radiation. The experimental setup and initial data will be presented.

  14. Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators

    Science.gov (United States)

    Xu, X. L.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wan, Y.; Wu, Y. P.; Hua, J. F.; Lu, W.; An, W.; Yu, P.; Joshi, C.; Mori, W. B.

    2016-07-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2 k0 and about 5 k0, where k0 is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  15. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    CERN Document Server

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  16. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  17. Multi-turn injection into a heavy-ion synchrotron in the presence of space charge

    CERN Document Server

    Appel, Sabrina

    2014-01-01

    For heavy-ion synchrotrons an efficient Multi-Turn Injection (MTI) from the injector linac is crucial in order to reach the specified currents using the available machine acceptance. The beam loss during the MTI must not exceed the limits determined by machine protection and by the vacuum requirements. Especially for low energy and intermediate charge state ions, the beam loss at the injection septum can cause a degradation of the vacuum and a corresponding reduction of the beam lifetime. In order to optimize the injection of intense beams a very detailed simulation model was developed. Besides the closed orbit bump, lattice errors, the position of the septum and other aperture limiting components the transverse space charge force is included self-consistently. The space charge force causes a characteristic shift of the optimum tunes and a smoothing of the phase space density.

  18. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  19. Amphotericin B Lipid Complex Injection

    Science.gov (United States)

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond ... to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications ...

  20. Dihydroergotamine Injection and Nasal Spray

    Science.gov (United States)

    Migranal® Nasal Spray ... inject subcutaneously (under the skin) and as a spray to be used in the nose. It is ... that you know how to use the nasal spray or administer the injection correctly. After that, you ...

  1. Target injection methods for inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.; Moir, R.W.

    1994-06-01

    We have studied four methods to inject IFE targets: the gas gun, electrostatic accelerator, induction accelerator, and rail gun. We recommend a gas gun for indirect drive targets because they can support a gas pressure load on one end and can slide along the gun barrel without damage. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable; for other types of targets, a sabot would be necessary. A cam and poppet valve arrangement is recommended for gas flow control. An electrostatic accelerator is attractive for use with lightweight spherical direct drive targets. Since there is no physical contact between the target and the injector, there will be no wear of either component during the injection process. An induction accelerator has an advantage of no electrical contact between the target and the injector. Physical contact is not even necessary, so the wear should be minimal. It requires a cylindrical conductive target sleeve which is a substantial added mass. A rail gun is a simpler device than an electrostatic accelerator or induction accelerator. It requires electrical contact between the target and the rails and may have a significant wear rate. The wear in a vacuum could be reduced by use of a solid lubricant such as MoS{sub 2}. The total required accuracy of target injection, tracking and beam pointing of {plus_minus}0.4 mm appears achievable but will require development and experimental verification.

  2. Alpha particle diagnostics using impurity pellet injection

    International Nuclear Information System (INIS)

    We have proposed using impurity injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction Fo∞(E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the helium-like ionization state, e.g., Li+ ions, we can determine the incident alpha distribution dnHe2+/dE from the measured energy distribution of neutral helium atoms. Initial experiments were performed on TEXT in which we compared pellet penetration with our impurity pellet ablation model, and measured the spatial distribution of various ionization states in carbon pellet clouds. Experiments have recently begun on TFTR with the goal of measuring the alpha particle energy distribution during D-T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3He tail produced during ICH minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  3. Key elements of space charge compensation on a low energy high intensity beam injector.

    Science.gov (United States)

    Peng, Shixiang; Lu, Pengnan; Ren, Haitao; Zhao, Jie; Chen, Jia; Xu, Yuan; Guo, Zhiyu; Chen, Jia'er; Zhao, Hongwei; Sun, Liangting

    2013-03-01

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV∕90 mA H(+) beam and a 40 keV∕10 mA He(+) beam compensated by Ar∕Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed. PMID:23556812

  4. Key elements of space charge compensation on a low energy high intensity beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Peng Shixiang; Lu Pengnan; Ren Haitao; Zhao Jie; Chen Jia; Xu Yuan; Guo Zhiyu; Chen Jia' er [Institution of Nuclear Science and Technology (INST), State Key Laboratory of Nuclear Physics and Technology (KLNPT), Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Zhao Hongwei; Sun Liangting [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-03-15

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV/90 mA H{sup +} beam and a 40 keV/10 mA He{sup +} beam compensated by Ar/Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.

  5. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  6. Painting Self-Consistent Beam Distributions in Rings

    CERN Document Server

    Holmes, Jeffrey Alan; Danilov, Viatcheslav V

    2005-01-01

    We define self-consistent beam distributions to have the following properties: 1) time-independence or periodicity, 2) linear space charge forces, and 3) maintainance of their defining shape and density under all linear transformations. The periodic condition guarantees zero space-charge-induced halo growth and beam loss during injection. Some self-consistent distributions can be manipulated into flat, or even point-like, beams, which makes them interesting to colliders and to heavy-ion fusion. This paper presents methods for painting 2D and 3D self-consistent distributions and for their manipulation to produce flat and point-like beams.

  7. Design and development of neutral beam module components

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF) injection system consists of twenty 20 keV start-up, and twenty-four 80 keV sustaining neutral beam source modules. The neutral beam modules are mounted in four clusters equally spaced around the waist of the vacuum vessel which contains the superconducting magnets. A module is defined here as an assembly consisting of a beam source and the interfacing components between that beam source and the vacuum chamber. Six major interfacing components are the subject of this paper. They are the magnetic shield, the neutralizer duct, the isolation valve, mounting gimbals, aiming bellows and actuators

  8. Virtual cathode oscillator with E-beam modulation

    International Nuclear Information System (INIS)

    A new type virtual cathode oscillator (VCO) with preliminary e-beam modulation was studied by numerical simulation and experimentally tested. It was shown that the variation of the beam modulation signal leaded to the change of character of vircator. In the vircator scheme, the microwave generated by virtual cathode oscillation was partially fed back to the beam acceleration region to modulate the injected e-beam and so as to improve the performance of the vircator. Changing the length of feedback waveguide resulted in a 8dB variation of the radiated microwave power

  9. Spheromak injection into a tokamak

    OpenAIRE

    Brown, M R; Bellan, P. M.

