WorldWideScience

Sample records for beam injection heating

  1. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    CERN Document Server

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  2. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  3. The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST

    Science.gov (United States)

    Chang, Pengxiang; Wu, Bin; Wang, Jinfang; Li, Yingying; Wang, Xiaoguang; Xu, Handong; Wang, Xiaojie; Liu, Yong; Zhao, Hailin; Hao, Baolong; Yang, Zhen; Zheng, Ting; Hu, Chundong

    2016-11-01

    Both neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) have been applied on the Experimental Advanced Superconducting Tokamak (EAST) in the 2015 campaign. In order to achieve more effective heating and current drive, the effects of NBI on the heating and current drive with electron cyclotron wave (ECW) are analyzed utilizing the code TORAY and experimental data in the shot #54411 and #54417. According to the experimental and simulated results, for the heating with ECW, NBI can improve the heating efficiency and move the power deposition place towards the inside of the plasma. On the other hand, for the electron cyclotron current drive (ECCD), NBI can also improve the efficiency of ECCD and move the place of ECCD inward. These results will be valuable for the center heating, the achievement of fully non-inductive current drive operation and the suppression of magnetohydrodynamic (MHD) instabilities with ECW on EAST or ITER with many auxiliary heating methods. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2014DFG61950) and National Natural Science Foundation of China (Nos. 11405212 and 11175211)

  4. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  5. Improvement of neutral beam injection heating efficiency with magnetic field well structures in a tokamak with a low magnetic field

    Science.gov (United States)

    Kim, S. K.; Na, D. H.; Lee, J. W.; Yoo, M. G.; Kim, H.-S.; Hwang, Y. S.; Hahm, T. S.; Na, Yong-Su

    2016-10-01

    Magnetic well structures are introduced as an effective means to reduce the prompt loss of fast ions, the so-called first orbit loss from neutral beam injection (NBI), which is beneficial to tokamaks with a low magnetic field strength such as small spherical torus devices. It is found by single-particle analysis that this additional field structure can modify the gradient of the magnetic field to reduce the shift of the guiding center trajectory of the fast ion. This result is verified by a numerical calculation of following the fast ion’s trajectory. We apply this concept to the Versatile Experiment Spherical Torus [1], where NBI is under design for the purpose of achieving high-performance plasma, to evaluate the effect of the magnetic well structure on NBI efficiency. A 1D NBI analysis code and the NUBEAM code are employed for detailed NBI calculations. The simulation results show that the orbit loss can be reduced by 70%-80%, thereby improving the beam efficiency twofold compared with the reference case without the well structure. The well-shaped magnetic field structure in the low-field side can significantly decrease orbit loss by broadening the non-orbit loss region and widening the range of the velocity direction, thus improving the heating efficiency. It is found that this magnetic well can also improve orbit loss during the slowing down process.

  6. Beam Injection in Recirculator SALO

    CERN Document Server

    Guk, Ivan S; Dovbnya, Anatoly N; Kononenko, Stanislav; Peev, Fedor; Tarasenko, Alexander; Van der Wiel, Marnix

    2005-01-01

    Possible antetypes of injectors for electron recirculator SALO,* intended for nuclear-physical research, are analyzed. The plan injection of beams in recirculator is offered. Expected parameters of beams are designed.

  7. Transition and Interaction of Low-Frequency Magnetohydrodynamic Modes during Neutral Beam Injection Heating on HL-2A

    Science.gov (United States)

    Yu, Liming; Chen, Wei; Ding, Xuantong; Ji, Xiaoquan; Shi, Zhongbing; Yu, Deliang; Jiang, Min; Li, Dong; Li, Jiaxian; Li, Yonggao; Zhou, Yan; Ma, Rui; Li, Wei; Feng, Beibin; Huang, Yuan; Song, Xianming; Cao, Jianyong; Rao, Jun; Dong, Jiaqi; Xu, Min; Liu, Yi; Yan, Longwen; Yang, Qingwei; Xu, Yuhong; Duan, Xuru

