WorldWideScience

Sample records for beam injection heating

  1. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    The bootstrap current of fast ions produced by the neutral beam injection is investigated in a large aspect ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are figured out. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current considered, the net current density obviously decreases due to electron return current, at the same time the peak of current moves towards the centre plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the neutral beam injection but also on the ratio of the velocity of fast ions to the critical velocity: the value of net current is small for the neutral beam parallel injection but increases multipliedly for perpendicular injection, and increases with beam energy increasing. (authors)

  2. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  3. Preliminary experiment of neutral beam injection heating in JIPP T-II stellarator

    International Nuclear Information System (INIS)

    Neutral beam injection experiments are carried out in JIPP T-II, which is a hybrid device of stellarator and tokamak. Two neutral beam injectors are equipped tangentially in the direction of co- and counter-injections. Hydrogen neutral beams of 22 keV, 60 kW (co-injection) and 30 kW (counter-injection) are applied to the ohmically heated stellarator plasma and also to the tokamak plasma. The bulk ion heating efficiency for co-injection is around 1.6 eV/kW in the case of stellarator and 1.9 eV/kW in the case of tokamak, while the heating efficiencies for counter-injection are about 1.6 eV/kW in both cases. The difference between the tokamak and stellarator is considered to be caused by the enhanced orbit loss due to the helical ripples in the stellarator. (author)

  4. Peculiarities of heat transfer in the experiments of beam injection heating of a plasma at the GOL-3 device

    International Nuclear Information System (INIS)

    The dynamics is discussed of the heat redistribution in plasma, heated by microsecond relativistic electron beam in the GOL-3 facility. The electron temperature dependence on time and distance up to beam injection point are compared with heat transfer calculations. At the stage of plasma cooling the time dependence of the plasma temperature is well described by the classical electron heat conduction on the facility buttends. At the same time the dynamics of the observed electron temperature increase and its distribution in the facility length during beam injection time can not be explained by the classical electron heat conduction. 15 refs.; 9 figs

  5. Comparison of Heating Efficiency Between Co and Counter Neutral Beam injection in Large Helical Device

    Science.gov (United States)

    Ikeda, Katsunori; Kaneko, Osamu; Osakabe, Masaki; Takeiri, Yasuhiko; Tsumori, Katsuyoshi; Oka, Yoshihide; Murakami, Sadayoshi; Narihara, Kazumichi; Asano, Eiji E.; Kawamoto, Toshikazu; LHD Experiment Groups Team

    2001-10-01

    In the Large Helical Device, tangential neutral beam injection (NBI) is adopted in order to avoid that the fast ions are directly trapped in helical ripples. Then effective heating is realized by negative ion based high energy tangential NBI systems in Large Helical Device, two beam lines ware arranged counter -injection and the other one was arranged co-injection. However, it is predicted that the absorption efficiency of a NBI heating is also influenced by troidal drift motion of injected beam particle in weak magnetic field (Bt < 1T) operations such as high beta experiment. And also plasmas must be build up by using tangential NBI heating alone from the magnetic field strength Bt 0.5T to 1.5T, since heating by electron cyclotron heating can not be performed. So, the efficiency of co and counter NBI heating is an important issue for generating high beta plasma. According to experiment results, either of co and counter NBI was able to heat plasma efficiently in Bt=0.75T. Enhancement factors of energy confinement time without considering direct drift loss is almost the same in these plasmas. However, there is a difference in build up time of plasma by co and counter. There are no big difference in an electron temperature profile of co and counter heating as low as Bt=0.75 although the beam absorption profile may be different between co and counter injection.

  6. Neutral beam injection heating on field-reversed configuration plasma decompressed through axial translation

    International Nuclear Information System (INIS)

    The power deposition of neutral beam injection (NBI) on translated field-reversed configuration (FRC) plasma has been investigated. A certain level of electron heating effect was observed in the slowly decaying phase of the decompressed FRC, leading to a hollow electron temperature profile. Numerical calculation of beam trajectories has shown that about 50% of the injected NB power is absorbed by the plasma electron inside the separatrix with a hollow deposition profile similar to the observed electron temperature profile. The estimated absorbed NB power of 120 kW will be enough to bring the change in electron temperature, since the electron conduction and radiation loss was estimated to be ∼100 kW

  7. Beam injection into RHIC

    International Nuclear Information System (INIS)

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam

  8. Modeling of plasma heating with neutral beam injection in T-11 machine

    International Nuclear Information System (INIS)

    Computations of energy balance are presented for a tokamak with hot atom beam injection. Atom ionization, trapping of generated ions and energy transfer to plasma are examined. Energy loss in charge exchange is considered. Relationships are presented between the temperature and the injection power, the plasma density and other parameters. Possibilities are discussed for obtaining a collisionless ion regime

  9. Explanation of Turbulent Suppression of Electron Heat Transfer in GOL-3 Facility at the Stage of Relativistic Electron Beam Injection

    International Nuclear Information System (INIS)

    The effect of the electron heat transfer suppression during the stage of relativistic electron beam injection into a plasma was discovered experimentally more than a decade ago. It is now widely adopted that the suppression is a side sequel of Langmuir turbulence excited by the beam, however neither quantitative theory nor even rough estimates of the phenomena were available so far. We argue that the coefficient of turbulent thermal conductivity can be evaluated from a robust judgement based on the energy balance consideration

  10. Plasma heating simulation in the T-11 device on the neutral atom beam injection

    International Nuclear Information System (INIS)

    Calculations of the energy balance in the tokamak with injection of hot atom beams are carried out. Considered are atom ionization and capture of the produced ones as well as the transmission of energy to plasma. Energy losses on recharging are taken into account. Given are temperature dependencies on injection power, plasma density and other parameters. A possibility to obtain collisionless regime by ions is described

  11. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  12. Mixed-DT neutral-beam injection: An alternative heating method for tokamaks

    International Nuclear Information System (INIS)

    In this paper, the authors propose an alternative method for the heating, and perhaps also refueling, of tokamak fusion devices. The alternative method replaces the deuterium neutral-beam injectors (NBIs) such as those now used, for example, on the Tokamak Fusion Test Reactor (TFTR) device. Instead they make use of a mixed (deuterium-tritium) NBI (MNBI) and thereby vastly reduce the cost and complexity of the fuel-recovery cycle. Another like consequence is the reduction of the total amount of tritium in the on-site inventory. The authors suspect that the alternative plant design would have a positive effect on safety, although they have not done an accident analysis based on the mixed-beam injectors. They have, however, studied the requirements of the new fuel cycle and have looked at the question of optimizing some of the parameters associated with a mixed-beam injector. 3 refs

  13. ATF neutral beam injection system

    International Nuclear Information System (INIS)

    The Advanced Toroidal Facility is a stellarator torsatron being built at Oak Ridge National Laboratory to investigate improved plasma confinement schemes. Plasmas heating will be carried out predominantly by means of neutral beam injection. This paper describes the basic parameters of the injection system. Numerical calculations were done to optimize the aiming of the injectors. The results of these calculations and their implications on the neutral power to the machine are elaborated. The effects of improving the beam optics and altering the focal length on the power transmitted to the plasma are discussed

  14. Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System

    International Nuclear Information System (INIS)

    In order to realize steady-state operation of the neutral beam injection (NBI) system with high beam energy, an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux (HHF) components in the system are key issues. In this paper, taking the HHF ion dump with swirl tubes in NBI system as an example, an accurate thermal dynamic simulation method based on computational fluid dynamics (CFD) and the finite volume method is presented to predict performance of the HHF component. In this simulation method, the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling. The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube. The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components, and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way. The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system. (fusion engineering)

  15. Transition of toroidal Alfven eigenmode to global Alfven eigenmode in CHS heliotron/torsatron plasmas heated by neutral beam injection

    International Nuclear Information System (INIS)

    A transition of a core localized type toroidal Alfven eigenmode with n 1 toroidal mode number to two n = 1 global Alfven eignemodes was observed in NBI-heated plasmas in the Compact Helical System (CHS) heliotron/torsatron. This transition phenomenon is interpreted based on the temporal evolution of the rotational transform near the plasma center caused by the increased in the beam-driven current. (author)

  16. Conceptual Design of Neutral Beam Injection System for EAST

    Science.gov (United States)

    Hu, Chundong; NBI Team

    2012-06-01

    Neutral beam injection (NBI) system with two neutral beam injections will be constructed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2~4 MW beam power with 50~80 keV beam energy in 10~100 s pulse length. Each elements of the NBI system are presented in this contribution.

  17. Development of ion source for neutral beam injection

    International Nuclear Information System (INIS)

    There are a few methods for further raising (secondary heating) toroidal plasma temperature above the limit of Joule heating of 1 to 2 keV. In this paper, the ion source used for neutral beam injection heating is described, which is now considered to be the most effective means as the secondary heating. It was reported that in Oak Ridge National Laboratory, neutral particle beam was injected into the torus and the plasma temperature increased as expected. Japan Atomic Energy Research Institute (JAERI) planned the plasma heating by neutral beam injection in JFT-2 torus from the summer of 1976 and it was decided that the heating by neutral beam injection is also employed in the critical plasma test facility (JT-60) which is scheduled to start operation in 1980. For this purpose, JAERI decided to build some test stand for ion source development including ITS-1 already prepared. At present, the test stand ITS-2 for the development of two stage acceleration ion source is ordered as a part of the development program of neutral beam injection heating for JT-60. This stand will be available for the test of ion sources of up to 100 kV, 20 A, and pulse width 1 sec. (Wakatsuki, Y.)

  18. TFTR neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterflow calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source on the well-instrumented test stand, 99.5±3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12 degree, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations in the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water

  19. EDITORIAL: Negative ion based neutral beam injection

    Science.gov (United States)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to 1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that meeting were asked if they were interested in rewriting and extending their contributions as a submission to Nuclear Fusion. Technology papers were accepted because of the very nature of the subject. The submissions underwent the regular double-referee peer-review process

  20. Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Day, H; Caspers, F; Métral, E; Salvant, B; Uythoven, J

    2014-01-01

    The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high beam currents circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam induced heating were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss for operation after long shutdown 1 and for proposed HL-LHC operational parameters.

  1. TFTR neutral beam injection system conceptual design

    International Nuclear Information System (INIS)

    Three subsystems are described in the following chapters: (1) Neutral Beam Injection Line; (2) Power Supplies; and (3) Controls. Each chapter contains two sections: (1) Functions and Design Requirements; this is a brief listing of the requirements of components of the subsystem. (2) Design Description; this section describes the design and cost estimates. The overall performance requirements of the neutral beam injection system are summarized. (MOW)

  2. Spheromak Energy Transport Studies via Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

    2008-02-11

    Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

  3. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 1018 to 1020 m-3. First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  4. ATF neutral beam injection: optimization of beam alignment and aperturing

    International Nuclear Information System (INIS)

    The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 10 Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beam divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab

  5. On neutral-beam injection counter to the plasma current

    Science.gov (United States)

    Helander, P.; Akers, R. J.; Eriksson, L.-G.

    2005-11-01

    It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C. Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.

  6. GRAVITY: beam stabilization and light injection subsystems

    CERN Document Server

    Pfuhl, O; Eisenhauer, F; Penka, D; Amorim, A; Kellner, S; Gillessen, S; Ott, T; Wieprecht, E; Sturm, E; Haussmann, F; Lippa, M; 10.1117/12.925391

    2012-01-01

    We present design results of the 2nd generation VLTI instrument GRAVITY beam stabilization and light injection subsystems. Designed to deliver micro-arcsecond astrometry, GRAVITY requires an unprecedented stability of the VLTI optical train. To meet the astrometric requirements, we have developed a dedicated 'laser guiding system', correcting the longitudinal and lateral pupil position as well as the image jitter. The actuators for the correction are provided by four 'fiber coupler' units located in the GRAVITY cryostat. Each fiber coupler picks the light of one telescope and stabilizes the beam. Furthermore each unit provides field de-rotation, polarization analysis as well as atmospheric piston correction. Using a novel roof prism design offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical path. Finally the stabilized beam is injected with minimized losses into single-mode fibers via parabolic mirrors. We present lab results of the first guiding- as well as the ...

  7. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  8. Neutral Beam Heating and Current Drive in MAST

    Science.gov (United States)

    Akers, R.; Challis, C.; Appel, L.; Conway, N.; Cunningham, G.; Gryaznevich, M.; Lloyd, B.; Patel, A.; Tabasso, A.; Tournianski, M.

    2002-11-01

    Primary auxiliary heating on MAST (R 0.8m, a 0.6m) is provided by two ORNL neutral-beam injectors, oriented in the mid-plane, each with a tangency radius of 0.7m. Centrally peaked heating profiles at electron densities routinely exceeding the Greenwald limit are generated by injecting in the range 40 co-injection heated discharges and for low current (Ip 300kA), low-density (ne>0.5x1019m-3) co and counter injection heated plasmas where NBCD is being investigated.

  9. GRAVITY: beam stabilization and light injection subsystems

    OpenAIRE

    Pfuhl, O.; Haug, M.; Eisenhauer, F.; Penka, D.; A. Amorim; Kellner, S.; Gillessen, S.; Ott, T; Wieprecht, E.; Sturm, E.; Haussmann, F.; Lippa, M.

    2012-01-01

    We present design results of the 2nd generation VLTI instrument GRAVITY beam stabilization and light injection subsystems. Designed to deliver micro-arcsecond astrometry, GRAVITY requires an unprecedented stability of the VLTI optical train. To meet the astrometric requirements, we have developed a dedicated 'laser guiding system', correcting the longitudinal and lateral pupil position as well as the image jitter. The actuators for the correction are provided by four 'fiber coupler' units loc...

  10. Design principles for high current beam injection lines

    International Nuclear Information System (INIS)

    We discuss the design principles for high current injection beam lines having a high degree of beam quality preservation. These principles are applied to designing a high current e-beam injection line delivering 10 MeV e-beams from the injector to an accelerator driving LTV FELs, as proposed at CEBAF

  11. Transmission of the Neutral Beam Heating Beams at TJ-II

    International Nuclear Information System (INIS)

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs

  12. Challenges and plans for injection and beam dump

    CERN Document Server

    Barnes, M; Mertens, V; Uythoven, J

    2015-01-01

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  13. Lower hybrid wave heating into neutral beam heated plasma in the JT-60 tokamak

    International Nuclear Information System (INIS)

    Injection of high-power lower hybrid waves (LHW) of up to 6.0 MW into neutral-beam-20 MW-heated plasmas with the medium electron density regime (n-bare ≤ 3.5 x 1019 m-3) increases the plasma energy content at the same incremental energy confinement time as in the case of neutral beam heating alone. In addition to thermal electron and ion heating, LHW accelerates beam ions to energies considerably higher than the beam injection energy. In contrast to LH injection into OH plasmas in the same density regime, where substantial high-energy electron production is observed, the case of combined heating shows much less high-energy electrons. The heating efficiency of LHW in the combined heating case tends to decrease as the electron density is increased. Ray-tracing analysis suggests that the accessibility condition prevents effective heating in a high-density plasma. Estimation of wave damping, which is taking account of the beam component of the ion velocity distribution function, indicates that waves are absorbed by beam ions before they are absorbed by electrons. (author)

  14. Cascaded injection resonator for coherent beam combining of laser arrays

    Science.gov (United States)

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  15. Plasma heating by cluster injection: basic features and expected behaviour

    International Nuclear Information System (INIS)

    Each main component of an injection line (beam source, cluster ionizer, accelerating tube) is briefly discussed together with the behavior of clusters interacting with a plasma. Outlines of the experiment of cluster injection into TFR, in progress at Fontenay-aux-Roses are presented and discussed all along the paper. It is shown that high current densities at rather low energy per atom can be obtained by accelerated cluster beams. In present size toroidal devices, both ion temperature and density can be increased simultaneously without heating electrons. This feature could be attractive as long as tokamak losses are dominated by electrons. The extrapolation of the ionizers under construction does not seem to present much difficulty; on the contrary, the accelerating tube could be the most serious problem to solve. (40 references)

  16. TFTR [Tokamak Fusion Test Reactor] neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab

  17. Rf beam loading in the Brookhaven AGS with booster injection

    International Nuclear Information System (INIS)

    Multi-batch bunched beam loading during injection from the Booster to the AGS will be discussed. The full intensity beam injection to the upgraded AGS rf system with beam phase and radial feedbacks will be studied. It is shown that a beam phase feedback is necessary in order to guarantee a predictable hewn behavior after the first batch injection, otherwise the initial phase deviation for the following batch injections cannot be controlled. However, the effectiveness of the phase feedback control of the transient beam loading may be limited by an emittance blow up in the process. It is shown that a fast power amplifier feedback with a moderate gain can significantly reduce the transient effect of the bunched beam injection

  18. Plasma Heating under Beam Instability Conditions

    International Nuclear Information System (INIS)

    Results are discussed of the interaction of electron beams with a plasma in mirror magnetic fields and the heating of the electron and ion components of the plasma under beam instability conditions. The experiments were carried out in a mirror device with mirror ratio 1.5 and a maximum field of 1500 Oe at the centre. An electron beam of 200 to 300 mA and energy up to 4 keV was injected continuously. Plasma was formed by the ionization of the gas (hydrogen or helium) filling the vessel at pressures of 10-4 to 10-5 Torr. As a result of the interaction of the electron beam with the plasma, a broad spectrum of plasma and electromagnetic waves is excited in the system. The spectra of the high- and of the low-frequency oscillations in beam instability conditions were experimentally investigated. A broad spectrum of oscillations in the region of the plasma and cyclotron frequencies was observed. The results are described of the investigations of the systematic low-frequency oscillations excited in the region from 10 to 50 kc/s, and possible mechanisms responsible for the excitation of the oscillations are discussed. The observed absorption of the energy of the high-frequency oscillations in the region of the electroncyclotron frequency and its harmonics is also considered. The interaction between the plasma particles and the fields of the oscillations excited in the system cause the directed energy of the beam to be transformed into thermal plasma energy. Intense X-radiation from the plasma region was recorded; from its energy distribution, the plasma electron temperature was determined of the order of 20 to 40 keV. The plasma density determined from the X-radiation power was (1 to 2) x 1011 cm-3. According to microwave measurements one obtains ne ∼(0.7 to 1) x 10-12 cm-3. The heating of the plasma is also confirmed by spectrometric measurements of the electron temperature from the relative intensity of the helium lines. The ion temperature measured from the Doppler

  19. Beam injection with pulsed multipole magnet at UVSOR-III

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N., E-mail: naoto@nagoya-u.jp [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Zen, H. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hosaka, M. [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Konomi, T. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Adachi, M. [High Energy Accelerator Research Organization, KEK 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Hayashi, K.; Yamazaki, J. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Takashima, Y. [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Katoh, M. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)

    2014-12-11

    In this study, we designed and manufactured a pulsed multipole magnet for beam injection into the UVSOR-III ring. A sextupole-like magnetic field could be excited when using the multipole magnet. To compensate for the residual field at the center of the magnet caused by manufacturing imprecisions, thin ferrite sheets were used. The injection experiments at UVSOR-III demonstrated multi-turn injections with the pulsed multipole magnet. The injection efficiency was 23% and the electron beam was stored up to the normal operation current of 300 mA. Moreover, we confirmed that oscillations of stored beams caused by beam injection were drastically suppressed compared with conventional pulsed dipole injection.

  20. Enhancement of neutral beam deposition in hydrogen discharge using carbon pellet injection in LHD

    International Nuclear Information System (INIS)

    The central ion temperature in the large helical device (LHD), as measured by charge-exchange recombination spectroscopy, has been improved to a record 5.6 keV by combining 21 MW of neutral beam heating with the injection of a carbon pellet. The intensity of the neutral beam emission of the hydrogen Balmer line (Hα: n=3 → 2) was observed to weaken along the beam injection axis following the carbon pellet injection due to the increased beam attenuation. The beam-emission intensity was reconstructed by calculating the density distribution, and the beam-stopping coefficients, along a beam injection axis and was found to fit well to the measured beam-emission for a mixed hydrogen and carbon target plasma. The dynamics of the neutral beam deposition power and the carbon fraction were estimated from the beam-emission measurements using data from ADAS. We conclude that the beam deposition power in a carbon pellet discharge is enhanced over that of a pure hydrogen discharge. (author)

  1. Ion transport studies on the PLT tokamak during neutral beam injection

    International Nuclear Information System (INIS)

    Radial transport of ions during co- and counter-neutral beam heating in the PLT tokamak has been studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral beam heating, were measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction were observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 103 cm/sec superposed to a diffusion coefficient of the order 104 cm2/sec for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the center while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element

  2. Numerical Simulation of Non-Inductive Current Driven Scenario in EAST Using Neutral Beam Injection

    Science.gov (United States)

    Li, Hao; Wu, Bin; Wang, Jinfang; Wang, Ji; Hu, Chundong

    2015-01-01

    For achieving the scientific mission of long pulse and high performance operation, experimental advanced superconducting tokamak (EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system. Besides RF (Radio Frequency) wave heating, neutral beam injection (NBI) is an effective heating and current drive method in fusion research. NBCD (Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak. The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code. At the condition of low plasma current and moderate plasma density, neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.

  3. Efficient Injection of Electron Beams into Magnetic Guide Fields

    International Nuclear Information System (INIS)

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  4. Efficient Injection of Electron Beams into Magnetic Guide Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K,

    1999-06-08

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas.

  5. Simulation of ion beam injection and extraction in an EBIS

    International Nuclear Information System (INIS)

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency

  6. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  7. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  8. High intensity ion beam injection into the 88-inch cyclotron

    OpenAIRE

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner, Matthaeus A.; Lyneis, Claude M.

    2000-01-01

    Low cross section experiments to produce super-heavy elements have increased the demand for high intensity heavy ion beams at energies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. Therefore, efforts are underway to increase the overall ion beam transmission through the axial injection line and the cyclotron. The ion beam emittance has been measured for various ion masses and charge states. Beam transport simulations including space charge ...

  9. Commissioning of heating neutral beams for COMPASS-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Belov, V.; Gorbovsky, A.; Dranichnikov, A.; Ivanov, A.; Sorokin, A.; Mishagin, V.; Abdrashitov, A.; Kolmogorov, V.; Kondakov, A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation)

    2012-02-15

    Two neutral beam injectors have been developed for plasma heating on COMPASS-D tokamak (Institute of Plasma Physics, Prague). The 4-electrodes multihole ion-optical system with beam focusing was chosen to provide the low divergence 300 kW power in both deuterium and hydrogen atoms. The accelerating voltage is 40 kV at extracted ion current up to 15 A. The power supply system provides the continuous and modulated mode of the beam injection at a maximal pulse length 300 ms. The optimal arrangement of the cryopanels and the beam duct elements provides sufficiently short-length beamline which reduces the beam losses. The evolution of the impurities and molecular fraction content is studied in the process of the high voltage conditioning of the newly made ion sources. Two injectors of the same type have been successfully tested and are ready for operation at tokamak in IPP, Prague.

  10. Telemetry signal damping during rocket electron beam injections

    International Nuclear Information System (INIS)

    We present here a preliminary analysis of telemetry signal damping associated with the injection of intense energetic electron beams in the ionosphere during the Zarnitza 2 and Araks experiments. It is suggested that the damping of the signal is due to an enhancement of density fluctuations generated by the beam

  11. NOx reduction by electron beam-produced nitrogen atom injection

    Science.gov (United States)

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  12. Neutral beam heating for jet, construction and test of a quasi-stationary plasma heating system at the 10 MW level

    International Nuclear Information System (INIS)

    Neutral beam injection is one of the two heating methods for JET. During the first stage of operation hydrogen beams will be injected at 80 keV with a beam pulse length of 10 s. The total beam power into the Torus is 18 MW with 10 MW in the full energy beam component. The power will be provided from 16 beam sources with an extracted ion beam current of 60 A each, arranged in two systems of 8 sources. For the second stage of operation the system will be modified to 160 keV deuterium beams, with 30 A extracted beam current per source. (orig.)

  13. Inertial fusion energy target injection, tracking, and beam pointing

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  14. Inertial fusion energy target injection, tracking, and beam pointing

    International Nuclear Information System (INIS)

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive

  15. Electronic beam steering of semiconductor injection lasers

    Science.gov (United States)

    Katz, J.

    1982-01-01

    A theoretical analysis of the problem of beam steering is presented. The required modifications of the dielectric constant profile of the laser structure were derived. A practical method for implementing the needed modifications is outlined.

  16. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  17. LHC Injection Beam Quality During LHC Run I

    CERN Document Server

    AUTHOR|(CDS)2079186; Stapnes, Steinar

    The LHC at CERN was designed to accelerate proton beams from 450 GeV to 7 TeV and collide them in four large experiments. The 450 GeV beam is extracted from the last pre-accelerator, the SPS, and injected into the LHC via two 3 km long transfer lines, TI 2 and TI 8. The injection process is critical in terms of preservation of beam quality and machine protection. During LHC Run I (2009-2013) the LHC was filled with twelve high intensity injections per ring, in batches of up to 144 bunches of 1.7*10^11 protons per bunch. The stored beam energy of such a batch is already an order of magnitude above the damage level of accelerator equipment. Strict quality and machine protection requirements at injection have a significant impact on operational efficiency. During the first years of LHC operation, the injection phase was identified as one of the limiting factors for fast LHC turnaround time. The LHC Injection Quality Check (IQC) software framework was developed as a part of this thesis to monitor the beam quality...

  18. Thermal Transport in NCS Plasmas with Counter Neutral Beam Injection

    Science.gov (United States)

    Stallard, B. W.; Casper, T. A.; Greenfield, C. M.; Burrell, K. H.; Gohil, P.; Lohr, J.; Petty, C. C.; Synakowski, E.; Austin, M. E.; McKee, G. R.; Rettig, C. L.; Rhodes, T. L.; Zeng, L.

    1999-11-01

    Recent experiments in DIII-D have investigated internal transport barrier (ITB) formation with neutral beams injected in the counter-current direction, assisted by early ECH during current ramp up. For counter injection the v_torBT term for radial force balance adds to the nabla p term to determine E× B flow shear. Compared to ITB plasmas with co-current injection, characteristics with counter injection at similar beam power are: (a) broader profiles of T_I, T_e, n_e, and ω_tor within a larger barrier radius, (b) reduced profile gradients in the barrier region, and (c) about a factor of 2 higher Z_eff ( ~4) from the carbon impurity. In this paper profile evolution and results of transport analysis will be compared with co-injection plasmas.

  19. Wave heating of an ion beam in a tokamak plasma

    International Nuclear Information System (INIS)

    Heating of a 26-keV trapped-ion beam by interaction with incident lower-hybrid RF power (as low as 5kW) was observed in the ATC plasma. We suggest that ion-cyclotron damping of lower hybrid waves by beam ions can account for the increase in beam energy. This process can explain the main features of the experiment: (1) preferential absorption in the perpendicular direction, (2) lack of absorption by the background plasma ions, and (3) low power requirement for absorption. Theory requires ksub(perpendicular)rhosub(i) approximately > (ω/ωsub(ci))sup(1/2). The relatively high perpendicular temperature of the beam ions (approximately 1keV), combined with one of several possibilities for RF energy at large ksub(perpendicular), allows the condition on ksub(perpendicular)rhosub(i) to be satisfied. Moreover, the large parallel energy of the beam ions plays a major role in broadening the harmonic resonances, thus making it possible for a large number of beam ions to resonate with the wave. Though the primary process is perpendicular absorption, there is also a net gain in parallel energy during a collision time due to pitch-angle scattering. The importance of this heating mechanism for large machines such as TFTR is discussed. For these machines, ions will be injected with large rhosub(i), making ion heating possible even with moderate values of ksub(perpendicular). (author)

  20. Neutral beam injection into mirror machines

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.

    1976-08-01

    Neutral injection into 2XIIB has started and sustained a hot ion plasma of n/sub h/ = 10/sup 13/ - 10/sup 14/ cm/sup -3/ and anti E/sub i/ = 9 to 14 keV. The experiment and its interpretation are discussed.

  1. Development of the IHEP booster beam injection system

    International Nuclear Information System (INIS)

    A brief description of the IHEP synchrotron booster injection system equipment is given and results of experiments on two-turn injection are presented. The circuit of kicker-magnet switching is provided. At linear accelerator current of 80 mA the two-turn injection ensured the accumulation of 1.3 x 1012 proton/booster cycle; the total (per 29 injection cycles into the main accelerator) intensity of the accelerated beam in the booster bunch exceeded 2 X 1013, which is far in excess of the needs of the U-70 accelerator presently

  2. Plasma heating with crossing relativistic electron beams

    Science.gov (United States)

    Ratan, Naren; Sircombe, Nathan; Ceurvorst, Luke; Kasim, Muhammad; Sadler, James; Bingham, Robert; Trines, Raoul; Norreys, Peter

    2015-11-01

    Plasma heating by relativistic electron beams is a powerful tool with applications including the heating of inertial confinement fusion targets and the study of matter in extreme conditions. We discuss the use of two relativistic electron beams to efficiently heat the plasma ions where the beams cross by using beam-plasma instabilities and non-linear wave coupling between Langmuir and ion-acoustic waves. Energy from the electron beams is coupled to the plasma ions as the beams become unstable and drive Langmuir waves which couple non-linearly to ion-acoustic waves which are then damped . Results of linear growth rate calculations are presented for the system of two crossing electron beams demonstrating a broad spectrum of unstable modes. Relativistic Vlasov-Maxwell simulations in two space and two momentum dimensions have been performed which demonstrate the non-linear coupling of the electron beam energy into ion-acoustic waves and the energy cascade to the background ions. Time-frequency analysis is applied to analyze the non-linear coupling between Langmuir and ion-acoustic waves in wave phase space. Structural properties of the strong turbulence produced at late times are analyzed.

  3. Current drive, heating and fueling by compact torus injection

    International Nuclear Information System (INIS)

    The possibility of injecting small compact-torus (CT) plasma rings into magnetic fusion devices is considered. This discussion concentrates on a proposed new method for efficient current drive in Tokamaks and other toroidal devices in which the magnetic flux in the CT acts to excite the current. In addition to this aspect, CTs may be selectively loaded with matter or energetic particles, or may be accelerated to high kinetic energy (0.1 to 1 MeV/ion) to provide fuel or auxiliary heating for low-density fusion devices including tandem mirrors. The potential exists for high-Q (approx. 100) Tokamak operation as well as penetration to distances well beyond those available by neutral beams or fuel particles

  4. Confinement studies of neutral beam heated discharges in TFTR

    International Nuclear Information System (INIS)

    The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2T). Recently, the D0 neutral beam heating power has been increased to 6.3 MW. By operating at low plasma current (I/sub p/ approx. = 0.8 MA) and low density anti n/sub e/ approx. = 1 x 1019m-3), high ion temperatures (9 +- keV) and rotation speeds (7 x 105 m/s) have been achieved during injection. At the opposite extreme, pellet injection into high current plasmas has been used to increase the line-average density to 8 x 1019m-3 and the central density to 1.6 x 1020m-3/ This wide range of operating conditions has enabled us to conduct scaling studies of the global energy confinement time in both ohmically and beam heated discharges as well as more detailed transport studies of the profile dependence. In ohmic discharges, the energy confinement time is observed to scale linearly with density only up to anti n/sub e/ approx. 4.5 x 1019m-3 and then to increase more gradually, achieving a maximum value of approx. 0.45 s. In beam heated discharges, the energy confinement time is observed to decrease with beam power and to increase with plasma current. With P/sub b/ = 5.6 MW, anti n/sub e/ = 4.7 x 1019m-3, I/sub p/ = 2.2 MA and B/sub T = 4.7T, the gross energy confinement time is 0.22 s and T/sub i/(0) = 4.8 keV. Despite shallow penetration of D0 beams (at the beam energy less than or equal to 80 keV with low species yield), tau/sub E/(a) values are as large as those for H0 injection, but central confinement times are substantially greater. This is a consequence of the insensitivity of the temperature and safety factor profile shapes to the heating profile. The radial variation of tau/sub E/ is even more pronounced with D0 injection into high density pellet-injected plasmas. 25 refs

  5. The fast beam interlock system for JET neutral injection

    International Nuclear Information System (INIS)

    The JET Neutral Beam Injection (NBI) system poses severe interlock problems with the possibility of unsafe conditions arising on a fast timescale. In order to cope with this the high-security Fast Beam Interlock System (FBIS) has been developed. It is used to turn off the beams in a failsafe manner when a condition arises which could damage the beam line or torus on a timescale too short to be dealt with by the JET Central Interlock and Safety System (CISS). FBIS interfaces signals from many JET safety systems and processes them to act directly on the Neutral Beam power supplies. The interfaces and the fail safety operation of FBIS are described. It is presently planned to upgrade the system to include a real-time comparison of the ion beam deflection magnet currents and the beam extraction voltage and a system which will compensate for the effects of the Tokamak stray fields on the NBI beamlines

  6. Beam injection system into an electron ring compressor

    International Nuclear Information System (INIS)

    A system for three-turn injection of the beam into the electronic ring compressor is elaborated. The electron beam is rejected from the linear accelerator at an average energy of 1.5 MeV through the screening nozzle at a radius of 26 cm into the growing magnetic field. The energy of the injected electrons and the strength of the magnetic field are varied so that injection is always performed onto the equilibrium radius. In this case, the ring will feature an electron pulse spread of +-3.5% which makes it possible to accumulate up to 1013 particles in the ring, never exceeding the threshold of the azimuthal coherent non-stability. From the point of view of its design and technology, the injection system provides for creating superhigh vacuum of about 10-9 mm Hg in the compressor chamber which ensures the life of the ring of up to 2 ms

  7. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  8. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  9. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  10. Scaling studies of beam-heated tokamaks

    International Nuclear Information System (INIS)

    Parametric scaling of neutral beam-heated tokamaks is examined to determine the trade-off between beam energy and power. It is shown that over a wide range of plasma parameters and assumed transport properties, the center mean plasma temperature is a function of P/sub A/E/sub B//sup delta/, where E/sub B/ and P/sub A/ are the beam energy and power per unit area, respectively, and delta is a calculable constant of order unity

  11. Relativistic electron beam plasma heating experiment

    International Nuclear Information System (INIS)

    An intense (5 x 105 Amp/cm2), relativistic (5 MeV), electron beam will be used to investigate the heating of small volumes (approx. 5 to 10 cm3) of dense plasma (1017 to 1018 electrons/cm3) to kilovolt temperatures via the electrostatic two-stream instability

  12. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  13. Fast alternate beam injection from SPring-8 linac

    International Nuclear Information System (INIS)

    The electron beam from SPring-8 linac has been distributed to the booster synchrotron (Sy) of SPring-8 and New SUBARU (NS) of University of Hyogo. The beam direction from the linac had been changed every fifteen or twenty seconds in TopUp operation by sending command messages to network devices from central control room. Because the commands are software-based and executed successively one by one, it took about ten seconds to complete them. To change the beam routes every 0.5 seconds, we modified the timing system of linac and NS. NS timing system was changed to synchronize with that of Sy and gun trigger signals were modified to get time-shared for Sy and NS. The radiation safety system was also improved to fit faster alternate injection. These modifications were completed successfully in June 2013 and realized no wait injection of SR and NS. (author)

  14. Beam-Ion Confinement for Different Injection Angles

    Science.gov (United States)

    Heidbrink, W. W.; Petty, C. C.; van Zeeland, M. A.; Murakami, M.; Park, J. M.; Yu, J. H.

    2008-11-01

    DIII-D is equipped with neutral beam sources that inject in four different directions; in addition, the plasma can be shifted up or down to compare off-axis with on-axis injection. Fast-ion data for eight different conditions have been obtained: co/counter, near-tangential/near-perpendicular, on-axis/off-axis. Neutron measurements during short beam pulses assess prompt and delayed losses under low-power conditions. As expected, co-injection has fewer prompt losses than counter, tangential than perpendicular, and on-axis than off-axis; the differences are greater at low current than at higher current. Fast-ion Dα (FIDA) measurements diagnose the confinement at higher power. The inferred fast-ion density is higher during co-injection than during counter-injection, although the spatial profile is similar. Comparisons of two-dimensional FIDA images with simulations based upon classical fast-ion behavior show excellent agreement in the on-axis case. The inferred fast-ion diffusion during off-axis injection will be presented.