    1990-01-01

    Recent results from the Caltech spheromak injection experiment [to appear in Phys. Rev. Lett.] are reported. First, current drive by spheromak injection into the ENCORE tokamak as a result of the process of magnetic helicity injection is observed. An initial 30% increase in plasma current is observed followed by a drop by a factor of 3 because of sudden plasma cooling. Second, spheromak injection results in an increase of tokamak central density by a factor of 6. The high-current/high-density...

  10. Reductant injection and mixing system

    Science.gov (United States)

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  11. INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, Fulvia C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wei, Guohio [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-05-01

    The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.

  12. Beam Transfer Systems for the LAGUNA-LBNO Long Baseline Neutrino Beam from the CERN SPS

    CERN Document Server

    Goddard, B; Efthymiopoulos, I; Papaphilippou, Y; Parfenova, A

    2013-01-01

    For the Long Baseline neutrino facility under study at CERN (LAGUNA-LBNO) it is initially planned to extract a 400 GeV beam from the second long straight section in the SPS into the existing transfer channel TT20 leading to the North Area experimental zone, to a new target aligned with a far detector at a distance of 2300 km [1]. In a second phase a new High-Power Proton Synchrotron (HPPS) accelerator is proposed, to give a 2 MW beam at about 50 GeV on the same target. In this paper the required beam transfer systems are outlined, including the new sections of transfer line between the Superconducting Proton Linac (SPL), HP-PS and SPS, and from the SPS to the target, and also the injection and extraction systems in the long straight section of the HPPS. The feasibility of a 4 GeV H- injection system is discussed.

  13. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  14. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  15. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  16. Practical aspects of rf acceleration for MFE injection

    International Nuclear Information System (INIS)

    Several practical aspects of rf acceleration (by a MEQALAC accelerator, for example) of positive and negative ions for MFE neutral injection were considered. The beam transport, gas flow, differential pumping, and compatibility with MFE beam lines were examined. It was found that rf acceleration has several advantages over dc acceleration, especially if high energy (over 100 keV) and/or high purity (over 99%) is required. Therefore rf acceleration should be considered especially in connection with negative ions, which also have competitive advantages under such requirements. Beam densities for rf may be lower than dc beam densities because of space charge limitations and electrode transparency. However, the overall dimensions of an rf system are competitive with or smaller than the dimensions of a dc system of equal current and voltage because the gas pumping and electrical insulation are included within the rf electrode assembly. Ion source development is required to produce an array of many small beams suitable for injection into a MEQALAC

  17. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    Directory of Open Access Journals (Sweden)

    Berteau C

    2015-11-01

    Full Text Available Cecile Berteau,1 Orchidée Filipe-Santos,1 Tao Wang,2 Humberto E Rojas,2 Corinne Granger,1 Florence Schwarzenbach1 1Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France; 2Eli Lilly and Company, Indianapolis, IN, USA Aim: The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC injection pain tolerance. Methods: The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP combined with two different injection flow rates (0.02 and 0.3 mL/s. All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS (0 mm/no pain, 100 mm/extreme pain. The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results: Viscosity levels had significant impact on perceived injection pain (P=0.0003. Specifically, less pain was associated with high viscosity (VAS =12.6 mm than medium (VAS =16.6 mm or low (VAS =22.1 mm viscosities, with a significant difference between high and low viscosities (P=0.0002. Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89. Slow (0.02 mL/s or fast (0.30 mL/s injection rates also showed no significant impact on perceived pain during SC injection (P=0.79. In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion: The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High

  18. SQL Injection Defenses

    CERN Document Server

    Nystrom, Martin

    2007-01-01

    This Short Cut introduces you to how SQL injection vulnerabilities work, what makes applications vulnerable, and how to protect them. It helps you find your vulnerabilities with analysis and testing tools and describes simple approaches for fixing them in the most popular web-programming languages. This Short Cut also helps you protect your live applications by describing how to monitor for and block attacks before your data is stolen. Hacking is an increasingly criminal enterprise, and web applications are an attractive path to identity theft. If the applications you build, manage, or guar

  19. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  20. Method for charged particle beam acceleration

    International Nuclear Information System (INIS)

    The method of charged particle beam acceleration based on its resonance interaction with electromagnetic field of travelling wave is suggested. The electron beam is injected into waveguide in which longitudinal magnetic field and electromagnetic wave are excited. With the purpose of reducing HF-power losses in the waveguide walls, the azimuthal particle motion is synchronized with azimuthal change of longitudinal component of electric field of the accelerating electromagnetic wave. The suggested method permits to increase the efficiency and shunting resistance of the accelerating waveguide by reducing its boundary surface

  1. First circulating beam in the AA

    CERN Multimedia

    1980-01-01

    On 3 July 1980, two years after project authorization, beam circulated for the first time in the AA. It was a 3.56 GeV/c proton test beam. We see an expecting crowd, minutes before the happy event. The persons are too numerous to name them all, but the 3 most prominent ones are at the centre (left to right): Roy Billinge (Joint AA Project Leader, with his hand on the control box), Eifionydd Jones (white shirt), Simon van der Meer (spiritus rector and Joint AA Project Leader). The first antiprotons were injected, made to circulate and cooled soon after, on 14 July 1980.