    2017-02-01

    The strong fishbone mode (FB) and long-lived mode (LLM) have been observed during neutral beam injection (NBI) on the HL-2A tokamak. The FB and LLM can transit between each other. The LLM is identified as an internal kink mode (IKM) with the mode structure obtained using a newly developed electron cyclotron emission radiometer imaging (ECEI) system. The frequency of the LLM (fLLM) is higher than the toroidal rotation frequency (ft) near the q = 1 surface (r ˜ 10 cm). Experimental results show that the LLM is likely to be excited at a higher line-averaged electron density (bar{n}e) than that of the FB when the NBI power is fixed. It is found that the FB and its harmonic as seed magnetic islands can trigger tearing modes (TMs). The mode numbers for the low-frequency and high-frequency TMs are m/n = 2/1 and 3/2, respectively. By further investigation, it is found that there is an m/n = 1/1 IKM coexisting at the same time and with the same frequency as the m/n = 2/1 TM, and the m = 1 mode structure of the IKM in the radial cross section is obtained by the Bayesian tomography method utilizing soft X-ray arrays. The nonlinear coupling conditions are satisfied among the two TMs and IKM.

  8. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  9. Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Day, H; Caspers, F; Métral, E; Salvant, B; Uythoven, J

    2014-01-01

    The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high beam currents circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam induced heating were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss for operation after long shutdown 1 and for proposed HL-LHC operational parameters.

  10. Neutral Beam Injection Experiments in the HL-1M Tokamak

    Institute of Scientific and Technical Information of China (English)

    严龙文; 雷光玖; 钟光武; 江涛; 周艳; 姜韶风; 丁玄同; 周才品; 刘永

    2003-01-01

    Neutral beam injection (NBI) experiments have been carried out with two operation modes of a bucket ion source in the HL-1M tokamak. During the first mode, more than 30% rise in ion temperature above the Ohmic level is routinely achieved after NBI power about 0. 5 MW is injected. Ion temperature only increases 20-30% for the second operation mode, which is often limited by current termination. The heating effects of the NBI have been analysed experimentally and theoretically. The performance of the NBI system is well described.

  11. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  12. The potential role of Neutral Beam Injection in EU DEMO

    Science.gov (United States)

    Vincenzi, Pietro; Artaud, Jean-Francois; Bolzonella, Tommaso; Giruzzi, Gerardo

    2016-10-01

    EU DEMO studies for pulsed (DEMO1) and steady-state (DEMO2) concepts are currently in the pre-conceptual phase. Present DEMO1 design is based on ITER baseline H-mode scenario, while DEMO2 is based on advanced scenarios with moderate reversed q profile sustained by non-inductive currents. One of the possible flattop heating power systems currently considered is Neutral Beam Injection (NBI). In this work the role of NBI in DEMO1 and DEMO2 is investigated by means of integrated simulations of DEMO scenarios using METIS fast tokamak modelling tool. Limitations, requirements and benefits of the use of a NBI system are discussed. For DEMO1 pulsed concept, the role of NBI is mainly central plasma heating for scenario stability (high fusion power H-mode). As a by-product of the tangential injection, NBI is capable of current drive, which is favorable in order to extend the discharge duration. Regarding a steady-state DEMO2 concept, in addition to plasma heating, NBI becomes a direct actuator for the advanced scenario by driving a considerable part of the plasma current. This requires more than 100MW with off-axis injection. The effect of an increase of the injection energy on the driven current density profile is also presented for DEMO2.

  13. Evaluation of the Beam Coupling Impedance of New Beam Screen Designs for the LHC Injection Kicker Magnets

    CERN Document Server

    Day, Hugo; Caspers, Fritz; Jones, Roger; Metral, Elias; Salvant, Benoit

    2012-01-01

    During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedance. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.

  14. Challenges and plans for injection and beam dump

    CERN Document Server

    Barnes, M; Mertens, V; Uythoven, J

    2015-01-01

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  15. Ion transport studies on the PLT tokamak during neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Suckewer, S.; Cavallo, A.; Cohen, S.; Daughney, C.; Denne, B.; Hinnov, E.; Hosea, J.; Hulse, R.; Hwang, D.; Schilling, G.

    1983-12-01

    Radial transport of ions during co- and counter-neutral beam heating in the PLT tokamak has been studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral beam heating, were measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction were observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10/sup 3/ cm/sec superposed to a diffusion coefficient of the order 10/sup 4/ cm/sup 2//sec for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the center while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element.