  15. JET neutral beam injection system, construction and component tests

    International Nuclear Information System (INIS)

    The two neutral injection systems for JET are each determined by 40 mw beam power extracted from eight sources during 10 s pulses. Under the existing spatial restrictions, this has led to a complex beam-line system design. The applied manufacturing techniques and the approach to quality assurance are discussed. The beam sources have been operated at 80 kv, 60 a, 5 s in hydrogen. Plasma source development has increased the H+ yield to approximately 84%. Beamlet steering by aperture offset has experimentally been adjusted to the values required for the restricted tokamak entrance geometry. A beam source has also been operated at 160 kv, 37 a in deuterium. At the tokamak the 7 m high injector vacuum box has been installed incorporating a fast shutter and a cryopump. This LHE cooled pump with 40 m2 entrance area and 45% pumping efficiency has successfully been tested as well as the flexible cryoliquid transfer-lines. The bakeable valve between injector box and tokamak vacuum (1.1 m x 0.5 m gate cross-section) has been operated with leak rates <10-9 mbar1/s. The sub-system commissioning is completed by short-pulse operation of the beam sources with their final power supplies in situ at the tokamak and, in parallel to this, testing of the beam-line system in the neutral injection testbed

  16. Experimental investigation of molecular beam injection in HL-1 tokamak

    International Nuclear Information System (INIS)

    A new method of gas puffing is presented. The molecular beam, formed by high pressure deuterium gas through Larval nozzle and skimmer slit, is injected into the HL-1 vacuum vessel. The deuterium molecular current from the nozzle passing through the skimmer is about 3 x 1020/s. At the line average electron density of 5.2 x 1019 m-3, the beam velocity is about 100 m/s. As the plasma density and temperature increasing, the influxes of deuterium particles attenuate quickly. When the molecular beam injection (MBI) just returned to normal gas puffing, the Dα emission rapidly decreases, meanwhile, the particles move toward plasma center, the electron density is continuously peaking. The line average electron density rising lasts 45 ms. The thermal energy of plasma and confinement time for particles and energy are also increasing. the MBI is a direct and efficient gas fuelling mode, and the injected particles can reach to inside about 8 cm of plasma and q ≅ 2 confinement region. Its efficiency of injection is about 50%. After the MBI, the particle recycling coefficient R on the wall is 0.6 which is 10% lower than that of normal gas puffing

  17. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  18. Optic diagnosis of neutral beam injection on HL-1M

    Institute of Scientific and Technical Information of China (English)

    郑银甲; 冯震; 雷光玖; 姜韶风; 卢大伦; 罗俊林

    2002-01-01

    During the operation of a high-power neutral beam injection (NBI) system on the H L-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize the NBI performance. The vacuum valve opening process and NBI period in the HL-1M experiment were displayed by a lot of photos taken with this means. Thus, the Hα emission profiles of the neutral beam (NB) and its interaction with plasma were given. Finally, the reason possible for plasma breakdown during NBI mode Ⅱ discharge was investigated. Therefore, this in-situ diagnosis can provide more information of the NBI.

  19. Injection line of 1+ ion beam for electron beam ion-charge breeding source and related beam elements

    International Nuclear Information System (INIS)

    Main purpose of the electron beam ion-charge breeding source (EBIBS) is to produce highly pure and highly charged ion beam from single charge ion of stable or radioactive species. It can accept low emittance ion beam from either online or offline ECR ion sources (ECRIS). The emittance of the extracted beam is low at lower RF frequencies and magnetic field of the ECRIS. The beam at the position of extraction is approximately reproduced at the entrance of the electron collector of the EBIBS. The beam moves forward under the influence of the negative potential deep of the electron beam and enters the ionization region in solenoid field of the EBIBS. The injection line starts at the extraction region of the ECRIS. The assumed parameters of the extracted beam of 20 keV energy and 0.0732 GeV/c momentum for injection are 10 mm diameter and 30 mrad beam divergence cone. As mass number of the ions decreases the energy decreases for constant momentum of the ion beam. The value of the momentum or the beam rigidity is judiciously chosen to encompass the most of the isotopes of various elements. The beam is focused by a quadrupole doublet and passes the beam through a 90° bending magnet. The beam is analyzed also by the dipole magnet to remove the contaminants and the selected ion beam is focused by a quadrupole doublet magnet to pass through an electrostatic 90° bending elements. The beam approaches the opening of 16 mm diameter of the electron collector. A round beam of 12 mm diameter is achieved here with the help of a quadrupole triplet through point-to-point imaging from start to the end. The transport matrices for the electrostatic bending elements were calculated and incorporated into the TRANSPORT code. (author)

  20. Conceptual design for the ZEPHYR neutral-beam injection system

    International Nuclear Information System (INIS)

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs

  1. Beam-ion confinement for different injection geometries

    Science.gov (United States)

    Heidbrink, W. W.; Murakami, M.; Park, J. M.; Petty, C. C.; Van Zeeland, M. A.; Yu, J. H.; McKee, G. R.

    2009-12-01

    The DIII-D tokamak is equipped with neutral beam sources that inject in four different directions; in addition, the plasma can be moved up or down to compare off-axis with on-axis injection. Fast-ion data for eight different conditions have been obtained: co/counter, near-tangential/near-perpendicular and on-axis/off-axis. Neutron measurements during short beam pulses assess prompt and delayed losses under low-power conditions. As expected, co-injection has fewer losses than counter, tangential fewer than perpendicular and on-axis fewer than off-axis; the differences are greater at low current than at higher current. The helicity of the magnetic field has a weak effect on the overall confinement. Fast-ion Dα (FIDA) and neutron measurements diagnose the confinement at higher power. The basic trends are the same as in low-power plasmas but, even in plasmas without long wavelength Alfvén modes or other MHD, discrepancies with theory are observed, especially in higher temperature plasmas. At modest temperature, two-dimensional images of the FIDA light are in good agreement with the simulations for both on-axis and off-axis injection. Discrepancies with theory are more pronounced at low fast-ion energy and at high plasma temperature, suggesting that fast-ion transport by microturbulence is responsible for the anomalies.

  2. Heat shrinkage of electron beam modified EVA

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K. [Indian Institute of Technology, Kharagpur (India). Rubber Technology Center; Tikku, V.K.; Pradhan, N.K. [NICCO Corporation Ltd., (Cable Div.), Calcutta (India)

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author).

  3. Heat shrinkage of electron beam modified EVA

    International Nuclear Information System (INIS)

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author)

  4. Plasma Injection, Heating, Confinement, and losses In Multipole Structures

    International Nuclear Information System (INIS)

    Plasma behaviour and losses to the walls and to the surfaces of the isolated levitated hoops in a toroidal octupole have been examined for gun-injected and for microwave-produced plasmas with densities of 109 to 1011 cm-3 in the volume of 8 x 106 cm3 . Methods of plasma focusing by a magnetic lens which increase the gun plasma stream density by a factor of 40 are being applied to the octupole to raise the density. It has been discovered that electron cyclotron resonance heating (ECRH) also generates hot ions in the levitated octupole. The energy and density of these ions is comparable to that of gun-injected plasma (10 eV to 200 eV). Thin striped multi-electrode plasma collectors measure losses to surfaces with minimum mechanical of electrical disturbance to the body of the plasma, and a modulated light beam has been used to transmit signals outward from an isolated hoop. Losses to the hoop are sensitive to the time variation of B. A three-dimensional search of plasma structure with thin probes revealed some fluctuations during plasma motion caused by B more noticeable in the larger levitated octupole than in a small one-third scale supported hoop octupole. Correction of port-hole-field disturbances in the small octupole have been successful in reducing losses by 30% in the vicinity of the hole. Injection inside the confinement region of the small octupole has been used with small plasma sources to produce densities of 1013 cm-3. These studies have shown that stability and trapping efficiency are dependent on the location and orientation of the injector but not on the density. A toroidal magnetic field of 1000 G is being added to the levitated octupole. The transport of.plasma (Te = 2 eV, n = 109 cm-3) to the internal ring of a d.c. multipole-like device was increased by over a factor of 10 by the addition of a 1% magnetic perturbation which caused field lines to spiral across the confinement region. The plasma transport was reduced by a factor of 30 to 50 with the

  5. Plasma Heating and Burnout in Beam-Plasma Interaction

    International Nuclear Information System (INIS)

    Experiments using beam-plasma interaction to generate fully ionized plasma and enhance the temperature of the components are in progress at Oak Ridge National Laboratory. Previous experimental work demonstrated that an electron beam of 5 keV could heat plasma electrons in a magnetic mirror machine to a temperature over 100 keV. In this extension of the earlier work the electron beam is directed through higher pressure gas. Such a dense cloud of electrons is produced that neutral gas streaming inward from the walls is almost completely ionized or burned out before reaching the center of the apparatus. The most spectacular feature of the burnout transition is the sudden decrease of spectral light by a factor about 1000. Several neutral beam transmission experiments give electron densities greater than 1012 cm-3. Microwave cut-off measurements agree with this lower limit. Direct measurements of the electron plasma frequency and the ion plasma frequency give a density of 5 x 1012 cm-3. Once the neutral gas in the plasma is ionized, the electron cooling by excitation processes and the ion cooling by charge-exchange phenomena disappear; therefore, any electron and ion heating caused by the electron beam should have time to take effect. Pin-hole camera images formed by 50-keV X-rays give evidence of electron heating. Ion heating is limited by wall proximity to 20-keV deuterons in the Burnout IV device and 200-keV deuterons in the larger Burnout V device. Magnetic and electrostatic analysis give evidence for the existence of some deuterons at 20 keV in Burnout IV; similar analysis is in progress on Burnout V. In Burnout V the electron beam traverses the central 300 cm3 of the 10-liter volume between the mirrors of a 40-20-40-kG mirror machine. Injection and multiple reflection of the 45-kW electron beam occur outside the mirrors in a region of 10-5 Torr ambient pressure. The lifetime of the plasma is difficult both to measure and to predict on theoretical grounds. The

  6. Mechanical Design of the Injection Beam Line of Small Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The injection beam line is a key device for beam transport of the small medical cyclotron, giving direct influence to the beam quality of the cyclotron. According to the medical needs of the cyclotron, the overall length of the injection beam line is as short as possible,

  7. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  8. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, B. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chaurize, S. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Garcia, F. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seiya, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sullivan, T. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Triplett, A. K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  9. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    International Nuclear Information System (INIS)

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle of the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse

  10. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle of the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.

  11. Heating of electron plasma in two-stage beam-plasma system

    International Nuclear Information System (INIS)

    The regions of plasma production in two-stage beam-plasma system is separated from that of plasma heating by a density gradient. The temperature of bulk plasma electrons in this system is shown to reach several hundred electron volts under the injection of electron beam with the energy in the units of kiloelectronvolt. The range of optimal plasma electron heating is determined with respect to basic macroscopic parameters of the system (beam energy and current, pressure of neutral gas, length of a plasma column, strength of a magnetic field)

  12. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  13. Injection of intense ion beam into a tokamak

    International Nuclear Information System (INIS)

    We describe an experiment to investigate the direct injection of an intense ion beam into a tokamak by means of the polarization drift. Confinement of 100 keV ions in the UCI tokamak (r = 15 cm, R = 60 cm, B/sub T/ = 6 kG) requires operation with a plasma current of 56 kA corresponding to q (limiter) = 2. Trapped ions are to be detected by a charge-exchange analyzer. The present status of the experiment will be discussed

  14. Knudsen torque on heated micro beams

    International Nuclear Information System (INIS)

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects

  15. Comparison of ELM-Filament Mitigation Between Supersonic Molecular Beam Injection and Pellet Injection on HL-2A

    Science.gov (United States)

    Nie, Lin; Cheng, Jun; Xu, Hongbing; Huang, Yuan; Yan, Longwen; Ding, Xuantong; Xu, Min; Xu, Yuhong; Yao, Lianghua; Feng, Beibin; Zhu, Genliang; Liu, Wandong; Dong, Jiaqi; Yu, Deliang; Zhong, Wulv; Gao, Jinming; Chen, Chengyuan; Yang, Qingwei; Duan, Xuru

    2016-02-01

    On HL-2A, two different injections (supersonic molecular beam injection (SMBI) and pellet injection (PI)) are used to mitigate edge localized mode (ELM)-filament convective transport. The changes of their characteristics are studied in this paper. A high spatiotemporal resolution probe shows there are many similar phenomena, and the filament density amplitude and radial velocity are both suppressed. Our statistical results indicate that: the velocity suppression comes from the decrease of filament density and temperature; the transient particle and heat fluxes drop strongly; and long-range correlation along a magnetic flux surface also decreases, when the electron-ion collisionality increases significantly, which may have a role on the filament parallel current during ELM mitigation. supported by National Natural Science Foundation of China (Nos. 11075046, 10975049, 11375054, 11275060), the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB112008, 2013GB107000, 2013GB104002, 2014GB107000, 2014GB108000), and the China-Korean Joint Research Program (No. 2012DFG02230)

  16. High-beta experiments with neutral-beam injection on PDX

    International Nuclear Information System (INIS)

    Experimental investigations of high-beta plasmas produced in PDX with near-perpendicular neutral-beam injection are reported. Systematic power scans have been performed over a wide range of toroidal fields (νsub(T)q.7 T< Bsub(T)<2.2 T) and plasma currents (200 kA< Isub(p)<500 kA). At high toroidal fields, the change in total stored energy due to beam injection increases linearly with input power and also increases with plasma current. At lower toroidal fields and low injection power levels, the stored energy also increases with power and plasma current. However, at high power and low toroidal fields, a saturation in heating is observed. This result suggests the onset of a νsub(T) limit for circular cross-section tokamaks with near-perpendicular injection. Scaling experiments indicate that this νsub(T) limit increases with rising 1/q. Values of νsub(T)approx.=3% at qsub(PSI)=1.8 have been achieved. At high values of νsub(T)q, short bursts of MHD activity are observed, synchronized with sharply increased fluxes of perpendicular charge-exchange neutrals and rapid decreases in the rate of beam-driven neutron production. When strong bursts occur, there is a significant depletion of the fast-ion population. Estimates of the fast-ion loss indicate that it could explain the observed decrease in heating, although an additional reduction in thermal-plasma confinement cannot be ruled out. Numerical studies using measured pressure profiles predict that the equilibria obtained become unstable to the ideal n=1 internal mode, at about the same value of 0 where the new fluctuations are observed. (author)

  17. Transmission of the Neutral Beam Heating Beams at TJ-II; Transmision del Haz de Neutros de Calentamiento en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Lopez, C.

    2007-09-27

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs.

  18. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    Science.gov (United States)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  19. Conceptual design of the JT-60 neutral beam injection system (interim report)

    International Nuclear Information System (INIS)

    This is an interim report on conceptual design of the JT-60 neutral beam injection system. Requirements for the JT-60 neutral beam injector are injection of a 20 MW neutral hydrogen beam into the plasma in the vicinity of energy 75 keV as long as 10 sec, keeping thermal gas flow rate into the torus vacuum chamber below 15% the neutral beam flux. On the basis of these requirements and recent results of research and development of ion sources and beam line components, system conceptual design is now proceeding. Scale of the JT-60 neutral beam injection system is discussed, indicating also future problems. (auth.)

  20. OTR Based Monitor of Injection Beam for Top-Up Operation of the SPring-8

    CERN Document Server

    Takano, S; Masuda, T; Yamashita, A

    2005-01-01

    We have developed an OTR based monitor of injection beam at the SPring-8. The monitor has been installed near the injection point of the storage ring downstream of the beam transport line from the booster synchrotron. A screen made of an aluminum coated polyimide film is used as a nondestructive OTR radiator. A CCD camera with an electric shutter is used to observe the OTR image of the injection beam. The electric shutter is synchronized with the external injection trigger signals. At every injection, the image signal from the CCD camera is captured and analyzed by a personal computer, and the position, size and intensity of the injection beam are recorded by the common database of the SPring-8 control system. The OTR injection beam monitor provides real time and continuous diagnostic tool useful for the top-up operation of the SPring-8 storage ring.

  1. Applications of heat pipes for high thermal load beam lines

    International Nuclear Information System (INIS)

    The high flux beam produced by insertion devices often requires special heat removal techniques. For the optical elements used in such high thermal load beam lines the required precision demands a highly accurate design. Heat pipe cooling of critical elements of the x-1 beam line at the National Synchrotron Light Source is described. This method reduces vibrations caused by water cooling systems and simplifies the design. In some of these designs, deposited heat must be transferred through unbonded contact interfaces. A pinhole assembly and a beam position monitor designed for the x-1 beam line both transfer heat through such interfaces in an ultrahigh vacuum environment. The fundamental design objective is that of removing the heat with minimal interface thermal resistance. We present our test method and results for measuring the thermal resistance across metallic interfaces as a function of contact pressure. The design of some devices which utilize both heat pipes and thermal contact interfaces will also be described. (orig.)

  2. A New Approach for Heating the Plastics Injection Units

    Directory of Open Access Journals (Sweden)

    Virgilius Vasilache

    2010-06-01

    Full Text Available The plastics injection molding machines are one of the most eager consumers of energy. The plasticizing unit itself is the most important energetic consumer among the subassemblies of these machines; that is why this subassembly is the target of most actions of consumption decreasing on such machines. Our concerns on this direction got the shape of developing a new heating system for the plasticizing unit, which system was already patented [1].

  3. Prompt Loss of Energetic Ions during Early Neutral Beam Injection in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Early neutral-beam injection is used in the National Spherical Torus Experiment (NSTX) to heat the electrons and slow current penetration which keeps q(0) elevated to avoid deleterious MHD activity and at the same time reduces Ohmic flux consumption, all of which aids long-pulse operation. However, the low plasma current (Ip ∼ 0.5 MA) and electron density (ne ∼ 1 x 1013 cm-3) attending early injection lead to elevated orbit and shine through losses. The inherent orbit losses are aggravated by large excursions in the outer gap width during current ramp-up. An investigation of this behavior using various energetic particle diagnostics on NSTX and TRANSP code analysis is presented

  4. Experiments with electron beam injection in ionosphere plasma and rare gas

    International Nuclear Information System (INIS)

    The active experiment 'Electron' is intended for the electron beam injection from a meteorological rocket in the ionosphere plasma. The beam is injected in the ionosphere plasma at a current of 0.5 A and an energy of 6.5 - 8 keV. The energy spectra are given for the plasma electrons and ions. The radio-wave spectrum is measured in a RF frequency range of 100-500 MHz. The radio wave traversing through the electron beam injection region is discussed. The laboratory experiments are performed with the electron beam injection in a rare gas to model the active outer-space experiments

  5. Calorimeter design-aspects for neutral beam injection on W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Holtum, D., E-mail: holtum@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Froeschle, M.; Heinemann, B. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Liebe, T. [Fa. Xenos GmbH, Jugendstr. 2, D-81667 Muenchen (Germany); Nocentini, R.; Riedl, R.; Rong, P. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany); Schubert, W. [Fa. Xenos GmbH, Jugendstr. 2, D-81667 Muenchen (Germany); Staebler, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85740 Garching (Germany)

    2011-10-15

    Neutral Beam Injection (NBI) is one of the heating systems for Wendelstein 7-X (W7-X). The beam power of the NBI is measured calorimetrically. Using the knowledge gained from ASDEX-Upgrade operation, the complete calorimeter was re-designed. The design-aspects and the necessary improvements for operation on W7-X are described in this paper. The main aspects improved concern: (i) the adapted slope of the winding drum at the lift, (ii) the adjustable acceleration/deceleration ramp and integrated position sensors, (iii) the improvements of panels in the body, (iv) the accessibility for mounting panels, (v) the water-distribution, and (vi) the centering of the body on the support to fix and reproduce the measuring position. The manufacturing is in progress, installation will start in 2011 and the commissioning is scheduled for the end of 2014.

  6. Calorimeter design-aspects for neutral beam injection on W7-X

    International Nuclear Information System (INIS)

    Neutral Beam Injection (NBI) is one of the heating systems for Wendelstein 7-X (W7-X). The beam power of the NBI is measured calorimetrically. Using the knowledge gained from ASDEX-Upgrade operation, the complete calorimeter was re-designed. The design-aspects and the necessary improvements for operation on W7-X are described in this paper. The main aspects improved concern: (i) the adapted slope of the winding drum at the lift, (ii) the adjustable acceleration/deceleration ramp and integrated position sensors, (iii) the improvements of panels in the body, (iv) the accessibility for mounting panels, (v) the water-distribution, and (vi) the centering of the body on the support to fix and reproduce the measuring position. The manufacturing is in progress, installation will start in 2011 and the commissioning is scheduled for the end of 2014.

  7. Reduction in TFTR [Tokamak Fusion Test Reactor] fusion reaction rate by unbalanced beam injection and rotation

    International Nuclear Information System (INIS)

    In TFTR plasmas at low to moderate density, the highest fusion energy gain Q/sub dd/ (D-D fusion power/injected power P/sub b/) is obtained with nearly balanced co- and counter-injection of neutral beams. For a given beam power, significantly unbalanced injection reduces Q/sub dd/ because the accompanying plasma rotation reduces the beam-target fusion reactivity, the fast-ion slowing-down time, and the beam-beam reaction rate, while and decrease from their maximum values. 9 refs., 3 figs., 1 tab

  8. Development of heat conduction type cesium injection device for negative-ion source for JT-60U

    International Nuclear Information System (INIS)

    In the negative-ion source for JT-60U, cesium (Cs) vapor is introduced into an arc chamber to enhance negative-ion production rate. Conventional Cs injection devices were often broken by high voltage noises occurred during the ion beam acceleration. To make higher noise-resistant, the development of a newly heat conduction type Cs injection device and improvement of heater power supply to prevent heater break-down, were required. To repair easily the Cs injection device after the heater was break-down, a new structure of an inlet tube was proposed to be settled no heater located in the vacuum area and to be heated up a given temperature through thermal conduction from the heated part of the tube located the atmospheric pressure area. Thermal characteristics, such as temperature rise time, heat losses and temperature distributions of the tube were calculated for some types of the tube. Based on these calculations, a new device of the heat conduction type inlet tube was designed and manufactured. The verification tests of the device showed that the experimental results were agreed well with the calculated ones. After the test, the new Cs inlet device was set onto the negative-ion source for JT-60U. The heater power supply was also modified to be cut off during beam acceleration which makes high voltage noises. As a result of these improvements, the heating system for the Cs injection devices is now working well without break-down of heaters. (author)

  9. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed...... based on a test geometry integrating different aspect ratios of small structures. Acrylonitrile butadiene styrene (ABS) was used as material, and different mold temperatures were tested. The replicated test objects were measured by means of an optical coordinate measuring machine (CMM). On the basis of...

  10. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  11. Turn-by-Turn Analysis of Proton and Gold Beams at Injection in the AGS Booster

    International Nuclear Information System (INIS)

    In this paper the authors describe the latest version of a program they have used for several years to acquire and analyze turn-by-turn data from pick-up electrodes in the AGS Booster during injection. The program determines several parameters of the injected beam including the tunes and the position and angle of the incoming beam. Examples are given for both proton and gold injection

  12. Transient beam losses in the LHC injection kickers from micron scale dust particles

    CERN Document Server

    Goddard, B; Baer, T; Barnes, M J; Cerutti, F; Ferrari, A; Garrel, N; Gerardin, A; Guinchard, M; Lechner, A; Masi, A; Mertens, V; Morón Ballester, R; Redaelli, S; Uythoven, J; Vlachoudis, V; Zimmermann, F

    2012-01-01

    Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.

  13. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    Science.gov (United States)

    Douglas, David R.

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  14. High performance operation of negative-ion-based neutral beam injection system for the Large Helical Device

    International Nuclear Information System (INIS)

    It is a touchstone for the success of ITER and future fusion reactor whether the present high performance negative-ion-based NBI (N-NBI) heating systems work properly. The LHD and JT-60U are only two facilities where N-NBI systems are working for high power plasma heating/current drive in the world. Because handling of negative hydrogen/deuterium ions was amateur technology, it has taken a long time to improve its skill. In LHD, we succeeded in improving the performance of one of three beam lines dramatically in 2003 by adopting a multi-slot grounded grid for the accelerator of ion source. The effort on improving the performance was also done in other beam lines with conventional ion sources in parallel. The guidelines of improving are optimization of magnetic multi-cusp configuration for efficient negative ion production, and increasing the transparency of the grounded grid for reduction of heat load on it. As a result the available beam power has been increased, that is, successive injection power level more than 10 MW became possible throughout four-month long experimental campaign, although the maximum injection power has been almost the same. The averaged negative ion beam current density at the exit of ion source, which was evaluated from the port-through injected power, was achieved up to 350 A/m2 which is larger than the required value of ITER NBI in hydrogen beam operation. Pulse length at high beam power level has also been extended owing to the reduction of heat load on the grounded grid. These results (increase in available power and pulse length) have contributed to expand the operation region of LHD. By continuous R and D, we also have found the way of solving an associated problem of multi-slot grounded grid system, that is, mismatched conditions of optimum beam optics in vertical and horizontal directions. According to this result, better beam divergence can be realized, and the increase in the total injection power is expected in the next

  15. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  16. Beam shaping element for compact fiber injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Weichman, L.S.; Dickey, F.M.; Shagam, R.N.

    2000-01-05

    Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

  17. Planar Heating Element Adjusted by Electron Beam Micromachining

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor; Dupák, Jan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 82-84. ISSN 0861-4717 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam machining * heating element Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Monte Carlo simulations of neutral beam injection into the TJ-II helical-axis stellarator

    International Nuclear Information System (INIS)

    The neutral beam injection (NBI) efficiency for the TJ-II helical-axis stellarator was studied by Monte Carlo simulations for the case of tangential injection. For benchmark purposes, two different NBI codes are applied which take into account the peculiar geometries of the NBI, vacuum vessel, and helical-indented magnetic surfaces in TJ-II. The results obtained for various plasma parameters are discussed, emphasis being placed on comparing the co- and counter-heating efficiencies and considering loss mechanisms. The results from the two codes are in good agreement if differences in the magnetic field configurations used are borne in mind. The Monte Carlo code, which treats the guiding center part in magnetic coordinates, was used to investigate the influence of an assumed radial electric field on the heating efficiency. An interesting type of resonance which enhances fast orbit losses has been found for ωpol/ωtor ∼ 2 (with ωpol and ωtor being the poloidal and toroidal frequencies of the fast ions, respectively). This critical ratio can be reached during slowing-down owing to the vector E x vector B-drift. (orig.)

  19. High voltage beam power source for high frequency heating

    International Nuclear Information System (INIS)

    Recently, the importance of the plasma heating by high frequency electric power has increased in the research and development of nuclear fusion. There are three methods in the plasma heating by high frequency electric power, that is, electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frequency heating. In all cases, the vacuum tubes requiring high voltage beam power sources are used as the high frequency electric power generator, and the typical vacuum tubes are a gyrotron in ECH, a Klystron in LHRF and a quadrupole tube in ICRF. The gyrotron is a special millimeter wave vibrating tube, while the other two are amplifying tubes, accordingly, severe specification is imposed on the stability of beam voltage and the protection function against load short circuit of the gyrotron. The typical specifications of beam power sources are shown. The vibrating characteristics of a gyrotron are dependent largely on beam voltage and anode voltage. The beam power source for a gyrotron is the type using commercial power or the output of a flywheel generator on-line, or the type making the constant voltage control of the energy accumulated in a condenser bank and supplying it to a gyrotron. The control of beam voltage and anode voltage in the beam power source for a gyrotron and the protection of a gyrotron are discussed. (Kako, I.)

  20. The present state of research into plasma heating and injection methods

    International Nuclear Information System (INIS)

    The advantages and disadvantages recognized by the Advisory Group on Heating and injection for twelve plasma heating and injection methods currently under investigation in Europe are related. The heating and injection requirements of four reference reactor designs are previously defined. The problems which arise when one attempts to extrapolate existing work towards the reactor goal are emphasized. Two refuelling methods not directly linked with the heating problem are discussed. The experiments in operation or under construction in Europe in which each method is investigated are listed. Sixteen working papers which served as a basis for the Advisory Group discussion and which cover all the heating and injection methods examined are included

  1. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano;

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order to...

  2. Specific features of measuring the isotopic composition of hydrogen ions in ITER plasma by using neutral particle diagnostics under neutral beam injection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, V. I. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Goncharov, P. R., E-mail: p.goncharov@spbstu.ru [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Mironov, M. I.; Nesenevich, V. G., E-mail: vnesenevich@npd.ioffe.ru; Petrov, M. P.; Petrov, S. Ya. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Sergeev, V. Yu. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)

    2015-12-15

    Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D{sup 0}) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energy range. The injection of a diagnostic hydrogen (H{sup 0}) beam does not affect measurements owing to the high mass resolution of the analyzers.

  3. Applications of heat pipes for high thermal load beam lines

    International Nuclear Information System (INIS)

    The high flux beam produced by insertion devices often requires special heat removal techniques. For the optical elements used in such high thermal load beam lines, the required precision demands a highly accurate design. Heat pipe cooling of critical elements of the X-1 beam line at the National Synchrotron Light Source is described. This method reduces vibrations caused by water cooling systems and simplifies the design. In some of these designs, deposited heat must be transferred through unbonded contact interfaces. A pinhole assembly and a beam position monitor designed for the X-1 beam line both transfer heat through such interfaces in an ultrahigh vacuum environment. The fundamental design objective is that of removing the heat with minimal interface thermal resistance. We present our test method and results for measuring the thermal resistance across metallic interfaces as a function of contact pressure. The design of some devices which utilize both heat pipes and thermal contact interfaces will also be described. 12 refs., 8 figs

  4. Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating

    CERN Document Server

    Ho, D

    2000-01-01

    Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.

  5. Review of neutral beam heating on JET for physics experiments and the production of high fusion performance plasmas

    International Nuclear Information System (INIS)

    The JET neutral beam injection system has proved to be both effective and reliable as a plasma heating device. The ion heating and plasma fuelling characteristics of the system are ideally suited to the production of high fusion performance plasmas while the flexibility in the choice of beam species (H, D, T, 3He or 4He) and the ability to inject into almost any JET plasma configuration allows a wide variety of related physics experiments to be carried out. The capability to inject (for the first time) tritium beams was essential to the successful execution of the first tritium experiments in which 1.7MW of power from D-T fusion reactions was generated. ((orig.))

  6. Results and analysis of the TMX electron-beam injection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, P.; Grubb, D.P.

    1980-08-01

    Electron beams (e-beams) were injected into the Tandem Mirror Experiment (TMX) plasma in order to investigate the effect on the ion cyclotron fluctuations of the plasma. The power level of the e-beams was comparable to that of the injected neutral beams. It was found that injection of the e-beams produced no significant effect on the ion cyclotron fluctuations, the measured plasma parameters, or the particle and power flow of the plasma. The increase in bulk electron temperature and the production of mirror-confined electrons found in previous experiments in which e-beams were injected into a mirror-confined plasma were not observed in this experiment. Analysis of the regions and frequencies of wave creation and absorption within the plasma shows that the plasma density and magnetic field profiles through the plasma strongly affect the resonances encountered by the waves. The steep axial density profiles produced by neutral-beam injection in the TMX experiment are not conducive to efficient coupling of the e-beam energy to the plasma.

  7. Laser ion source: A direct plasma injection scheme for two-beam type interdigital-H radio frequency quadrupole linac

    International Nuclear Information System (INIS)

    We developed a laser ion source using a direct plasma injection scheme (DPIS) as an injection system for a two-beam type radio frequency quadrupole (RFQ) linac with an interdigital-H (IH) type cavity. The laser ion source in the DPIS is directly connected to the RFQ cavity without the low energy beam transport system. We achieved a high current C2+ beam above 60 mA per beam channel from the ion source. The beam will be injected to the two-beam type IH-RFQ linac, and the linac will generate a beam current of approximately 44 mA per beam channel.

  8. Novel Approach for Heat Transfer Characterization in EOR Steam Injection Wells

    OpenAIRE

    Mohd Amin Shoushtari; Sonny Irawan; A.P. Hussain Al Kayiem

    2014-01-01

    Steam injection into hydrocarbon reservoirs involves significant heat exchange between the wellbore fluid and its surroundings. During injection, the hot fluid loses heat to the cold surroundings, continuously as it moves down the borehole. The heat transfer process impacts well-integrity and, in turn, the ability of the well to perform its required function effectively and efficiently with regard to safety and environmental factors. During the design phase of a steam injection well, it is ne...

  9. Analysis of fusion neutron production in EAST with neutral beam injection

    International Nuclear Information System (INIS)

    Background: The neutron emission rate increases rapidly with high-power deuterium beam injected into deuterium plasmas. It is necessary to calculate the neutron production in Experimental Advanced Superconducting Tokamak (EAST) for the radiation safety. Purpose: We aim to provide reference for developing new detection systems of fusion neutron and neutron radiation shielding design. Methods: Neutron emission rate was calculated using the typical particle model and analysis method. The relationships were analyzed among the fusion neutron production and the ion density, ion temperature, neutral beam energy and neutral beam power respectively. Results: The results demonstrated that the total fusion neutron production was 1016 n·s-1 with 80-keV, 4-MW neutral beam injection. Conclusion: Neutron intensity in EAST will increase by a factor of ten when appropriate neutral beam injection is applied. It can be referred for further performance improvement and radiation protection of EAST. (authors)

  10. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    Science.gov (United States)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.

    2015-10-01

    Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  11. Preliminary test experiment for electron beam injection to JSR

    International Nuclear Information System (INIS)

    A preliminary test experiment has been carried out to investigate the property of electron beam from the JAERI linac which will be used as an injector for the JSR(JAERI Storage Ring). The electron beam was obtained within the energy resolution of 1.55 % and the peak current of 38 mA at 150 MeV. (author)

  12. Simulations of LEIR Injection Line Beam Position Monitors

    CERN Document Server

    Maltseva, Mariya

    2016-01-01

    In this paper sensitivity characteristics of a beam position monitor are described. Characteristics are obtained during the simulations in CST Studio, the results are compared with the calculated values. The results for a low-beta beam and with a wire are compared.

  13. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jaehyeok; Jeong, Min Woo; Kim, Yongchan [Department of Mechanical Engineering, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-713 (Korea)

    2010-06-15

    A heat pump has received much attention as substitute for the conventional boiler or heating coil because of its high efficiency. For the wide application of the heat pump, the most important design factor is the performance degradation upon its installation in tropical and cold regions. In this study, the effects of flash tank vapor injection on the heating performance of a two-stage heat pump with an inverter-driven twin rotary compressor were measured and analyzed for compressor frequency ranging from 50 to 100 Hz at ambient temperatures of -15, -5, and 5 C. The COP and heating capacity of the injection cycle were enhanced by 10% and 25%, respectively, at the ambient temperature of -15 C. The total mass flow rate of the injection cycle was 30-38% higher than that of the non-injection cycle. (author)

  14. Bunch-to-bucket injection of linac beam into the Brookhaven AGS

    International Nuclear Information System (INIS)

    A new fast beam chopper has been used to study injection and capture in the AGS. The chopper is a fast beam switch with 10 ns rise and fall times that can be programmed on a bunch-by-bunch basis and is synchronized to the net accelerating voltage of the synchrotron, thus allowing bunch-to-bucket injection of the 200 MeV H- linac beam. The studies so far have concentrated on simple injection scenarios, at reduced intensity, where longitudinal effects are well separated from transverse. The evolution of the pre-bunched beam during the transition from injection to acceleration has been examined. Results have shown the importance of the detailed linac beam energy distribution. The ability to control the longitudinal emittance of the beam with the fast chopper has been used in other machine studies. This report includes a description of a measurement of the longitudinal coupling impedance of the AGS by the beam transfer function technique which utilized the control of longitudinal emittance provided by bunch-to-bucket injection. Plans for improvements to the chopper equipment are also describe. 6 refs., 4 figs

  15. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    International Nuclear Information System (INIS)

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP

  16. Numerical simulation of high-current ion linear induction accelerator with additional electron beam injection

    International Nuclear Information System (INIS)

    The 2d3v particle-in-cell simulations of the transportation and acceleration of a high-current tubular ion beam through six magnetoinsulated accelerating gaps are presented. Charge and current compensations are carried out by an accompanying electron beam, and also by additionally injected electron beams. The accelerating electric field is enclosed to the first, third and fifth cusps. Its magnitudes are those, that initial kinetic energy of compensating electron beams is little bit higher than a potential barrier of an accelerating field in each cusp, that allows an electron beam to overcome accelerating potential in one cusp. The second, fourth and sixth cusps in which the accelerating field is absent, are used for injection of additional compensating electron beams which replace the electron beam which has 'worked-out' on the previous accelerating gap. The simulations involve solving a complete set of Maxwell's equations with charge-conserving scheme for calculating the current density on a mesh, and relativistic motion equations for charged particles. The possibility of transporting and acceleration of a high-current tubular ion beam in six cusps is shown. It is shown, that distribution function of a high-current ion beam on an output of the accelerator essentially improves due to optimization of parameters of additionally injected electron beams.