  2. Commissioning results of the ReA EBIT charge breeder at the NSCL: First reacceleration of stable-isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.edu; Schwarz, S.; Kittimanapun, K.; Rodriguez, J.A.; Sumithrarachchi, C.; Barquest, B.; Berryman, E.; Cooper, K.; Fogleman, J.; Krause, S.; Kwarsick, J.; Nash, S.; Perdikakis, G.; Portillo, M.; Rencsok, R.; Skutt, D.; Steiner, M.; Tobos, L.; Wittmer, W.; Bollen, G.; and others

    2013-12-15

    Highlights: • Latest results with the electron-beam ion trap of the ReA post-accelerator at the NSCL. • First reacceleration of stable-isotope beams. • First injection of stable-isotope beams from the NSCL’s beam stopping vault. -- Abstract: ReA is a reaccelerator of rare-isotope beams at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotopes are produced by fast projectile fragmentation. After production, they are separated in-flight and thermalized in a He gas “catcher” cell before being sent to ReA for reacceleration to a few MeV/u. One of its main components is an electron-beam ion trap (EBIT) employed to convert injected singly charged ions to highly charged ions prior to injection into linear-accelerator structures. The ReA EBIT features a high-current electron gun, a long trap structure, and a two-field superconducting magnet to provide both the high electron-beam current density needed for fast charge breeding and high capture probability of injected beams. This paper presents recent commissioning results. In particular, {sup 39}K{sup +} ions have been injected, charge bred to {sup 39}K{sup 16+} and extracted for reacceleration up to 60 MeV. First charge-breeding results of beams injected from a commissioning Rb ion source in the NSCL’s beam “stopping” vault are also presented.

  3. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  4. On L-injective Covers

    Institute of Scientific and Technical Information of China (English)

    周德旭

    2004-01-01

    We use the class of L-injective modules to define L-injective covers, and provide the characterizations of L-injective covers by the properties of kernels of homomorphisms. We prove that the right L-noetherian right L-hereditary ring is just such that every right R-module has an L-injective cover which is monic. We also use kernels of homomorphisms to investigate L-simple L-injective covers and give some constructions ofL-simple L-iniective covers.

  5. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  6. Epidemiology of Injection Drug Use

    Science.gov (United States)

    Arruda, Nelson; Bruneau, Julie; Jutras-Aswad, Didier

    2016-01-01

    After more than 30 years of research, numerous studies have shown that injection drug use is associated with a wide range of adverse health outcomes such as drug overdoses, drug-related suicidal behaviours, comorbid psychiatric disorders, bloodborne pathogens and other infectious diseases, and traumas. This review explores new trends and prominent issues associated with injection drug use. The dynamic nature of injection drug use is underlined by examining its recent trends and changing patterns in Canada and other “high-income countries.” Three research topics that could further contribute to the development of comprehensive prevention and intervention strategies aimed at people who inject drugs are also discussed: risk behaviours associated with the injection of prescription opioids, binge injection drug use, and mental health problems as determinants of injection risk behaviours. PMID:27254088

  7. Lattice Design and Injection Issues for the 2-TeV SSCL High-Energy Booster to Collider Injection Lines

    CERN Document Server

    Brown, K

    2003-01-01

    An intensive and systematic lattice design study for the 2 TeV injection lines from the High Energy Booster (HEB) to the Collider rings has led to a compact resistive magnet solution which is a one piece achromat having beta function transitions on both ends and a pseudo-periodic structure in between. A comparison between several possible solutions concentrated on the desired optical flexibility and major technical problems associated with the huge amount of beam energy (6.55MJ) in the HEB and mechanical interferences. The HEB extraction and Collider injection schemes were designed with kicker misfire control and aperture limits on both the HEB and the Collider sides.

  8. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  9. Conceptual Optimisation of the TDI and TCDD Protections for LHC Injection Lines

    CERN Document Server

    Sala, P R; CERN. Geneva. AB Department

    2003-01-01

    The TDI (Injection Stoppers) and TCDD (Injection Collimators) for LHC are mobile beam obstacles that will protect the superconducting machine elements during injection. Simulations have been performed to investigate the TDI and TCDD performances and optimise their design. Mechanical aspects are not treated in the present work, and further definition of the details of the design is left to a conclusive report. The need for the TCDD collimator has been demonstrated. The original design goal, that was to prevent quenches in pilot bunch operation and damage in all faulty conditions, has been upgraded to prevent quenches in all cases not involving a MKI (Injection kicker) failure.

  10. A Neutral Beam Injector Upgrade for NSTX

    Energy Technology Data Exchange (ETDEWEB)

    T. Stevenson; B McCormack; G.D. Loesser; M. Kalish; S. Ramakrishnan; L. Grisham; J. Edwards; M. Cropper; G. Rossi; A. von Halle; M. Williams

    2002-01-18

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current.

  11. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  12. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  13. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  14. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  15. Beam losses due to the foil scattering for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Wang, Sheng; Xu, Shou-Yan

    2012-01-01

    For the Rapid Cycling Synchrotron of China Spallation Neutron Source (CSNS/RCS), the stripping foil scattering generates the beam halo and gives rise to additional beam losses during the injection process. The interaction between the proton beam and the stripping foil was discussed and the foil scattering was studied. A simple model and the realistic situation of the foil scattering were considered. By using the codes ORBIT and FLUKA, the multi-turn phase space painting injection process with the stripping foil scattering for CSNS/RCS was simulated and the beam losses due to the foil scattering were obtained.

  16. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  17. Statement on injectable contraception.