  16. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  17. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  18. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  19. Inertial fusion energy target injection, tracking, and beam pointing

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  20. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  1. LHC Injection Beam Quality During LHC Run I

    CERN Document Server

    AUTHOR|(CDS)2079186; Stapnes, Steinar

    The LHC at CERN was designed to accelerate proton beams from 450 GeV to 7 TeV and collide them in four large experiments. The 450 GeV beam is extracted from the last pre-accelerator, the SPS, and injected into the LHC via two 3 km long transfer lines, TI 2 and TI 8. The injection process is critical in terms of preservation of beam quality and machine protection. During LHC Run I (2009-2013) the LHC was filled with twelve high intensity injections per ring, in batches of up to 144 bunches of 1.7*10^11 protons per bunch. The stored beam energy of such a batch is already an order of magnitude above the damage level of accelerator equipment. Strict quality and machine protection requirements at injection have a significant impact on operational efficiency. During the first years of LHC operation, the injection phase was identified as one of the limiting factors for fast LHC turnaround time. The LHC Injection Quality Check (IQC) software framework was developed as a part of this thesis to monitor the beam quality...

  2. Study on the injection beam commissioning software for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Liu, Wei-Bin; Qiu, Jing; Huang, Liang-Sheng

    2015-01-01

    The China Spallation Neutron Source (CSNS) accelerator uses H- stripping and phase space painting method of filling large ring acceptance with the linac beam of small emittance. The beam commissioning software system is the key part of CSNS accelerator. The injection beam commissioning software for CSNS contains three parts currently: painting curve control, injection beam control and injection orbit correction. The injection beam control contains two subsections: single bunch beam calculation and LRBT beam control at the foil. The injection orbit correction also contains two subsections: injection orbit correction by the calculation and injection trim power control.

  3. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  4. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  5. Alfven eigenmode structure during off-axis neutral beam injection

    NARCIS (Netherlands)

    Tobias, B.; Bass, E. M.; Classen, I.G.J.; Domier, C.W.; Grierson, B. A.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2012-01-01

    The spatial structure of Alfven eigenmodes on the DIII-D tokamak is compared for contrasting fast ion deposition profiles resulting from on- and off-axis neutral beam injection (NBI). In both cases, poloidal mode rotation and eigenmode twist, or radial phase variation, are correlated with the direct

  6. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  7. Temporal structure of double plasma frequency emission of thin beam-heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Postupaev, V. V.; Ivanov, I. A.; Arzhannikov, A. V.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Burdakov, A. V.; Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Sklyarov, V. F.; Gavrilenko, D. Ye.; Kandaurov, I. V.; Kurkuchekov, V. V.; Mekler, K. I.; Popov, S. S.; Rovenskikh, A. F.; Sudnikov, A. V.; Sulyaev, Yu. S.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Kasatov, A. A. [Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2013-09-15

    In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.

  8. Optic diagnosis of neutral beam injection on HL-1M

    Institute of Scientific and Technical Information of China (English)

    郑银甲; 冯震; 雷光玖; 姜韶风; 卢大伦; 罗俊林

    2002-01-01

    During the operation of a high-power neutral beam injection (NBI) system on the H L-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize the NBI performance. The vacuum valve opening process and NBI period in the HL-1M experiment were displayed by a lot of photos taken with this means. Thus, the Hα emission profiles of the neutral beam (NB) and its interaction with plasma were given. Finally, the reason possible for plasma breakdown during NBI mode Ⅱ discharge was investigated. Therefore, this in-situ diagnosis can provide more information of the NBI.

  9. Analysis on Pressure Distribution in HT-7 Neutral Beam Injection System

    Institute of Scientific and Technical Information of China (English)

    Zhu Wu; Chen Lian; Hu Chundong; Hu Liqun

    2005-01-01

    Neutral Beam Injection. (NBI) is an effective way to improve the efficiency of tokamak heating system. This article primarily introduces a work on the pressure distribution inside the tank of NBI heating system, especially inside the neutralizer, which is got by selecting a proper mathematical model and constructing a series of rational calculating formulas on pressure distribution. Furthermore, we simulate the pressure distribution by the Monte Carlo method. Comparing the result of simulation with that of theoretical calculation, we find that both the results are very close each other, showing their mutual validity.