  17. Six-dimensional beam matching for axial injection into a cyclotron

    International Nuclear Information System (INIS)

    The general optical structure of a beam line for axial injection into a cyclotron is proposed. It provides the beam matching in the six-dimensional phase space at the entrance of the cyclotron. As an illustration, the hyperboloid and the spiral inflectors are considered

  18. Anomalous slowing of a perpendicularly-injected ion beam in both quasilinear and trapping regimes

    International Nuclear Information System (INIS)

    The anomalous slowing of an ion beam injected perpendicularly to the confining magnetic field of a low β plasma is experimentally verified in the nonlinear stages of the excited lower-hybrid instability. Furthermore, a transition of the main nonlinear mechanism from the quasilinear to the particle trapping regime is demonstrated by varying beam parameters

  19. Microorganisms inactivation by electron beam irradiation and microwave heating

    International Nuclear Information System (INIS)

    The comparative results obtained by applying separate beam irradiation, separate microwave heating and combined electron beam irradiation and microwave heating (successive and simultaneous) to reduction of viable cells of Staphylococcus intermedius and Pseudomaonas aeruginosa are presented. Simultaneous irradiation results in a more dramatic reduction of microorganisms than by either microwave or electron beam irradiation alone. The tests demonstrated that irradiation time and the upper limit of required absorbed dose which ensures a complete sterilization effect of the studied microorganisms could be reduced of about six times by additional use of microwave energy to electron beam irradiation. Experiments were carried out using an electron linear accelerator ALIN-10 of 6 MeV and 180 W maximum output power and 2.45 GHz microwave source of controlled power up to 0.85 kW. (authors)

  20. Development of beam-plasma instability during the injection a low-energy electron beam into the ionospheric plasma

    International Nuclear Information System (INIS)

    Results are presented from an active experiment on the injection of charged particle beams into the ionospheric plasma. The experiment was carried out in 1992 onboard the Intercosmos-25 satellite and the Magion-3 daughter satellite (APEX). A specific feature of this experiment was that both the ion and electron beams were injected upward, in the same direction along the magnetic field. The most interesting results are the excitation of HF and VLF-LF waves and the generation of fast charged particle flows, which were recorded on both satellites

  1. Charge exchange momentum transfer due to ion beam injection in partially ionized plasmas

    International Nuclear Information System (INIS)

    Time responses of a helium plasma to helium gas puffing without and with helium beam injection in a linear plasma device are experimentally investigated. Increase in the neutral density due to gas puffing is suppressed by ion beam injection. The experimental results show that a momentum transport from the ion beam to the puffed neutral particles occurs due to the charge exchange interaction, suggesting that charge exchange momentum transport is one of the processes responsible for the spatial redistribution of neutral atoms in partially ionized plasmas. (author)

  2. Implementation of a quasi-realtime display of DIII-D neutral beam heating waveforms

    International Nuclear Information System (INIS)

    The DIII-D neutral beam system employs eight 80 keV ion sources mounted on four beamlines to provide plasma heating to the DIII-D tokamak. The neutral beam system is capable of injecting over 20 MW of deuterium power with flexibility in terms of timing and modulation of the individual neutral beams. To maintain DIII-D's efficient tokamak shot cycle and make informed control decisions, it is important to be able to determine which beams fired, and exactly when, by the time the tokamak shot is over. Previously this information was available in centralized form only after a several minute wait. A cost-effective alternative to the traditional eight-channel storage oscilloscope has been implemented using off the shelf PC hardware and software. The system provides a real time display of injected neutral beam accelerator voltages and tokamak plasma current, as well an a summation waveform indicative of the total injected power as a function of time. The hardware consists of a Macintosh Centris 650 PC with a Motorola 68040 microprocessor. Data acquisition is accomplished using a National Instrument's 16-channel analog to digital conversion board for the Macintosh. The color displays and functionality were developed using National Instruments' LabView environment. Because the price of PCs has been decreasing rapidly and their capabilities increasing, this system is far less expensive than an eight-channel storage oscilloscope. As a flexible combination of PC and software, the system also provides much more capability than a dedicated oscilloscope, acting as the neutral beam coordinator's logbook, recording comments and availability statistics. Data such as shot number and neutral beam parameters are obtained over the local network from other computers and added to the display. Waveforms are easily archived to disk for future recall. Details of the implementation will be discussed along with samples of the displays and a description of the system's function and capabilities

  3. Implementation of a quasi-realtime display of DIII-D neutral beam heating waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.C.

    1993-10-01

    The DIII-D neutral beam system employs eight 80 keV ion sources mounted on four beamlines to provide plasma heating to the DIII-D tokamak. The neutral beam system is capable of injecting over 20 MW of deuterium power with flexibility in terms of timing and modulation of the individual neutral beams. To maintain DIII-D`s efficient tokamak shot cycle and make informed control decisions, it is important to be able to determine which beams fired, and exactly when, by the time the tokamak shot is over. Previously this information was available in centralized form only after a several minute wait. A cost-effective alternative to the traditional eight-channel storage oscilloscope has been implemented using off the shelf PC hardware and software. The system provides a real time display of injected neutral beam accelerator voltages and tokamak plasma current, as well an a summation waveform indicative of the total injected power as a function of time. The hardware consists of a Macintosh Centris 650 PC with a Motorola 68040 microprocessor. Data acquisition is accomplished using a National Instrument`s 16-channel analog to digital conversion board for the Macintosh. The color displays and functionality were developed using National Instruments` LabView environment. Because the price of PCs has been decreasing rapidly and their capabilities increasing, this system is far less expensive than an eight-channel storage oscilloscope. As a flexible combination of PC and software, the system also provides much more capability than a dedicated oscilloscope, acting as the neutral beam coordinator`s logbook, recording comments and availability statistics. Data such as shot number and neutral beam parameters are obtained over the local network from other computers and added to the display. Waveforms are easily archived to disk for future recall. Details of the implementation will be discussed along with samples of the displays and a description of the system`s function and capabilities.

  4. Conceptual design for an electron-beam heated hypersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  5. Study of pulsed sextupole magnet system for beam injection at UVSOR

    International Nuclear Information System (INIS)

    In order to introduce Pulsed Sextupole Magnet (PSM) injection at UVSOR, we performed simulation of the injection beam, and design of PSM. This PSM was designed to excite a stronger magnetic field by making a gap small. And the simulation was performed using designed PSM. As a result, it revealed that beam injection was sufficiently possible using this PSM at UVSOR, but injected beam must feel magnetic field for several turns by the PSM because of short revolution period of the storage ring. We have measured a magnetic field of this PSM which was completed in this Spring and evaluated the performance of it. A magnetic field remains in a center in PSM because of manufacturing error. So it is necessary that the magnetic field of center is rectified. We considered the method of rectifying the magnetic field of center using a thin ferrite, and confirmed effect of this method. (author)

  6. Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions

    International Nuclear Information System (INIS)

    In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition

  7. Amplitude dependent orbit shift and its effect on the beam injection

    International Nuclear Information System (INIS)

    The betatron oscillation amplitude dependent orbit shift was measured at the electron storage ring, NewSUBARU. The result roughly agreed with the theoretical calculation. The effect of this shift on the beam injection is discussed using parameters of NewSUBARU and SPring-8 SR. Generally there exists a better side for the injection, the inner side or the outer side of the ring, which depends on the sign of the shift at the injection septum. In case of the NewSUBARU, the beam is injected from the outer side and the shift is positive. The effective thickness of the septum is reduced by the large oscillation amplitude of the injected beam. However, this effect becomes almost negligible with the running parameter at NewSUBARU, because of the deformation of the phase space contour. On the other hand at SPring-8, the beam is injected from the inner side of the ring while the orbit shift is negative. The injection from the inner side is better. (author)

  8. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have, in...

  9. HEAT-RESISTANT COMPOSITES CURED BY ELECTRON BEAM

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Bao; Yang Li; Xiang-bao Chen; Feng-mei Li

    2001-01-01

    Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250°C.

  10. Electron beam welding of heat exchangers

    International Nuclear Information System (INIS)

    For a long time neither qualitative, nor quantitative criteria have been available that would have allowed choosing the most suitable welding techniques from the three stated below: 1) electron gun rotates relative to stationary tube; 2) electron beam is magnetically deviated relative to stationary tube; 3) permanent deviation magnet is rotated mechanically relative to stationary tube and gun. To our experience, the 2nd technique is most promising when welding 16x1.5 diameter stainless tubes. The e-b welds are vulnerable to root defects. With welding done in a movable manner, the root defect area will be found to locate in the tube plate body and, hence, the weldment, as a whole, will not be impaired

  11. The injection beam lines of the cryogenic storage ring (CSR)

    International Nuclear Information System (INIS)

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg an electrostatic cryogenic storage ring (CSR) is under construction. The ions for the CSR will be provided by two ion sources with up to 60kV and 300 kV potential, respectively. The layout of the beamlines connecting the ion sources with the CSR is presented. They will be merged using an electrostatic deflector with an opening in the outer electrode, thereby allowing quick switching between the two ion sources. In order to determine the influence of the opening on the beam optics the deflector has been modeled and a modified transport matrix has been derived. An additional beamline element is a detachment region for the neutralization of a negative ion beam by photodetachment. The potential of the detachment region defines the precise energy of the neutral particles. Calculations of the ion beam optics using the MAD X code are described.

  12. Confinement scaling studies of radiofrequency and neutral beam heated currentless heliotron E plasmas

    International Nuclear Information System (INIS)

    Parametric scaling studies of radiofrequency and neutral beam heated currentless Heliotron E plasmas have been performed. The parametric local electron transport analyses show that the electron energy transport in electron cyclotron heating (ECH) plasmas is nearly of the same magnitude as the neoclassically predicted transport inside the 2/3 radius, while neutral beam injection (NBI) plasmas and plasmas in the ion cyclotron range of frequencies (ICRF) are dominated by anomalous electron transport in the entire region. Scaling studies on the global energy confinement time reveal that ECH, NBI and ICRF plasmas obey approximately identical scalings that are characterized by continuous power degradation and favourable positive density dependence. The global energy confinement time is thought to be affected by the anomalous transport in the peripheral plasma regions in the same way for ECH, NBI and ICRF plasmas although the core plasma properties - such as local electron transport - seem to be different for the individual plasmas. (author). 39 refs, 11 figs

  13. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    International Nuclear Information System (INIS)

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point

  14. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    Science.gov (United States)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  15. MHD Instabilities and Their Effects on Plasma Confinement in Large Helical Device Plasmas with Intense Neutral Beam Injection

    Institute of Scientific and Technical Information of China (English)

    K. Toi; K. Narihara; K. Tanaka; T. Tokuzawa; H. Yamada; Q. Yang; LHD experimental group; S. Ohdachi; S. Yamamoto; S. Sakakibara; K. Y. Watanabe; N. Nakajima; X. Ding; J. Li; S. Morita

    2004-01-01

    MHD stability of the Large Helical Device (LHD) plasmas produced with intense neutral beam injection is experimentally studied. When the steep pressure gradient near the edge is produced through L-H transition or linear density ramp experiment, interchange-like MHD modes whose rational surface is located very close to the last closed flux surface are strongly excited in a certain discharge condition and affect the plasma transport appreciably. In NBI-heated energetic ion loss, but also trigger the formation of internal and edge transport barriers.

  16. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    International Nuclear Information System (INIS)

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port

  17. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  18. Temperature Controlled Cathode Heating in Electron Beam Welding Machine

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav; Dupák, Jan

    2001-01-01

    Roč. 62, 2-3 (2001), s. 165-169. ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam welding machine * cathode heating * temperature control Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.541, year: 2001

  19. Computational fluid dynamics analysis of heat transfer elements for SST-1 neutral beam line

    International Nuclear Information System (INIS)

    A 5 MW Neutral Beam Injector (NBI) is designed and commissioned to deliver a heating power of 1.7 MW to the SST-1 tokomak. To sustain the high heat flux in these injection experiments, heat transfer elements (IPR-HTE) were successfully developed and fabricated. These HTEs are actively cooled elements which rely on internal fins and boiling heat transfer to maximise the heat transfer capability. In this work the performance of HTE is analysed using analytical models and a commercially available Computational Fluid Dynamics (CFD) software. Validation of these CFD models are accomplished by comparing these with the available experimental results obtained on similar neutral beam systems. For an initial assessment on performance of HTE, a 2-D thermal analysis using transient thermal module of ANSYS software was performed in which the heat transfer coefficient (h) was calculated for the single phase flow for establishing the procedure and preliminary study. For improving the accuracy in these results, a 3-D single phase flow CFD analysis using CFX module of ANSYS software was carried out for detailed study flow characteristics. These results were then compared with the published experimental results of hypervapotron of JET neutral beams which has similar geometry of IPR-HTE. The computational results were found to be in good agreement with the experimental result for heat flux values up to 5 MW/m2 beyond which they deviated from experimental results (32% of deviation) indicating the onset of two phase flow. Hence, a two phase flow analysis was further attempted with Eulerian approach and RPI boiling model in CFX module of ANSYS. With the inclusion of the two phase models and user defined functions, the results agreed well with the experimental results (<15 % deviation). This analysis significantly improved the understanding of the flow characteristics such as velocity streamlines, eddies formulation, temperature distribution and their effect on performance of IPR-HTE at

  20. Neutral beam heating and current drive system and its role in ITER-FEAT operation scenarios

    International Nuclear Information System (INIS)

    The NB H and CD system, providing 33 MW in deuterium beams at 1 MeV from two injectors, in addition to 40 MW RF power, contributes to heating a plasma to sub-ignition through the L-H mode transition followed by finite-Q driven-burn (Q≥10), and achievement of a hybrid operation with an extended-duration (∼1000 s) or steady-state operation with Q≤5. To achieve such operations, the NB provides non-inductive current drive by injecting the beams tangentially into the plasma with the capability of on- and off-axis current drive. The present engineering design is under the constraints of the beam envelope, vacuum confinement, neutron shielding, tolerances, and clearances required with the toroidal field coils. The on- and off-axis current drive is to be achieved by tilting the beam axis vertically. Each beam axis of the NB injectors can be tilted independently, providing flexibility in the control of heating and the driven current profile. (author)

  1. Beam Heating of Samples: Modeling and Verification. Part 2

    Science.gov (United States)

    Kazmierczak, Michael; Gopalakrishnan, Pradeep; Kumar, Raghav; Banerjee Rupak; Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark

    2006-01-01

    Energy absorbed from the X-ray beam by the sample requires cooling by forced convection (i.e. cryostream) to minimize temperature increase and the damage caused to the sample by the X-ray heating. In this presentation we will first review the current theoretical models and recent studies in the literature, which predict the sample temperature rise for a given set of beam parameters. It should be noted that a common weakness of these previous studies is that none of them provide actual experimental confirmation. This situation is now remedied in our investigation where the problem of x-ray sample heating is taken up once more. We have theoretically investigated, and at the same time, in addition to the numerical computations, performed experiments to validate the predictions. We have modeled, analyzed and experimentally tested the temperature rise of a 1 mm diameter glass sphere (sample surrogate) exposed to an intense synchrotron X-ray beam, while it is being cooled in a uniform flow of nitrogen gas. The heat transfer, including external convection and internal heat conduction was theoretically modeled using CFD to predict the temperature variation in the sphere during cooling and while it was subjected to an undulator (ID sector 19) X-ray beam at the APS. The surface temperature of the sphere during the X-ray beam heating was measured using the infrared camera measurement technique described in a previous talk. The temperatures from the numerical predictions and experimental measurements are compared and discussed. Additional results are reported for the two different sphere sizes and for two different supporting pin orientations.

  2. Impurity transport during neutral beam injection in the ISX-B tokamak

    International Nuclear Information System (INIS)

    In ohmically heated ISX-B discharges, both the intrinsic iron impurity ions and small amounts of argon introduced as a test gas accumulate at the center of the plasma. But during certain beam-heated discharges, it appears that this accumulation does not take place. These results may reflect the conclusion of Stacey and Sigmar that momentum transferred from the beams to the plasma can inhibit inward impurity transport

  3. Modeling of Synergy Between 4th and 6th Harmonic Absorptions of Fast Waves on Injected Beams in DIII-D Tokamak

    International Nuclear Information System (INIS)

    In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6th harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4th harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4th harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6th harmonic FW on beam ion tails to produce synergy.

  4. Enhancement of critical heat flux in tubes using staged tangential flow injection

    Science.gov (United States)

    Dhir, V. K.

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  5. Injection locking of a semiconductor laser to a multi-frequency reference beam

    CERN Document Server

    Yang, T; Giudici, Massimo; Wilkowski, David

    2013-01-01

    Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi-frequency seeding beam when slave laser provides sufficient frequency filtering. One relevant parameter turns out to be the frequency detuning between the free running slave laser and each injected frequency component. Stable selective locking to a set of three components separated of $1.2\\,$GHz is obtained for (positive) detuning values between zero and $1.5\\,$GHz depending on seeding power (ranging from 10 to 150 microwatt). This result suggests that, using distinct slave lasers for each line, a set of mutually coherent narrow-linewidth high-power radiation modes can be obtained.

  6. Computer simulation of high current uranium beams for the injection beam line of the UNILAC

    International Nuclear Information System (INIS)

    In an attempt to generate an ion beam with high current and high brightness for the design ion, the computer code KOBRA3-INP has been used to evaluate the extraction system, the DC post-acceleration system as well as the quadrupole transport beam line, and to study the behavior of the ion beam in the combined system. (orig.)

  7. Dispersion Matching of a Space Charge dominated Beam at Injection into the CERN PS Booster

    CERN Document Server

    Hanke, Klaus; Scrivens, Richard

    2005-01-01

    In order to match the dispersion at injection into the CERN PS Booster, the optics of the injection line was simulated using two different codes (MAD and TRACE). The simulations were benchmarked versus experimental results. The model of the line was then used to re-match the dispersion. Experimental results are presented for different optics of the line. Measurements with varying beam current show the independence of the measured quantity of space-charge effects.

  8. Study of the heating of tokamaks by high energy ion beams

    International Nuclear Information System (INIS)

    This research program has encompassed a number of design studies for a steady state (or long pulse) Auto-Resonant Accelerator (ARA) capable of producing intense beams of high energy (4-20 MEV) ions suitable for the heating of large tokamak devices. The different research topics addressed have ranged over a number of questions related to the design of the individual elements of the accelerator itself, along with studies of the injection and stripping of the accelerated ions in the tokamak and their subsequent energy deposition in the tokamak plasma

  9. Beam emittance growth in a proton storage ring employing charge exchange injection

    International Nuclear Information System (INIS)

    Recently, it has been shown that very large currents can be accumulated in medium energy proton storage rings by multiturn injection of an H- beam through a charge stripping medium. Since the particles are injected continuously into the same phase space, it is possible to increase the circulating beam brightness with respect to that of the incoming beam by a large factor. The stored protons pass repeatedly through the stripper, however, so that this phase space is gradually enlarged by scattering. The dependence of the circulating beam phase space (emittance) growth rate on the nature of the scattering process and on where it occurs in the storage ring matrix is considered. Since the motivation for this work arose in connection with the design of the proposed high-current storage ring at LAMPF, the results are focused on the specific parameters of that device. (U.S.)

  10. Transverse emittance blow-up from beam injection errors in synchrotrons with nonlinear feedback systems

    International Nuclear Information System (INIS)

    The problem of transverse emittance blow-up from beam injection errors in synchrotrons with nonlinear feedback systems is considered. The relative emittance growth is calculated for linear and nonlinear feedback transfer functions. Effects of an increase of the damping decrement of the beam coherent oscillations and of a decrease of the coherent transverse amplitude spread of different bunches in case of the damper with positive cubic term in the feedback transfer function are discussed

  11. Measurement of H- beam emittance in axial injection channel of DC-72 cyclotron

    International Nuclear Information System (INIS)

    A method of measuring the ion beam transversal emittance in the axial injection channel of DC-72 cyclotron is given. It is based on the gradient method using the standard rotating wire scanner for measurement of the transversal ion beam dimensions. This method was worked out for ion beam currents up to 1000 μA and allows one to reconstruct emittance with an accuracy about 30%. The method takes into account the ion beam self-charge, which is essential. It is not always a success to obtain an axial-symmetric ion beam in experiments. Therefore, a new experimental data processing method of measuring the transversal emittance for a non-axial-symmetric ion beam was suggested. The formulae for determination of the RMS dispersions of the ion beam dimensions in the rotation coordinate system by signals from the scanner wire are given. The measurements of the RMS emittances εx,y were carried out in the test stand of the injection channel of DC-72 cyclotron with the H- ion beam current of 180 μA and kinetic energy of ions of 16.82 keV. The results of the experimental data processing are adduced

  12. Power and particle balance during neutral beam injection in TFTR

    International Nuclear Information System (INIS)

    Detailed boundary plasma measurements on TFTR have been made during a NBI power scan in the range Ptot = 1MW--20MW in the L-mode regime. The behavior of the plasma density left-angle ne right-angle, radiated power Prad, carbon and deuterium fluxes ΓC, ΓD, and Ζeff can be summarized as, left-angle ne right-angle ∝ Ptot1/2, Prad, ΓC, ΓD ∝ Ptot, and Ζeff ∼ constant. It is shown that central fuelling by the neutral beams plays a minor role in the particle balance of the discharge. More important is the NBI role in the power balance. The TFTR data during NBI originate primarily at the graphite limiter

  13. Design of neutral beam injection power supplies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Okumura, Yoshikazu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Higa, Osamu; Kawashima, Syuichi [Toshiba Corp., Kawasaki, Kanagawa (Japan); Ono, Youichi; Tanaka, Masanobu [Hitachi Ltd., Tokyo (Japan)

    2000-03-01

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  14. An elegant impulser developed for flat beam injection

    International Nuclear Information System (INIS)

    The following report describes the design, construction, and checkout of a high-voltage (HV) impulser built for the heavy ion fusion (HIF) project [1]. The purpose of this impulser is to provide an adjustable diode voltage source of sufficient quality and level to allow the optimization of beam transport and accelerator sections of HIF [2, 3]. An elegant, low-impedance, high-energy storage capacitor circuit has been selected for this application. Circuit parameters of the retrofit to the diode region [4] have been included to provide the controlled rise time. The critical part of this circuit that is common to all candidates is the impedance matching component. The following report provides a description of the implemented circuit, the basic circuit variables for wave shaping, screening techniques revealing the weakest circuit component, and the resulting output of the injector

  15. Shielding considerations for neutral-beam injection systems

    International Nuclear Information System (INIS)

    Results of a study on the geometry of an FED-A Neutral Beam Injector beamline duct shield are presented. Also included is a calculation of dose rates, as a function of time, from an activated NBI. The shielding investigations consisted of varying the parameters of the geometry and transporting particles through it using the MCNP Monte-Carlo code. The dose rates were calculated by the ACDOS3 code using realistic MCNP results. A final-to-incident flux ratio of 6.5 x 10-7 can be achieved through the use of a 65.5 cm reentry duct. This is for a realistic source and pure water shielding material. The activated NBI produced a dose rate of 15.9 mrem/hr two and a half days after shutdown of the reactor

  16. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams. PMID:22380156

  17. Buildup of electrons with hot electron beam injection into a homogeneous magnetic field

    International Nuclear Information System (INIS)

    The injection of the monoenergetic beam of electrons into the vacuum drift channel under the conditions when the beam current exceeds a certain threshold value involves a virtual cathode creation. The process of virtual cathode creation leads to an exchange of one-fluid movement of beam particles to three-fluid one corresponding to incident, reflected and passed through anticathode beam particles. For the monoenergetic beam case when the velocity spread Δvdr (vdr is the beam drift velocity), the beam instability was predicted in theory and was observed in experiment. Meanwhile, the injection in the drift space of the 'hot' beam having finite spread in velocities may be accompanied not only by the reflection of particles if their velocity v1/2 (where φ is the electrostatic potential dip value, e and m are the electron charge and mass, respectively), but also the mutual Coulomb scattering of incident and reflected electrons. The scattering process leads in its turn to appearance of viscosity forces and to trapping of a part of beam electrons into the effective potential well formed by electrostatic potential dip and the viscous force potential. The interaction of travelling and trapped particles may occur even at the stage preceding the virtual electrode formation and it may influence the process of its appearance and also the current flow through the drift space. In this report there are described the experimental results on accumulation of electrons when electron beam propagates in vacuum and has a large spread in particle velocities Δvdr in the homogeneous longitudinal magnetic field when ωpeHe where ωpe is the electron Langmuir frequency of beam electrons, ωHe is the electron cyclotron frequency. (author) 6 refs., 2 figs

  18. Behavior of high-pressure gasses injected to vacuum through a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Devise (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device (CCD) camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at the high backing pressure of more than 3 - 4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  19. Accelerator System Design, Injection, Extraction and Beam-Material Interaction: Working Group C Summary Report

    CERN Document Server

    Mokhov, N V

    2014-01-01

    The performance of high beam power accelerators is strongly dependent on appropriate injection, acceleration and extraction system designs as well as on the way interactions of the beam with machine components are handled. The experience of the previous ICFA High -Brightness Beam workshops has proven that it is quite beneficial to combine analyses and discussion of these issues in one group. A broad range of topics was presented and discussed at the Working Group C sessions at the HB2012 Workshop. Highlights from the talks, outstanding issues along with plans and proposals for future work are briefly described in this report.

  20. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  1. Assessment of the plasma start-up in Wendelstein 7-X with neutral beam injection

    International Nuclear Information System (INIS)

    Plasma start-up by neutral beam injection was investigated for stellarators. A zero-dimensional collisional model was extended to evaluate the temporal evolution of the plasma start-up in a confining toroidal magnetic field. Inclusion of different beam energy components indicated a substantial effect due to the energy dependence of beam–gas collisions. Additional collision processes and particle equations were considered to simulate the plasma start-up in helium–hydrogen mixtures. The isotope effect between operation with hydrogen and deuterium beams was also investigated. As a major objective the conditions necessary for a plasma start-up with neutral beams in W7-X have been examined. The assessed beam configuration in W7-X was found not to allow plasma start-up by neutral beam injection alone. The model has been validated for experimental data from W7-AS and Large Helical Device. Quantitative predictions of this study show that the ratio of the beam–plasma interaction length and the plasma volume is an essential quantity for the successful plasma start-up with neutral beams. (paper)

  2. Acceleration of energetic particles by whistler waves in active space experiment with charged particle beams injection

    Czech Academy of Sciences Publication Activity Database

    Baranets, N.; Ruzhin, Y.; Erokhin, N.; Afonin, V.; Vojta, Jaroslav; Šmilauer, Jan; Kudela, K.; Matišin, J.; Ciobanu, M.

    2012-01-01

    Roč. 49, č. 5 (2012), s. 859-871. ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : Electron beam injection * Whistler waves * Wave-particle interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.183, year: 2012 http://www.sciencedirect.com/science/article/pii/S0273117711007976

  3. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D-3He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  4. Observation of direct ion heating in double-pulsing CHI in helicity injected spherical torus plasmas

    International Nuclear Information System (INIS)

    Anomalous ion heating has been observed for the first time during flux/current amplification by double-pulsing coaxial helicity injection (CHI) in the helicity injected spherical torus (HIST) device. Doppler ion temperature increases significantly near the separatrix on the inboard side during the second CHI pulse, whereas electron temperature remains constant. The experimental results indicate that selective ion heating may be associated with viscous damping of poloidal flows driven by the CHI pulse. (author)

  5. Drift distance survey in direct plasma injection scheme for high current beam production

    International Nuclear Information System (INIS)

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  6. Beam injection and accumulation method in storage rings for heavy ion fusion

    International Nuclear Information System (INIS)

    A combination of multiturn injection and rf stacking is proposed as an efficient beam injection method in storage rings for heavy ion fusion. Five turn injection in each transverse phase space and four rf stackings give a total of 100 stacking turns. This represents a compromise between the tolerable emittances and momentum spread in the ring. Space charge limitations and coherent beam instabilities are investigated. The most severe limit is found to be the transverse coherent instability, but this can be controlled by the use of sextupole and octupole magnetic fields. Assuming a charge exchange cross section of 1 x 10-15 cm2, the e-folding life time is estimated at 180 ms, while the stacking time is 40 ms

  7. Diffraction effect of the injected beam in axisymmetrical structural CO2 laser

    Science.gov (United States)

    Xu, Yonggen; Wang, Shijian; Fan, Qunchao

    2012-07-01

    Diffraction effect of the injected beam in axisymmetrical structural CO2 laser is studied based on the injection-locking principle. The light intensity of the injected beam at the plane where the holophotes lie is derived according to the Huygens-Fresnel diffraction integral equation. And then the main parameters which influence the diffraction light intensity are given. The calculated results indicate that the first-order diffraction signal will play an important role in the phase-locking when the zero-order diffraction cannot reach the folded cavities. The numerical examples are given to confirm the correctness of the results, and the comparisons between the theoretical and the experimental results are illustrated.

  8. Some estimates of mirror plasma startup by neutral beam heating of pellet and gas cloud targets

    International Nuclear Information System (INIS)

    Hot plasma buildup by neutral beam injection into an initially cold solid or gaseous target is found to be conceivable in large mirror machine experiments such as 2XIIB or MFTF. A simple analysis shows that existing neutral beam intensities are sufficient to ablate suitable targets to form a gas or vapor cloud. An approximate rate equation model is used to follow the subsequent processes of ionization, heating, and hot plasma formation. Solutions of these rate equations are obtained by means of the ''GEAR'' techniques for solving ''stiff'' systems of differential equations. These solutions are in rough agreement with the 2XIIB stream plasma buildup experiment. They also predict that buildup on a suitable nitrogen-like target will occur in the MFTF geometry. In 2XIIB the solutions are marginal; buildup may be possible, but is not certain

  9. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  10. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars;

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  11. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable. PMID:24593588

  12. Computer study of an energy recovery system for the Tore-Supra neutral beam injection lines

    International Nuclear Information System (INIS)

    The prototype of an Energy Recovery System (ERS) has been designed for the Tore-Supra neutral beam injection lines (100 kV, 40 A deuterium beams). Our study, based on computer calculations using a 2-D charged particle trajectory program, consisted mainly in the optimisation of the components of the ERS, but it has been extended in order to draw general conclusions on some problems that might be encountered and to derive scaling laws for the suppression voltage determination. In our system, the power saving can be as large as 1 MW per injection line, i.e. about 25 % of the total power that would be spent without energy recovery. The recovery on higher energy beams has also been investigated; the power gain would be even larger in this case

  13. Optimal waste heat recovery in micro gas turbine cycles through liquid water injection

    International Nuclear Information System (INIS)

    Water injection in the compressor exhaust, to recuperate waste heat, is considered a possible route to improve the electric efficiency and overall performance of the micro Gas Turbine turbine (mGT). Many research exists on water injection in mGTs, however a generic study to determine the optimal route for waste heat recovery is still missing. To determine the optimal cycle settings for waste heat recovery through water injection, we have performed simulations using a two-step method. In a first step, the thermodynamic limit for water injection is sought using a black box method. In a second step, the cycle layout is designed by means of composite curve theory. This paper summarizes the results of two scenarios. In the first scenario, the black box is considered as adiabatic and no fixed stack temperature is imposed (thus allowing condensation of the exhaust gasses). One of the major concerns when injecting water is the water consumption, which can be compensated in some cases through condensation and recycling the condensate. Therefore, in the second scenario, the cycle is made self-sufficient with water. In this case, the black box is no longer considered adiabatic and heat exchange with the environment is allowed for condensation of the flue gasses. Black box simulations showed that lowering the stack temperature to 53 °C results in an injection of 17 %wt of water and an increase in electric efficiency of 9% absolute. To keep the mGT cycle layout simple, low cost and not too complex, a maximum of two heat exchangers was imposed for the heat exchanger network design. Although black box analysis indicated a large potential for water introduction, this potential could not be achieved with the considered networks in this paper. Finally, injection of preheated water was identified as the optimal water injection scheme for waste heat recovery resulting in 4.6% absolute electric efficiency increase and a final stack temperature of 62 °C. Results of simulations of

  14. Ion internal transport barrier in neutral beam heated plasmas on HL-2A

    Science.gov (United States)

    Yu, D. L.; Wei, Y. L.; Liu, L.; Dong, J. Q.; Ida, K.; Itoh, K.; Sun, A. P.; Cao, J. Y.; Shi, Z. B.; Wang, Z. X.; Xiao, Y.; Yuan, B. S.; Du, H. R.; He, X. X.; Chen, W. J.; Ma, Q.; Itoh, S.-I.; Zhao, K. J.; Zhou, Y.; Wang, J.; Ji, X. Q.; Zhong, W. L.; Li, Y. G.; Gao, J. M.; Deng, W.; Liu, Yi; Xu, Y.; Yan, L. W.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Yong; HL-2A Team

    2016-05-01

    Ion internal transport barriers (iITBs) are first observed in neutral beam injection (NBI) heated plasmas at the HL-2A tokamak. The position of the barrier foot, in the stationary state, coincides with the q  =  1 surface within its uncertainty of measurement. iITBs can develop more easily at the beginning of NBI heating. Also, iITBs are unstable for the sawtooth plasma. Simulations reveal that the thermal diffusivity of ions (χ i) inside the barrier can be as low as the neoclassical level. It is observed that the flow shear in the stationary iITB state reaches the level required for suppressing the ion temperature gradient mode instability, which indicates the important role of flow shear in sustaining the iITB.

  15. Electron beam welding of dissimilar heat resistant alloys

    International Nuclear Information System (INIS)

    To the welding of the different heat resistant materials for high temperature gas-cooled reactors, electron beam welding was applied, and the high temperature strength of the weld metal was examined as it is necessary for evaluating the welded joints. As the results, the high temperature strength of the weld metal of Hastelloy X and 2.25 Cr-1Mo steel at 500 degC and that of Hastelloy X and SUS316 at 600 degC showed the nearly intermediate values of both parent materials in both cases. Accordingly, when the high temperature strength of electron beam welded metals is evaluated, it is considered that by evaluating at least with the value of a lower strength parent metal, sufficient safety is ensured. In this study, the electron beam welded joints of typical different heat resistant alloys were made, and the tesile strength, creep rupture strength and low cycle fatique strength of the weld metals at high temperature were determined to compare with those of parent alloys. The tested alloys, welding method and high temperature tests are reported. (Koko, I.)

  16. Neutralization of ion beam by means of transverse injection of electrons

    Science.gov (United States)

    Baitin, A. V.; Serebrennikov, K. S.; Sionov, A. B.

    1997-01-01

    Electron beam transverse injection into a region of a positive ion beam propagating between two conducting plates is considered. This problem is important for ion beam propagation in the implanter tracts and for construction of ion beam focusing elements. After the transition stage the formation of different stationary ion-beam plasma states is possible, with electrons being accelerated or decelerated while moving from the wall up to the center of the ion beam. The dependence of the final state on the parameters of the system is obtained. The regime with deceleration is characterized by negative total space charge and can be used for focusing of the ion beam. Temporary evolution of the neutralization process and realization of these stationary states is studied by means of one-dimensional particle-in-cell code simulation. The dynamics of the process in the case of absence of the stationary state and such non-stationary phenomena like sheath and virtual cathode are studied, too. This process comes to a high degree of neutralization due to the electrons being captured by the ion beam space charge potential.