    Science.gov (United States)

    1982-12-01

    Injectable hormonal contraception with 2 longacting steroidal preparations--norethisterone enanthate (NET-EN) and depot medroxyprogesterone acetate (DMPA)--provides an effective means of fertility regulation and has become an important method of family planning. DMPA and NET-EN have several advantages which make them particularly appropriate for some women and acceptable in family planning programs. A single injection can provide highly effective contraception for 2 or more months, delivery is simple, independent of coitus, and ensures periodic contact with medical or other trained health personnel. Currently, DMPA is registered as a therapeutic agent in nearly all countries and as a contraceptive agent in over 80 developed and developing countries. NET-EN is registered as a contraceptive in 40 countries. Administered by intramuscular injection in an aqueous microcrystalline suspension, DMPA exerts its contraceptive effect primarily by suppression of ovulation, but its effects on the endometrium, the uterine tubes, and the production of cervical mucus may also play a role in reducing fertility. DMPA as a contraceptive agent is generally given at a dosage of 150 mg every 90 days. NET-EN when administered as an intramuscular injection of an oil preparation at a dose of 200 mg inhibits ovulation. It should be administered at 8 weekly intervals for the 1st 6 months of use, then at intervals of 8 or 12 weeks. Longterm animal studies with DMPA have been completed mainly on beagle bitches and rhesus monkeys, and similar studies with NET-EN are nearing completion. None of the findings in beagles is considered applicable to human populations because the beagle responds differently than humans to steroidal hormones. None of the deaths among rhesus monkeys was attributable to effects of the drug. Endometrial carcinoma was found in 2 of the replacement monkeys but the number of animals was too small for statistically significant studies, and it is not possible to conclude

  18. Beam brightness in low-beta linacs: a sensitivity study

    Energy Technology Data Exchange (ETDEWEB)

    Burke, R.J.; Sacks, R.A.

    1980-01-01

    Heavy ion drivers for inertial-confinement fusion reactors depend on the ability to produce a high-intensity, high-quality beam with a minimum of in-machine loss. Deterioration of the beam quality, which subsequently leads also to beam loss, tends to occur in the early (low energy) stages of the acceleration process, since all nonlinear effects decrease with velocity. The current work does not directly address the specific causes for beam deterioration on a fundamental level. Rather, we present the results of a numerical study aimed at gaining an engineering characterization of the dependence of the accelerated beam quality and intensity on various parameters in the linac design, the initial beam configuration, and the initial current. A dramatic improvement is observed when injection energy is raised, and some tentative suggestions are offered for techniques of achieving this increase.

  19. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  20. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  1. Measurements of Terahertz Generation in a Metallic, Corrugated Beam Pipe

    CERN Document Server

    Bane, K L F; Fedurin, M; Kusche, K; Swinson, C; Xiang, D

    2016-01-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation.

  2. Space Charge Studies with High Intensity Single Bunch Beams in the CERN SPS

    CERN Document Server

    Bartosik, Hannes; Schmidt, Frank; Titze, Malte

    2016-01-01

    In order to reach the target beam parameters of the LHC injectors upgrade (LIU) project the beam degradation due to losses and emittance growth on the long injection plateau of the SPS needs to be minimized. A detailed study of the dependence of losses, transverse emittance blow-up and transverse beam tail creation as function of the working point is presented here for a high brightness single bunch beam with a vertical space charge tune spread of about 0.2 on the 26 GeV injection plateau. The beam behaviour close to important betatron resonances is characterised and a region in the tune diagram with minimal beam degradation is identified. Implications about the performance for LIU beams are discussed.

  3. Controlled Electron Injection into Plasma Accelerators and Space Charge Estimates

    International Nuclear Information System (INIS)

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread

  4. Two-beam type IH-RFQ linear accelerator for low-energy and high intensity heavy ion beam

    International Nuclear Information System (INIS)

    We developed a two-beam type IH-RFQ (Interdigital H type Radio Frequency Quadrupole) linac system to proof the principle of a multi-beam type IH-RFQ linac in Research Laboratory for Nuclear Reactors of Tokyo Institute of Technology. The multi-beam type RFQ linac has several beam channels in a cavity for accelerating high intensity and low energy heavy ion beams. The developed system consists of a two-beam type IH-RFQ cavity as a prototype of the multi-beam type cavity, a two-beam type laser ion source with DPIS (Direct Plasma Injection Scheme) and beam analyzers mainly. A a result of the beam acceleration test, the linac system accelerates carbon ions from 5 keV/u to 60 keV/u and generates about 108 mA (2x54 mA/channel) in the total output current. In this paper, we describe the development of the linac system and some results of the beam acceleration test. (author)

  5. Pxie low energy beam transport commissioning

    CERN Document Server

    Prost, L; Andrews, R; Carneiro, J -P; Hanna, B; Scarpine, V; Shemyakin, A; D'Arcy, R; Wiesner, C

    2015-01-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) is under construction. It includes a 10 mA DC, 30 KeV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to ~25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source and LEBT, which includes 3 solenoids, several clearing electrodes/collimators and a chopping system, have been built, installed, and commissioned to full specification parameters. This report presents the outcome of our commissioning activities, including phase-space measurements at the end of the beam line under various neutralization schemes obtained by changing the electro...

  6. SQL Injection Attacks and Defense

    CERN Document Server

    Clarke, Justin

    2012-01-01

    SQL Injection Attacks and Defense, First Edition: Winner of the Best Book Bejtlich Read Award "SQL injection is probably the number one problem for any server-side application, and this book unequaled in its coverage." -Richard Bejtlich, Tao Security blog SQL injection represents one of the most dangerous and well-known, yet misunderstood, security vulnerabilities on the Internet, largely because there is no central repository of information available for penetration testers, IT security consultants and practitioners, and web/software developers to turn to for help. SQL Injection Att

  7. Injectable barriers for waste isolation

    International Nuclear Information System (INIS)

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification

  8. Injectable barriers for waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Muller, S.J. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.