  10. Conceptual design for the ZEPHYR neutral-beam injection system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  11. The Beam Screen for the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Ducimetière, L; Garrel, N; Kroyer, T

    2006-01-01

    The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 ìs, and rise and fall times of less than 0.9 ìs and 3 ìs, respectively. Each system is composed of four 5 Ù transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting ?stripes? on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour.

  12. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  13. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  14. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Science.gov (United States)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  15. Transmission of the Neutral Beam Heating Beams at TJ-II; Transmision del Haz de Neutros de Calentamiento en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Lopez, C.

    2007-09-27

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs.

  16. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  17. The effects of injection beam parameters and foil scattering for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2012-01-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill large ring acceptance with the linac beam of small emittance. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS) of CSNS. The injection processes for different momentum spread, rms emittance of the injection beam, injection beam matching were simulated, then the beam losses, 99% and rms emittances were obtained and the optimized ranges of injection beam parameters were given. The interaction between the H- beam and the stripping foil was studied and the foil scattering was simulated. Then, the stripping efficiency was calculated and the suitable thickness of the stripping foil was obtained. The energy deposition on the foil and the beam losses due to the foil scattering were also studied.

  18. An Improved Beam Screen for the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Ducimetière, L; Garrel, N; Kroyer, T

    2007-01-01

    The two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. Each system is composed of two resonant charging power supplies (RCPSs) and four 5 WW transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFNs). A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet: an alternative design was discharge free at the nominal operating voltage but the impedance was too high for the ultimate LHC beam. This paper presents the results of a new development undertaken to meet the often conflicting requireme...

  19. Noise Studies on Injected-Beam Crossed-Field Devices.

    Science.gov (United States)

    1980-11-01

    In the gyrotron, where l magnetron injection guns are used, noise under crossed-field conditions is a limiting factor in the performance of the gun...charge I affected the behavior of the beam. Two factors which seemed to give rise to these effects appeared to be in the noise generated near the cathode...circuit I bars, or 0.270". The essential electrical properties of the meander circuit, the delay ratio (C/ vph ) and coupling impedance at the level of the

  20. Control System of Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Hu Chundong; Liu Zhimin; Liu Sheng; Song Shihua; Yang Daoye

    2005-01-01

    Neutral Beam Injection control system (NBICS) is constructed to measure the plasma current, Magnet current, vacuum pressure, cryopump temperature, control water cooling, filament voltage, and power supply, etc. The NBICS, consisting mainly of a Programmable Logic Controller (PLC) subsystem, data acquisition and processing subsystem and cryopump and vacuum pressure monitoring subsystem, has successfully been used on a NBI device. In this article, the design of NBICS on HT-7 is discussed and each subsystem is described in particular.In addition, some experimental results are reported which are very important data for further research related to the HT-7 tokamak.

  1. Fast ion behavior during neutral beam injection in ATF

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H. [Oak Ridge National Lab., TN (United States); Aceto, S.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1993-09-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970`s. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations.

  2. Injected power and entropy flow in a heated granular gas

    Science.gov (United States)

    Visco, P.; Puglisi, A.; Barrat, A.; Trizac, E.; van Wijland, F.

    2005-10-01

    Our interest goes to the power injected in a heated granular gas and to the possibility to interpret it in terms of entropy flow. We numerically determine the distribution of the injected power by means of Monte Carlo simulations. Then, we provide a kinetic-theory approach to the computation of such a distribution function. Finally, after showing why the injected power does not satisfy a fluctuation relation à la Gallavotti-Cohen, we put forward a new quantity which does fulfill such a relation, and is not only applicable in a variety of frameworks outside the granular world, but also experimentally accessible.