  17. Suppression of stored beam oscillation at injection in the SPring-8 storage ring

    International Nuclear Information System (INIS)

    In the SPring-8 storage ring, when the injection bump orbit is not closed perfectly at the beam injection, the horizontal stored beam oscillation of the amplitude more than 0.5 mm (r.m.s.) is excited. Now, the averaged oscillation amplitude has successfully been suppressed to the level of less than 0.15 mm (r.m.s.) by applying a counter kick to the residual oscillation with a pulse width of 500 ns. To confirm the suppression effect, we observed the turn-by-turn photon beam profile at the diagnostics beamline with the insertion device. The light axis oscillation was significantly suppressed down to less than 4 μrad from more than 30μrad by applying a counter kick at 3rd turn after injection. Without the kicker correction, it took about 80 turns to reduce the oscillation, which was determined by the damping time with the bunch by bunch feedback system. In the SPring-8 user operation, in addition to the effect of providing stable photon beam, we succeeded in not only shortening the effective damping time but also filling a single high current bunch up to 5 mA to any bucket address. (author)

  18. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured by...

  19. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano;

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear...

  20. Efficient, radiation-hardened, 800-keV neutral beam injection system

    International Nuclear Information System (INIS)

    Recent advances and new concepts in negative ion generation, transport, acceleration, and neutrailzation make it appear likely that an efficient, radiation-hardened neutral beam injection system could be developed in time for the proposed FED-A tokamak. These new developments include the operation of steady-state H- ion sources at over 5 A per meter of source length, the concept of using strong-focussing electrostatic structures for low-gradient dc acceleration of high-current sheet beams of negative ions and the transport of these beams around corners, and the development of powerful oxygen-iodine chemical lasers which will make possible the efficient conversion of the negative ions to neutrals using a photodetachment scheme in which the ion beam passes through the laser cavity

  1. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein;

    2016-01-01

    Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos......, comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear...

  2. Mixed convection flow over a vertical plate with localized heating (cooling), magnetic field and suction (injection)

    OpenAIRE

    Chamkha, AJ; Takhar, HS; G. Nath

    2004-01-01

    An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic ...

  3. Estimates of HE-LHC beam parameters at different injection energies

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-11-01

    A future upgrade to the LHC envisions increasing the top energy to 16.5 TeV and upgrading the injectors. There are two proposals to replace the SPS as the injector to the LHC. One calls for a superconducting ring in the SPS tunnel while the other calls for an injector (LER) in the LHC tunnel. In both scenarios, the injection energy to the LHC will increase. In this note we look at some of the consequences of increased injection energy to the beam dynamics in the LHC.

  4. Convective Heating of the LIFE Engine Target During Injection

    International Nuclear Information System (INIS)

    Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

  5. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    OpenAIRE

    Stefano L. Russo; Glenda Taddia

    2010-01-01

    Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection) and hydro...

  6. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2015-10-28

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.

  7. R & D on Beam Injection and Bunching Schemes in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-01-01

    Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developed an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.

  8. Characteristics of the injected ion beam in the ECR charge breeder 1+ -> n+

    CERN Document Server

    Lamy, T; Chauvin, N; Curdy, Jean Claude; Geller, R; Sortais, P; Leroy, R; Lieuvin, M; Villari, A C C

    1999-01-01

    Different ion species (rare gases, alkali, metallic) have been injected on the axis of the MINIMAFIOS - 10 GHz - Electron Cyclotron Resonance Ion Source which is the basics of the 1+ -> n+ method, special attention have been paid to the optics of the incoming beam for the validation of the 1+ -> n+ method for the SPIRAL project (Radioactive Ion Beam facility). The capture of the incoming ion beam by the ECR plasma depends, first, on the relative energy of the incoming ions with respect to the average ion energy in the plasma, and secondly, on the optics of the injection line. The efficiency of the process when varying the potential V n+ of the MINIMAFIOS source with respect to the potential V 1+ applied to the 1+ source (DV=V n+ -V 1+ ) is an image of the energy dispersion of the 1+ beam. 1+ -> n+ spectra efficiencies, DV efficiency dependence for the most efficient charge state obtained, and measured primary beam emittances are given for the Ar, Rb, Pb, Cr. Highest efficiencies obtained are respectively Ar1+...

  9. An RF driven H- source and a low energy beam injection system for RFQ operation

    International Nuclear Information System (INIS)

    An RF driven H- source has been developed at LBL for use in the Superconducting Super Collider (SSC). To date, an H- current of ∼40 mA can be obtained from a 5.6-cm-diam aperture with the source operated at a pressure of about 12 m Torr and 50 kW of RF power. In order to match the accelerated H- beam into the SSC RFQ, a low-energy H- injection system has been designed. This injector produces an outgoing H- beam free of electron contamination, with small radius, large convergent angle and small projectional emittance

  10. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Dario, E-mail: dario.nicolosi@lns.infn.it; Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  11. Spectroscopic study of impurities in neutral beam heated and ohmically heated JT-60 discharges

    International Nuclear Information System (INIS)

    Impurities in JT-60 were studied by visible and VUV spectroscopy over two periods of operation. The two periods wree distinguished by the use of different first wall materials: from April 1985 to March 1987, TiC coated molybdenum was used as limiter material; from June to October 1987, graphite was used. Quantitative spectroscopic measurements of Zeff, impurity concentrations and radiated power losses were made for ohmically heated and neutral beam heated discharges with limiter and divertor configurations. In the first phase with metallic first wall material, oxygen, carbon and titanium were identified as the main plasma impurities. In neutral beam heated, diverted discharges, Zeff was 1.6 at n-bare=4x1019m-3. The concentrations of oxygen, carbon and titanium were 1%, 0.1% and 0.006% of ne, respectively. In the second phase with graphite material, the metallic impurities were reduced, and the contribution of metallic impurities to the radiated power loss was less than 1%. However, Zeff increased up to 3 in neutral beam heated discharges. In limited plasmas, the concentrations of oxygen and carbon were 1% and 5%, respectively, at n-bare=4x1019m-3, in diverted plasmas, these concentrations were 2% and 0.4% at the same n-bare. The radiated power loss from the main plasma was 20-40% of the input power in neutral beam heated, limited discharges, and 7-25% in diverted discharges. The contributions of oxygen and carbon to the radiated power in limited discharges were comparable, and in diverted discharges the contribution of oxygen was dominant. (author). 29 refs, 15 figs, 2 tabs

  12. Density peaking in the JFT-2M tokamak plasma with counter neutral beam injection

    International Nuclear Information System (INIS)

    A significant particle pinch and reduction of the effective thermal diffusivity are observed after switching the neutral beam direction from co- to counter- injection in the JFT-2M tokamak. A time delay in the occurrence of density peaking to that of plasma rotation is found. This shows that the particle pinch is related to the profile of the electric field as determined by the plasma rotation profile. The measured particle flux shows qualitative agreement with the theoretically-predicted inward pinch. (author)

  13. Design of Control Server Application Software for Neutral Beam Injection System

    International Nuclear Information System (INIS)

    For the remote control of a neutral beam injection (NBI) system, a software NBIcsw is developed to work on the control server. It can meet the requirements of data transmission and operation-control between the NBI measurement and control layer (MCL) and the remote monitoring layer (RML). The NBIcsw runs on a Linux system, developed with client/server (C/S) mode and multithreading technology. It is shown through application that the software is with good efficiency.

  14. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the Dα amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase

  15. Toroidal plasma rotation in the PLT tokamak with neutral-beam injection

    International Nuclear Information System (INIS)

    Toroidal plasma rotation in the Princeton Large Torus, PLT, has been measured for various plasma and neutral beam injection conditions. Measurements of the plasma rotational velocities were made from Doppler shifts of appropriate spectral lines and include data from both hydrogen and deuterium beams and co- and counter-injection at several electron densities. Without injection, a small but consistent toroidal rotation exists in a direction opposite to the plasma current (counter-direction) in the plasma center but parallel to the current (co-direction) in the plasma periphery. Using these measured velocities and the plasma density and temperature gradients, radial electron fields can be determined from theory, giving E/sub r / approx. = 40 V/cm near the plasma center and E/sub r/ approx. = 10 V/cm near the plasma edge. Insertion of a local, 2.5 percent magnetic well produced no observable effect on the beam driven rotation. Modeling of the time evolution and radial distribution of the rotation allows one to deduce an effective viscosity of the order of (1 to 5) x 104 cm2/sec

  16. ELM mitigation by means of supersonic molecular beam and pellet injection on the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Sun, Z.; Li, C.Z.; Zhen, X.W.; Li, J.G.; Guo, H.Y.; Li, J.H.; Wang, L.; Gan, K.F.; Chen, Y.; Ren, J.; Zuo, G.Z.; Yao, X.J.; Hu, L.Q.; Gong, X.Z.; Wan, B.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Mansfield, D.K. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Liang, Y.F. [Forschungszentrum Jülich GmbH, Association EURATOM-FZ Jülich (Germany); Vinyar, I. [PELIN LLC, Saint Petersburg (Russian Federation)

    2015-08-15

    In this paper, we will present experimental results from EAST on the mitigation of edge localized modes (ELMs) using recently developed deuterium/lithium pellet injections as well as supersonic molecular beam injections (SMBI). Using a Laval nozzle, ELM mitigation with SMBI has been demonstrated in EAST in quasi-steady state. Using a D{sub 2} pellet injector, a giant ELM appears followed by a burst of high frequency ELMs at ∼300 Hz with duration of a few tens of milliseconds. Furthermore, for the first time, a novel technology using a simple rotating impeller to inject sub-millimeter size lithium (Li) granules at speeds of a few tens of meters per second was successfully used to pace ELMs. These experiments indicate that, on EAST, several technologies can contribute to the database supporting ELMs control in future fusion devices, such as ITER.

  17. ELM mitigation by means of supersonic molecular beam and pellet injection on the EAST superconducting tokamak

    International Nuclear Information System (INIS)

    In this paper, we will present experimental results from EAST on the mitigation of edge localized modes (ELMs) using recently developed deuterium/lithium pellet injections as well as supersonic molecular beam injections (SMBI). Using a Laval nozzle, ELM mitigation with SMBI has been demonstrated in EAST in quasi-steady state. Using a D2 pellet injector, a giant ELM appears followed by a burst of high frequency ELMs at ∼300 Hz with duration of a few tens of milliseconds. Furthermore, for the first time, a novel technology using a simple rotating impeller to inject sub-millimeter size lithium (Li) granules at speeds of a few tens of meters per second was successfully used to pace ELMs. These experiments indicate that, on EAST, several technologies can contribute to the database supporting ELMs control in future fusion devices, such as ITER

  18. Performance of magnetically-injected-plasma opening switches on the particle beam fusion accelerator 2

    International Nuclear Information System (INIS)

    Plasma opening switch (POS) experiments have been performed on the PBFA II ion beam accelerator to develop a switch which will provide voltage and power gain to an applied-B lithium ion diode. These experiments have successfully coupled power to electron and ion beam diodes using a Magnetically-Injected-Plasma (MIP) POS. Carbon plasma with electron densities of 1 x 1012 to 2 x 1013 /cm3 have been injected from the anode into the 8 cm gap of the 20-ohm Magnetically-Insulated-Transmission Line (MITL) of PBFA II along a Br,z magnetic field. The MIP switch uses the inertia of the plasma to keep the switch closed and the magnetic pressure of Bθ from the conduction current to open the switch. The configuration of the injecting magnetic field and the plasma source has a significant effect on the efficiency of coupling power to high impedance loads. Plasma near the center of the injecting magnetic field limits the opening impedance of the switch and subsequently the power delivered to the load. The axial location of the switch with respect to the load has also been identified as a critical parameter in increasing the coupling efficiency. A length of 10 to 20 cm of MITL between the POS and the load has increased the power delivered to the load. Data on switch performance with high impedance loads and factors which improved performance are discussed

  19. Excitation of HF and ULF-VLF waves during charged particle beams injection in active space experiment

    International Nuclear Information System (INIS)

    Results of active space experiment with simultaneous injection of electron and xenon ion beams from the Interkosmos-25 (IK-25) satellite are presented. A specific feature of this experiment was that charged particles were injected in the same direction along the magnetic field lines and the particle beams simultaneously injected into the ionospheric plasma were therefore nested in one another. Results of the beam-plasma interaction for this configuration were registered by the double satellite system consisting of IK-25 station and Magion-3 subsatellite. (author)

  20. Beam heat load measurements in the cold bore superconductive undulator in ANKA

    CERN Document Server

    Casalbuoni, S; Hagelstein, M; Zimmermann, F; Rossmanith, Robert; Kostka, Barbara; Mashkina, Elena; Steffens, Erhard; Bernhard, Axel; Wollmann, Daniel; Baumbach, Tilo

    2007-01-01

    Measurements of the beam-induced heat load in the ANKA cold-bore superconductive undulator are summarized. The strength of the two dominating effects, resistive wall heating and heating by electron bombardment, depends on the beam parameters and the gap width.

  1. An X-ray Scattering Study of Water-Conditioned Injection- Molded Starch during Isothermal Heating

    OpenAIRE

    Cagiao, M.E.; Bayer, R. K.; Rueda, D. R.; Baltá Calleja, F. J.

    2003-01-01

    The in situ structure variation of injection molded starch (as processed and after water conditioning)during heat treatment was investigated by means of wideangle X-ray scattering using synchrotron radiation. Results confirm that the crystal structure of potato starch is destroyed after injection molding, while as-processed corn starch preserves some degree of crystallinity. This residual crystallinity in corn starch is related to the crystalline Vh form,made of complexes of amylose with l...

  2. Ionization, stopping, and thermalization of hydrogen and boron beams injected in fusion plasmas

    Science.gov (United States)

    Lifschitz, Agustín F.; Farengo, Ricardo; Arista, Nestor R.

    2000-07-01

    The ionization, stopping, and thermalization of hydrogen and boron beams, injected, respectively, in boron and hydrogen plasmas, is studied. The evolution of the charge state populations of the neutral beams is described considering the various ionization, excitation, and charge exchange channels. The interaction of the beam with the plasma is described in terms of the Fokker-Planck equation, which is numerically solved to show in detail the evolution of the beam until final thermalization is reached. Beam energies of 640 keV/u (maximum of the cross section for the p-B11 fusion reaction) and 200 keV/u, and various plasma temperatures are considered. It is seen that, due to an important perpendicular-diffusion effect, high energy beams reach effective peak temperatures which are much higher than the plasma temperature, before equilibrium is established. The fraction of fusioned particles is also calculated. Some implications of interest for recently proposed p-B11 fusion reactor systems are drawn out.

  3. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    CERN Document Server

    Bhat, C M

    2015-01-01

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The sc...

  4. Evolution of ring current formed by relativistic electron beam injection into a charge but not current neutralizing plasma

    International Nuclear Information System (INIS)

    The time evolutions of the azimuthal momentum distribution of the axisymmetrically injected electrons and the resulting ring current are self-consistently analyzed under the assumption that no return current is induced in the background plasma. It is shown that the ring current grows linearly with time for a characteristic time from the start of beam injection, and afterthere it tends to saturate at some level. The dependence of the time evolution of the ring current on the beam energy at injection and on the injection current is also obtained. (author)

  5. Sensibility Studies for the Neutral Beam Injection System in TJ-II

    International Nuclear Information System (INIS)

    The sensibility of the Neutral Beam Injection system of TJ-II to the changes of several parameters is analysed. Transmission, absorption and power loads at the intercepting structures are evaluated. The adopted values for the ion source distance, focal length and divergence are confirmed as optimal, showing a small sensitivity to changes, except for the divergence. The operational margins for beam misalignments has been found to be small but feasible, confirming also the reference directions as optimal. Finally four possible alternatives, intended to reduce the power loads at the beam entering structures, are analysed. All of them have been discarded since lead to the appearance of new risk zones, with unacceptable load levels, and reduce the transmitted power. (Author) 13 refs

  6. Laser photoionization of H0 beams for charge-changing injection

    International Nuclear Information System (INIS)

    The two-step charge-changing injection used in the Los Alamos Proton Storage Ring (PSR) requires stripping of H- to H0 by high magnetic fields and subsequent stripping of H0 to H+ by a carbon foil. The authors consider single- and multiphoton laser ionization as alternatives to using a fragile foil. The multiphoton case is of possible interest for selection of practical lasers, which tend to have increased power output at higher wavelengths. The formulas derived express the necessary laser powers for ionization of monoenergetic H0 beams; they also hold for beams of particles other than atomic hydrogen. The numerical examples given are for the 800-MeV PSR beam with momentum spread taken into account. Additionally, they discuss selective stripping as an implication of the inherent energy selectivity of the photoionization process

  7. Laser photoionization of H0 beams for charge-changing injection

    International Nuclear Information System (INIS)

    The two-step charge-changing injection used in the Los Alamos Proton Storage Ring (PSR) requires stripping of H- to H0 by high magnetic fields and subsequent stripping of H0 to H+ by a carbon foil. We consider single- and multiphoton laser ionization as alternatives to using a fragile foil. The multiphoton case is of possible interest for selection of practical lasers, which tend to have increased power output at higher wavelengths. The formulas derived express the necessary laser powers for ionization of monoenergetic H0 beams; they also hold for beams of particles other than atomic hydrogen. The numerical examples given are for the 800-MeV PSR beam with momentum spread taken into account. Additionally, we discuss selective stripping as an implication of the inherent energy selectivity of the photoionization process

  8. Flow regime and heat transfer measurements during reflooding with steady and oscillatory coolant injection

    International Nuclear Information System (INIS)

    Simultaneous void fraction and wall temperature measurements were made during bottom-reflooding of a vertical Inconel tube with inlet flows consisting of various constant and oscillatory injection rates. To support interpretation of these data, flow regime visualization experiments were also done on reflooding of a heated quartz tube under similar inlet flow conditions. With constant, high injection rates, inverted annular, transition and dispersed flow regimes exist above the quench front, with typical chordal-average void fractions of 10-30%, 30-70% and 70-90% respectively. Each regime exhibits qualitatively different heat transfer rates. With slower injection rates or higher heating rates, annular droplet and dispersed flow regimes appear with void fractions above 80%. For reflood with oscillatory inlet flow and fast injection, large oscillations are seen in void fraction and wall temperature, indicating periodic changes in flow regime near the quench front between inverted annular flow (during an upstroke) and annular droplet flow (during a downstroke). Heat transfer rates are substantially affected by flow regime and increase (or decrease) as the void fraction falls (or rises). Compared to the constant injection tests, lower liquid inventory is also observed for forced-oscillation tests due to increased rates of entrainment

  9. Response of optical hydrogen lines to beam heating: I. Electron beams

    CERN Document Server

    Kasparova, J; Heinzel, P; Karlicky, M; Moravec, Z

    2009-01-01

    We investigate the role of non-thermal electrons in the formation regions of Halpha, Hbeta, and Hgamma lines in order to unfold their influence on the formation of these lines. We concentrate on pulse-beam heating varying on a subsecond timescale. Furthermore, we theoretically explore possibility that a new diagnostic tool exists indicating the presence of non-thermal electrons in the flaring chromosphere based on observations of optical hydrogen lines. To model the evolution of the flaring atmosphere and the time-dependent hydrogen excitation and ionisation, we used a 1-D radiative hydrodynamic code combined with a test-particle code that simulates the propagation, scattering, and thermalisation of a power-law electron beam in order to obtain the flare heating and the non-thermal collisional rates due to the interaction of the beam with the hydrogen atoms. All calculated models have shown a time-correlated response of the modelled Balmer line intensities on a subsecond timescale, with a subsecond timelag beh...

  10. Flow and heat transfer experiment in a RPV with direct safety injection

    International Nuclear Information System (INIS)

    Highlights: • The two-phase flow condition was tested in the experiment that is quite a few in this field. • Flux meter was used to measure the local convective heat transfer coefficient. • The transient temperature of the mixture in the downcomer was measured. • The visualization experiment was performed for stagnant, flow and two-phase conditions. -- Abstract: An experimental investigation was performed to study the thermal hydraulic behavior in the RPV downcomer when the direct vessel injection (DVI) was adopted to enhance the effectiveness of the safety injection. Flow and heat transfers were studied experimentally on a 1/10-scaled RPV model at low temperature and pressure. Three experiments, including flow visualization, local convective heat transfer coefficient and temperature transient were performed at four possible conditions during safety injection. Both single-phase and two-phase flows were investigated. The vapor is simulated by air based on void fraction similarity in two-phase flow condition. The visualization experiment revealed the flow pattern was determined by the safety injection velocity USI and downcomer flow velocity UDC when the inlet flow rate of the cold leg was more than 0 m/s at single-phase test. The injection impinges the barrel and expands along the downcomer at stagnant flow condition. When the downcomer is filled with air, the injection flow is attached on the barrel at most of cases. The stronger turbulence was found in two-phase than that in single-phase flow. Heat transfer at some points in the RPV has monotonous ascend, but at other points, it may ascend, then fall and then ascend again. The transient temperature is determined by the injection velocity, downcomer flow rate and the distance from the nozzle. The local convective heat transfer coefficient was the largest at the zone near the nozzle and the temperature transient here was fast too. When the point was very far from the nozzle, the heat transfer coefficient and

  11. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  12. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    Science.gov (United States)

    Andreev, V. V.; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O.

    2016-03-01

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  13. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    International Nuclear Information System (INIS)

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (≤ 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters

  14. The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. [chromospheric heating during solar flares

    Science.gov (United States)

    Emslie, A. G.

    1978-01-01

    The classical theory of scattering under the Coulomb potential of both charged and neutral particles is used to derive formulae for the energy deposition rate and mean scattering of a beam of charged particles interacting with a cold hydrogen target of arbitrary ionization level as a function of the column density traversed by the beam. These general results hold for any form of stable injection energy spectrum, and their relevance to the existing literature on chromospheric heating during solar flares is discussed.

  15. Investigation of heat release in the targets during irradiation by ion beams

    CERN Document Server

    Dalkarov, O D; Rusetskii, A S

    2015-01-01

    The DD-reaction is investigated and the heat emission off the targets during their irradiation with ion beams is studied at the HELIS ion accelerator at LPI. The heat emission is observed to be significantly higher in the case of irradiation of the Ti/TiO2:Dx-targets by a D+ beam, as compared to the H+ and Ne+ beams. Furthermore, it depends on the concentration of deuterium in the target and current density of the deuteron beam.

  16. 1 d calculations on transport, neutral injection heating and ignition control in ZEPHYR

    International Nuclear Information System (INIS)

    1 - d transport calculations and particle trajectory calculations for neutral injection in Zephyr show that without impurity radiation losses a heating power of 20 MW and a pulse length of 1 s should be sufficient to reach ignition in Zephyr (average densities in the compressed stage between 2 and 4.5 x 1014 cm-3). The injection system should have an acceleration voltage of 160 keV; lower energy neutrals require higher heating powers. Heating of the plasma in the compressed stage requires neutral particle energies of > approx. 250 keV. Active burn control of the nearly ignited plasma is possible with heating powers of about 1 MW and response times of the feedback system smaller than 200 ms. (orig.) 891 HT/orig. 892 HIS

  17. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    International Nuclear Information System (INIS)

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood

  18. Novel Approach for Heat Transfer Characterization in EOR Steam Injection Wells

    Directory of Open Access Journals (Sweden)

    Mohd. Amin Shoushtari

    2014-03-01

    Full Text Available Steam injection into hydrocarbon reservoirs involves significant heat exchange between the wellbore fluid and its surroundings. During injection, the hot fluid loses heat to the cold surroundings, continuously as it moves down the borehole. The heat transfer process impacts well-integrity and, in turn, the ability of the well to perform its required function effectively and efficiently with regard to safety and environmental factors. During the design phase of a steam injection well, it is necessary to avoid risks and uncertainties and accurately plan the life cycle of wellbore. The present study aims to investigate the nature and predict the natural convection heat transfer coefficient in the annulus. The approach to model the natural convection heat transfer in this study is by analytical and numerical techniques. The annular space between the tubing and the casing was treated as a finite space bounded by walls and filled with fluid media (enclosures. Correlations for vertical enclosures were employed in the work. The flow field was modeled and simulated for numerical analysis, using ANSYS-FLUENT software package. Some boundary parameters have been defined by the user and fed to the software. The predicted values of Nusselt numbers from both analytical and numerical approaches were compared with those of previous experimental investigations. The results of the present study can be used for preliminary design calculations of steam injection wells to estimate rate of heat transfer from wells. This study also provides a novel baseline assessment for temperature related well-integrity problems in steam injection wells.

  19. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  20. Focused neutral beams with low chaotic divergence for plasma heating and diagnostics in magnetic fusion devices

    International Nuclear Information System (INIS)

    A series of neutral beam injectors has been developed in the Budker Institute of Nuclear Physics for plasma heating and diagnostics in modern fusion devices. Ion optical system of these injectors is optimized to produce ion beams with low angular divergence. In order to provide beam focusing, the grids are formed to be spherical segments. Such geometrically focused neutral beams are particularly advantageous for plasma diagnostics when high spatial resolution is required. Another application of these beams is plasma heating in the machines with narrow ports through which only small size, high power density beams can be transported. (author)

  1. Neoclassical current effects in neutral beam-heated tokamaks

    International Nuclear Information System (INIS)

    There is a long-standing prediction from neoclassical theory that strong contributions to the toroidal current should be driven by friction between trapped and passing particles when β/sub pol/ exceeds √R/a in a tokamak. A number of neutral beam heating experiments can now produce such parameters, and it is of interest to calculate the behavior which should occur in this regime to determine the feasibility of using such a bootstrap current as a steady-state tokamak current source. Since gross manifestations are absent in a wide range of experiments on the Impurity Study Experiment (ISX-B), as reported earlier, the conclusion is that the neoclassical current, if present, can have a value no larger than 25% of its theoretically calculated value. Since the neoclassical particle (Ware) pinch is strongly related to the neoclassical current in the theory (Onsager reciprocity), the existence of the particle pinch is thus called into question

  2. Effects on doppler profiles in beam-heated plasmas

    International Nuclear Information System (INIS)

    We analyze various effects that can influence ion temperature measurements based on Doppler broadening of impurity lines. Macroscopic effects such as inhomogeneities, plasma rotation and temporal modulations are distinguished from microscopic ones leading to species-dependent temperatures and anisotropy in the impurity distribution functions. There are turbulent effects related to the latter that can also cause deviations from thermodynamic equilibrium among light and heavy impurities. It is found that under neutral-beam-heated JET conditions, all effects should be small and influence the measured ion temperature by less than ∼ 10%. Larger influences could be expected from strongly peaked rotation profiles - for which, however, no indications are found - and high-level turbulence, which appears rather unrealistic, too. (author)

  3. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Science.gov (United States)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  4. Study of the fast neutral atom beam injection on TFR tokamak

    International Nuclear Information System (INIS)

    During neutral beam injection experiments on TFR, the increase of the plasma temperature appears to be weak and is saturating at high power. This observation leads to question the classical scheme of power coupling to the thermal plasma and to check experimentally its successive steps. First of all, the neutral beam transmission and capture in the plasma, measured by calorimetric methods, are in agreement with the classical calculations. Next the confinement and thermalization of the fast ions is reviewed by means of three different measurements: charge exchange analysis of fast neutrals leaving the plasma (an auxiliary modulated neutral beam gives a spatially resolved measurement); neutron flux analysis during injection of deuterium ions into a deuterium plasma; measurement of the fast ions trapped in the toroidal magnetic field ripples. These experiments show that a non-classical mechanism transports the most energetic ions towards the plasma periphery. This phenomenon then limits the overall power that can be effectively absorbed in the plasma centre and contributes to deteriorate the energy confinement. Finally the respective role of thermal and non-thermal populations in the power balance is addressed

  5. Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-nica accelerator complex

    International Nuclear Information System (INIS)

    The NICA ion collider project at JINR is under development at present. As a part of the project the Nuclotron injector upgrade has been started. The work is provided in cooperation of JINR, MEPhI and ITEP. Up to now the Nuclotron injection system consist of a number of proton and ion sources, the 650 keV pulsed preinjector and DTL linac LU-20 (Alvarez type). Such system provides injection into Nuclotron of 20 MeV proton and 5 MeV/u (Z/A >0.3) ion beams. The ion beam acceleration is realized at the 2nd harmonic of bunch travelling mode. The 650 kV high-voltage platform will be replaced by new RFQ structure. The R ampersand D of this system is discussed in the report. Results of beam dynamics simulation in RFQ and MEBT between RFQ and LU-20, electrodynamics simulation, construction of RFQ resonator, RF feeding system construction will be presented. The RF power system is assembled and tested at equivalent load and RFQ resonator manufacturing is started

  6. Beam-Based Measurement of the Waveform of the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Goddard, B; Hessler, C; Mertens, V; Uythoven, J

    2010-01-01

    Proton and ion beams are injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of up to 7.8 ms flat top duration with rise and fall times of not more than 900 ns and 3 ms, respectively. Both systems are composed of four travelling wave kicker magnets, powered by pulse forming networks. One of the stringent design requirements of these systems is a field flat top and postpulse ripple of less than ±0.5 %. A carefully matched high bandwidth system is required to obtain the required pulse response. Screen conductors are placed in the aperture of the kicker magnet to provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against wake fields. However, these conductors affect the field pulse response. Recent injection tests provided the opportunity to directly measure the shape of the kick field pulse, with high accuracy, using a pilot beam. This paper details the measurements and compares the results with predictions and laboratory measurem...

  7. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2010-01-01

    Full Text Available Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection and hydrodynamic thermodispersion (diffusion and mechanical dispersion. If the groundwater flows, the advective components tend to dominate the heat transfer process within the aquifer and the diffusion can be considered negligible. This study illustrates the experimental results derived from the groundwater monitoring in the surrounding area of an injection well connected to an open-loop GWHP plant which has been installed in the "Politecnico di Torino" (NW Italy for cooling some of the university buildings. Groundwater pumping and injection interfere only with the upper unconfined aquifer. Approach: After the description of the hydrogeological setting the authors examined the data deriving from multiparameter probes installed inside the pumping well (P2, the injection well (P4 and a downgradient piezometer (S2. Data refers to the summer 2009. To control the aquifer thermal stratification some multi-temporal temperature logs have been performed in the S2. Results: After the injection of warm water in P4 the plume arrived after 30 days in the S2. That delay is compatible with the calculated plume migration velocity (1.27 m d-1 and their respective distance (35 m. The natural temperature in the aquifer due to the switching-off of the GWHP plant has been reached after two month. The Electrical Conductivity (EC values tend to vary out of phase with the temperature. The temperature logs in the S2 highlighted a thermal stratification in the aquifer due to a low vertical

  8. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  9. ? modification by means of counter-neutral beam injection in a low-? plasma

    Science.gov (United States)

    Kim, J.; Burrell, K. H.; Groebner, R. J.; Hinton, F. L.; Sager, G. T.; Staebler, G. M.; Stambaugh, R. D.

    1996-08-01

    The idea of controlling the radial electric field 0741-3335/38/8/059/img3 by means of a radial current resulting from ion orbit loss caused by counter neutral beam injection has been theoretically and experimentally investigated. A large fraction (0741-3335/38/8/059/img4%) of the 75 keV deuterium ions counter-injected into a low-0741-3335/38/8/059/img5 plasma (0741-3335/38/8/059/img6 MA) suffers prompt orbit loss, which forces an inward ion current to maintain charge neutrality. Monte Carlo guiding-centre orbit calculations predict a radial current of 80 A at the last closed flux surface. In these discharges, 0741-3335/38/8/059/img7 is negative everywhere, owing to the counter-going toroidal rotation, and exhibits a double-bump shape, in contrast to the usual positive parabolic shape for the co-injection case. The measured carbon impurity ion toroidal rotation profile shows a pedestal over the outer region where fast ions are lost, possibly due to the effect of 0741-3335/38/8/059/img8 torque. The momentum diffusion process tends to slow down and to spatially spread the 0741-3335/38/8/059/img8 torque effect. The L - H transition did not occur more quickly in these discharges than in similar co-injected discharges.

  10. Internal Transport Barrier in Edge Plasma of Small Size Divertor Tokamak Using Neutral Beam Injection

    Science.gov (United States)

    Bekheit, A. H.

    2013-08-01

    We model the internal transport barrier "ITB" in edge plasma of small size divertor tokamak with B2SOLPS0.5.2D fluid transport code. The simulation results demonstrated the following: (1) we control the internal transport barrier by altering the edge particle transport through changes the edge toroidal rotation which agree with the result of Burrell et al. (Edge Pedestal control in quiescent H-mode discharges in DIII-D using co-plus counter-neutral beam injection, Nucl Fusion, 49, 085024 (9pp) in 2009). (2) The radial electric field has neoclassical nature near separatrix with discharge by co-injection NBI. (3) The toroidal plasma viscosity has strong influence on the toroidal velocity.

  11. Programmable extraction of different energy proton beam to an experimental facility in the process of injection into the IHEP synchrotron

    International Nuclear Information System (INIS)

    The programmable different energy proton beam extraction to an experimental facility of the IHEP under injection to the IHEP proton synchrotron is realized in the following way; after inquiry from the IHEP EF transfer to a lower extraction energy and beam extraction to EF are performed. 1 ref.; 1 fig

  12. Enhancement of heat transfer between two horizontal liquid layers by gas injection at the bottom

    International Nuclear Information System (INIS)

    In connection with investigations concerning the cone melt-concrete interaction the enhancement of heat transfer between two horizontal liquid layers by gas injection has been studied using two systems - oil over water and oil over Wood metal - with very different density ratios. For the largest gas injection rate (superficial gas velocity 0.63 cm/s) the heat transfer coefficient is increased by nearly a factor 400 for oil over water and by about a factor of ten for oil over Wood metal. In the core melt-concrete interaction the superficial gas velocities might be even higher, therefore the gas-induced enhancement of interfacial heat transfer should be taken into account. (orig.)

  13. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    International Nuclear Information System (INIS)

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems

  14. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  15. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    Science.gov (United States)

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms. PMID:23004613

  16. High frequency cascaded resonant transformer rectifier power supply for neutral beam injection

    International Nuclear Information System (INIS)

    Neutral beam injection for fusion requires DC megavolt power sources at several amperes. The conventional methods of using series or shunt fed multipliers cannot provide the current while the 60 Hz coupled transformer method is difficult to modularize because of size and stores excessive amounts of energy. A technique which borrows from several technologies has been investigated and shows promise for a satisfactory solution. This technique uses resonant multistage high frequency (100 kHz) series coupled ferrite transformer with rectifiers to produce megavolts at several amperes of current. Modularity, high efficiency and low energy storage are desirable features of this power source

  17. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  18. Injection molding of nanopatterned surfaces in the sub-micrometer range with induction heating aid

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2014-01-01

    Replication of sub-micrometer structures by injection molding leads to special requirements for the mold in order to ensure proper replica and acceptable cycle time. This paper investigates the applicability of induction heating embedded into the mold for the improvement of nanopattern replication....... A tool insert having a surface containing functional geometries in the sub-micrometer range was produced using aluminum anodization and nickel electroplating. In order to provide elevated mold temperatures necessary for the complete replica of the pattern, a new mold setup was developed, which...... allows rapid heating of the cavity wall using an induction heating system. Temperature was measured using a thermocouple placed in the mold insert. The system was used to heat up the cavity wall with heating rates of up to 10 K/s. Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) were used as...