  9. Frontiers of particle beams: Factories with e+e- rings

    International Nuclear Information System (INIS)

    The present volume is the proceedings of the latest of these joint schools, held in Benalmadena, Spain. This course dealt with the design and development of high performance ''factories'' using e+e- colliders. Topics covered were: physics motivation, overall design of factories and their detectors, high luminosity injection, short bunches, instabilities, feedback, beam-beam interaction, lattice and interaction-region design, special schemes, RF, vacuum, ion clearing and background. See hints under the relevant topics. (orig.)

  10. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  11. Worldwide Injection Technique Questionnaire Study: Population Parameters and Injection Practices.

    Science.gov (United States)

    Frid, Anders H; Hirsch, Laurence J; Menchior, Astrid R; Morel, Didier R; Strauss, Kenneth W

    2016-09-01

    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries took part in one of the largest surveys ever performed in diabetes. The goal was to assess patient characteristics, as well as historical and practical aspects of their injection technique. Results show that 4- and 8-mm needle lengths are each used by nearly 30% of patients and 5- and 6-mm needles each by approximately 20%. Higher consumption of insulin (as measured by total daily dose) is associated with having lipohypertrophy (LH), injecting into LH, leakage from the injection site, and failing to reconstitute cloudy insulin. Glycated hemoglobin values are, on average, 0.5% higher in patients with LH and are significantly higher with incorrect rotation of sites and with needle reuse. Glycated hemoglobin values are lower in patients who distribute their injections over larger injection areas and whose sites are inspected routinely. The frequencies of unexpected hypoglycemia and glucose variability are significantly higher in those with LH, those injecting into LH, those who incorrectly rotate sites, and those who reuse needles. Needles associated with diabetes treatment are the most commonly used medical sharps in the world. However, correct disposal of sharps after use is critically suboptimal. Many used sharps end up in public trash and constitute a major accidental needlestick risk. Use of these data should stimulate renewed interest in and commitment to optimizing injection practices in patients with diabetes. PMID:27594185

  12. Worldwide Injection Technique Questionnaire Study: Population Parameters and Injection Practices.

    Science.gov (United States)

    Frid, Anders H; Hirsch, Laurence J; Menchior, Astrid R; Morel, Didier R; Strauss, Kenneth W

    2016-09-01

    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries took part in one of the largest surveys ever performed in diabetes. The goal was to assess patient characteristics, as well as historical and practical aspects of their injection technique. Results show that 4- and 8-mm needle lengths are each used by nearly 30% of patients and 5- and 6-mm needles each by approximately 20%. Higher consumption of insulin (as measured by total daily dose) is associated with having lipohypertrophy (LH), injecting into LH, leakage from the injection site, and failing to reconstitute cloudy insulin. Glycated hemoglobin values are, on average, 0.5% higher in patients with LH and are significantly higher with incorrect rotation of sites and with needle reuse. Glycated hemoglobin values are lower in patients who distribute their injections over larger injection areas and whose sites are inspected routinely. The frequencies of unexpected hypoglycemia and glucose variability are significantly higher in those with LH, those injecting into LH, those who incorrectly rotate sites, and those who reuse needles. Needles associated with diabetes treatment are the most commonly used medical sharps in the world. However, correct disposal of sharps after use is critically suboptimal. Many used sharps end up in public trash and constitute a major accidental needlestick risk. Use of these data should stimulate renewed interest in and commitment to optimizing injection practices in patients with diabetes.

  13. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  14. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  15. Neutralized transport of high intensity beams

    International Nuclear Information System (INIS)

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided by the plasma laid down along the ion path, are both studied and their relative effects on the beam spot size are compared. Comparisons with 3-D PIC code predictions will also be presented

  16. Design of an RFQ for direct plasma injection scheme

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhouli; R.A.Jameson; ZHAO Hongwei; XU Zhe; LIU Yong; ZHANG Shenghu; ZHANG Cong; SUN Liepeng; MEI Lirong; SHEN Xiaokang

    2009-01-01

    A high current radio frequency quadrupole (RFQ) is being studied at the Institute of Modern Physics,Chinese Academy of Sciences (IMP,CAS) for the direct plasma injection scheme (DPIS).Because of the strong space charge of beams from laser ion source,the beam dynamics design of the RFQ has been carried out with a new code,which can deal with space charge effectively.The design of the RFQ structure is performed with an electromagnetic simulation code and the determination of parameters of the structure has been done to maximize the shunt impedance when the frequency is kept fixed.The influences of dipole mode effect and flatness on beams were also discussed.