  3. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  4. Effects of injection beam parameters and foil scattering for CSNS/RCS

    Science.gov (United States)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  5. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    Science.gov (United States)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  6. The first results of divertor discharge and supersonic molecular beam injection on the HL-2A tokamak

    Institute of Scientific and Technical Information of China (English)

    Yao Liang-Hua; Yuan Bau-Shan; Feng Bei-Bin; Chen Cheng-Yuan; Hong Wen-Yu; Li Ying-Liang

    2007-01-01

    HL-2A tokamak is the first tokamak with divertors in China. The plasma boundary and the position of the striking point on the target plates of the HL-2A closed divertor were simulated by the current filament code and they were in agreement with the diagnostic results in the divertor. Supersonic molecular beam injection (SMBI) system was first installed and tested on the HL-2A tokamak in 2004. In the present experiment low pressure SMBI fuelling on the HL-2A and during the period of SMB pulse injection into the HL-2A plasma the power density convected at the target plate surfaces was 0.4 times of that before or after the beam injection. It is a useful fuelling method for decreasing the heat load on the neutralizer plates of the divertor.

  7. A New Approach for Heating the Plastics Injection Units

    Directory of Open Access Journals (Sweden)

    Virgilius Vasilache

    2010-06-01

    Full Text Available The plastics injection molding machines are one of the most eager consumers of energy. The plasticizing unit itself is the most important energetic consumer among the subassemblies of these machines; that is why this subassembly is the target of most actions of consumption decreasing on such machines. Our concerns on this direction got the shape of developing a new heating system for the plasticizing unit, which system was already patented [1].

  8. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    CERN Document Server

    Bhat, C M; Chaurize, S J; Garcia, F G; Seiya, K; Pellico, W A; Sullivan, T M; Triplett, A K

    2015-01-01

    We have measured the total energy spread (99 persent energy spread) of the Booster beam at its injection energy of 400 MeV by three different methods - 1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, 2) injecting partial turn beam and letting it to debunch, and 3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of RF systems in the ring and in the beam transfer line.

  9. Studies of beam heating of proton beam profile monitor SEM's

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  10. Acceleration of injected electron beam by ultra-intense laser pulses with phase disturbances

    CERN Document Server

    Nakamura, T; Kato, S; Tanimoto, M; Koyama, K; Koga, J

    2003-01-01

    Acceleration of an injected electron beam by ultra-intense laser pulses with phase disturbances is investigated. The energy gain of the beam electrons depends on the initial energy of the injected electrons in the stochastic acceleration process. The effect is larger for electrons with some injection energy as opposed to electrons with no initial energy. The corresponding accelerating field for electrons having certain amounts of initial energy becomes larger than that of the standard wakefield. (author)

  11. Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

    OpenAIRE

    He, Yongning; Lei JIN; Cao, Feng; Chen, Shengkun

    2014-01-01

    Gas injection technology is often used in cold regions to solve heat pump’s low heating capacity and high discharge temperature at low ambient temperature. Injecting gas into port opened at specific position of compressor could increase mass flow rate of compressor and total heating capacity of heat pump. Gas injection also changes compression ratio of compressor and decreases discharge temperature. An optimal gas injection pressure is got when the coefficient of performance reached to peak v...

  12. Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating

    CERN Document Server

    Ho, D

    2000-01-01

    Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.

  13. Analysis of ferrite heating of the LHC injection kickers and proposals for future reduction of temperature

    CERN Document Server

    Barnes, M J; Garrel, N; Goddard, B; Mertens, V; Weterings, W

    2012-01-01

    The two LHC injection kicker magnet (MKI) systems must produce a kick of 1.3 T.m with a flat top duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the high intensity LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however screen conductor discharges occurred during pulsing of the magnet; hence an alternative design with fewer screen conductors was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC was operated with high intensity beam, coasting for many hours at a time, resulting in heating of the ferrite yoke of the MKIs. This paper presents an analysis of thermal measurement dat...

  14. Beam shaping element for compact fiber injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Weichman, L.S.; Dickey, F.M.; Shagam, R.N.

    2000-01-05

    Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

  15. Neutral beam heating of the TFTR vacuum vessel protective plates

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.