  19. Time- and spatial-behaviours of metal impurity during neutral-beam injection on the JFT-2 tokamak

    International Nuclear Information System (INIS)

    The detailed time- and spatial-behaviours of emissions from iron impurities with the different ionic charge were obtained in the JFT-2 deutrium discharges with co- or counter-injections. In co-injection, the iron impurity is driven out from the central region of the plasma, and in counter-injection, they appear to accumulate and the plasma is not disrupted. These enhanced diffusion of the iron impurity can well be explained by the neutral-beam induced effect (direct beam-impurity interaction and toroidal rotation of the plasma), predicted by the neoclassical theory. (author)

  20. Hydrogen cluster-like behaviour during supersonic molecular beam injection on the HL-1M tokamak

    International Nuclear Information System (INIS)

    Pulsed supersonic molecular beam injection (SMBI) has been developed successfully and used in the HL-1M tokamak. It is an attempt to enhance the penetration depth and fuelling efficiency. With a penetration depth of hydrogen particles beyond 8 cm, the rising rate of electron density, dn-bare/dt, was up to 7.6x1020m-3·s-1 without disruption, and reached the highest plasma density n-bare=8.2x1019m-3 on HL-1M. With SMBI the plasma energy confinement time, τE, measured by diamagnetism is 10-30 % longer than that with gas puffing when other discharge conditions are kept the same. The fuelling method of SMBI has recently been improved to make a survey of the cluster effects within the beam. A series of new phenomena show the interaction of the beam (including clusters) with the toroidal plasma. Hydrogen clusters may be produced in the beam according to the Hagena empirical scaling law of clustering onset, Γ*=(kd0.85P0)/T02.29). If Γ*>100, clusters will form. In the present experiment Γ* is about 127. (author)

  1. Induction Heating System Applied to Injection Moulding of Micro and Nano Structures

    DEFF Research Database (Denmark)

    Menotti, Stefano

    The present Ph.D. thesis contains a study concerning induction heating system applied to injection moulding of micro and nano structures. The overall process chain was considered and investigated during the project including part design, simulation, conventional and non-conventional tooling...... part. In fact one of the main problems in micro injection moulding is the premature freezing of the polymer flow inside the cavity and often is not possible to obtain a full replica of the nano/micro structures embed on the surfaces. Some other defects that can be avoided with the use of an additional...

  2. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation)

    International Nuclear Information System (INIS)

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 1004464 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs

  3. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  4. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  5. Experiments on air bubbles injection into a vertical shell and coiled tube heat exchanger; exergy and NTU analysis

    International Nuclear Information System (INIS)

    Highlights: • Air bubbles injection was employed to enhance the performance of a vertical shell and coiled tube heat exchanger. • Air bubbles were injected into the shell side of heat exchanger via a new method at different conditions. • NTU enhancement and Exergy loss due to air bubbles injection were studied. • Present type of air bubble injection significantly increased the amount NTU and performance of heat exchanger. - Abstract: In this paper, attempts are made to increase the number of thermal units (NTU) and performance in a vertical shell and coiled tube heat exchanger via air bubble injection into the shell side of heat exchanger. Besides, exergy loss due to air bubble injection is investigated. Indeed, air bubble injection and bubbles mobility (because of buoyancy force) can intensify the NTU and exergy loss by mixing the thermal boundary layer and increasing the turbulence level of the fluid flow. Air bubbles were injected inside the heat exchanger via a special method and at new different conditions in this paper. It was demonstrated that the amount of NTU and effectiveness can be significantly improved due to air bubbles injection

  6. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  7. A computer simulation code of heat input due to incidence of fast ion beam

    International Nuclear Information System (INIS)

    A computer code has been developed to evaluate heat flux due to bombardment of ion beam to the beam limiters and beam dump of the neutral beam injector. In this code, energetic ions extracted from the ion source are represented by finite number of test particles, and their trajectories are calculated in the presense of magnetic field. They are bent and reflected as they pass through the bending magnet region. Finally they bombard the wall of the beam limiters and beam dump, where their energies are deposited. The heat flux can be derived from the number of bombarding test particles in a unit area. The code has been applied to the design of beam line hardwares of the JT-60 neutral beam injectors. (author)

  8. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    International Nuclear Information System (INIS)

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H/sub α/ emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but it can be degraded due to either the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Te near the plasma edge (approx. 450 eV) with sharp radial gradients (approx. 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix

  9. Global energy confinement scaling for neutral-beam-heated tokamaks

    International Nuclear Information System (INIS)

    A total of 677 representative discharges from seven neutral-beam-heated tokamaks has been used to study the parametric scaling of global energy confinement time. Contributions to this data base were from ASDEX, DITE, D-III, ISX-B, PDX, PLT, and TFR, and were taken from results of gettered, L-mode type discharges. Assuming a power law dependence of tau/sub E/ on discharge parameters kappa, I/sub p/, B/sub t/, anti n/sub e/ P/sub tot/, a, and R/a, standard multiple linear regression techniques were used in two steps to determine the scaling. The results indicate that the discharges used in the study are well described by the scaling tau/sub E/ α kappa/sup 0.28/ B/sub T//sup -0.09/ I/sub p//sup 1.24/anti n/sub e//sup -0.26/ P/sub tot//sup -0.58/ a/sup 1.16/ (R/a)/sup 1.65/

  10. Global energy confinement scaling for neural-beam-heated tokamaks

    International Nuclear Information System (INIS)

    A total of 677 representative discharges from seven neutral-beam-heated tokamaks have been used to study the parametric scaling of global energy confinement time. Contributions to this data base were from Asdex, DITE, D-III, ISX-B, PDX, PLT and TFR, and were taken from results of gettered, L-mode type discharges. Assuming a power law dependence of tausub(E) on the discharge parameters kappa, Isub(p), Bsub(t), n-barsub(e)Psub(tot), a and R, standard multiple linear regression techniques were used in two steps to determine the scaling. The results indicate that the discharges used in the study are well described by the scaling tausub(E) is proportional to kappasup(0.28)Bsub(T)sup(-0.09)Isub(p)sup(1.24)n-barsub(e)sup(0.26) Psub(tot)sup(-0.58)asup(-0.49)Rsup(1.65). (author)

  11. Design study of a new antenna system for steering microwave beam in electron cyclotron heating/current drive system

    International Nuclear Information System (INIS)

    The reflector driven in the linear motion to steer the microwave beam for electron cyclotron heating/current drive system, which has considerable merits, especially for reactor environments, has been studied in design. In a typical design, a microwave beam launched from the end of a waveguide is reflected at a concave mirror following a fixed flat mirror. The injection angle can be changed by varying a point of reflection on the concave mirror because of the transition of the normal angle of the concave mirror. The point of reflection is easily controlled by the linear motion of the concave mirror. It is notable that mirror rotation is not required, and the inside of a robust driving shaft can be used to supply the coolant to the mirror. This indicates that the antenna can be designed without a rotation axis, bearings, and a flexible cooling tube close to the plasma which may require frequent maintenance or replacement in a highly radioactive environment. This study shows that the antenna driven in the linear motion has a potential to meet certain specifications, especially with regard to antenna size, steerable range of the beam angle, and beam quality for experiments in tokamaks and for fusion reactors. In the preliminary design trial for the ITER equatorial antenna, the concaved mirror of 0.3 m in length having 1 m curvature and stroke of 0.2 m enables beam angle range of 20-40 deg. with beam radius of 0.06 m at the EC resonance

  12. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  13. Quenching by top flooding of a heat generating particulate bed with gas injection at the bottom

    International Nuclear Information System (INIS)

    Continued undercooling of the core of a light water reactor can result in severe degradation of the core material. In the degraded state, the core can form a heat generating debris bed. Successful quenching of such a debris bed must be accomplished before continuous cooling can be established. In this paper, experimental results on top quenching of a particulate bed with internal heat generation are reported. The effect of gas injection at the bottom was also examined. A model which included the effect of axial conduction is proposed to predict the quench front history and temperature variation in the unquenched portion of the bed

  14. Numerical modeling of magnetic induction and heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Hattel, Jesper Henri

    2013-01-01

    Injection molding of parts with special requirements or features such as micro- or nanostructures on the surface, a good surface finish, or long and thin features results in the need of a specialized technique to ensure proper filling and acceptable cycle time. The aim of this study is to increase...... the temperatures as close as possible to the cavity surface, by means of an integrated induction heating system in the injection molding tool, to improve the fluidity of the polymer melt hereby ensuring that the polymer melt will continue to flow until the mold cavity is completely filled. The...... presented work uses numerical modeling of the induction heating in the mold to investigate how the temperature in the mold will be distributed and how it is affected by different material properties....

  15. Micro Injection Molding of Thin Walled Geometries with Induction Heating System

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2014-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness and...... moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios of...... small structures. ABS was used as material and different combinations of injection velocity, pressure and mold temperature were tested. The replicated test objects were measured by means of an optical CMM machine. On the basis of the experimental investigation the efficacy of the embedded induction...

  16. Long term creep tests on timber beams in heated and non-heated environments

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, S.; Kortesmaa, M.; Ranta-Maunus, A. [VTT Building Technology, Espoo (Finland). Building Materials and Products

    1996-12-31

    The aim of this research investigation was to study the long term effect of creep on different wood materials under natural environmental conditions. The tests were initiated in the summer of 1992 and the results collected until the end of 1995 are reported here. The experiments on sawn timber of pine and spruce, glulam, Kerto-LVL and I-profile with hard board web structural size members were carried out in a sheltered environment, where the changes in moisture and temperature of the surrounding followed the natural climatic conditions of Southern Finland. In addition, separate tests on eight glulam beams were carried out in a heated room environment. The experiments were carried out at low load levels (2-7 MPa). The surface of few groups of specimens were treated with alkyd and emulsion paint, some were creosoted and salt impregnated, while few samples had no treatment. The creep test data of all specimens were analysed systematically to obtain creep curves. The data showed significant variation in creep among wood materials with different treatments. Creep of glulam was same in heated and non-heated environment. (orig.) (3 refs.)

  17. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  18. Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

    CERN Document Server

    Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C H; Lu, W; Mori, W B; Joshi, C

    2015-01-01

    An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beam's energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rm...

  19. Application of steam injection and electrical heating for enhanced in situ soil and ground water treatment

    International Nuclear Information System (INIS)

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by an increase in soil temperature. Of the various methods of delivery of thermal energy to soils and ground water, steam injection appears to be the most economical and versatile technique for soils with sufficient permeability. The use of steam injection to recovery volatile semivolatile, and nonvolatile contaminants from the sub-surface also allows the exploitation of various thermodynamic and hydrodynamic mechanisms. These mechanisms include vaporization of liquids with boiling points below that of water, enhanced evaporation rates of semivolatile components, physical displacement of low viscosity liquids, dilution and displacement of aqueous contaminants, and removal of residual contaminants from low permeability zones by depressurization and vacuum drying. Electrical heating provides a means of preferentially heating the low permeability zones. A recently completed field-scale demonstration of the patented combined steam injection and electrical heating enhanced extraction technology (Dynamic Underground Stripping) to remove gasoline at a site at Lawrence Livermore National Laboratory confirms the effectiveness of this technique and its applicability to contaminants found above and below the water table

  20. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take...... advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...

  1. Ion cyclotron instabilities driven by the nearly perpendicular neutral beam injection in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    The problem of ion cyclotron instabilities driven by the high power neutral beam injection is investigated for the conditions of the W VII-A stellarator by means of linear stability analysis. On the basis of only collisional (classical) slowing down, beam ion distribution functions are calculated by means of Monte Carlo simulation. In this report, various cases are considered: Transient beam ion distributions (i) immediately after switch on the neutral beam injection and (ii) after half of an average slowing down time; stationary beam ion distributions (iii) for confinement properties strongly improved by radial electric fields, transport and fast orbit losses are neglected for these situations, and (iv) for worse confinement properties for which the average beam ion confinement time is of the order of the average slowing down time. Furthermore, the distribution functions of the ions originating from the neutral beam injection are estimated for the early phase of the discharges with low temperatures and for the later phase with maximum ion temperatures. (orig.)

  2. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    International Nuclear Information System (INIS)

    Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first investigated in the highly relativistic regime, using 100 TW class, 27fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundred MeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5GeV/cm. (physics of gases, plasmas, and electric discharges)

  3. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  4. Molten pool quenching phenomena: Stability and heat transfer with multiphase injection

    Science.gov (United States)

    Klockow, Helge B.

    In the design of the next generation of nuclear reactors and in the safety assessment of the currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded-core accident and to identify the key strategies to follow in order to mitigate the possible consequences. The ex-vessel cooling by bottom water injection strategy presumes the failure of the reactor pressure vessel. This project is focused on determining the influence of water mass flow rate, system pressure and co-injected gas flow rate on the volumetric heat removal rate, flow stability and molten pool void fraction of the system. An apparatus has been designed, which uses molten lead at a temperature of 500°C as a corium simulant. A wide array of experiments are being performed focused on co-injection of 1--6 g/s of water and up to 30 slpm of Argon at system pressures of up to 5 bar, typical of that expected in accident scenarios. Important parameters for the heat transfer characteristics are measured and flow instability is investigated. The experiments indicate that the heat removal rate from the melt increases with increasing water injection rate. The void fraction increases with increasing water mass flow rate as expected. An increase from low to medium pressure (0--2.5 bar) decreases the void fraction, while there is a modest decrease due to a pressure increase from medium to high pressures (2.5--5 bar). Increasing the water flow rate results in a shift towards an unstable flow regime. An increase in system pressure suppresses the observed flow instabilities. The presence of non-condensable gas also stabilizes the system. Beyond some limit, the heat removal rate appears to be independent of the water injection rate. These findings suggest that there exist an optimum water mass flow rate for melt quenching between 0.3 and 1.0 kg/m2-s under the current composition, geometric scale, and anticipated accident condition pressures. Suggestions on how to

  5. Neoclassical current effects in neutral-beam-heated tokamak discharges

    International Nuclear Information System (INIS)

    There is a long-standing prediction from neoclassical theory that strong contributions to the toroidal current should be driven by friction between trapped and passing particles when βsub(pol) exceeds root (R/a) in a tokamak. A number of neutral-beam heating experiments can now produce such parameters, and it is of interest to calculate the behaviour which should occur in this regime to determine the feasibility of using such a 'bootstrap' current as a steady-state tokamak current source. It is found that the neoclassical current should be large enough to reverse the external loop voltage for typical experimental parameters (ISX-B, in particular) in cases where the total current is fixed and to produce a detectable excess of total current above the pre-programmed (demand) value in cases where the loop voltage is regulated. Other manifestations of such a current should be either: a sharp rise in the central q-value (producing a cessation of internal m=1 and m=2 MHD activity), with an enhancement by two orders of magnitude of ion thermal conductivity (due to the formation of a hollow current density profile and a consequent drop in local values of the poloidal magnetic field in the central plasma region), or an enhanced tendency for disruption (arising from magnetic reconnection in hollow-profile equilibria). Since these gross manifestations are absent in a wide range of experiments on the Impurity Study Experiment (ISX-B), as reported earlier, the conclusion is that the neoclassical current, if present, can have a value no larger than 25% of its theoretically calculated value. Since the neoclassical particle (Ware) pinch is strongly related to the neoclassical current in the theory (Onsager reciprocity), the existence of the particle pinch is thus called into question. (author)

  6. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  7. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Science.gov (United States)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Gerhardt, S. P.; Boyer, M. D.; Andre, R.; Kolemen, E.; Taira, K.

    2016-03-01

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  8. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  9. An IGBT Driven Slotted Beam Pipe Kicker for SPEAR III Injection

    International Nuclear Information System (INIS)

    The SPEAR III injection kicker system is composed of three kicker magnets, K1, K2, and K3. These magnets, along with the power modulators to drive them constitute an injection system which will be used to deflect an incoming electron beam with an energy of 3.3 GeV by an angle of 2.5 mrad for K1 and K3, and 1 mrad for K2. The pulse shape of the magnetic field in the three magnets must be matched in order to preserve a closed orbit. The pulse duration is required to be less than 780 ns, with rise and fall times of less than 375 ns, and a pulse repetition frequency of 10 Hz. The aperture of all three magnets is 60 x 34 mm in an 8 inch vacuum vessel. The magnetic length is 1.2 m for K1 and K3, and 0.6 m for K2 [1]. The magnet design employs a slotted beam pipe which is shorted at one end. A solid state IGBT based, induction type of modulator drives the magnets. Modulators for K1 and K3 consist of eight 4.5 kV, 600 A IGBTs, and eight Finemet magnet cores with four 22.5 Ohm output cables to drive 2381 A into the magnets. The modulator for K2 uses four IGBTs and cores, and 8 output cables to produce a 2619 A pulse. Cables of length greater than one half the pulse width must be used in order to avoid reflections from the shorted magnet. The design charge voltage for the modulators is 20 kV for K1 and K3. This paper describes the magnet and modulator design, as and presents test data from a prototype system

  10. Excitation of HF and ULF-VLF waves during charged particle beams injection in active space experiment

    Czech Academy of Sciences Publication Activity Database

    Baranets, N. V.; Sobolev, Y. P.; Ruzhin, Yu. Ya.; Rothkaehl, H.; Erokhin, N. S.; Afonin, V. V.; Vojta, Jaroslav; Šmilauer, Jan

    2009-01-01

    Roč. 8, - (2009), s. 251-256. ISSN 1883-9630. [International Congress on Plasma Physics 2008/14st./. Fukuoka, 08.09.2008-12.09.2008] Institutional research plan: CEZ:AV0Z30420517 Keywords : beam-into-beam injection * waves excitation * dipole antenna Subject RIV: BL - Plasma and Gas Discharge Physics http://www.jspf.or.jp/JPFRS/PDF/Vol8/jpfrs2009_08-0251.pdf

  11. Low energy spread electron beams from ionization injection in a weakly relativistic laser wakefield accelerator

    International Nuclear Information System (INIS)

    We show via two-dimensional particle-in-cell simulations that low energy spread, relativistic electron beams (>120 MeV, <15%) can be produced in the weakly non-linear regime of a plasma wakefield, driven by a moderate power laser pulse (initial a0 < 1). Higher ionization states of a high-Z trace species, mixed in a background H plasma, provide the source of injected electrons. Injection occurs even though the laser intensity is initially well below the trapping threshold, as it is found that the laser pulse evolves until it fulfils the trapping requirements through self-compression. By careful control of intensity and density, the amount of evolution and hence of trapping can be controlled. Acceleration is terminated by depletion due to the extended evolution time, leading to narrow energy spread features even for long interaction lengths. Particle tracking shows that electrons ‘born’ at the periphery of the laser pulse are more likely to follow smoother trajectories inside the wakefield and subsequently to be trapped and accelerated. (paper)

  12. Development of the heat sink structure of a beam dump for the proton accelerator

    International Nuclear Information System (INIS)

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  13. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon (Korea, Republic of); Impurity and Edge Plasma Research Center, KAIST, 34141 Daejeon (Korea, Republic of); Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H. [National Fusion Research Institute, 34133 Daejeon (Korea, Republic of); Ghim, Y.-C. [Deparment of Nuclear and Quantum Engineering, KAIST, 34141 Daejeon (Korea, Republic of)

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  14. An assessment of relativistic electron beam for plasma heating in magnetically confined devices

    International Nuclear Information System (INIS)

    The status and progress of various techniques employed for heating the plasma to thermonuclear temperature in magnetically confined devices are presented. The merits and demerits of each technique are critically studied with a view to assess the potential of Relativistic Electron Beam (REB) heating technique, which is a new comer in the field. It has been concluded that REB heating is very much suitable for linear solenoidal reactor devices and is also a potential future candidate for plasma heating for torodial devices. (auth.)

  15. Novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    Science.gov (United States)

    Franchi, Andrea; Giovannozzi, Massimo

    2015-07-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fast-pulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the incoming or outgoing beam.

  16. Experiments of synchrotron injection using the direct fast chopped H- beam extracted from surface-plasma-type negative hydrogen ion source

    International Nuclear Information System (INIS)

    An experiment of synchrotron injection using the direct fast chopped H- beam extracted from a surface-plasma-type H- ion source has been successfully achieved. The injection phase of the fast chopped beam from linac into the booster synchrotron is adjustable against the center of rf bucket by using this beam. It was obtained that the longitudinal emittance was controlled at the extraction of the booster synchrotron, and that the beam loss during the injection into main ring of the KEK-PS was reduced by this fast chopped beam. (author)

  17. Performance Test of High Heat Flux Test Facility for the Calorimetry and Beam Control

    International Nuclear Information System (INIS)

    The Korea Heat Load Test facility, KoHLT-EB (Electron Beam) has been operating for the plasma facing components to develop fusion engineering in Korea. The ITER Neutral Beam Duct Liner (NBDL) was fabricated and tested to qualify the thermocouple fixation method for the temperature measurement during a direct collision of the high-power neutral beam during ITER operation. The NBDL is CuCrZr panels, which are actively water cooled using deep drilled channels. To perform the profile test, the assessment for the possibility of an electron beam Gaussian power density profile and the result of absorbed power for that profile before the test start is needed. To assess the possibility of Gaussian profile, for the qualification test of a Gaussian heat load profile, small calorimetry was manufactured to simulate a real heat profile in the neutral beam duct liner, and this calorimetry has two cooling channel with five thermocouples, which is the same as NBDL. Preliminary analyses with ANSYSCFX using a 3D model were performed with the calorimetry model. The heating area was modeled to be 60 mm x 250 mm. The simulated heat flux is 0.5 - 1.2 MW/m''2 at 0.75 kg/sec of the water flow rate. A steady heat flux test was performed to measure the surface heat flux, surface temperature profile. With a thermohydraulic analysis and heat load test, the Gaussian heat profile will be confirmed for this calorimetry and NBDL mockup. The Korean heat load test facility will be used to qualify the specifications of various plasma facing components in fusion devices. To conduct a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test

  18. Non-Fourier Heat Conduction Effects During High-Energy Beam Metalworking

    Institute of Scientific and Technical Information of China (English)

    张海泉; 张彦华; 赵海燕

    2004-01-01

    Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi-infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a criterion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.

  19. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  20. Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater

    OpenAIRE

    Calzada i Oliveras, Eduard

    2012-01-01

    The most common way to exchange heat with the ground in Ground Source Heat Pump (GSHP) applications is with borehole heat exchangers (energy col-lectors in vertical wells). These boreholes contain the pipe with the secondary fluid of the GSHP and they are often filled with natural groundwater. It has been recently discovered that injecting air bubbles in the groundwater side of the boreholes increases the efficiency of the heat transfer. The aim of this thesis is to analyze the thermal change...

  1. ACTIVE LONGITUDINAL PAINTING FOR THE H-CHARGE EXCHANGE INJECTION OF THE LINAC4 BEAM INTO THE PS BOOSTER

    CERN Document Server

    CARLI, C; CERN. Geneva. AB Department

    2008-01-01

    Linac4 will provide 160 MeV H- to the PS Booster synchrotron. The H-beam will be injected by charge exchange injection allowing injecting several times into the same volumes of phase space. Thus, a large number of turns can be injected with high efficiencies and â€ワpainting” in order to shape the initial particle distribution for optimum performance becomes possible. In particular, a chopper makes longitudinal painting possible in addition to painting in transverse phase spaces. The slow synchrotron motion in the PS Booster implies an active longitudinal painting scheme, where the Linac4 output energy is modulated. Several active longitudinal painting schemes are presented. One scheme, based on a triangular Linac energy modulation, is proposed for the PS Booster H- injection with Linac4.

  2. Efficient Heating of Thin Cylindrical Targets by Broad Electromagnetic Beams I

    OpenAIRE

    Akhmeteli, Andrey

    2004-01-01

    In many high-profile applications, such as nuclear fusion and pumping of active media of short-wavelength lasers, it is necessary to achieve high specific input of power of an electromagnetic beam in a target. Diffraction sets the lower limit to the transverse dimensions of electromagnetic beams and represents a fundamental obstacle for electromagnetic heating of small or inaccessible regions. It was found, however, that it is possible to achieve efficient heating of cylindrical targets by el...

  3. Molten pool quenching phenomena: stability and heat transfer with multiphase injection

    International Nuclear Information System (INIS)

    Full text of publication follows: In the design of the next generation of nuclear reactors and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to identify key strategies to follow in order to mitigate the possible consequences. In the very unlikely event of a severe reactor accident involving core melt and pressure vessel failure, it is important to identify the circumstances that would allow the molten core material to cool down and re-solidify in the reactor cavity, bringing core debris to a stable coolable state (for conventional as well as advanced LWRs). Accident management strategies have to take different accident scenarios into account. Depending on the accident the amount of molten core (corium) and its composition can vary significantly. The ex-vessel strategy presumes a failure of the reactor pressure vessel. To achieve coolability, water needs to be present in the reactor cavity as a heat transfer medium to the ultimate heat sink. The controlled interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve core coolability. In previous experiments different types of contact modes have been investigated: a) Top Flooding (MACE experiments), b) Melt Pouring into Water (FARO experiment), and c) Bottom Injection (COMET, Decobi). The bottom injection mode is of special interest for this paper. Energetic melt dispersal of melt by Fuel Coolant Interactions, plugging of injection nozzles, and several other issues that lead to flow instabilities and oscillations could hinder operations and reliability of this cooling concept. The focus of this work is to determine the heat transfer behavior under a variety of different conditions and to study flow stability depending on several parameters to develop an optimum geometry and flow rate for water injection that is

  4. DIII-D Quiescent H-Mode Experiments With Co Plus Counter Neutral Beam Injection

    Science.gov (United States)

    Burrell, K. H.; West, W. P.; Gohil, P.; Groebner, R. J.; Snyder, P. B.; Fenstermacher, M. E.; Lasnier, C. J.; Solomon, W. M.

    2006-10-01

    In many ways, quiescent H-modes are the ideal H-mode plasma. They exhibit H-mode confinement for long duration (>4 s or 30 τE) with constant density and radiated power. The absence of edge localized modes (ELMs) means no pulsed divertor heat loads. The quiescent edge is also quite compatible with core transport barriers. To utilize QH-mode in future devices, the goals of our recent QH-mode experiments are to develop an improved physics understanding of the QH-mode, especially the ELM stabilization, and to broaden the QH-mode operating space. During the 2006 campaign, we utilized DIII-D's new co plus counter NBI capability to determine how much counter injection is necessary for QH-mode operation. As plasma triangularity is increased, increasing amounts of co-injection can be used while still maintaining the quiescent state. This is consistent with expectations based on peeling-ballooning mode theory. Further experiments are planned to explore the co-counter boundary more thoroughly.

  5. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  6. Low energy, high power hydrogen neutral beam for plasma heating.

    Science.gov (United States)

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  7. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  8. Evolution of High Intensity Beams in the CERN PS Booster after H⁻ Injection and Phase Space Painting

    CERN Document Server

    Cieslak-Kowalska, Magdalena; Benedetto, Elena; Bracco, Chiara

    2016-01-01

    With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H⁻ injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.

  9. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    CERN Document Server

    Zeng, Ming; Chen, Min; Mori, Warren B; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-01-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of $2.4\\rm \\mu m$ and $0.8\\rm \\mu m$ for wakefield excitation and for triggering electron injection via field ionization, respectively. A laser pulse at $2.4\\rm \\mu m$ wavelength enables one to drive an intense acceleration structure with relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our full three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around one percent) and high charges (several tens of picocoulomb) can be obtained by this scheme with laser parameters achievable in the near future.

  10. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    Science.gov (United States)

    Zeng, Ming; Luo, Ji; Chen, Min; Mori, Warren B.; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-06-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of 2.4 μ m and 0.8 μ m for wakefield excitation and triggering electron injection via field ionization, respectively. A laser pulse at 2.4 μ m wavelength enables one to drive an intense acceleration structure with a relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around 1%) and high charges (several tens of picocoulomb) can be obtained by the use of this scheme with laser peak power totaling sub-100 TW.

  11. Electron beam heating of a semi-infinite solid

    International Nuclear Information System (INIS)

    Techniques are described for calculating the temperature rise in a semi-infinite solid caused by any cylindrically symmetric electron beam incident on its surface. The temperature rise at any point and time can be expressed as two dimensional integral, but this cannot be evaluated conveniently by numerical methods because of singularities. A mixed numerical plus analytical method has therefore been developed. For the special case of a 'hollow' electron beam consisting of a line of Gaussian sources uniformly distributed along a circle further simplification is possible, to a one dimensional integral which can be evaluated by simple numerical methods. Results are presented for this 'hollow' electron beam and for a beam with uniform current density. (author)

  12. A Case Study of Heat Transfer from Hot Runner Mould to the Fix Platen of the Injection-moulding Machine

    Institute of Scientific and Technical Information of China (English)

    C; H; Tan; K; S; Lee

    2002-01-01

    In an injection moulding process, the parallelism b et ween the tie bars of the injection moulding machine is very important as it will affect the mould closing and clamping system. In recent years, more and more ho t runner systems are being applied in the moulding industry to save material and decrease the losses of injection pressure. Heat transfer from hot runner system from the fixed half which is secured in the fix machine platen could transmit s o much heat that it may cause high temperature diffe...

  13. Effect of supersonic molecular-beam injection on edge fluctuation and particle transport in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Zang, L., E-mail: l-zang@center.iae.kyoto-u.ac.jp; Kasajima, K.; Hashimoto, K.; Kenmochi, N. [Graduate School of Energy Science, Kyoto University, Uji 611-0011 (Japan); Ohshima, S.; Mizuuchi, T.; Yamamoto, S.; Sha, M.; Nagasaki, K.; Kado, S.; Okada, H.; Minami, T.; Kobayashi, S.; Shi, N.; Konoshima, S.; Nakamura, Y.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011 (Japan); Nishino, N. [Graduate School of Engineering, Hiroshima University, Higashihiroshima 739-8527 (Japan); Takeuchi, M. [Naka Fusion Institute, Japan Atomic Energy Agency, Naka 311-0193 (Japan); Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); and others

    2014-04-15

    Edge fluctuation in a supersonic molecular-beam injection (SMBI) fueled plasma has been measured using an electrostatic probe array. After SMBI, the plasma stored energy (W{sub p}) temporarily decreased then started to increase. The local plasma fluctuation and fluctuation induced particle transport before and after SMBI have been analyzed. In a short duration (∼4 ms) just after SMBI, the density fluctuation of broad-band low frequency increased, and the probability density function (PDF) changed from a nearly Gaussian to a positively skewed non-Gaussian one. This suggests that intermittent structures were produced due to SMBI. Also the fluctuation induced particle transport was greatly enhanced during this short duration. About 4 ms after SMBI, the low frequency broad-band density fluctuation decreased, and the PDF returned to a nearly Gaussian shape. Also the fluctuation induced particle transport was reduced. Compared with conventional gas puff, W{sub p} degradation window is very short due to the short injection period of SMBI. After this short degradation window, fluctuation induced particle transport was reduced and W{sub p} started the climbing phase. Therefore, the short period of the influence to the edge fluctuation might be an advantage of this novel fueling technique. On the other hand, although their roles are not identified at present, coherent MHD modes are also suppressed as well by the application of SMBI. These MHD modes are thought to be de-exited due to a sudden change of the edge density and/or excitation conditions.

  14. Evaluation of RCS injection strategy by normal residual heat removal system in severe accident management

    International Nuclear Information System (INIS)

    Highlights: • Integrated severe accident analysis model of ALWR RCS, ESF and containment is built. • Large-break loss of coolant accident and loss of feed water accident are analyzed. • Effectiveness of RNS injection strategy and plant system response are investigated. • Impact of RNS injection on hydrogen generation and distribution is evaluated. • Negative impact induced by different RCS depressurization measures is investigated. - Abstract: Severe Accident Management Guidelines (SAMGs) suggests mitigating the consequence of severe accident scenarios by using the non-safety systems if the safety systems are unavailable. For 1000 MWe advanced passive pressurized water reactor (PWR), the normal residual heat removal system (RNS) is proposed to implement the Reactor Coolant System (RCS) injection strategy during severe accidents if safety systems fail. Therefore, evaluation of the effectiveness and negative impact of RNS injection strategy is performed, in which two typical severe accident sequences are selected, which are the typical low-pressure core melt accident sequence induced by Large-break Loss of Coolant Accident (LLOCA) with double-ended guillotine break at cold leg and the typical high-pressure core melt accident induced by Loss of Feed Water (LOFW), to analyze RCS response using the integrated severe accident analysis code. The plant model, including RCS, Engineering Safety Features (ESF), containment and RNS, is built to evaluate the effectiveness of RNS injection by comparing the sequences with and without RCS injection, which shows that RNS injection can terminate core melt progression and maintain core cooling in these accident sequences. However, hydrogen generated during the core reflooding is investigated for the negative impact, which shows that RNS may increase the hydrogen concentration in the containment. For the sequence induced by LOFW, two different RCS depressurization measurements are compared, which shows that opening ADS

  15. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Science.gov (United States)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  16. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  17. Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Gordnorouzi, Rouzbeh; Hultmark, Göran; Afshari, Alireza;

    Active chilled beam systems are used to provide heating and cooling in order to achieve comfortable thermal indoor climate. For heating and cooling applications, an active chilled beam has two water circuits comprising four pipes that supply warm and cold water respectively to the beam coil...... according to the space demand. Lindab Comfort A/S has introduced an active chilled beam system which has just one water circuit (two pipes) that is used for both heating and cooling. The concept is based on high temperature cooling and low temperature heating. In this study the energy saving potential of...... the new two-pipe active chilled beam system is investigated....

  18. Efficient Heating of Thin Cylindrical Targets by Broad Electromagnetic Beams II

    OpenAIRE

    Akhmeteli, Andrey

    2006-01-01

    In Part I (physics/0405091), it was shown that it is possible to achieve efficient heating of cylindrical targets by electromagnetic beams with transverse dimensions that are several orders of magnitude greater than those of the cylinder. Part II contains derivation of the detailed conditions of efficient heating in the longitudinal geometry and establishes a broader domain of parameters providing efficient heating in the transverse geometry. One possible implementation using currently availa...

  19. Review of electron-beam heating of magnetic-mirror confined plasmas, with application to the Tandem Mirror Experiment

    International Nuclear Information System (INIS)

    This report reviews results from early electron-beam heating experiments and more recent basic beam-plasma physics experiments as well as present theoretical understanding. We find tha rather simple electron-beams could be employed on the Tandem Mirror Experiment (TMX) at Lawrence Livermore Laboratory to carry out electron heating experiments

  20. Ion beam injected point defects in crystalline silicon: Migration, interaction, and trapping phenomena

    International Nuclear Information System (INIS)

    The recent work on the room temperature migration and trapping phenomena of ion beam generated point defects in crystalline Si is reviewed. It is shown that a small fraction (∼10-6) of the defects generated at the surface by a shallow implant is injected into the bulk. These defects undergo a long range trap-limited diffusion and interact with both impurities, dopants and preexisting defects along their path. In particular, these interactions result in dopant deactivation and/or partial annihilation of pre-existing vacancy-type defect markers. It is found that in highly pure, epitaxial Si layers, these effects extend to several microns from the surface, demonstrating a long range migration of point defects at room temperature. By a detailed analysis of the experimental evidences the authors have identified the Si self-interstitials as the major responsible for the observed phenomena. This allowed them to give a lower limit of 6 x 10-11 cm2/s for the room temperature diffusion coefficient of the Si self-interstitials. Room temperature trap-limited migration of vacancies is also detected as a broadening in the divacancy profile of as implanted samples. In this case the room temperature diffusion coefficient of vacancies has been found to be ≥3 x 10-12 cm2/s. These data are presented and their implications discussed

  1. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Hu, Liqun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Yubao [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  2. ProVac3D and application to the neutral beam injection system of ITER

    International Nuclear Information System (INIS)

    We have developed ProVac3D (3D density Profiles in Vacuum systems), a Monte Carlo simulation code, to calculate gas dynamics and the density profiles in a complex vacuum system characterized by distributed gas sources and pumps. The Neutral Beam Injection System of ITER is a good example of such a system, for which Forschungszentrum Karlsruhe is responsible to design the state-of-the-art cryogenic pump. By using ProVac3D, we can intensively study volumes of interest inside NBI and get the information about the pumping speed in order to provide the required density profile along the beamline. The advantage of ProVac3D is that it is flexible with modular structures and very fast to achieve precise statistics by large simulation numbers even with a current desktop computer. To extend ProVac3D beyond the free molecular regime, the collision of the probe molecule with the gas background has been included. We are going to present some preliminary results as well.