  17. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  18. MR epidurography: distribution of injectate at caudal epidural injection

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Darra T. [Cappagh National Orthopedic Hospital, Dublin 11 (Ireland); St Paul' s Hospital, Department of Radiology, Vancouver, BC (Canada); Kavanagh, Eoin C.; Moynagh, Michael R.; Eustace, Stephen [Cappagh National Orthopedic Hospital, Dublin 11 (Ireland); Mater Misericordiae University Hospital, Dublin 7 (Ireland); Poynton, Ashley; Chan, Vikki O. [Cappagh National Orthopedic Hospital, Dublin 11 (Ireland)

    2014-08-02

    To (a) evaluate the feasibility of MR epidurography (MRE) and (b) assess the distribution of injectate using two different volumes at caudal epidural steroid injection. Twenty patients who were referred with symptomatic low back pain for caudal epidural steroid injection were assigned to have either 10 ml (9/20) or 20 ml (11/20) of injectate administered. Gadolinium was included in the injection. The patients proceeded to MRI where sagittal and coronal T1-weighted fat-saturated sequences were acquired and reviewed in the mid-sagittal and right and left parasagittal views at the level of the exit foramina. Gadolinium was observed at or above the L3/4 disc level in all 11 patients who received 20 ml (100 %), compared with only five of nine patients who received 10 ml (56 %). Injectate was seen to the L4 nerve root level in all 11 patients who received 20 ml (100 %) but only four out of nine patients who received 10 ml (44 %), not even reaching the L5 nerve root level in four further of these nine patients (44 %). Overall, there was a trend to visualize gadolinium at higher levels of the epidural space with higher volumes injected. Firstly, MR epidurography is a safe technique that allows excellent visualization of the distribution of gadolinium in the epidural space following injection via the caudal hiatus. Secondly, a volume of 10 ml is unlikely to treat L5/S1 disease in almost half of patients at caudal epidural steroid injection and at least 20 ml of injectate is likely required for any medication to reach the desired level. (orig.)

  19. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  20. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  1. The Fermilab Main Injector: high intensity operation and beam loss control

    CERN Document Server

    Brown, Bruce C; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  2. Particle simulation for direct plasma injection in a radio frequency quadrupole matching section

    International Nuclear Information System (INIS)

    We have been investigating direct plasma injection scheme (DPIS) for high-intensity heavy-ion beam acceleration. In the DPIS, laser-produced plasma is directly injected into a radio frequency quadrupole (RFQ) linac. To study the beam dynamics of the ion injection in the DPIS, we tracked particle motions in the RFQ matching section using three-dimensional particle-in-cell method. As a result of the numerical simulation, we found that the electrostatic field generated by the extraction electrode reduces the transmission efficiency. To avoid the radially defocusing force, the input beam into the RFQ has to be initially convergent. In the DPIS, further optimization of the plasma density is required for better matching.

  3. Design and fabrication of optical homogenizer with micro structure by injection molding process

    Science.gov (United States)

    Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.

    2008-08-01

    This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.

  4. Compact toroid injection into C-2U

    Science.gov (United States)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  5. Ion and electron injection in ionosphere and magnetosphere. Application to the parallel electric field measurement in auroral zones

    International Nuclear Information System (INIS)

    New methods of measuring parallel electric field in auroral zones are investigated in this thesis. In the studied methods, artificial injection of ions Li+ and electrons from a spacecraf is used. Measurements obtained during the ARAKS experiment are also presented. The behaviour of the ionospheric plasma located few hundred meters from a 0,5A electron beam injected in ionosphere from a rocket is studied, together with the behaviour of a Cs plasma artificially injected from the same spacecraft

  6. Characterization of Injection Molded Structures

    DEFF Research Database (Denmark)

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard;

    Microscopy has been widely applied to understand surface structures of solid samples. According to the instrumental methodology, there are different microscopy methods: optical microscopy, electron microscopy, and scanning probe microscopy (SPM). These microscopy methods have individual advantage......-properties relationship of the injection molded polymer samples. These results are very important in optimizing injection molding parameters....

  7. Injection treatments for patellar tendinopathy

    NARCIS (Netherlands)

    van Ark, Mathijs; Zwerver, Johannes; van den Akker-Scheek, Inge

    2011-01-01

    Objective Injection treatments are increasingly used as treatment for patellar tendinopathy. The aim of this systematic review is to describe the different injection treatments, their rationales and the effectiveness of treating patellar tendinopathy. Methods A computerised search of the Medline, Em

  8. Towards spin injection into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dash, S.P.

    2007-08-15

    Si has been studied for the purpose of spin injection extensively in this thesis. Three different concepts for spin injection into Si have been addressed: (1) spin injection through a ferromagnet-Si Schottky contact, (2) spin injection using MgO tunnel barriers in between the ferromagnet and Si, and (3) spin injection from Mn-doped Si (DMS) as spin aligner. (1) FM-Si Schottky contact for spin injection: To be able to improve the interface qualities one needs to understand the atomic processes involved in the formation of silicide phases. In order to obtain more detailed insight into the formation of such phases the initial stages of growth of Co and Fe were studied in situ by HRBS with monolayer depth resolution.(2) MgO tunnel barrier for spin injection into Si: The fabrication and characterization of ultra-thin crystalline MgO tunnel barriers on Si (100) was presented. (3) Mn doped Si for spin injection: Si-based diluted magnetic semiconductor samples were prepared by doping Si with Mn by two different methods i) by Mn ion implantation and ii) by in-diffusion of Mn atoms (solid state growth). (orig.)

  9. Interferon Alfa-2b Injection

    Science.gov (United States)

    Interferon alfa-2b injection is used to treat a number of conditions.Interferon alfa-2b injection is used alone or in ... Hodgkin's lymphoma (NHL; a slow-growing blood cancer). Interferon alfa-2b is in a class of medications ...