    1976-04-01

    The transmission of neutral beams through plasmas expected in the Tokamak Fusion Test Reactor (TFTR) has been investigated. An analytical expression for the transmission coefficient of a 120 keV deuterium beam through a tritium plasma was used and a model for the flux profile of the TFTR Neutral Beam System designed by LBL/LLL was developed and incorporated. The plasma is assumed to have a parabolic profile and is characterized by a major radius of 310 cm, a minor radius of 57 cm, and a central plasma density of greater than or equal to 0.4 x 10/sup 14/ cm-/sup 3/. To protect the stainless steel vacuum vessel walls of the TFTR device, tungsten plates are located inside the vessel. The loading of the tungsten protective plates during normal operation is well below the neutral beam fluxes which would melt the tungsten. The TFTR Neutral Beam System will inject a total of 20 MW of 120 keV deuterium atoms from twelve sources, as well as approximately 12 MW of 60 keV deuterium atoms. The fluxes anticipated on the tungsten plates due to an unattenuated beam which would be incident at an angle of 45/sup 0/ are less than or equal to 6.5 kW/cm/sup 2/. The fluxes due to an attenuated beam are calculated to be less than or equal to 0.35 kW/cm/sup 2/. For the maximum injection time of 0.5 second, a fault condition in which the plasma was not formed at the time of injection could induce a surface temperature very near the melting point of tungsten. For the standard 0.1 second injection time anticipated for TFTR, a similar fault condition would not cause the temperature to rise to more than 2000 K which is well below the melting point (3640 K) of tungsten.

  16. Beam Scraping in the SPS for LHC Injection Efficiency and Robustness Studies

    CERN Document Server

    Letnes, Paul/LPA; Myrheim, Jan

    2008-01-01

    The Large Hadron Collider (LHC) at CERN will be the world's most powerful accelerator when it is commissioned in fall 2008. Operation of the LHC will require injection of very high intensity beams. Fast transverse beam scrapers have been installed in the Super Proton Synchrotron (SPS) injector to detect and, if necessary, remove transverse beam tails. This will help to both diagnose and prevent beam quenches in the LHC. Scraping of a high intensity beam at top energy can potentially damage the scraper jaws. This has been studied with Monte Carlo simulations to find energy deposition and limits for hardware damage. Loss maps from scraping have been generated both with machine studies and tracking simulations. Time dependent Beam Loss Monitor (BLM) measurements have shown several interesting details about the beam. An analytical model of time dependent losses is compared with beam measurements and demonstrates that beam scraping can be used to estimate the beam size. Energy deposition simulations also give the ...

  17. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector

    Science.gov (United States)

    Hu, Chundong; Chen, Yu; Xu, Yongjian; Yu, Ling; Li, Xiang; Zhang, Weitang

    2016-11-01

    Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001) and the International Science & Technology Cooperation Program of China (No. 2014DFG61950)

  18. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    Science.gov (United States)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  19. Conceptual design for an electron-beam heated hypersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  20. Beam loading by distributed injection of electrons in a plasma wakefield accelerator.

    Science.gov (United States)

    Vafaei-Najafabadi, N; Marsh, K A; Clayton, C E; An, W; Mori, W B; Joshi, C; Lu, W; Adli, E; Corde, S; Litos, M; Li, S; Gessner, S; Frederico, J; Fisher, A S; Wu, Z; Walz, D; England, R J; Delahaye, J P; Clarke, C I; Hogan, M J; Muggli, P

    2014-01-17

    We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43  GV/m to a strongly loaded value of 26  GV/m.

  1. Injection of electron beam into a toroidal trap using chaotic orbits near magnetic null.

    Science.gov (United States)

    Nakashima, C; Yoshida, Z; Himura, H; Fukao, M; Morikawa, J; Saitoh, H

    2002-03-01

    Injection of charged particle beam into a toroidal magnetic trap enables a variety of interesting experiments on non-neutral plasmas. Stationary radial electric field has been produced in a toroidal geometry by injecting electrons continuously. When an electron gun is placed near an X point of magnetic separatrix, the electron beam spreads efficiently through chaotic orbits, and electrons distribute densely in the torus. The current returning back to the gun can be minimized less than 1% of the total emission.

  2. Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project

    CERN Document Server

    Uythoven, Jan; Goddard, Brennan; Hrivnak, Jan; Lechner, Anton; Maciariello, Fausto; Mereghetti, Alessio; Perillo Marcone, Antonio; Vittal Shetty, N; Shetty, Nikhil Vittal; Steele, Genevieve

    2014-01-01

    The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfil the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.

  3. HEAT-RESISTANT COMPOSITES CURED BY ELECTRON BEAM

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Bao; Yang Li; Xiang-bao Chen; Feng-mei Li

    2001-01-01

    Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250°C.