  3. Influence of Off-axis Neutral Beam Injection on Resistive Wall Mode Stability

    International Nuclear Information System (INIS)

    Full text: The stabilization of the resistive wall mode (RWM) is an essential issue for future magnetic fusion reactors (e.g., ITER) aiming at long-duration steady discharges over the no-wall beta limit. The RWM has been extensively investigated during recent years, both theoretically and experimentally. However, so far the physical mechanism of the passive control of the RWM has not been investigated fully, particularly the mechanism for the interaction between the RWM and energetic particles (EPs). Recent experiments in DIII-D indicate that the increase of the off-axis neutral beam injection (NBI) power can lead to the enhancement of RWM stability, which is opposite to expectation from consideration of the trapped particles fraction reduced by off-axis NBI. In this work, we apply our previous theory model to investigate the deposition effect of trapped EPs from off-axis NBI on the RWM instability. The results show that the spatial deposition effect of trapped EPs indeed significantly affects the RWM stability, and, compared with the on-axis case, off-axis deposition of EPs can contribute more stabilization to the RWM. (author)

  4. Characteristics of the SF6/H2 laser initiated by an axially injected electron-beam

    International Nuclear Information System (INIS)

    The experimental and analytical studies on the characteristics of SF6/H2 laser were performed. The experimental apparatus consisted of a low-impedance Marx generator, an electric field emission diode, a laser tube, and an axial field coil. The electron beam of 320 KeV and 2.5 kA was injected into SF6/H2 gas. A simulation model to derive laser parameters is the rate equation model which includes ignition reaction, excitation reaction and relaxation reaction. The laser energy, the wave form of laser pulses, photon production rate and the number of produced molecules of HF were derived from the model. The maximum laser power was 450 mJ with the FWHM of 160 ns, when the gas mixing ratio of SF6/H2 was 11 to 1 and the gas pressure was 120 Torr. The optimum length of a laser tube was about 500 mm. The generation efficiency of laser was 4.9 percent. The values of laser parameters obtained from the simulation were 2.0 x 10-3 of the F atom dissociation of SF6 and 15.7 eV/F of the production energy of one F atom. (Kato, T.)

  5. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    International Nuclear Information System (INIS)

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well

  6. Steerable beam systems for electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Several methods are discussed for steering a 200 kW pencil beam of electromagnetic waves in the 60 GHz to 200 GHz frequency range. These include methods incorporating swivelling mirrors, phased arrays, mode converters, and optical materials. It is found that for the near term, the mechanical systems are best, capable of steering times of 3 ms to 100 ms and losses of less than 5%. Optical methods, as yet virtually uninvestigated, appear to offer the only means of beam-steering in the 5μs to 100μs range necessary for MHD mode tracking

  7. Enhancements of Machine Reliability and Beam Quality in SPring-8 Linac for Top-Up Injection into Two Storage Rings

    CERN Document Server

    Hanaki, Hirofumi; Dewa, Hideki; Kobayashi, Toshiaki; Mizuno, Akihiko; Suzuki, Shinsuke; Taniuchi, Tsutomu; Tomizawa, Hiromitsu; Yanagida, Kenichi

    2005-01-01

    SPring-8 has started its top-up operation from May 2004 in order to feed constant photon fluxes to users. The SPring-8 linac has been improved to realize stable and uninterrupted top-up injection into the SPring-8 storage ring and the NewSUBARU storage ring. The beam energy instability of 0.01% rms had been achieved by the following stabilization: RF amplitude and phase stabilization, synchronization of beam timing and linac's 2856 MHz RF and introduction of an energy compensation system (ECS). Feedback controls of steering magnets compensate long-term variation of beam trajectories at ends of beam transport lines. The presentation will include also recent improvements.

  8. Plasma behavior with hydrogen supersonic molecular beam and cluster jet injection in the HL-2A tokamak

    International Nuclear Information System (INIS)

    The experimental results of low pressure supersonic molecular beam injection (SMBI) into the HL-2A plasma indicated that during the period of SMB pulse injection the power density convected at the divertor target plate surfaces was 0.4 times of that before or after the beam injection. The clusters are produced at nitrogen temperature in a supersonic adiabatic expansion of moderate pressure hydrogen gases into vacuum through a Laval nozzle. The averaged cluster size was measured by Rayleigh scattering as large as hundreds atoms. Multifold diagnostics for the cluster jet injection (CJI) experiments have given a coincident evidence that there was a terminal area where a great deal particles from the clusters deposited at, rather than the clusters uniformly ablating along the injection path. A SMB with large clusters, which are like micro-pellets, was of benefit for deeper fuelling and the fuelling efficiency is distinctly better than that of the room temperature SMBI. Another important effect of the CJI or the high pressure SMBI was that the runaway electrons were cooled down to thermal velocity due to a combination of collision and radiative stopping in such a massive fuelling. So the new fuelling technique may become a good treatment to mitigate fast plasma shutdowns and disruptions. (author)

  9. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  10. Direct injection of intense heavy ion beams from a high performance ECR ion source into an RFQ

    International Nuclear Information System (INIS)

    Beam intensities achievable from high performance ECR sources for highly charged ions are limited by the high space charge. For high performance ECR sources, the stray magnetic field of the source can provide focusing against the space charge blow-up of the beam when used with the Direct Plasma Injection Scheme (DPIS) developed for laser ion sources. A combined extraction/matching system has been designed for direct injection into a radio frequency quadrupole (RFQ) accelerator, allowing a total beam current of 12 mA for the production of highly charged 238U40 +(0.49 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ionsource extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of the ion beam. The RFQ has been designed to suppress most of the charge states extracted from the ECR, acting as a filter for the desired 238U40+. This reduces the transport problem for the beam line as well as reduces the emittance for the transmitted charge states. Such an rfq-channel might be very effective and less q/m sensitive for the extraction system of all high performing ECR ion sources. This technique has promising applications for injecting and transporting very intense beams into RFQ accelerators for research, ADSS and more efficient, compact neutron generators. The accelerator driven sub-critical system (ADSS) being developed at various laboratories around the world to create nuclear energy may also benefit from this technique, both in terms of transporting intense beams of protons and making the low energy segment more compact. This RFQ is essentially a buncher configured as a charge filter, so RIB facilities can take advantage of this technique. The charge breeding concept can be utilised with a powerful ECR ion source directly coupled to this

  11. Transport of laser accelerated proton beams and isochoric heating of matter

    International Nuclear Information System (INIS)

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  12. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source.

    Science.gov (United States)

    Thorn, A; Ritter, E; Ullmann, F; Pilz, W; Bischoff, L; Zschornack, G

    2012-02-01

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented. PMID:22380207

  13. Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J

    1999-01-01

    An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.

  14. Beam heating studies on an early model is a superconducting cosine theta magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G; Bunce, G; Danby, G; Foelsche, H; Jackson, J; Prodell, A; Soukas, A; Stevens, A; Stoehr, R; Weisenbloom, J

    1980-01-01

    Superconducting magnets for accelerators can be accidentally quenched by heat resulting from beam losses in the magnet. The threshold for such quenches is determined by the time structure of the beam loss and by details of the magnet application, construction and cooling. A 4.25 m long superconducting cosine theta dipole magnet, MARK VI, constructed during the research and development phase of the ISABELLE Project at BNL was installed in the 28.5 GeV/c primary proton beam line from the AGS. By energizing the magnet, the proton beam could be deflected into the magnet. The beam intensity required to quench the magnet was observed for different beam sizes and at several values of magnet current up to 2400 A or approximately 70% of the highest magnet operating current. The maximum current was limited by the gas-cooled power lead flow available using pool-boiling helium rather than single phase forced-flow helium at 5 atm for which the magnet system was designed. Details of the experimental setup including the magnet and cryogenic system, the beam-monitoring equipment and instrumentation are described. The measurements are discussed and compared with beam heating measurements made on another superconducting magnet and interpreted using the Cascade Simulation Program, CASIM.

  15. Research on modeling of heat source for electron beam welding fusion-solidification zone

    Institute of Scientific and Technical Information of China (English)

    Wang Yajun; Fu Pengfei; Guan Yongjun; Lu Zhijun; Wei Yintao

    2013-01-01

    In this paper,the common heat source model of point and linear heat source in the numerical simulation of electron beam welding (EBW) were summarized and introduced.The combined point-linear heat source model was brought forward and to simulate the welding temperature fields of EBW and predicting the weld shape.The model parameters were put forward and regulated in the combined model,which included the ratio of point heat source to linear heat source Qpr and the distribution of linear heat source Lr.Based on the combined model,the welding temperature fields of EBW were investigated.The results show that the predicted weld shapes are conformable to those of the actual,the temperature fields are reasonable and correct by simulating with combined point-linear heat source model and the typical weld shapes are gained.

  16. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    CERN Document Server

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  17. Reversible electron beam heating for suppression of microbunching instabilities at free-electron lasers

    CERN Document Server

    Behrens, Christopher; Xiang, Dao

    2011-01-01

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future X-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., "heating" the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) in front and behind a magnetic bunch compressor chicane. The additional energy spread will be introduced in the first TDS, which suppresses the microbunching instability, and then will be eliminated in the second T...

  18. Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ionization, Heating and Photon Production from Arbitrary Energy Injections

    CERN Document Server

    Slatyer, Tracy R

    2015-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-alpha photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this note we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the ne...

  19. Spray, combustion, and heat transfer studies in a Ricardo hydra direct-injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, C.; Cutter, P.A. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering; Foulkes, D.; Tabaczynski, R. [Ford Motor Research Co., Dagenham (United Kingdom)

    1996-12-31

    The spray and combustion development in a single-cylinder, direct-injection diesel engine equipped with optical access was examined using a number of complementary techniques. A laser imaging system, based around a pulsed copper-vapour laser synchronised to an intensified CCD camera, was used to obtain images of the four fuel sprays prior to combustion, and to determine the tip penetration of each spray as a function of crankangle. The surface heat flux to the wall of the piston bowl was measured by placing a fast-response thermocouple at the impingement point of one of the sprays, and a two-colour imaging system was used to obtain digital images of the flame temperature and equivalent soot distribution in the cylinder. (author)

  20. Modelling of fast ion redistribution due to sawteeth in neutral beam heated plasmas

    International Nuclear Information System (INIS)

    An approximate semi-analytical approach is presented which uses line-of-sight measurements of D-D fusion neutrons from beam heated Tokamak plasmas to infer the behaviour of the fast ion population at sawtooth collapses. Application to recent results on JET indicates that a large fraction of the central fast beam ions are expelled outside the q=1 surface. The approach provides a computationally fast and convenient alternative to presently used inversion techniques. (au)

  1. Electron heating, time evolution of bremsstrahlung and ion beam current in electron cyclotron resonance ion sources

    OpenAIRE

    Ropponen, Tommi

    2010-01-01

    This thesis is a study of Electron Cyclotron Resonance Ion Source (ECRIS) plasmas and their properties. The focus has been on time evolution studies of bremsstrahlung emission, ion beam current production and numerical studies of electron heating in ECRIS plasmas. The time scales for reaching steady state bremsstrahlung production at electron energies greater than 30 keV is shown to be on the order of several hundreds of milliseconds. The ion beam currents of different elements...

  2. Feasibility study of an optical resonator for applications in neutral-beam injection systems for the next generation of nuclear fusion reactors

    International Nuclear Information System (INIS)

    This work is part of a larger project called SIPHORE (Single gap Photo-neutralizer energy Recovery injector), which aims to enhance the overall efficiency of one of the mechanisms through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection (NBI) system. An important component of a NBI system is the neutralizer of high energetic ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot cavities. This mechanism should allow a relevant NBI global efficiency of η≥ 60%, significantly higher than the one currently possible (η≤25% for ITER). The present work concerns the feasibility study of an optical cavity with suitable properties for applications in NBI systems. Within this context, the issue of the determination of an appropriated optical cavity design has been firstly considered and the theoretical and experimental analysis of a particular optical resonator has been carried on. The problems associated with the high levels of intracavity optical power (∼3 MW) required for an adequate photo-neutralization rate have then been faced. In this respect, we addressed both the problem of the thermal effects on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical resonator. (author)

  3. Analysis and optimization of subcritical two-stage vapor injection heat pump systems

    International Nuclear Information System (INIS)

    Highlights: • Thermodynamical analysis of a two stage compression cycles. • Optimization of the displacement ratio for COP in ideal two stage cycles. • Analysis of the influence of compressor efficiency in real system. • Influence of the charge in the optimum conditions of a two stage cycle. • Control in two stage systems with electronic expansion valves. - Abstract: Two of the major problems of heat pump systems working in extreme conditions are the loss of efficiency of the system and the high compressor discharge temperatures. One possibility in order to overcome these issues is to perform the compression in two stages. In this frame the use of vapor injection two stage cycles represent an economic and effective solution. This study analyzes the influence of design parameters and injection conditions for two different configurations of two stage cycles, for four refrigerants (R407C, R290, R22 and R32). Design parameters, such as the displacement ratio, are optimized in terms of COP in ideal conditions for both injection systems. A deeper analysis taking into account the efficiencies of the compressor is done finding that two stage systems could reach improvements of 30% in terms of COP compared with one stage systems and that a bad design of this type of systems could represent a loss of improvement between 6% and 10%. Finally a method to control the system at any operating point in order to make it works in its optimum is done. From all the analysis, guidelines for the optimum design and control of such systems are obtained in terms of capacity, Coefficient of Performance (COP), seasonal performance factor and discharge temperature criteria

  4. Modeling of Heat Transfer and Unsaturated Flow in Woven Fiber Reinforcements during Direct Injection-Pultrusion Process of Thermoplastic Composites

    OpenAIRE

    Babeau, Arthur; Comas-Cardona, Sébastien; Binetruy, Christophe; Orange, Gilles

    2015-01-01

    This paper provides a methodology for the modeling of heat transfer and polymer flow during direct thermoplastic injection pultrusion process. Pultrusion was initially developed with thermosets which have low viscosity. But the impregnation becomes a critical point with thermoplastics which exhibit higher viscosity. There are very few reported works on direct thermoplastic impregnation with injection within the die. In addition, the rare studies have not adequately addressed the issue of unsa...

  5. Transient electron heat diffusivity obtained from trace impurity injection on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Kissick, M. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Callen, J. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bush, C. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, Z. Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Efthimion, P. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hulse, R. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Mansfield, D. K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Park, H. K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Schivell, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Scott, S. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Synakowski, E. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taylor, G. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Zarnstorff, M. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    1993-08-01

    A new method for obtaining a transient (``pulse``) electron heat diffusivity (χep) in the radial region 0.38 < r/a < 0.56 in TFTR L-mode discharges is presented. Small electron temperature perturbations were caused by single bursts of injected impurities which radiated and cooled the plasma edge. An iron injection case by laser ablation was found to be more definitive than a supporting helium gas puff case. In this new ``cold pulse`` method, we concentrate on modeling just the electron temperature perturbations, tracked with ECE (electron cyclotron emission) diagnostics and on being able to justify separation in space and time from the cooling source. This χep is obtained for these two cases to be χep = (6.0m²/s ± 35%) ~ 4χe(power balance) which is consistent with, but more definitive than, results from other studies that are more susceptible to ambiguities in the source profile.

  6. A novel approach of manufacturing Nickel Wicks for loop heat pipes using Metal Injection Moulding (MIM)

    Indian Academy of Sciences (India)

    S K Samanta; Prosenjit Das; A K Lohar; H Roy; S Kumar; A K Chowdhury

    2013-04-01

    Sintered nickel powder is proposed to be used as porous wicks in loop heat pipes used for space applications such as satellites and space crafts. In this work, the manufacturing procedure for tubular wicks through novel Metal Injection Moulding (MIM) route is discussed. Nickel powder, Polypropylene powder and thermoplastic binder are used to produce feedstock for injection moulding. Ideal sintering condition identified as 900° C and 60 minutes. Porosity, pore diameter of the wicks are evaluated by geometric measurements using an electronic weight measuring machine and a micrometer and extrusion flow Porosimeter, respectively. Permeability was calculated according to the Carmen–Kozeny equation. Experimental finding shows that porosity level of 55 vol%, average pore diameter of 2.6 m, permeability of 1.94 × 10−12m2 and roundness of 5% have been achieved in the porous wick. SEM investigation of pore structures shows the presence of large pores which leads to enhanced porosity and interconnected fine pore network responsible for generation of required capillary pumping pressure.

  7. Temperature profiles of evaporation surface heated by electron beam

    International Nuclear Information System (INIS)

    The evaporation surface was imaged by a lens through a band pass filter of 562 ± 5 nm on the CCD (Charge-Coupled Device) sensor. Temperature profiles were obtained from radiation intensity profiles measured by the CCD sensor using Planck's law of radiation. At an electron beam power of 4.5 kW, maximum temperature was 2040K. Deposition rates measured by a quartz crystal sensor agreed with those estimated from the measured temperature profiles using the data of saturated vapor pressure of copper. (author)

  8. Eliminating weldlines of an injection-molded part with the aid of high-frequency induction heating

    International Nuclear Information System (INIS)

    High-frequency induction is an efficient way to heat mold surface by non-contact electromagnetic induction. It has been recently applied to injection molding because of its capability to heat and cool mold surface rapidly. This study applies high-frequency induction heating to eliminate weldlines in an injection-molded plastic part. To eliminate or reduce weldlines, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through 3 s of induction heating, the maximum temperature of 143 .deg. C is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than 60 .deg. C. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated. The weldline on the heated region is almost eliminated, from which we can obtain the good surface appearance of the part

  9. Plasma behaviour with hydrogen supersonic molecular beam and cluster jet injection in the HL-2A tokamak

    International Nuclear Information System (INIS)

    The experimental results of low pressure supersonic molecular beam injection (SMBI) fuelling on the HL-2A closed divertor indicate that during the period of pulsed SMBI the power density convected at the target plate surfaces was 0.4 times of that before or after the beam injection. An empirical scaling law used for the SMBI penetration depth for the HL-2A plasma was obtained. The cluster jet injection (CJI) is a new fuelling method which is based on and developed from the experiments of SMBI in the HL-1M tokamak. The hydrogen clusters are produced at liquid nitrogen temperature in a supersonic adiabatic expansion of moderate backing pressure gases into vacuum through a Laval nozzle and are measured by Rayleigh scattering. The measurement results have shown that the averaged cluster size of as large as hundreds of atoms was found at the backing pressures of more than 0.1 MPa. Multifold diagnostics gave coincidental evidence that when there was hydrogen CJI in the HL-2A plasma, a great deal of particles from the jet were deposited at a terminal area rather than uniformly ablated along the injecting path. SMB with clusters, which are like micro-pellets, will be of benefit for deeper fuelling, and its injection behaviour was somewhat similar to that of pellet injection. Both the particle penetration depth and the fuelling efficiency of the CJI were distinctly better than that of the normal SMBI under similar discharge operation. During hydrogen CJI or high-pressure SMBI, a combination of collision and radiative stopping forced the runaway electrons to cool down to thermal velocity due to such a massive fuelling

  10. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    OpenAIRE

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran; Bergsøe, Niels Christian

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The building model had a net volume of 3669 m3, (L*B: 25.5m*11.5 m) and net ceiling height of 2.55 m. The building model was assumed to consist of 78 office rooms, 6 meeting rooms and 5 corridors with a 50% o...

  11. Effects of heat treatment on the properties of powder injection molded AIN ceramics

    Institute of Scientific and Technical Information of China (English)

    DU Xueli; QIN Mingli; Akhtar Farid; FENG Peizhong; QU Xuanhui

    2008-01-01

    The effects of two different heat-treatment atmospheres,nitrogen atmosphere and reducing nitrogen atmosphere with carbon,on the properties of Y2O3-doped aluminum nitride (AlN) ceramics were investigated.The AlN powder as a raw material was synthesized by self-propagating high-temperature synthesis (SHS) and compacts were fabricated by employing powder injection molding technique.The polymer-wax binder consisted of 60 wt.% paraffin wax (PW),35 wt.% polypropylene (PP),and 5 wt.% stearic acid (SA).After the removal of binder,specimens were sintered at 1850℃ in nitrogen atmosphere under atmospheric pressure.To improve the thermal conductivity,sintered samples were reheated.The result reveals that the heat-treatment atmosphere has significant effect on the properties and secondary phase of AlN ceramics.The thermal conductivity and density of AlN ceramics reheated in nitrogen gas are 180 W·m-1 K-1 and 3.28 g,cm-3 and the secondary phase is yttrium aluminate.For the sample reheated in reducing nitrogen atmosphere with carbon,the thermal conductivity and density are 173 W.m-1.K-1 and 3.23 g·cm-3,respectively,and the secondary phase is YN.

  12. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe132) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  13. Heat transfer phenomena in gas protected particle beam fusion reactor cavities

    International Nuclear Information System (INIS)

    The behavior of the fireball produced in particle beam fusion reactor cavities as the cavity gas near the target absorbs the X-rays and ionic debris emanating from the microexplosion is examined. Thermal response of the first wall to the radiative heat flux from the gas is examined parametrically. Criteria for the suitability of different cavity fill gases based on their ability to protect the first wall from excessive surface heating and ablation are discussed. 9 refs

  14. Radiation losses in PLT during neutral beam and ICRF heating experiments

    International Nuclear Information System (INIS)

    Radiation and charge exchange losses in the PLT tokamak are compared for discharges with ohmic heating only (OH), and with additional heating by neutral beams (NB) or RF in the ion cyclotron frequency range (ICRF). Spectroscopic, bolometric and soft x-ray diagnostics were used. The effects of discharge cleaning, vacuum wall gettering, and rate of gas inlet on radiation losses from OH plasmas and the correlation between radiation from plasma core and edge temperatures are discussed

  15. Design of pulsed heat load removal system for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Restrictions imposed on the heat removal system for JT-60 Neutral Beam Injectors are very severe. Since it handles a large amount of pulsed heat load, the system tends to be very large, if it is designed based on a conventional method. Such a design would be unreasonable, if we consider about construction fee as well as space allowed for it. In the present report, we have taken into account the transient state of pulsed heat load and have tried to design the heat load removal system suffering pulsed heat load to be very compact. As a result of the design, it turned out that the system can be made in a scale which is less than 1/10 of the conventional design. This design is also applied to heat load removal system for the prototype-NBI for JT-60. (author)

  16. Simulation study on the performance of an Injection Scroll Compressor in a Heat Pump for Electric Vehicles

    OpenAIRE

    Jung, Jongho; Kim, Dongwoo; Jeon, Yongseok; Kim, Yongchan

    2014-01-01

    This paper presents the development and validation of a simulation model of an injection scroll compressor that can be used for optimization of a heat pump system for electric vehicles. The modeling considered the effects of refrigerant leakage and suction gas heating. The simulation model solved continuity and energy conservation equations using 4th Runge-Kutta scheme to predict the pressure and temperature variations according to scroll revolution. The refrigerant mass flow rate, compressor...

  17. A computer code for computing the beam profiles in the NBI beam line 'BEMPROF'

    International Nuclear Information System (INIS)

    A computer code was developed which can compute the beam profiles and the percentage heat loadings on the various components in the NBI beam line such as the beam target, the beam limiters and the calorimeter. The geometrical injection efficiency of NBI and the heat input pattern on the counter surface of the injection port of the torus can also be computed. The major feature of this code is that the effects of the beamlet intensity distribution, the beamlet deflection, the beam screening by the upstream limiters and also the plasma density distribution and the divergence angle distribution over the beam extraction area can be taken into account. (author)

  18. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  19. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams

    International Nuclear Information System (INIS)

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  20. Performance of Chilled Beam with Radial Swirl Jet and Diffuse Ceiling Air Supply in Heating Mode

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Melikov, Arsen Krikor;

    2013-01-01

    The performance of diffuse ceiling air supply and chilled beam with swirl jet (CSW) in heating mode (winter situation) was studied and compared with regard to the generated indoor environment. An office mock-up with one occupant was simulated in a test room (4.5 x 3.95 x 3.5 m3 (L x W x H...

  1. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  2. The application of arbitrary incidence laser beams heat treatment temperature field calculation formulas

    Institute of Scientific and Technical Information of China (English)

    Kun Ma; Junchang Li; Zebin Fan; Jinbin Gui; Yingxiong Qin; Qiguang Zheng

    2005-01-01

    @@ Based on the calculation formulas of heat treatment temperature field for an arbitrary incident laser intensity distribution, the transformation intensity distribution of CO2 laser beam passing an integrating mirror is studied theoretically and experimentally. The derived formulas are applied in laser heat treatment research which is transformed by optical system, and the theoretical calculation results are compared with experimental results. It is shown that the formulas can be used to calculate the laser heat treatment temperature field accurately, and the calculation speed is obviously faster than the numerical calculation methods with the same precision. The calculation software can be used to select proper experiment parameters.

  3. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  4. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    International Nuclear Information System (INIS)

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  5. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  6. MICROBIAL RESPONSES TO IN SITU CHEMICAL OXIDATION, SIX-PHASE HEATING, AND STEAM INJECTION REMEDIATION TECHNOLOGIES IN GROUND WATER

    Science.gov (United States)

    The evaluation of microbial responses to three in situ source removal remedial technologies including permanganate-based in-situ chemical oxidation (ISCO), six-phase heating (SPH), and steam injection (SI) was performed at Cape Canaveral Air Station in Florida. The investigatio...

  7. Investigation of the heat pump water heater using economizer vapor injection system and mixture of R22/R600a

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Cao; Kai, Wang; Shouguo, Wang; Ziwen, Xing; Pengcheng, Shu [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianing west road, Xi' an 710049 (China)

    2009-05-15

    This paper presents the experimental study of a heat pump water heater (HPWH) using economizer vapor injection system and mixture of R22/R600a. Performances of HPWH using economizer vapor injection system are compared with that at different mixed mass ratios of R22/R600a. Study demonstrates that the heating capacity and energy efficiency ratio (EER) of the unit increased, and the discharge temperature of compressor decreased when using vapor injection and mixing refrigerant of R22/R600a. It is also found that the HPWH unit with economizer vapor injection system has a better performance for the high outlet water temperature under lower temperature conditions at 15% mass ratio of R600a for the mixing refrigerant. In addition, fundamental and practical influence of vapor injection pressure on the HPWH performance has been investigated experimentally. The simplified model is proposed for predicting the optimal vapor injection pressure of compressor using the mixing refrigerant R22/R600a. (author)

  8. Local heat transfer in turbine disk-cavities. II - Rotor cooling with radial location injection of coolant

    Science.gov (United States)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    The detailed radial distributions of rotor heat-transfer coefficients for three basic disk-cavity geometries applicable to gas turbines are presented. The coefficients are obtained over a range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. The effects of a parallel rotor are analyzed, and strong variations in local Nusselt numbers for all but the rotational speed are pointed out and compared with the associated hub-injection data from a previous study. It is demonstrated that the overall rotor heat transfer is optimized by either the hub injection or radial location injection of a coolant, dependent on the configuration.

  9. The effects of neutral beam injection on momentum transport and rotation resulting from reconnection events in a Reversed Field Pinch

    Science.gov (United States)

    Dobbins, T.; Nornberg, M. D.; Anderson, J. K.; den Hartog, D. J.; Reusch, J. A.; Sarff, John; Eilerman, Scott; Craig, Darren

    2012-10-01

    Magnetic reconnection events are characterized by rapid transport that flattens both the plasma current and parallel flow profiles in a RFP. The tangential neutral beam on the MST is a source of momentum injection into the MST that has also been observed to suppress the core-most mode of the plasma. Ensembles of multiple sawtooth events with and without the NBI were performed over a variety of plasma conditions to observe any effects of the NBI on sawtooth crashes. Observations of both mode rotation and impurity emission Doppler shifts show an increase in toroidal rotation associated with the neutral beam. The suppression of the core-most mode was verified for a broader variety of plasmas then before. The mode data also shows that for some plasma parameters the NBI brings a mode into resonance that is not resonant without the NBI. This is the first evidence of the NBI's effect on the plasma current profile. In addition, Co-injection greatly reduces the mode locking, while counter-injection has been shown to slightly increase mode locking.

  10. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  11. System for measuring parameters of electron beams injected into collective heavy ion accelerator

    International Nuclear Information System (INIS)

    The description of automation system for measurement of the intensive nanosecond electron beam characteristics of a collective heavy ion accelerator at JINR is presented. The system includes a set of the collector sensors for registering electronics for all sensors. The range of beam measured currents reaches 1000 A at repetition frequency of cycles up to 50 Hz

  12. Modular ultrahigh vacuum-compatible gas-injection system with an adjustable gas flow for focused particle beam-induced deposition

    International Nuclear Information System (INIS)

    A gas-injection system (GIS) heats up a powdery substance and transports the resulting gas through a capillary into a vacuum chamber. Such a system can be used to guide a (metal)organic precursor gas very close to the focal area of an electron or ion beam, where a permanent deposit is created and adheres to the substrate. This process is known as focused particle beam-induced deposition. The authors present design principles and give construction details of a GIS suitable for ultrahigh vacuum usage. The GIS is composed of several self-contained components which can be customized rather independently. It allows for a continuously adjustable gas-flow rate. The GIS was attached to a standard scanning electron microscope (JEOL 6100) and tested with the tungsten precursor W(CO)6. The analysis of the deposits by means of atomic force microscopy and energy dispersive x-ray spectroscopy provides clear evidence that excellent gas-flow-rate stability and ensuing growth rate and metal-content reproducibility are experienced.

  13. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    OpenAIRE

    K. Huang; Chen, L. M.; Y. F. Li; D.Z. Li; M. Z. Tao; M. Mirzaie; Y. Ma; J. R. Zhao; M. H. Li; M. Chen; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas un...

  14. Investigation of the clustering condition for various gasses ejected from a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Device (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at high valve backing pressure of more than 3-4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  15. Modeling and control of plasma rotation for NSTX using Neoclassical Toroidal Viscosity (NTV) and Neutral Beam Injection (NBI)

    Science.gov (United States)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan

    2014-10-01

    A model-based system to control plasma rotation in a magnetically confined toroidal fusion device is developed to maintain plasma stability for long pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed to control plasma rotation by using momentum from injected neutral beams and viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the data driven model obtained, a feedback controller is designed to theoretically sustain the toroidal momentum of the plasma in a stable fashion and to achieve desired plasma rotation profiles. On going work includes extending this method to NSTX Upgrade which has more complete radial coverage of the neutral beams momentum sources which enable simultaneous control of plasma stored energy (Beta control).

  16. Characterization of 1 MW, 40 keV, 1 s neutral beam for plasma heating

    International Nuclear Information System (INIS)

    Neutral beam with geometrical focusing for plasma heating in moderate-size plasma devices has been developed in Budker Institute of Nuclear Physics, Novosibirsk. When operated with hydrogen, the neutral beam power is 1 MW, pulse duration is 1 s, beam energy is 40 keV, and angular divergence is 1.2 deg. Initial ion beam is extracted and accelerated by triode multiapertures ion-optical system. To produce 1 MW neutral beam, about 40 A proton current is extracted with nominal current density of 320 mA/cm2. Ion-optical system has 200 mm diameter grids with 44% transparency. The grids have inertia cooling and heat is removed between the pulses by water flowing in channels placed on periphery of the grids. A plasma emitter for ion extraction is produced by rf-plasma box. Ion species mix of rf plasma source amounts to 70%, 20%, and 10% of H+, H2+, and H3+ ions, respectively, by current. Heavy impurities contribute less than 0.3%.

  17. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    Science.gov (United States)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  18. Development of a high-heat-flux target for multimegawatt, multisecond neutral beams at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Combs, S.K.; Milora, S.L.; Bush, C.E.; Foster, C.A.; Haselton, H.H.; Hayes, P.H.; Menon, M.M.; Moeller, J.A.; Sluss, F.; Tsai, C.C.

    1984-01-01

    A high-heat-flux target has been developed for intercepting multimegawatt, multisecond neutral beam power at the Oak Ridge National Laboratory (ORNL). Water-cooled copper swirl tubes are used for the heat transfer medium; these tubes exhibit an enhancement in burnout heat flux over conventional axial-flow tubes. The target consists of 126 swirl tubes (each 0.95 cm in outside diameter with 0.16-cm-thick walls and approx. =1 m long) arranged in a V-shape. Two arrays of parallel tubes inclined at an angle ..cap alpha.. to the beam axis form the V-shape, and this geometry reduces the surface heat flux by a factor of 1/sin ..cap alpha.. (for the present design, ..cap alpha.. =13/sup 0/ and 21/sup 0/). In tests with the ORNL long-pulse ion source (13- by 43-cm grid), the target has handled up to 3-MW, 30-s beam pulses with no deleterious effects. The peak power density was estimated at approx. =15 kW/cm/sup 2/ normal to the beam axis (5.4 kW/cm/sup 2/ maximum on tube surfaces). The water flow rate through the target was 41.6 L/s (660 gpm) or 0.33 L/s (5.2 gpm) per tube (axial flow velocity = 11.6 m/s). The corresponding pressure drop across the target was 1.14 MPa (165 psi) with an inlet pressure of 1.45 MPa (210 psia). Data are also presented from backup experiments in which individual tubes were heated by a small ion source (10-cm-diam grid) to characterize tube performance. These results suggest that the target should handle peak power densities in the range 25 to 30 kW/cm/sup 2/ normal to the beam axis (approx. =10 kW/cm/sup 2/ maximum on tube surfaces) with the present flow parameters. This translates to beam power levels of 5 to 6 MW for equivalent beam optics.

  19. Electron-beam heat treatment of thin band of low-carbon steel

    International Nuclear Information System (INIS)

    Using the methods of raster electron microscopy, X-ray structural and chemical analysis and also X-ray microanalysis, the change was studied in the mechanical properies of a band made of low-carbon steel 08 kp that takes place after electron-beam heat treatment. It has been shown that the above change is due to a specific character of the α reversible γ phase transition. After electron-beam treatment under optimum conditions, the properties of the band made of steel 08 kp and 0.15 mm thick (plasticity, ultimate strength, etc.) are similar to those obtained using the conventional procedures (annealing and skin pass rolling)

  20. Approaching viscosity control: electrical heating of extra heavy oil as alternative to diluent injection in down hole in Cerro Negro Field, Faja Petrolifera del Orinoco

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Manuel [Petroleos de Venezuela SA, PDVSA (Venezuela)

    2011-07-01

    Electrical heating is a method used to enhance oil recovery in extra heavy oil reservoirs. This method can be used when diluent injection or other methods are not able to reduce oil viscosity sufficiently or when problems of product quality or quantity arise. The aim of this paper is to evaluate the performance of electrical heating, individually and simultaneously with injection of diluents. For this purpose, simulations were undertaken in one well with integrated electrical heating and diluent injection in Cerro Negro Field in the Orinoco oil belt, Venezuela. Results have shown that the application of both methods together is more profitable than the application of electrical heating alone. This paper demonstrated that the use of electrical heating and diluent injection combined is a valid alternative to diluent injection alone, reducing production loss.

  1. Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota: Field observations, preliminary model analysis, and aquifer thermal efficiency

    Science.gov (United States)

    Miller, Robert T.

    1989-01-01

    In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated (150 °C (degree Celsius)) water in the deep (180 to 240 m (meters)) Franconia-Ironton-Galesville aquifer and later recovering it for space heating. The Aquifer Thermal-Energy Storage (ATES) system was doublet-well design in which the injection/withdrawal wells were spaced approximately 250 m apart. High-temperature water from the University's steam-generation facilities supplied heat for injection. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. Water then was injected back into the aquifer through the other well. The experimental plan for testing the ATES system consisted of a series of short-term hot-water injection, storage, and withdrawal cycles. Each cycle was 24-days long, and each injection, storage, and withdrawal step of the cycle was 8 days.

  2. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding

    Directory of Open Access Journals (Sweden)

    Bingyan Jiang

    2016-05-01

    Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.

  3. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    International Nuclear Information System (INIS)

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations

  4. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    Science.gov (United States)

    Hotchi, Hideaki; Tani, Norio; Watanabe, Yasuhiro

    2015-04-01

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations.