  10. Laser-Beam Separator

    Science.gov (United States)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  11. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  12. Space charge dominated beams

    International Nuclear Information System (INIS)

    After an introductory section on the relationship between emittance and beam Coulomb energy we discuss the properties of space charge dominated beams in progressive steps: from uniformly charged bunched beams to non-uniformly charged beams to correlation effects between particles (simulation beams or 'crystalline' beams). A practical application can be found in the beam dynamics of a high-current injector. The concept of correlation energy is of practical interest in computer simulation of high-brilliance beams, where one deals with an artificially enhanced two-particle Coulomb energy, if many real particles are combined into one simulation super-particle. This can be a source of non-physical emittance growth. (orig./HSI)

  13. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  14. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  15. Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II

    CERN Document Server

    Son, Y-G; Mitsuda, C; Kobayashi, K; Ko, J; Lee, T-Y; Choi, J-Y; Kim, D-E; Seo, H-S; Han, H-S; Park, K-S; Shin, S

    2016-01-01

    This paper reports a start-to-end study of suppression of stored beam oscillation at PLS-II. We report that the fast counter-kicker implemented in PLS-II suppressed vertical oscillation of the stored beam. During top-up injection in the magnetic spectroscopy beamline of PLS-II, the stored beam oscillation was suppressed by a factor of nine, and flux was improved by a factor of three.

  16. Proton beam writing

    OpenAIRE

    Frank Watt; Breese, Mark B H; Bettiol, Andrew A; Jeroen A. van Kan

    2007-01-01

    Proton beam (p-beam) writing is a new direct-writing process that uses a focused beam of MeV protons to pattern resist material at nanodimensions. The process, although similar in many ways to direct writing using electrons, nevertheless offers some interesting and unique advantages. Protons, being more massive, have deeper penetration in materials while maintaining a straight path, enabling p-beam writing to fabricate three-dimensional, high aspect ratio structures with vertical, smooth side...

  17. Welding by laser beam

    International Nuclear Information System (INIS)

    A laser which does not require a vacuum and the beam from which can be projected over a distance without loss of power is sited outside a welding zone and the beam projected through a replaceable laser transparent window. The window is designed and shaped to facilitate access of the beam of workpiece items to be welded in containment. Either the workpiece or the laser beam may be moved during welding. (author)

  18. Slow kaon beams

    International Nuclear Information System (INIS)

    A short description is given of considerations for the design of low-momentum kaon beam lines. Relevant data for the performance of seven existing and decommissioned slow kaon beams are presented. For single-stage separated beams the observed ratio all/K- is greater than 50 for momenta less than 500 MeV/c. We recommend a two-stage separated beam with perhaps an upstream cleanup section for maximal purity

  19. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  20. PARTICLE BEAM TRACKING CIRCUIT

    Science.gov (United States)

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  1. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  2. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  3. Investigation of Injection Losses at the Large Hadron Collider with Diamond Based Particle Detectors

    CERN Document Server

    Stein, Oliver; Burkart, Florian; Dehning, Bernd; Griesmayer, Erich; Kain, Verena; Schmidt, Ruediger; Wollmann, Daniel

    2016-01-01

    During the operation of the Large Hadron Collider (LHC) in 2015, increased injection losses were observed. To minimize stress on accelerator components in the injection regions of the LHC and to guarantee an efficient operation these losses needed to be understood and possible mitigation techniques should be studied. Measurements with diamond particle detectors revealed the loss structure with ns-resolution for the first time. Based on these measurements, recaptured beam from the Super Proton Synchrotron (SPS) surrounding the nominal bunch train was identified as the major contributor to the injection loss signals. Methods to reduce the recaptured beam in the SPS were successfully tested and verified with the diamond particle detectors. In this paper the detection and classification of LHC injection losses are described. The methods to reduce these losses and verification measurements are presented and discussed.

  4. Study of Slow Beam Extraction Through the Third Order Resonance with Transverse Phase Space Manipulation by a Mono-Frequency RFKO

    CERN Document Server

    Miyamoto, Atsushi; Hinode, Fujio; Kawai, Masayuki; Shinto, Katsuhiro; Tanaka, Takumi

    2005-01-01

    An electron pulse-stretcher ring (STB ring) has a function which converts a pulse beam generated by RF linac into a quasi-continuous beam. Circulating beam in the ring is extracted by the third order resonance. Since there is no accelerating field in the ring, the beam approaches a transverse resonance condition due to synchrotron radiation loss with finite chromaticity. The extracted beam from the ring has some spread in time and space corresponding to injected beam from linac even if the injected beam is perfectly matched to the ring optics. However, the extracted beam emittance can be reduced by applying a phase space manipulation using an RF shaker. Under the influence of perturbation using an RF shaker driven by a mono-frequency, the betatron amplitude of circulating beam can be controlled in order to reduce the extracted beam emittance. The experimental results will be reported in this conference.

  5. Beams 92: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere

  6. Accelerating nondiffracting beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  7. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  8. Klystron beam bunching

    International Nuclear Information System (INIS)

    A detailed description of electron-beam bunching phenomena in klystrons is presented. Beam harmonic current is defined, both space-charge and ballistic bunching are analyzed, Ramo's theorem is used to describe how a bunched beam drives a cavity, and a general cavity model including external coupling is provided. (author)

  9. Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era

    CERN Document Server

    Kain, Verena; Fraser, Matthew; Goddard, Brennan; Meddahi, Malika; Perillo Marcone, Antonio; Steele, Genevieve; Velotti, Francesco

    2016-01-01

    Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.

  10. The beam coupling impedance model of CERN Proton Synchrotron

    CERN Document Server

    Persichelli, Serena; Migliorati, Mauro; Salvant, Benoit

    The research activity described in this thesis work is dedicated to developing a longitudinal and a transverse beam coupling impedance model for the CERN Proton Synchrotron (PS), in the framework of the Large Hadron Collider (LHC) Injector Upgrade (LIU) project. The study allows a better understanding of the instability threshold of the machine, helping predicting the effects of the current increase planned for the upgrade program. Furthermore, the knowledge of the machine beam coupling impedance model allows improving the stability of beams injected into the LHC chain, in prevision for the particle collision energy increase in program for LHC physics experiments.