  5. ELF oscillations associated with electron beam injections from the space shuttle

    International Nuclear Information System (INIS)

    ELF oscillations (f < 500 Hz) were observed during the electron beam emissions of the space experiments with particle accelerators (SEPAC) flown on the Spacelab 1 shuttle mission. The beams had energies up to 5 keV and currents up to 300 mA, and the oscillations were present in the data from a Langmuir probe, a floating probe, an electron energy analyzer, and a photometer. The VLF (1 kHz < f < 10 kHz) wave stimulation monitored by a wave receiver during one particular beam sequence has already been reported by Neubert et al. (1986). The amplitudes of the ELF and VLF oscillations observed during this sequence have almost identical variations with beam pitch angle, the strongest emissions begin observed for parallel beams; the ELF power spectra for the strongest emissions have peaks about 10 dB above the broadband ELF noise at frequencies aroudn 50-60 Hz. In another beam sequence the power spectra had a harmonic structure with the fundamental frequency around 200 Hz. The power density and frequency of the fundamental increased with the shuttle charge-up potential. The emission level observed during the beam sequences increased with the charge-up potential of the orbiter, which largely depended on the wake structure. The authors find it most likely that the ELF oscillations are expressions of fluctuations in the return current and the shuttle potential and that these fluctuations are caused by processes involving charge imbalances in the near environment of the shuttle, possibly in a comoving plasma cloud. The observations suggest that the plasma cloud has a particle lifetime at least of the order of 100 ms

  6. Beam loading effects during injection processes in an electron storage ring

    International Nuclear Information System (INIS)

    When the current in an electron storage ring increases through the injection process, the RF properties such as the accelerating field, cavity tuning and reflecting power undergo some changes. They must be cancelled out by tuning the RF system in order to get a stable operation. In this report these changes are given in the first order approximation. For the RF storage ring an increment of the current of 25 mA in one injection process brings about no serious effect and a stored current of 500 mA would be obtained in less than 10 minutes. (auth.)

  7. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    International Nuclear Information System (INIS)

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (108 to 10100C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time

  8. Visualizing expanding warm dense matter heated by laser-generated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Woosuk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.

  9. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Wimmer, C. [Lst. f. Experimentelle Plasmaphysik, Universitaet Augsburg, 86135 Augsburg (Germany); Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Lst. f. Experimentelle Plasmaphysik, Universitaet Augsburg, 86135 Augsburg (Germany)

    2011-02-15

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  10. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Joy K. [Department of Chemical Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Chang, Young-Wook [Department of Chemical Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)], E-mail: ywchang@hanyang.ac.kr; Lee, Byung Chul [Korea Atomic Energy Research Institute, Dukjin-Dong, Yusong-Gu, Daejon 305-354 (Korea, Republic of); Ryu, Sung Hun [College of Environmental and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)

    2008-05-15

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  11. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer

    International Nuclear Information System (INIS)

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process

  12. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene octene copolymer

    Science.gov (United States)

    Mishra, Joy K.; Chang, Young-Wook; Lee, Byung Chul; Ryu, Sung Hun

    2008-05-01

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  13. Local heat transfer in turbine disk-cavities. I - Rotor and stator cooling with hub injection of coolant

    Science.gov (United States)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.

  14. A spectroscopic study of impurity behavior in neutral-beam and ohmically heated TFTR discharges

    International Nuclear Information System (INIS)

    Quantitative spectroscopic measurements of Z/sub eff/, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n/sub e/) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n/sub e/ ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z/sub eff/ rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges

  15. Efficacy of Traditional Almond Decontamination Treatments and Electron Beam Irradiation against Heat-Resistant Salmonella Strains.

    Science.gov (United States)

    Cuervo, Mary P; Lucia, Lisa M; Castillo, Alejandro

    2016-03-01

    Two outbreaks of salmonellosis were linked to the consumption of raw almonds from California in 2001 and 2004. As a result, federal regulations were developed, which mandate that all almonds grown in California must be treated with a process that results in a 4-log reduction of Salmonella. Because most of the technologies approved to treat almonds rely on the application of heat to control Salmonella, an evaluation of alternative technologies for inactivating heat-resistant Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W was needed. In this study, almonds were inoculated with Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W and then treated with an electron beam (e-beam) or by blanching or oil roasting. The irradiation D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W treated with e-beam were 0.90 and 0.72 kGy, respectively. For heat treatments, thermal D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W strains were 15.6 and 12.4 s, respectively, when subjected to blanching at 88°C and 13.2 and 10.9 s, respectively, when roasted in oil at 127 ± 2°C. No significant differences in irradiation and thermal treatment results were observed between Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W (P > 0.05), indicating that e-beam irradiation may be a feasible technology for reducing Salmonella in almonds. However, the sensory changes resulting from irradiating at the doses used in this study must be evaluated before e-beam irradiation can be used as a nonthermal alternative for decontamination of almonds. PMID:26939646

  16. Beam heating of thick targets for on-line mass separators

    International Nuclear Information System (INIS)

    Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also

  17. Beam heating of thick targets for on-line mass separators

    International Nuclear Information System (INIS)

    Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also. (orig.)

  18. Development of an ion source for long-pulse (30-s) neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.M.; Barber, G.C.; Blue, C.W.; Dagenhart, W.K.; Gardner, W.L.; Haselton, H.H.; Moeller, J.A.; Ponte, N.S.; Ryan, P.M.; Schecter, D.E.

    1982-01-01

    This paper describes the development of a long-pulse positive ion source that has been designed to provide high brightness deuterium beams (divergence approx. = 0.25/sup 0/ rms, current density approx. = 0.15 A cm/sup -2/) of 40 to 45 A, at a beam energy of 80 keV, for pulse lengths up to 30 s. The design and construction of the ion source components are described with particular emphasis placed on the long-pulse cathode assembly and ion accelerator.

  19. Cluster effects during high pressure supersonic molecular beam injection into plasma

    International Nuclear Information System (INIS)

    The development of SMBI has experienced for two phases, the first is with low gas pressure source (p0≤0.6 MPa) and the second is with high gas pressure source (p0≥1.0 MPa). In the first phase of SMBI experiment, it is found that SMBI may be a best way for refuelling the HL-1M plasma. In the second phase, the futures of the beam are more evident, especially in the clustering onset, the particles of the beam can penetrate into the center of plasma. The density increase rate of HP-SMB is comparable with small ice PI in the HL-1M tokamak

  20. Operation of 15 MW negative-ion-based neutral beam injection system for the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Osakabe, M.; Asano, E.; Kawamoto, T.; Akiyama, R. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-07-01

    National Institute for Fusion Science (NIFS) has succeeded in generating a newly first plasma of the Large Helical Device (LHD) in March of 1998. To achieve LHD-NBI requirement, two 7.5 MW NBI systems have been established in the LHD hall and it's been in a final stage to start a normal heating experiment in this September. The system is featured by negative-ion-based system with high current (40 A) H- ion sources at a medium energy (180 keV) and by a particular design/fabrication aiming at long-pulse/quasi state injection. Operation/test results are presented. (author)

  1. Performance of magnetically injected plasma opening switches for the Particle Beam Fusion Accelerator 2 (PBFA 2)

    International Nuclear Information System (INIS)

    Plasma opening switch experiments using a magnetically injected plasma have been in progress since October 1988. Plasma densities of 1 x 1012 to 2 x 1013 e/cm3 have been injected from the anode side into the 8 cm gap of the 20 ohm magnetically insulated transmission line of PBFA II using a slowly rising Br,z magnetic field. This field confines the azimuthally-uniform plasma to produce switches up to 30 cm in length. Four MIP geometries have been investigated to find a higher electrical impedance when the switch opens. These studies have shown that a separation of 10 to 20 cm from the load is important to keep the POS from affecting the load performance. With such a separation, 20 to 30 TW of power at 7 to 11 MV has been delivered to electron and ion diode loads. Data on switch performance with various loads and factors that improve performance are discussed. 4 refs., 6 figs

  2. Air-source heat pump coupled with economized vapor injection scroll compressor and ejector:Design and experimental research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ejector can utilize high pressure energy from liquid mechanism,it can be used in heat pump system coupled with economized vapor injection(EVI)scroll compressor.When running under low temperature conditions,the performance of the EVI system with ejector can be improved further.In this paper,the design method of the heat pump system with ejector is presented,and the process for designing the heat pump with ejector(EVIe)was summarized.One prototype heat pump was designed under the condition of the evaporation temperature of -20oC,and an experimental setup was established to test the prototype.The measured results demonstrated that the heating EER(energy efficiency ratio)of the EVIe could reach about 4%higher than that of the system without the ejector when the heating capacity remained nearly constant.The design method is helpful to development of a heat pump system coupled with scroll compressor and ejector.

  3. An electron-beam-heating model for the Gamble II rod pinch

    International Nuclear Information System (INIS)

    The rod-pinch diode concentrates electron deposition onto the tip of a high-atomic-number, mm-dia. anode rod to create an ultra-bright x-ray source for multi-MV radiography. Here, a technique is presented whereby line-spread functions acquired on-axis and at 90 deg. to the rod are used to determine the electron-deposition distribution. Results show that the smaller measured on-axis spot size for heated rods on Gamble II is due to pinching closer to the tapered tip. For a diode power of 6x1010 W, peak electron heating of 1x1014 W/cm3 is calculated. MHD calculations of the e-beam-heated rod response agree with Schlieren measurements of plasma expansion

  4. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    International Nuclear Information System (INIS)

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics

  5. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  6. The influence of Laval nozzle throat size on supersonic molecular beam injection

    Institute of Scientific and Technical Information of China (English)

    Xinkui He; Xianfu Feng; Mingmin Zhong; Fujun Gou; Shuiquan Deng; Yong Zhao

    2014-01-01

    In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diam-eter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift pro-gressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.

  7. Microwave plasma source for neutral-beam injection systems. Quarterly technical progress report

    International Nuclear Information System (INIS)

    The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. We consider the general characteristics of plasma sources in the parameter regime of interest for neutral beam applications. The operatonal characteristics, advantages and potential problems of RFI and ECH sources are discussed. In these latter two sections we rely heavily on experience derived from developing RFI and ECH ion engine sources for NASA

  8. Fundamental studies on electron beam welding of heat-resistant superalloys for nuclear plants, (1)

    International Nuclear Information System (INIS)

    The basic investigation and research on the multi-purpose utilization of nuclear reactors have been carried out as the national project. The equipments for high temperature gas-cooled reactors are exposed to severe conditions in helium atmosphere of 1000 deg C, therefore the use of heat-resistant alloys such as Hastelloy, Inconel and Incoloy has been examined. The electron beam welding recently expanding the fields of application has excellent properties, such as the energy density is very high, the power output can be controlled freely as occasion arises, deep penetration can be obtained with small heat input, welding of high precision is feasible because the width of weld is narrow and the distortion due to the welding is small, and the weld of good quality can be obtained as the welding is carried out in vacuum. However, when the welding conditions are improper, the defects peculiar to electron beam welding arise, such as porosity, cold shut, spike phenomenon, and cracking due to welding. In this study, the characteristics of weld beads of respective heat-resistant alloys, especially the penetration mode and the properties of defects, were investigated by changing the parameters of electron beam welding, and the correlation among these was discussed. The range of proper welding conditions was set up for respective materials. Moreover, the correlation among the cracking susceptibility due to electron beam welding, the high temperature ductility of materials and the results of Trans-Varestraint test was investigated, and these testing methods are very useful for the evaluation of cracking susceptibility. (Kako, I.)

  9. Uniform heating of materials into the warm dense matter regime with laser-driven quasi-monoenergetic ion beams

    CERN Document Server

    Bang, W; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C

    2015-01-01

    In a recent experiment on the Trident laser facility, a laser-driven beam of quasi-monoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 eV and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable on Trident, with a finite energy spread of (delta E)/E ~ 20%, are expected to heat the targets more uniformly than a beam of 140 MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  10. Improved silicon carbide for advanced heat engines. I - Process development for injection molding

    Science.gov (United States)

    Whalen, Thomas J.; Trela, Walter

    1989-01-01

    Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.

  11. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  12. Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

    Indian Academy of Sciences (India)

    A K Sinha; K J S Sawhney; R V Nandedkar

    2001-12-01

    This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation source. The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of the beam stop have been optimised. It is also shown that radiation cooling alone is not sufficient for taking away the heat load. Water-cooling of the beam stop is essential.

  13. Development of TiC and TiN coated molybdenum limiter system and initial results of the thermal testing in neutral beam heated JFT-2 tokamak

    International Nuclear Information System (INIS)

    This paper describes the limiter drive system for TiC and TiN coated molybdenum limiters and the thermal testing results of the TiC coated limiter in the JFT-2 tokamak using neutral beam injection (0.7 MW). To investigate the influence of TiC coated limiter on plasma behavior and adhesion property under tokamak plasma, a full scale limiter test has been performed in the JFT-2. Reproducible plasma was obtained after the plasma conditioning. Maximum heat flux to the limiter, measured by IR camera, was 1.5 -- 6.5 kW/cm2 in 25 msec. Cracking, exfoliation and melting on TiC coated limiter were not observed, except for a number of arc tracks. Finally, the permissible heat fluxes of TiC coated molybdenum first wall are discussed. (author)

  14. Electron gun with off-axis beam injection for a race-track microtron

    International Nuclear Information System (INIS)

    A miniature 12 MeV race-track microtron for medical applications is under construction at the Technical University of Catalonia in collaboration with several Spanish centers and companies and the Skobeltsyn Institute of Nuclear Physics of the Moscow State University. As a source of electrons a compact 3D on-axis electron gun with an off-axis cathode has been designed to allow a direct and efficient injection into the accelerating structure. Its prototype has been built and successfully tested. Results of the electron gun design simulations and of the prototype performance are herein described.

  15. Neutron diagnostic that measures Z/sub eff/ in a neutral-beam-heated Tokomak

    International Nuclear Information System (INIS)

    The rate of pitch-angle scattering in a beam-driven Tokomak is proportional to Z/sub eff/ when neutral deuterium is injected parallel or antiparallel to the toroidal field B/sub T/. The energy spectrum of neutrons produced by D--D or D--T reactions is sensitive to the angular distribution of reacting energetic deuterons so that a measurement of the spectrum may be used to infer Z/sub eff/. Energy spectra of neutrons emitted parallel to B/sub T/ during simultaneous co- and counter-injection were calculated for the case of 120-keV beams by using a PPPL code. The results were then convoluted with spectrometer lineshapes determined experimentally for a system used to measure neutron spectra during a 1.0-s source pulse. Results indicate that Z/sub eff/ in the range of 1 to 4 may be determined with uncertainties of +- 0.25 for D--D plasma and +- 0.5 for D--T plasma, provided the ion temperature T/sub i/ is well known. However, the spectrometer energy resolution is not adequate to determine T/sub i/ directly from a neutron--spectrum measurement. In the absence of accurate T/sub i/ data, the uncertainty in Z/sub eff/ is approximately +- 1. In either case, impurity identification is not established by this type of measurement

  16. Neutron diagnostic that measures Z/sub eff/ in a neutral-beam-heated Tokomak

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, D.R.

    1979-04-30

    The rate of pitch-angle scattering in a beam-driven Tokomak is proportional to Z/sub eff/ when neutral deuterium is injected parallel or antiparallel to the toroidal field B/sub T/. The energy spectrum of neutrons produced by D--D or D--T reactions is sensitive to the angular distribution of reacting energetic deuterons so that a measurement of the spectrum may be used to infer Z/sub eff/. Energy spectra of neutrons emitted parallel to B/sub T/ during simultaneous co- and counter-injection were calculated for the case of 120-keV beams by using a PPPL code. The results were then convoluted with spectrometer lineshapes determined experimentally for a system used to measure neutron spectra during a 1.0-s source pulse. Results indicate that Z/sub eff/ in the range of 1 to 4 may be determined with uncertainties of +- 0.25 for D--D plasma and +- 0.5 for D--T plasma, provided the ion temperature T/sub i/ is well known. However, the spectrometer energy resolution is not adequate to determine T/sub i/ directly from a neutron--spectrum measurement. In the absence of accurate T/sub i/ data, the uncertainty in Z/sub eff/ is approximately +- 1. In either case, impurity identification is not established by this type of measurement.

  17. NUMERICAL ANALYSIS OF RESIDUAL STRESSES IN TITANIUM ALLOY DURING ELECTRON BEAM LOCAL POST-WELD HEAT TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Huo Lixing; Zhang Yufeng; Liu Fangjun; Chen Gang

    2005-01-01

    The distributions of temperature and residual stresses in thin plates of BT20 titanium alloy are numerically analyzed by three-dimensional finite element software during electron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined with numerical calculating results, the effects of different EBLPWHT mode and parameters, including heat treating position,heating width and heating time, on the distribution of welding residual stresses are analyzed. The results show that, the residual tensile stresses in weld center can be largely decreased when the weld is heat treated at back preface of the plate. The numerical results also indicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinity of the weld is decreased, and the range of the residual longitudinal stresses is increased along with the increase of heating width and heating time.

  18. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  19. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  20. Ultrasonic testing of the depth of penetration of electron beam welds on heat exchanger tubes to tube plate assemblies

    International Nuclear Information System (INIS)

    A focused beam ultrasonic testing method is described, which controls weld penetration and more precisely welded zone depth. This technique has been applied to the control of electron beam welds of tube to plate assemblies on heat exchangers; electron beam welding, interesting from economical and technical points of view, induces irregularities in weld penetration. Used as a quality control method, it allows to precisely record some welding parameters (penetration depth, compactness defects, root shape...)

  1. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    International Nuclear Information System (INIS)

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks

  2. Magnetic Configuration Effects Under Neutral Beam Injection at TJ-II

    International Nuclear Information System (INIS)

    The theoretical analysis of NBI absorption and losses, done for the Reference configuration of TJ-II, has been extended to other magnetic configurations of the flexibility diagram. The main results obtained are the following: Fast ion losses. mainly direct ones, are the determinant factor the absorption behaviour. In the absence of radial electric field, the contribution of the delayed fast ion losses in minimal, as well with CX as without, and corresponds, almost exclusively, to low energy trapped ions (1 to t KeV). There is a strong difference between the direct los behaviour corresponding to both injection directions CO and COUNTER. The first one gives always higher losses in TJ-II. For the extreme configurations the direct losses are very high and are originated by resonant effects, that can be observed even for null electric field, and are due to the 0 and-2 resonances. The intermediate configurations are equally separated from both resonances, in consequence the loss level is lower, producing absorption ratios very, acceptable, higher than 60% of the power entering torus at high density and 40 keV. This corresponds to about 1.2 MW absorbed in plasma under balanced injection. In conclusion, the possible presence of resonant effects on the direct losses is the key element to explain the absorption behaviour for the different magnetic configurations. In addition all the configurations placed inside a wide region around the Reference case in the flexibility diagram seem equally convenient for NBI in TJ-II. (Author) 18 refs

  3. Observation of edge filamentary structure motion during supersonic molecular-beam injection using a fast camera in Heliotron J

    International Nuclear Information System (INIS)

    A perpendicular-view fast video camera has been installed in Heliotron J to observe the behavior of filamentary structures of edge plasma turbulence across the last closed flux surface (LCFS). Supersonic molecular-beam injection (SMBI) can greatly increase the edge Hα emission; hence, we used the high imaging rate and shutter speed of the camera to capture the behavior of the fast propagating filamentary structures. A high-pass fast Fourier transform filter on the time dimension was adopted to extract the fluctuation component from the raw data for each pixel. The motion of the filamentary structures was clearly visible when we applied an amplitude threshold to identify the intense structures. In addition, a time-resolved 2D cross-correlation technique was adopted to estimate the poloidal phase velocity of turbulence. The motion direction was found to be reversed dramatically just after an SMBI pulse. (author)

  4. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  5. Neutral-beam-injection fueling for a small, D-3He burning, field-reversed-configuration reactor

    Science.gov (United States)

    Buttolph, Michael; Stotler, Daren; Cohen, Samuel

    2013-10-01

    Rocket propulsion powered by the D-3He fusion reaction in a Field Reversed Configuration (FRC) has been proposed for a variety of solar-system missions. Two key unique features of this concept are a relatively small, 25-cm-radius, plasma core and a relatively thick (10 cm), dense (1e14 cm3), and cool (100 eV electron temperature) scrape-off layer (SOL). The SOL contains the heated propellant - likely hydrogen, deuterium or helium - and also fusion reaction products at a lower density (ca. 1e12 cm-3). A critical design question is the refueling of the fusion reactants. A moderate energy neutral-beam method is considered. It must be able to penetrate the SOL without significant losses but must be stopped in the core. DEGAS 2, a Monte-Carlo code designed to model neutral transport, was implemented to simulate beam-plasma interactions including ionization and charge exchange of the neutral beam's helium-3 and deuterium atoms by impact in the SOL and core plasma with thermal plasma constituents and fusion reaction products. Operational methods to alleviate the effects deleterious reactions such as deuterium charge-exchange in the SOL are described.

  6. High-power ICRF and ICRF plus neutral-beam heating on PLT

    International Nuclear Information System (INIS)

    PLT ICRF experiments with RF powers up to approx.=3 MW have demonstrated efficient plasma heating in both the minority fundamental and the second harmonic ion-cyclotron regimes. In the minority 3He regime, ion temperatures of approx.=3 keV have been produced along with approx.=1 kW of D-3He fusion power and substantial electron heating. In the second harmonic H regime, an equivalent averaged ion energy of approx.=4 keV has been achieved. Combined ICRF plus neutral-beam heating experiments with auxiliary powers totalling up to 4.5 MW have provided insight into auxiliary heating performance at stored plasma energy levels up to approx.=100 kJ. Values of #betta#sub(phi) in the range of 1.5-2% have been attained for Bsub(phi) approx.=17 kG. Energetic discharges with n-barsub(e) up to approx.6x1013 cm-3 at Bsub(phi) approx.=28 kG have also been investigated. Preliminary confinement studies suggest that energetic ion losses may contribute to a direct loss of the input RF power in the H minority heating regime but are insignificant in the 3He minority case. The energy confinement time for the H minority regime is reduced somewhat from the Ohmic value. (author)

  7. The Effect of Heat Treatment on Mechanical Properties of Thermally Sprayed Sandwich Structure Beams

    Science.gov (United States)

    Salavati, Saeid; Coyle, Thomas W.; Mostaghimi, Javad

    2016-01-01

    The application of metallic foam core sandwich structures in engineering components has been of particular interest in recent years because of their unique mechanical and thermal properties. Thermal spraying of the skin on the foam structure has recently been employed as a novel cost-efficient method for fabrication of these structures from refractory materials with complex shapes that could not otherwise be easily fabricated. The mechanical behavior of these structures under flexural loading is important in most applications. Previous studies have suggested that heat treatment of the thermally sprayed sandwich structures could improve the ductility of the skins and so affect the failure mode. In the present study, the mechanical behavior of sandwich beams prepared from arc sprayed alloy 625 skin on 40 ppi nickel foam was characterized under four point bending. The ductility of the arc sprayed alloy 625 coatings was improved after heat treatment at 1100 and 900 °C while the yield point was reduced. Heat treatment of the sandwich beams reduced the danger of catastrophic failure.

  8. Correction of resist heating effect on variable shaped beam mask writer

    Science.gov (United States)

    Nakayamada, Noriaki; Suganuma, Mizuna; Nomura, Haruyuki; Kato, Yasuo; Kamikubo, Takashi; Ogasawara, Munehiro; Zable, Harold; Masuda, Yukihiro; Fujimura, Aki

    2016-04-01

    The specifications for critical dimension (CD) accuracy and line edge roughness are getting tighter to promote every photomask manufacturer to choose electron beam resists of lower sensitivity. When the resist is exposed by too many electrons, it is excessively heated up to have higher sensitivity at a higher temperature, which results in degraded CD uniformity. This effect is called "resist heating effect" and is now the most critical error source in CD control on a variable shaped beam (VSB) mask writer. We have developed an on-tool, real-time correction system for the resist heating effect. The system is composed of correction software based on a simple thermal diffusion model and computational hardware equipped with more than 100 graphical processing unit chips. We have demonstrated that the designed correction accuracy was obtained and the runtime of correction was sufficiently shorter than the writing time. The system is ready to be deployed for our VSB mask writers to retain the writing time as short as possible for lower sensitivity resists by removing the need for increased pass count.

  9. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography.

    Science.gov (United States)

    Christensen, A N; Rydhög, J S; Søndergaard, R V; Andresen, T L; Holm, S; Munck Af Rosenschöld, P; Conradsen, K; Jølck, R I

    2016-06-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively. PMID:27174233

  10. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3He ions, respectively. When the plasma was compressed, the d(d,n)3He fusion reaction rate increased a factor of five, and the 3He(d,p)4He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  11. A method of particle transport study using supersonic molecular beam injection and microwave reflectometry on HL-2A tokamak

    International Nuclear Information System (INIS)

    A method of the particle transport study using supersonic molecular beam injection (SMBI) and microwave reflectometry is reported in this paper. Experimental results confirm that pulsed SMBI is a good perturbation source with deeper penetration and better localization than the standard gas puffing. The local density modulation is induced using the pulsed SMBI and the perturbation density is measured by the microwave reflectometry. Using Fourier transform analysis for the local density perturbation, radial profiles of the amplitude and phase of the density modulation can be obtained. The experimental results in HL-2A show that the particle injected by SMBI is located at about r/a=0.65-0.75. The position of the main particle source can be determined through three aspects: the minimum of the phase of the first harmonic of the Fourier transform of the modulated density measured by microwave reflectometry; the Ha intensity profile and the local density increase ratio. The maximum of the amplitude of the first harmonic shifts often inward relative to the particle source location, which indicates clearly there is an inward particle pinch in this area. Good agreement has been found between the experimental results and the simulation using analytical transport model. The particle diffusivity D and the particle convection velocity V have been obtained by doing this simulation. The sensitivity in the transport coefficients of the amplitude and the phase of the density modulation has been discussed.

  12. The effects of combined electron beam irradiation and microwave heating on microorganisms inactivation

    International Nuclear Information System (INIS)

    The comparative results obtained by applying electron beam irradiation (EBI), microwave heating (MH) and combined EBI and MH (successive or simultaneous) to the reduction of Staphylococcus intermedius and Pseudomaonas aeruginosa cells are presented. Both gamma and electron beam radiation processes are used now commercially for microorganisms sterilization because the ionizing radiations are capable, in adequate doses, to destroy all forms of life. However, high doses are required for the sterilization process. In this respect the possibility of reduction of these doses is a very attractive prospect. A new method, which is still under research and development, is based on the use of microwaves. The microwave sterilization effect is explained by their heating property on polar or polarizable molecules of biological systems. The mild thermal treatment using MWH in addition to EBI could be considered to be sufficient for complete sterilization of a wide variety of materials including foods and medical objects. Our experiments demonstrated that the separate, successive and simultaneous EBI and MH have no the same effect to the microorganisms reduction. The simultaneous EBI and MH cause greater lethal effects than their separate or successive application. Thus, the number of viable colony forming units per ml (CFU/ml) of Staphylococcus intermedius was as follows: 3x1014 CFU/ml for the unirradiated sample; 5.3x109 CFU/ml for electron beam irradiation with 600 Gy; 3.3x109 CFU/ml for 15 s microwave heating up to 45 deg C; 4.1x107 CFU/ml for successive irradiation - first 600 Gy electrons and then 15 s microwave heating up to 45 deg C; 2.45x105 CFU/ml for successive irradiation - first 15 s microwave heating up to 45 deg C and then 600 Gy electrons; 1.8x104 CFU/ml for simultaneous irradiation with 600 Gy electrons and 15 s microwave heating up to 45 deg C. Experiments were carried out using an electron linear accelerator of 6 MeV and 0.18 kW, a 2.45 GHz microwave source of

  13. Fast wave current drive in neutral beam heated plasmas on DIII-D

    International Nuclear Information System (INIS)

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value

  14. A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery

    International Nuclear Information System (INIS)

    This paper presents a novel concept of combining water injection process with an oxyfuel internal combustion engine cycle to enhance thermal efficiency. Since the emission of NOx is eliminated by using oxygen instead of air as oxidant, the exhaust gas is CO2–water vapor mixture, and CO2 is recovered through condensation of the exhaust gas at low cost. In this way, an ultra-low emission working cycle is achieved. The evaporation of injected water not only moderates the peak in-cylinder temperature, but also increases the mass of working gas inside the cylinder, therefore improves the thermal efficiency of the cycle. An ideal thermodynamic model combining an oxyfuel Otto cycle with water injection process was established to investigate the potential of the cycle thermal efficiency. Calculation results show that thermal efficiency reaches 53% when water injection temperature is 120 °C and 67% when water injection temperature reaches 200 °C. Moreover, bench tests were carried out on prototype engine based on this working cycle. Experimental results show that the thermal efficiency improves with the increase of both engine load and water injection mass, and indicated thermal efficiency increases from 32.1% to 41.5% under appropriate test condition. - Highlights: • We present an oxy-fuel combustion cycle coupled with water injection for IC engines. • High thermo efficiency can be realized with the potential of CO2 capture. • Steam is employed as working gas of an reciprocating engine cycle. • An efficiency increase of 33% is achievable based on thermodynamic analysis. • Thermo efficiency increases from 32.1% to 41.5% through engine tests

  15. Electron heating in a two-stage beam-plasma systems

    International Nuclear Information System (INIS)

    A possibility of electron heating in a two-stage plasma system using electron beam as a power surce is investigated. The system comprises two differentially pumped-out volumes separated by a discharge chamber. The whole system is located in a homogenous magnetic field of 3.5 kOe. Current density of the electron beam was equal to 1A/cm2 at the energy of 2 keV. The investigations revealed that neutral gas pressure is the parameter strongly affecting electron temperature in the system. Dependences of electron temperature and plasma density on neutral gas pressure are presented. Obtaining electron temperatures of the order of hundreds eV is shown to be possible in the given device

  16. Magnetic configuration effects on plasma transport under Neutral Beam Injection at TJ-II (Simulation)

    International Nuclear Information System (INIS)

    A systematic analysis of magnetic configurations (27 in total), using a Transport model including impurity dynamics and sputtering effects has been done. For small size configurations or those close to rational t values there is radioactive collapse, independently of the external gas puffing (GP) strategy chosen. The reason is the insufficiency of observed power, either by the high shine through losses due to their low radii, or by the increase of fast ion orbit losses near the resonances. For the majority of configurations without collapse, fast ion orbit losses for CO injection (going in the same direction than the toroidal magnetic field) are higher, and in consequence the power absorption and the plasma β achieved are laser, than for the opposite direction. Nevertheless in the region placed just above the main resonances (1/3 and 1/2 per period) this situation reverses. The reasons have been analysed and explained at previous studies. A consequence of this fact is that the optima of confinement for the Counter case are shifted towards higher t values than the CO one, with higher plasma β, except near the resonances. As usual the balanced case is in between. The optima achieving stationary state are very close (and often are coincident) with those lacking that restriction. The best configuration (highest average β for balanced injection, with =1.1% and central value 3.2%, although in this region the results are rather insensitive to configuration and GP strategy. the configurations placed around the 10044 would need also the lowest power entering the torus in order to avoid collapse and to achieve an acceptable NBI absorption level. (Author) 12 refs

  17. Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration

    Science.gov (United States)

    Marchetti, B.; Assmann, R.; Behrens, C.; Brinkmann, R.; Dorda, U.; Floettmann, K.; Hartl, I.; Huening, M.; Nie, Y.; Schlarb, H.; Zhu, J.

    2016-09-01

    The SINBAD facility (Short and INnovative Bunches and Accelerators at Desy) is foreseen to host various experiments in the field of production of ultra-short electron bunches and novel high gradient acceleration techniques. Besides studying novel acceleration techniques aiming to produce high brightness short electron bunches, the ARD group at DESY is working on the design of a conventional RF accelerator that will allow the production of low charge (0.5 pC - few pC) ultra-short electron bunches (having full width half maximum, FWHM, length ≤ 1 fs - few fs). The setup will allow the direct experimental comparison of the performance achievable by using different compression techniques (velocity bunching, magnetic compression, hybrid compression schemes). At a later stage the SINBAD linac will be used to inject such electron bunches into a laser driven Plasma Wakefield Accelerator, which imposes strong requirements on parameters such as the arrival time jitter and the pointing stability of the beam. In this paper we review the compression techniques that are foreseen at SINBAD and we underline the differences in terms of peak current, beam quality and arrival time stability.

  18. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  19. Thermal loads on the TJ-II Vacuum Vessel under Neutral Beam Injection

    International Nuclear Information System (INIS)

    In this study a numerical analysis of power loads on the complex 3D structure of the TJ-II Vacuum Vessel, moderated with reasonable accuracy, under NBI, is done. To do this it has been necessary to modify deeply the DENSB code for power loads in order to include the TJ-II VV wall parts as targets and as beam scrapers, allowing the possibility of self-shadowing. After a short description of the primitive version of the DENSB code (paragraph 2) and of the visualisation code MOVIE(paragraph 3), the DENSB upgrading are described (paragraphs 4,5) and finally the results are presented (paragraph 6). These code modifications and the improving on the visualization tools provide more realistic load evaluations, both with and without plasma, validating former results and showing clearly the VV zones that will need new protections. (Author)

  20. VLF wave stimulation by pulsed electron beams injected from the Space Shuttle

    Science.gov (United States)

    Reeves, G. D.; Banks, P. M.; Frazer-Smith, A. C.; Neubert, T.; Bush, R. I.

    1988-01-01

    Among the investigations conducted on the Space Shuttle flight STS-3 of March 1982 was an experiment in which a 1-keV, 100-mA electron gun was pulsed at 3.25 and 4.87 kHz. The resultant waves were measured with a broadband plasma wave receiver. At the time of flight the experimental setup was unique in that the electron beam was square wave modulated and that the Shuttle offered relatively long times for in situ measurements of the ionospheric plasma response to the VLF pulsing sequences. In addition to electromagnetic response at the pulsing frequencies the wave exhibited various spectral harmonics as well as the unexpected occurrence of 'satellite lines' around those harmonics. Both phenomena occurred with a variety of different characteristics for different pulsing sequences.

  1. HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere

    OpenAIRE

    İnan, Umran Savaş; Cohen, M. B. ; Golkowski, M. ; Lehtinen, N. G. ; McCarrick, M. J.

    2012-01-01

    ELF/VLF (0.3–30 kHz) wave generation is achievable via modulated HF (3–30 MHz) heating of the lower ionosphere in the presence of natural currents such as the auroral electrojet. Using the 3.6 MW High Frequency Active Auroral Research Program (HAARP) facility near Gakona, AK, we investigate the effect of HF frequency and beam size on the generated ELF/VLF amplitudes, as a function of modulation frequency, and find that generation in the Earth-ionosphere waveguide generally decr...

  2. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    胡纯栋

    2012-01-01

    The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.

  3. 电加热高光注塑模具设计%Electric Heating High Light Injection Mold Design

    Institute of Scientific and Technical Information of China (English)

    黄元贵

    2011-01-01

    A high gloss injection molding, in mold core equipped with electric heating components, in the mold core with insulation on the tank, while the main body in the mold and the mold core with insulation between the plates, to achieve high optical injection in At the same time, greatly reduce energy consumption. This method and technology is useful in the practical production.%一种高光注塑模具在模芯内设有电加热件,在模芯上设有隔热槽,同时在模具主体与模芯之间设有隔热板,使其在实现高光注塑的同时,大幅地降低了能耗.该工艺方法的设计研究,具有显著的科研和工程实用价值.

  4. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  5. Electron-beam welding of the grill flanges of the FTU additional heating system

    International Nuclear Information System (INIS)

    The research and development program of the fusion sector of ENEA (Italian Agency for New Technologies, Energy and Environment) Frascati center is mainly based on experiments on the Frascati Tokamak Upgrade (FTU) machine. The FTU is a medium-high magnetic field (8 T) tokamak with a radio-frequency (RF) additional heating system (8 MW, 8 GHz) that can heat the plasma to temperatures of fusionistic interest. The RF power is coupled to the plasma by a coupling structure consisting of three grills, each formed of an array of waveguides welded at the terminal flanges by an electron-beam technique. This solution allows highly accurate dimensions and optimum clean-surface conditions of the welded copper joints

  6. Armor plate protection for the Doublet III vacuum vessel for neutral beam heating

    International Nuclear Information System (INIS)

    The design of vacuum vessel armor plate for neutral beam systems presents a number of challenges to the engineer. Heat fluxes of several hundred watts/cm2 must be handled on a routine basis during normal plasma operations, and a factor of ten increase in these fluxes can occur during plasma disruptions. At the present time, a graphite tile system appears to be the best candidate for such a situation. Heat fluxes in excess of 4 kW/cm2 can be routinely sustained and the material sputtered or evaporated from the surface has a low atomic number. The system proposed for Doublet III will provide valuable data for the designers of future fusion reactors and will also provide proof-of-principle demonstrations for such machines as TFTR and JET

  7. Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights

    CERN Document Server

    Gruber, Matthew; Hartogensis, Oscar

    2014-01-01

    Displaced-beam scintillometer measurements of the turbulence inner-scale length $l_o$ and refractive index structure function $C_n^2$ resolve area-average turbulent fluxes of heat and momentum through the Monin-Obukhov similarity equations. Sensitivity studies have been produced for the use of displaced-beam scintillometers over flat terrain. Many real field sites feature variable topography. We develop here an analysis of the sensitivity of displaced-beam scintillometer derived sensible heat fluxes to uncertainties in spacially distributed topographic measurements. Sensitivity is shown to be concentrated in areas near the center of the beam and where the underlying topography is closest to the beam height. Uncertainty may be decreased by taking precise topographic measurements in these areas.

  8. Two-phase flow in porous media with phase change: post dryout heat transfer and steam injection

    International Nuclear Information System (INIS)

    Two-phase flow processes thought to be important to in-core severe accident progression are reviewed. Two-dimensional dryout processes are treated and the conclusion is reached that one-dimensional dryout limits are adequate for predicting the onset of core melting. Post-dryout considerations are used to justify study of heat transfer at a steam-water interface. Steam injection into cold flowing water in a porous media is used to generate the steam-water interface. It is shown that all important characteristics of the interface can be predicted well enough for engineering purposes. ((orig.))

  9. Improved silicon carbide for advanced heat engines. II - Pressureless sintering and mechanical properties of injection molded silicon carbide

    Science.gov (United States)

    Whalen, Thomas J.; Baer, J. R.

    1989-01-01

    The influence on density and strength of pressureless sintering in vacuum and argon environments has been evaluated with injection molded SiC materials. Main effects and two factor interactions of sintering (cycle variables temperature, time, heating rate, and atmosphere) were assessed. An improved understanding of the influence of the processing flaws and sintering conditions has been obtained. Strength and density have improved from a baseline level of 299 MPa (43.3 Ksi) and 94 pct of theoretical density to values greater than 483 MPa (70 Ksi) and 97 pct.

  10. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  11. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  12. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin T [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  13. Parametric scaling studies of the energy confinement time for neutral beam heated Heliotron E plasmas

    International Nuclear Information System (INIS)

    A kinetic analysis of the global energy confinement time for neutral beam heated Heliotron E plasmas has been performed with a 1-D, time independent transport analysis code, PROCTR-Mod. From a regression analysis of a representative sample selection of the presented data sets, the global energy confinement time, τEG(ms), is found to scale as τEG=13n-bareαPheatβBγ, where α=0.53±0.10, β=-0.71±0.09, and γ=0.35±0.14; the error bar indicates the 95% confidence region deduced from the limited data points; n-bare(1014cm-3) is the line average electron density; Pheat(MW) is the neutral beam heating power; and B(T) is the vacuum magnetic field at the magnetic axis. The data analysis shows that the favourable density dependence partially offsets the unfavourable power dependence and that anomalous electron transport loss becomes dominant in the overall energy balance as the beam power and the plasma density are increased. An alternative scaling law is also presented, which is to fit τEG(ms) by an 'offset linear' law, τEG=ζB2+ηe>/Pheat, where ζ=1.1±0.33 and η=15.0±1.9; e>(1014cm-3) is the volume average electron density. The latter scaling is found to provide a better fit to the presented data sets, in spite of its simple form. The parametric scaling of the local electron thermal diffusivity, χe, is also discussed on the basis of the kinetic analysis. (author). 40 refs, 21 figs, 2 tabs

  14. Design of conformal cooling for plastic injection moulding by heat transfer simulation

    Directory of Open Access Journals (Sweden)

    Sabrina Marques

    2015-12-01

    Full Text Available The cooling channels of a mold for plastic injection have to be as close as possible to the part geometry in order to ensure fast and homogeneous cooling. However, conventional methods to manufacture cooling channels (drilling can only produce linear holes. Selective laser melting (SLM is an additive manufacturing technique capable to manufacture complex cooling channels (known as conformal cooling. Nevertheless, because of the high costs of SLM the benefits of conformal collings are still not clear. The current work investigates two designs of conformal coolings: i parallel circuit; ii serial circuit. Both coolings are evaluated against to traditional cooling circuits (linear channels by CAE simulation to produce parts of polypropylene. The results show that if the conformal cooling is not properly designed it cannot provide reasonable results. The deformation of the product can be reduced significantly after injection but the cycle time reduced not more than 6%.

  15. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). The valve closing timing for maximum MEPsteam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEPsteam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  16. Aerosol palladium activation for electroless copper deposition and heat treatment with NO injection to fabricate Cu oxide/carbon fibre

    International Nuclear Information System (INIS)

    This paper introduces a novel method for fabricating copper (Cu) oxide/activated carbon fibre (ACF) through the aerosol palladium (Pd) activation for use in electroless Cu deposition and heat treatment of Cu deposited ACF with nitric monoxide (NO) gas injection. Electroless Cu deposition was initiated by catalytically activating the ACF surface with spark generated Pd aerosol nanoparticles. The catalytically activated ACF was placed into a solution used for the electroless Cu deposition. Subjecting the Cu deposited ACF to a heat treatment in a NO/nitrogen (N2) gas injection (1000 ppm NO) resulted in changes to the morphology of the Cu particles. As the temperature increased from 100 to 500 deg. C, the relative mass fraction of oxygen in the Cu particles increased from 3.6% to 14.2% and the fraction of Cu decreased from 41.2% to 34.1%, which was caused by the formation of Cu oxides (Cu2O and CuO). The corresponding surface area and pore volume of the ACF decreased from 1019 m2 g-1 to 401 m2 g-1 and from 0.40 cm3 g-1 to 0.18 cm3 g-1, respectively. The morphological evolution and decrease in porosity were attributed to volume expansion of Cu particles during oxidation.

  17. Aerosol palladium activation for electroless copper deposition and heat treatment with NO injection to fabricate Cu oxide/carbon fibre

    Science.gov (United States)

    Byeon, Jeong Hoon; Lee, Ryang Hwa; Hwang, Jungho

    2009-03-01

    This paper introduces a novel method for fabricating copper (Cu) oxide/activated carbon fibre (ACF) through the aerosol palladium (Pd) activation for use in electroless Cu deposition and heat treatment of Cu deposited ACF with nitric monoxide (NO) gas injection. Electroless Cu deposition was initiated by catalytically activating the ACF surface with spark generated Pd aerosol nanoparticles. The catalytically activated ACF was placed into a solution used for the electroless Cu deposition. Subjecting the Cu deposited ACF to a heat treatment in a NO/nitrogen (N2) gas injection (1000 ppm NO) resulted in changes to the morphology of the Cu particles. As the temperature increased from 100 to 500 °C, the relative mass fraction of oxygen in the Cu particles increased from 3.6% to 14.2% and the fraction of Cu decreased from 41.2% to 34.1%, which was caused by the formation of Cu oxides (Cu2O and CuO). The corresponding surface area and pore volume of the ACF decreased from 1019 m2 g-1 to 401 m2 g-1 and from 0.40 cm3 g-1 to 0.18 cm3 g-1, respectively. The morphological evolution and decrease in porosity were attributed to volume expansion of Cu particles during oxidation.

  18. Controlling underground heatings using innovative fire-suppressant injection - proof of concept study

    Energy Technology Data Exchange (ETDEWEB)

    Shenggen Hu; Sheng Xue [CSIRO Exploration and Mining (Australia)

    2009-02-15

    The objective of this project was to develop long-term effective and low-cost polymer gel fire-suppressants that could be deployed for controlling and extinguishing coal heatings in underground coal mines. These fire-suppressing gels can be applied to the areas undergoing coal heatings at a controllable gelation time and impermeable gel barriers can be formed in adjacent areas to block ingress of air. In addition to air blocking, the gels could quench or cool the heatings with their high water content. A number of gel systems have been developed and examined against the selection criteria. Initial studies show that four gel systems: anionic polyacrylamide (HPAM)-Al{sup 3+}, sodium carboxymethylcellulose (CMC)-Al{sup 3+}, acrylamide-acrylate copolymer-Al{sup 3+} and xanthan-Al{sup 3+} met the selection criteria. Detailed investigations on these four gel systems were undertaken. This study has shown that the HPAM-Al{sup 3+} gel is the most favourable gel system for suppression of underground coal heatings due to its low cost, easy preparation and relatively high thermal stability. Small scale fire-suppression tests with HPAM - Al{sup 3+} gel demonstrated that the gel fire suppressants are effective to control and extinguish coal heatings through air blocking and cooling.

  19. Pilot study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-06-01

    Full Text Available Maxim A Shevtsov,1,2 Alexander V Kim,2 Konstantin A Samochernych,2 Irina V Romanova,3 Boris A Margulis,1 Irina V Guzhova,1 Igor V Yakovenko,2 Alexander M Ischenko,4 William A Khachatryan2 1Institute of Cytology of the Russian Academy of Sciences, 2AL Polenov Russian Research Scientific Institute of Neurosurgery, 3IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 4Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation Abstract: Intratumoral injections of recombinant heat shock protein (Hsp70 were explored for feasibility in patients with brain tumors. Patients aged 4.5–14 years with untreated newly diagnosed tumors (n=12 were enrolled. After tumor resection, five injections of recombinant Hsp70 (total 2.5 mg were administered into the resection cavity through a catheter. Before administration of Hsp70 and after the last injection, specific immune responses to the autologous tumor lysate were evaluated using the delayed-type hypersensitivity test. Further, peripheral blood was monitored to identify possible changes in lymphocyte subpopulations, cytokine levels, and the cytolytic activity of natural killer cells. The follow-up period in this trial was 12 months. Intratumoral injections of Hsp70 were well tolerated by patients. One patient had a complete clinical response documented by radiologic findings and one patient had a partial response. A positive delayed-type hypersensitivity test was observed in three patients. In peripheral blood, there was a shift from cytokines provided by Th2 cells toward cytokines of a Th1-cell-mediated response. These data corresponded to changes in lymphocyte subpopulations. Immunosuppressive T-regulatory cell levels were also reduced after injection of Hsp70, as well as production of interleukin-10. The cytolytic activity of natural killer cells was unchanged. The present study demonstrates the feasibility of intratumoral delivery

  20. Experimental research on the gravity-driven boron injection system for a 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    The gravity-driven boron injection system (GDBIS), designed by the Institute of Nuclear Energy Technology (INET) of the Tsinghua University, PR China, is a new type of passive system to be applied in the 200 MW nuclear heating reactor (NHR-200), also designed by INET. The function of this system is to shut down the reactor in an emergency, in case control rods do not operate properly. A borate water tank is located 10 m above the top of the pressure vessel. When the pressure of the reactor and the boron tank balances, the borate water will be driven by gravity to flow into the reactor, and thus shut down the reactor. The thermal hydraulic performances of the system for cold (room temperature nitrogen) and hot (mixture of hot steam and nitrogen) operating conditions, especially the response time of pressure and water injection, have been researched under different initial conditions. Firstly, several factors, e.g. orifice on steam lines, and the volume ratio of the gas-steam spaces of the reactor and the boron tank, have effects on the pressure and water injection response time and other thermal hydraulic performance of the system. Secondly, the steam and liquid communication modes, namely the acting time and sequence of the action of valves connecting steam and liquid lines, have great influences on the performance of the system. Thirdly, the limited pressure balance time (about 1.0 s) can be achieved under the cold condition. This investigation shows that GDBIS can be properly used in the 200 MW nuclear heating reactor

  1. Equation of state studies of warm dense matter samples heated by laser produced proton beams

    Science.gov (United States)

    Hoarty, D. J.; Guymer, T.; James, S. F.; Gumbrell, E.; Brown, C. R. D.; Hill, M.; Morton, J.; Doyle, H.

    2012-03-01

    Heating of matter by proton beams produced by short pulse, laser-solid target interaction has been demonstrated over the last ten years by a number of workers. In the work described in this paper heating by a pulse of laser produced protons has been combined with high-resolution soft x-ray radiography to record the expansion of thin wire targets. Analysis of the radiographs yields material properties in the warm dense matter regime. These measurements imply initial temperatures in the experimental samples over a range from 14 eV up to 40 eV; the sample densities varied from solid to a tenth solid density. Assuming an adiabatic expansion after the initial proton heating phase isentropes of the aluminium sample material were inferred and compared to tabulated data from the SESAME equation of state library. The proton spectrum was also measured using calibrated magnetic spectrometers and radiochromic film. The accuracy of the technique used to infer material data is discussed along with possible future development.

  2. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  3. Relativistic Pair Beams from TeV Blazars: A Source of Reprocessed GeV Emission rather than Intergalactic Heating

    Science.gov (United States)

    Sironi, Lorenzo; Giannios, Dimitrios

    2014-05-01

    The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the nonlinear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors γ b Gt 1 and beam-to-plasma density ratios α Lt 1, so that our results can be extrapolated to the extreme parameters of blazar-induced beams (γ b ~ 106 and α ~ 10-15, for powerful blazars). For cold beams, we show that the oblique instability governs the early stages of evolution, but its exponential growth terminates—due to self-heating of the beam in the transverse direction—when only a negligible fraction ~(α/γ b )1/3 ~ 10-7 of the beam energy has been transferred to the IGM plasma. Further relaxation of the beam proceeds through quasi-longitudinal modes, until the momentum dispersion in the direction of propagation saturates at Δp b, ∥/γ b mec ~ 0.2. This corresponds to a fraction ~10% of the beam energy—irrespective of γ b or α—being ultimately transferred to the IGM plasma (as compared to the heating efficiency of ~50% predicted by one-dimensional models, which cannot properly account for the transverse broadening of the beam). For the warm beams generated by TeV blazars, the development of the longitudinal relaxation is suppressed, since the initial dispersion in beam momentum is already Δp b0, ∥/γ b mec >~ 1. Here, the fraction of beam energy ultimately deposited into the IGM is only ~α γ b ~ 10-9. It follows that most of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the cosmic microwave background by the beam pairs.

  4. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l-1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g-1 Cd and 1.6 μg g-1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  5. Charge injection properties of iridium oxide films produced on Ti-6Al-4V alloy substrates by ion-beam mixing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M. (Oak Ridge National Lab., TN (United States)); Lee, I-S.; Buchanan, R.A. (Tennessee Univ., Knoxville, TN (United States))

    1991-10-01

    The charge injection capabilities of iridium oxide films, as produced on Ti6Al-4V alloy substrates by ion beam mixing techniques, have been investigated. Iridium oxide is a valence change oxide, and therefore has high values of charge injection density upon voltage cycling in electrolytes. Because of this property, iridium oxide films are useful as working elements in neural prostheses. Iridium films of three thicknesses, produced by sputter deposition followed by ion beam mixing, were tested in cyclic voltammetry out to 1000 cycles or more. Two surface preparations, mechanical polishing and an acid passivation treatment, were also used as controls. Surface analysis was primarily by Rutherford backscattering spectrometry. Both the ion- beam mixing and the acid pretreatment increased the lifetimes of films, in comparison with the mechanically polished standards. Reductions in charge injection capability, when they occurred, were attributed to loss of Ir from the films, and there was a close correlation between the charge injection density and the Ir inventory. 13 refs., 5 figs.

  6. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  7. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    International Nuclear Information System (INIS)

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam

  8. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    International Nuclear Information System (INIS)

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  9. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam. PMID:24593474

  10. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  11. Experimental study of unsteady heat release in an unstable single element Lean Direct Injection (LDI) gas turbine combustor

    Science.gov (United States)

    Lakshmanan, Varun S.

    In an effort to curb emissions from gas turbine engines, many low emission engine concepts have been developed. Among the most promising of these is the LDI (Lean Direct Injection). These systems operate at relatively low equivalence ratios close to blowout and are prone to instabilities. Combustion instabilities can reduce the life of the combustor by causing large pressure fluctuations and enhanced heat release to the walls of the combustor and reduce the efficiency of the engines. The understanding of combustion instabilities is vital to the implementation of such systems. Combustion instabilities are studied in an self-excited single element gas turbine combustor that uses an LDI element for fuel injection at elevetaed chamber pressures. The LDI combustor uses a swirler to ensure mixing of the air and the fuel and expansion of the swirl through a pressure swirl venturi to create a swirl stabilized flame. This project aims to study the heat release modes that occur in the combustor through measurement of light emissions from the flame using photodiodes that are sensitive to wavelengths of light produced by the flame. These are used along with high frequency pressure transducers. The focus is on the flame behavior in the diverging section of the venturi where the swirl is expanded and the flame starts since optic access cannot be obtained in this section. The use of photodiodes also facilitates the study of hydrodynamic modes that occur in the combustor alongside the thermoacoustics. A section which could accommodate the photodiodes was designed and installed on the LDI test rig in the Gas Turbine Cell at Maurice J Zucrow Propulsion Labs at Purdue University. The combustor was tested with this section and dynamic data was obtained from the pressure transducers and the photodiodes for a range of inlet air temperatures and range of equivalence ratios for each inlet air temperature. The dominant instability modes in both sets of data were analyzed and are presented

  12. Comparison of the Performance of Chilled Beam with Swirl Jet and Diffuse Ceiling Air Supply: Impact of Heat Load Distribution

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Kosonen, Risto;

    2013-01-01

    The impact of heat load strength and positioning on the indoor environment generated by diffuse ceiling air supply and chilled beam with radial swirl jet was studied and compared. An office room with two persons and a meeting room with six persons were simulated in a test room (4.5 x 3.95 x 3.5 m3...... (ventilation effectiveness of 0.4) and the air flow rate had to be above minimum to safeguard the indoor air quality. The radial swirl jet of chilled beam also was not capable of creating complete mixing at high and concentrated heat load (ventilation effectiveness of 0.7)....

  13. Three dimensional modeling of combustion process and emission formation in a low heat rejection indirect injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar S.

    2014-01-01

    Full Text Available Higher heat losses and brake specific fuel consumption (BSFC are major problems in an indirect injection (IDI diesel engine, which can be overcome by means of low heat rejection (LHR concept. This concept is based on the approach of insulating of piston and liner of main chamber in IDI engine. At the present work, the combustion process and emission formation in baseline and LHR engines are studied by a Computational Fluid Dynamics (CFD code at four different loads (25%, 50%, 75% and 100% in maximum torque engine speed 730rpm. The numerical results for the pressure in cylinder and emissions for baseline engine at full load operation are compared to the corresponding experimental data and show good agreement. The comparison of the results for two cases show that when the load increases from 25% to 100% in 25% steps, heat loss in LHR engine decrease 40.3%, 44.7%,44.6% and 45.2%, respectively. At full load operation in LHR engine, NOx and Soot emissions decrease 13.5% and 54.4%, respectively and engine efficiency increases 6.3% in comparison to baseline engine.

  14. Energy confinement and profile characteristics during the initial neutral beam heating in JT-60

    International Nuclear Information System (INIS)

    Confinement results are reported during the 3 months initial operation of JT-60 tokamak with Ip of 1 - 2 MA, n-bare of 1.5 - 7 x 1019 m-3 and Pabs up to 20 MW. The plasma stored energy follows an offset linear relation with the absorbed power and the incremental energy confinement time τEinc (= dWs/dPabs) for thermal components is almost independent of Ip and n-bare and is 60 msec. A remarkable difference in the density profile has been observed between limiter and divertor discharges. The electron temperature profile shape is rather tight compared with the density profile although broader profiles have been observed in high density beam heated discharges. (author)

  15. Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating

    Science.gov (United States)

    Guo, H.; Khan, M. I.; Cheng, C.; Fan, W.; Dames, C.; Wu, J.; Minor, A. M.

    2014-10-01

    Temperature measurement is critical for many technological applications and scientific experiments, and different types of thermometers have been developed to detect temperature at macroscopic length scales. However, quantitative measurement of the temperature of nanostructures remains a challenge. Here, we show a new type of microthermometer based on a vanadium dioxide nanowire. Its mechanism is derived from the metal-insulator transition of vanadium dioxide at 68 °C. As our results demonstrate, this microthermometer can serve as a thermal flow meter to investigate sample heating from the incident electron beam using a transmission electron microscope. Owing to its small size the vanadium dioxide nanowire-based microthermometer has a large measurement range and high sensitivity, making it a good candidate to explore the temperature environment of small spaces or to monitor the temperature of tiny, nanoscale objects.

  16. Beam radiation curing of adhesives for flocking on heat-sensitive substrates

    International Nuclear Information System (INIS)

    A process is described for curing the adhesive used to hold flock fiber material to a heat-sensitive substrate consisting of temperature-sensitive plastic, natural fibers, wood, paper, or paper-foil laminates. An electron-curable adhesive layer (acrylic, epoxy, epoxy esters, acrylic latex, or urethane) a few mils thick is applied to the substrate and a layer of texturing material is attached to the adhesive layer with fibers substantially perpendicular to the layer. The assembly of substrate and adhesively secured material is passed at a rate of about 20 to 80 meters per minute under an unscanned electron curtain beam which possesses an energy of 150 keV +- 30 percent and delivers an electron dose of 2 megarads +- 50 percent to the adhesive layer. (LL)

  17. Confinement scaling studies of rf- and neutral-beam heated currentless heliotron E plasmas

    International Nuclear Information System (INIS)

    Parametrical scaling studies of rf- and neutral-beam-heated currentless Heliotron E plasmas have been performed. Parametrical local electron transport analyses show that the electron energy transport of the ECH plasmas has nearly the same values as the neoclassically predicted ones inside the 2/3 radius, while the NBI and the ICRF plasmas are dominated by the anomalous electron transport in the whole region. Scaling studies on global energy confinement time reveal that the ECH, NBI and ICRF plasmas obey nearly the same scaling that is characterized as continuous power degradation and favorable positive density dependence. The global energy confinement time is thought to be influenced by the anomalous transport in the peripheral plasma region in common with the ECH, NBI and ICRF plasmas, although the core plasma properties such as the local electron transport seem to be different between these plasmas. (author)

  18. Solid particle effects on heat transfer in a multi-layered molten pool with gas injection

    International Nuclear Information System (INIS)

    In the very unlikely event of a severe reactor accident involving core melt and pressure vessel failure, it is important to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a stable coolable state. To achieve this, it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. In this situation the molten pool would become a three-phase mixture: e.g., a solid and liquid slurry formed by the molten pool as it cools to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward in this multi-layered configuration, considering the influence of the viscosity and the solid fraction in the pool, from test data obtained from intermediate scale experiments at the University of Wisconsin-Madison. These experimental results show heat transfer behavior for multi-layered pools for a range of viscosities and solid fractions. These results are compared to previous experimental studies and well known correlations and models

  19. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  20. Detailed magnetic model simulations of the H- injection chicane magnets for the CERN PS Booster Upgrade, including eddy currents and influence on beam dynamics

    CERN Document Server

    Benedetto, E; Borburgh, J; Carli, C; Martini, M; Forte, V

    2014-01-01

    The CERN PS Booster will be upgraded with an H- injection system. The chicanemagnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The -beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and correction on beam dynamics.

  1. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR)

  2. Burnout experiments on the externally-finned swirl tube for steady-state and high-heat flux beam stops

    International Nuclear Information System (INIS)

    An experimental study to develop beam stops for the next generation of neutral beam injectors was started, using an ion source developed for the JT-60 neutral beam injector. A swirl tube is one of the most promising candidates for a beam stop element which can handle steady-state and high-heat flux beams. In the present experiments, a modified swirl tube, namely an externally-finned swirl tube, was tested together with a simple smooth tube, an externally finned tube, and an internally finned tube. The major dimensions of the tubes are 10 mm in outer-diameter, 1.5 mm in wall thickness, 15 mm in external fin width, and 700 mm in length. The burnout heat flux (CHF) normal to the externally finned swirl tube was 4.1±0.1 kW/cm2, where the Gaussian e-folding half-width of the beam intensity distribution was about 90 mm, the flow rate of the cooling water was 30 l/min, inlet and outlet gauge pressures were about 1 MPa and 0.2 MPa, respectively, and the temperature of the inlet water was kept to 200C during a pulse. A burnout heat flux ratio, which is defined by the ratio of the CHF value of the externally-finned swirl tube to that of the externally-finned tube, turned out to be about 1.5. Burnout heat fluxes of the tubes with a swirl tape or internal fins increase linearly with an increase of the flow rate. It was found that the tube with external fins has effects that not only reduce the thermal stress but also improve the characteristics of boiling heat transfer. (orig.)

  3. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    International Nuclear Information System (INIS)

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  4. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    International Nuclear Information System (INIS)

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources

  5. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    O' Flannagain, Aidan M.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, John C. [Astronomy and Astrophysics Group, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  6. Two-phase flow and heat transfer in a once-through steam generator during auxiliary feedwater injection

    International Nuclear Information System (INIS)

    In this paper, a phenomenological model is developed for the thermal-hydraulic processes on the secondary side of a once-through steam generator during auxiliary feedwater injection. Based on experimental observations, the flow of auxiliary feedwater in the secondary side is modeled as a turbulent falling film on the tubes, in direct contact with a countercurrent flow of steam, that receives heat from the primary side. Conservation equations for the falling film and steam on the secondary side, and for the primary-side coolant, are derived. Boiling in the falling film, evaporation and/or condensation at the falling film-gas interphase, and countercurrent flow limitation in the tube support plate passages are modeled. Numerical solution of the conservation equations provide the axial variation of flow rates and temperatures in the primary and secondary side

  7. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  8. Surface modification of molten W exposed to high heat flux helium neutral beams

    International Nuclear Information System (INIS)

    High heat flux tests with central heat flux of 10.5 MW/m2 using helium neutral beams have been carried out on rolled tungsten. The energy of helium particles is 33 keV and the particle flux is 2 × 1021 m−2 s−1. An 80 × 65 × 3 mm3 rolled tungsten plate is firstly exposed to a 4.6 s pulse resulting in partially molten surfaces. Thereafter the tungsten plate is irradiated by several helium pulses with fluences of 1.2–2.5 × 1022/m2 and peak temperatures from 1450 to 2590 °C. The experiments show that: (1) helium-induced surface modification of the resolidified tungsten surface is very different from that of the non-molten surface; (2) the surface morphology of molten surface is closely related to the orientation of the resolidified grain; (3) the evolution of surface modifications, for both of the molten and non-molten tungsten surfaces, indicates a strong dependence on the surface temperature and local helium fluence

  9. Dose rate estimates in the first optical enclosure due to particle beam loss in the insertion device transition region during injection

    International Nuclear Information System (INIS)

    The particle beam, during injection into the storage ring, can be partly lost in one of the transition regions between the storage-ring vacuum chamber and the insertion-device (ID) straight section. The transition region is a copper interface between a standard aluminum vacuum chamber and an insertion-device vacuum chamber. This can be a problem, at least in the first few insertion devices where the injected beam is still unstable. It may create higher photon and neutron dose rates in the first optical enclosures of the upstream ID beamlines adjacent to this region. This report presents the results of the dose rate estimates for such an event and some recommendations for mitigation

  10. Method for cutting steam heat losses during cyclic steam injection of wells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gondouin, M.

    1995-12-01

    Heavy Oil is abundant in California. It is a very viscous fluid, which must be thinned in order to flow from wells at economical rates. The best method of oil viscosity reduction is by cyclic steam injection into the oil-containing rock formations. Making steam in conventional generators fueled with Natural Gas is, however, a costly process. The main objective of this Project is to reduce the cost of the required steam, per Barrel of Oil produced. This is made possible by a combination of Patented new technologies with several known methods. The best known method for increasing the production rate from oil wells is to use horizontal drainholes, which provide a much greater flow area from the oil zone into the well. A recent statistic based on 344 horizontal wells in 21 Canadian Oil fields containing Heavy Oil shows that these are, on the average six times more prolific than vertical wells. The cost of horizontal wells, however, is generally two to three times that of a vertical well, in the same field, so our second goal is to reduce the net cost of horizontal wells by connecting two of them to the same vertical casing, well head and pumping system. With such a well configuration, it is possible to get two horizontal wells for the price of about one and a half times the price of a single vertical well.

  11. Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell . gas turbine hybrid systems

    International Nuclear Information System (INIS)

    This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different configurations (pressurized system and ambient pressure system) were examined and the effects of injecting steam, generated by recovering heat from the exhaust gas, on system performances were compared. Performance variations according to the design of different turbine inlet temperatures were examined. Two representative gas turbine pressure ratios were used. Without steam injection, the pressurized system generally exhibits higher system efficiency than the ambient pressure system. The steam injection augments gas turbine power, thus increasing the power capacity of the hybrid system. The power boost effect due to the steam injection is generally greater in the relatively higher pressure ratio design in both the pressurized and ambient pressure systems. The effect of the steam injection on system efficiency varies depending on system configurations and design conditions. The pressurized system hardly takes advantage of the steam injection in terms of system efficiency. On the other hand, the steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. In particular, a higher pressure ratio provides a better chance of efficiency increase due to the steam injection

  12. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  13. Application of heat pulse injections for investigating shallow hyporheic flow in a lowland river

    Science.gov (United States)

    Angermann, Lisa; Krause, Stefan; Lewandowski, Joerg

    2012-10-01

    Hyporheic zone processes can have significant impact on groundwater and surface water resources. Detailed knowledge of exchange flow patterns is crucial for understanding the ecohydrological and biogeochemical functioning of river corridors. In particular, small-scale hyporheic exchange flow is still poorly understood, partially because of the lack of adequate in situ monitoring technology. This paper investigates the spatial heterogeneity of hyporheic exchange flow in a lowland river at multiple scales. It demonstrates the conjunctive use of active heat pulse tracing at shallow depths (15 cm) and vertical hydraulic gradients (VHG) at 120-150 cm streambed depth for improving the understanding of hyporheic exchange flow processes. Generally positive VHG indicated a regional dominance of groundwater up-welling. High and temporally variable VHG were used to identify confined conditions caused by low conductivity layers in the subsurface (low connectivity), while locations with lower and temporally less variable VHG indicated free groundwater up-welling (high connectivity) in highly conductive sediments. A heat pulse sensor (HPS) was applied for identifying shallow hyporheic flow at three locations representative for high versus low streambed connectivity. Shallow hyporheic flow patterns were found to be spatially heterogeneous. Subsurface flow could only partially be explained by streambed topography. Surface water infiltration and horizontal flow coincided with inhibited groundwater up-welling, whereas locations with high streambed connectivity were characterized by increased up-welling. The combined information of spatiotemporal VHG variability and flow vector frequency distribution by HPS has the potential to improve the understanding of impacts of streambed topography and subsurface stratification on hyporheic flow patterns.

  14. Simulation studies of the beam cooling process in presence of heating effects in the Extra Low ENergy Antiproton ring (ELENA)

    International Nuclear Information System (INIS)

    The Extra Low ENergy Antiproton ring (ELENA) is a small synchrotron equipped with an electron cooler, which is currently being constructed at CERN to further decelerate antiprotons from the Antiproton Decelerator (AD) from 5.3 MeV to energies as low as 100 keV. At such low energies it is very important to carefully take contributions from electron cooling and beam heating mechanisms (e.g. on the residual gas and intrabeam scattering) into account. Detailed investigations into the ion kinetics under consideration of effects from electron cooling and heating sources have been carried out, and the equilibrium phase space dimensions of the beam have been computed, based on numerical simulations using the code BETACOOL. The goal is to provide a consistent explanation of the different physical effects acting on the beam in ELENA

  15. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  16. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  17. Design, fabrication and VNA testing of an auto-focussing buncher section for 40 keV, 500 mA DC electron beam injection

    International Nuclear Information System (INIS)

    A buncher section for the 40 keV, DC electron beam has been designed in such a way so that it will act as a buncher and focuser to the injected electron beam. The autofocussing effect is obtained by introducing a slow rise of the Eacc in the first buncher cell. The RF phase focusing force is proportional to the factor (βγ2)-1 and it damps out very quickly as the particle becomes relativistic. Taking this dependency into account, the field asymmetry is introduced only in the first bunching cavity. This paper presents the electromagnetic (EM) design of the RF structure, beam dynamics, fabrication and the measurements of the EM parameters with VNA. (author)

  18. How radiation affects superbubbles: Through momentum injection in early phase and photo-heating thereafter

    CERN Document Server

    Gupta, Siddhartha; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Energetic winds and radiation from massive star clusters push the surrounding gas and blow superbubbles in the interstellar medium (ISM). Using 1-D hydrodynamic simulations, we study the role of radiation in the dynamics of superbubbles driven by a young star cluster of mass $10^{6}$ M$_{\\odot}$. We have considered a realistic time evolution of the mechanical power as well as radiation power of the star cluster, and detailed heating and cooling processes. We find that the ratio of the radiation pressure on the shell (shocked ISM) to the thermal pressure ($\\sim10^{7}$ K) of the shocked wind region is almost independent of the ambient density, and it is greater than unity before $\\lesssim 1$ Myr. We explore the parameter space of density and dust opacity of the ambient medium, and find that the size of the hot gas ($\\sim$ 10$^{7}$ K) cavity is insensitive to the dust opacity ($\\sigma_{d}\\approx(0.1-1.5)\\times 10^{-21}$ cm$^{2}$), but the structure of the photoionized ($\\sim10^4$ K) gas depends on it. Most of th...

  19. How radiation affects superbubbles : Through momentum injection in early phase and photo-heating thereafter

    Science.gov (United States)

    Gupta, Siddhartha; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-08-01

    Energetic winds and radiation from massive star clusters push the surrounding gas and blow superbubbles in the interstellar medium (ISM). Using 1-D hydrodynamic simulations, we study the role of radiation in the dynamics of superbubbles driven by a young star cluster of mass 106 M⊙. We have considered a realistic time evolution of the mechanical power as well as radiation power of the star cluster, and detailed heating and cooling processes. We find that the ratio of the radiation pressure on the shell (shocked ISM) to the thermal pressure (˜107 K) of the shocked wind region is almost independent of the ambient density, and it is greater than unity before ≲ 1 Myr. We explore the parameter space of density and dust opacity of the ambient medium, and find that the size of the hot gas (˜ 107 K) cavity is insensitive to the dust opacity (σd ≈ (0.1 - 1.5) × 10-21 cm2), but the structure of the photoionized (˜104 K) gas depends on it. Most of the radiative losses occur at ˜104 K, with sub-dominant losses at ≲ 103 K and ˜106 - 108 K. The superbubbles can retain as high as ˜10% of its input energy, for an ambient density of 103 mH cm-3. We discuss the role of ionization parameter and recombination-averaged density in understanding the dominant feedback mechanism. Finally, we compare our results with the observations of 30 Doradus.

  20. The capacitor banks for the text diagnostic neutral beam and electron cyclotron heating experiments

    International Nuclear Information System (INIS)

    The Texas Experimental Tokamak (TEXT) has been operational since November of 1980. Since that time, many experimental systems have been added to the machine. Currently, two major experiments are being added to compliment the diagnostics already online. These systems, the Diagnostic Neutral Beam (DNB) and the Electron Cyclotron Heating (ECH) experiments are described in separate papers. A set of five modular, bipolar capacitor banks are used to power both the DNB and the ECH. The total capacitance of the banks is 92μF. The stored energy is about 500kJ at+or-100kV. The banks are built as five identical, interchangeable modules. One module is adequate to run the DNB. Up to four banks are used to power the ECH. The banks are portable so that they can be moved to the open end of the laboratory for maintenance. This gives much better access for repair work and allows the experiments to continue to run with the remaining banks. Due to budgetary constraints, these banks were constructed in the most economical manner possible consistent with worker safety and long term reliability. The capacitors themselves are on loan from Los Alamos National Labs. They are rated at 1.85μF at 60kV. Our application requires that they be used in a series/parallel configuration with a peak voltage of 50kV each. This paper describes the electrical, mechanical and control design considerations required to achieve a working set of banks