  11. Scaled, circular-emitter Penning SPS for intense H- beams

    International Nuclear Information System (INIS)

    The Los Alamos versions of the Penning Surface-Plasma Source (SPS) routinely generate H- ion beams with pulsed currents over 100 mA. However, these sources employ geometries that result in the extraction of slit beams (0.5 x 10 mm2). Our modeling with the SNOW code indicates that the beam from a 5.4-mm-diam circular emitter will have lower emittance and divergence for transport to and injection into our radio-frequency quadrupole (RFQ) accelerator. This paper describes a newly constructed Penning SPS that has most of its discharge chamber dimensions scaled up by a factor of 4 to accommodate this circular emitter

  12. Compensation of initial beam loading for electron linacs

    International Nuclear Information System (INIS)

    Serious initial beam loading effect may generate beam loss in the electron linac of the VSX light source. Because of the large energy spread, it is difficult to compensate the beam loading with ordinary methods, such as the adjustment of injection timing and ECS (Energy Compensation System). We have developed a phase-amplitude (Δφ-A) modulation system using two fast phase shifters, which is put before a klystron and operated at low power level. In this paper, we report the performance of the test system. (author)

  13. Direct injection into the IsoDAR Cyclotron using a RFQ

    Science.gov (United States)

    Axani, Spencer; IsoDAR Collaboration

    2015-04-01

    Beginning in the 1970s, the use of Radio Frequency Quadrupoles (RFQs) has been pervasive in linear accelerators in order to accelerate, bunch, and separate ion species. Current research suggests this may be an ideal way to inject a low energy H2+ beam axially into a cyclotron. The IsoDAR (Isotope Decay At Rest) experiment aims to implement this injection system in order to achieve higher Low Energy Beam Transport (LEBT) efficiencies and ultimately construct a novel compact neutrino factory to test the hypothesis of sterile neutrinos. This talk will focus on the research and development needed to implement a RFQ into the IsoDAR experiment.

  14. Injection and dump considerations for a 16.5 TeV HE-LHC

    CERN Document Server

    Goddard, B; Bartmann, W; Borburgh, J; Bracco, C; Ducimetière, L; Kain, V; Meddahi, M; Mertens, V; Senaj, V; Uythoven, J

    2011-01-01

    Injection and beam dumping is considered for a 16.5 TeV hadron accelerator in the current LHC tunnel, with an injection energy in the range 1 - 1.3 TeV. The present systems are described and the possible upgrade scenarios investigated for higher beam rigidity. In addition to the required equipment performance, the machine protection related aspects are explored. The expected constraints on the machine layout are also given. The technological challenges for the different equipment subsystems are detailed, and areas where R&D is necessary are highlighted.

  15. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  16. Development of the charge exchange type beam scraper system at the J-PARC

    Science.gov (United States)

    Okabe, K.; Yamamoto, K.; Kinsho, M.

    2016-03-01

    Improvement in injection beam quality at the Japan Proton Accelerator Research Complex 3-GeV rapid cycle synchrotron is to mitigate beam loss at the injection section. We developed a charge-exchange type scraper system with a thin carbon foil to collimate the beam halo in the injection beam line of the synchrotron. The key issue to realize the scraper is a reduction of the beam loss induced by the multiple-scattering effect of charge-exchange foil placed at the scraper head. In order to determine the adequate foil thickness, a charge-exchange efficiency of a carbon foil and particle-tracking simulation study of the collimated beam have been performed assuming a realistic halo at the scraper section. Using the results of this study, we chose the thickness of a 520 μg /cm2 as the scraper foils to mitigate radiation dose around the L3BT scraper section. A charge-exchange scraper system that prevents the emission of radioactive fragments of the carbon foil was build. The system was put into operation to prove its effectiveness in eliminating the beam halo. From the result of a preliminary beam experiments, we confirmed that the installed scrapers eliminate a transverse beam tail or halo. After two days of operation with beam collimation, the radiation dose level around the scraper section was a tolerable one for the hands-on maintenance.

  17. Using neutral beams as a light ion beam probe (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi, E-mail: chenxi@fusion.gat.com [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831 (United States); Heidbrink, W. W. [University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kramer, G. J.; Nazikian, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Hanson, J. M. [Columbia University, New York, New York 10027 (United States); Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  18. Development of a positron probe micro analyzer with a high intensity positron beam

    International Nuclear Information System (INIS)

    A positron probe micro analyzer (PPMA) has been developed in AIST. When a positron microbeam is injected into a specimen, radiations including secondary electrons, back scattered positrons, and annihilation gamma-rays are emitted from the beam injected point. In the PPMA, these radiations are detected to characterize small area of specimens. We report on details of designs and specifications of the PPMA. (author)

  19. Pushing the limits - beam

    CERN Document Server

    Métral, E

    2011-01-01

    Many collective effects were observed in 2010, first when the intensity per bunch was increased and subsequently when the number of bunches was pushed up and the bunch spacing was reduced. After a review of the LHC performance during the 2010 run, with a particular emphasis on impedances and related single-beam coherent instabilities, but mentioning also beam-beam and electron cloud issues, the potential of the LHC for 2011 will be discussed. More specifically, the maximum bunch/beam intensity and the maximum beam brightness the LHC should be able to swallow will be compared to what the injectors can provide.

  20. Injecting equipment schemes for injecting drug users : qualitative evidence review

    OpenAIRE

    Cattan, Mima; Bagnall, Anne-Marie; Akhionbare, Kate; Burrell, Kim

    2009-01-01

    This review of the qualitative literature about needle and syringe programmes (NSPs) for injecting drug users (IDUs) complements the review of effectiveness and cost-effectiveness. It aims to provide a more situated narrative perspective on the overall guidance questions.