  4. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  5. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order to ...

  6. Optimal injection scheme for electron acceleration by a tightly focused laser beam

    Institute of Scientific and Technical Information of China (English)

    Chen Min; Sheng Zheng-Ming; Zhang Jie

    2005-01-01

    Electron dynamics and energy gain in a tightly focused laser beam in vacuum are investigated by numerical simulations. There exist two acceleration mechanisms, i.e. acceleration by the longitudinal field or by the transverse field, which corresponds to two different trajectories. The relationship between the energy gain and the injection parameters of electrons, including the injection angle and momentum, is shown. For given laser parameters, the optimum injection parameters can be obtained.

  7. Beam screen regenerative heating cryogenic impact and feasibility

    CERN Document Server

    Tavian, Laurent

    2003-01-01

    Desorbtion of gas (H2, CO, CO2...) trapped on the beam screen wall is envisaged by regenerative heating to temperature varying between 40 K and 90 K depending on the gas species. This new requirement has direct consequences on the cold mass heat loads, on the heating capacity needed to reach the regeneration conditions, as well as on the heater and piping configuration. This note presents different configuration schemes, studies the cryogenic feasibility with existing limitations and gives the impact on the cryogenic system in terms of additional equipment and corresponding extra costs.

  8. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  9. MHD Instabilities and Their Effects on Plasma Confinement in Large Helical Device Plasmas with Intense Neutral Beam Injection

    Institute of Scientific and Technical Information of China (English)

    K. Toi; K. Narihara; K. Tanaka; T. Tokuzawa; H. Yamada; Q. Yang; LHD experimental group; S. Ohdachi; S. Yamamoto; S. Sakakibara; K. Y. Watanabe; N. Nakajima; X. Ding; J. Li; S. Morita

    2004-01-01

    MHD stability of the Large Helical Device (LHD) plasmas produced with intense neutral beam injection is experimentally studied. When the steep pressure gradient near the edge is produced through L-H transition or linear density ramp experiment, interchange-like MHD modes whose rational surface is located very close to the last closed flux surface are strongly excited in a certain discharge condition and affect the plasma transport appreciably. In NBI-heated energetic ion loss, but also trigger the formation of internal and edge transport barriers.

  10. Generation mechanism of whistler waves produced by electron beam injection in space

    Science.gov (United States)

    Pritchett, P. L.; Karimabadi, H.; Omidi, N.

    1989-01-01

    Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.

  11. Quantifying heat requirements for SAGD start up phase: steam injection and electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Moini, Behdad; Edmunds, Neil [Laricina Energy Ltd. (Canada)

    2011-07-01

    In the heavy oil industry, thermal recovery methods such as steam assisted gravitydrainage (SAGD) are often used to enhance oil recovery. The SAGD process employs two horizontal wells stacked on top of each other, the top one being the steam injection well and the lower one the production well. For this process to perform as planned, start up has to be carried out in an effective manner to reach the required temperature. This paper aimed at defining a method to calculate the heat flux required inside the wellbore to obtain a certain temperature outside the liner. A model was developed and then applied to different scenarios. Results showed that the model can predict the heat requirements for the start up phase of a SAGD well pair in a simple manner. The model developed herein enables operators to assess the heat requirements of the start up phase and thus to design steam capacity adequately.

  12. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  13. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  14. Design of the beam transport line and injection system of the compact storage ring for TTX

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this article, we present the design of the beam transport line and injection system of the compact storage ring for the Tsinghua Thomson scattering X-ray (TTX) source. The layout of the beam transport line fits in with the limited available space. The injection system is simplified, consisting of only one single kicker; the stray field on the reference orbit is also reduced without the septum magnet. We choose a travelling wave kicker and present both 2D and 3D simulations for the structure design.

  15. Reducing the extraction loss via laser notching the H- beam at the Booster injection revolution frequency

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Ankenbrandt, Charles M.; /Fermilab

    2005-05-01

    With the requirement for more protons per hour from Booster, the radiation is a limiting factor. Laser notching the H{sup -} beam at the Booster injection revolution frequency and properly aligning those notches on top of each other at the injection and relative to the trigger of firing extraction kickers can remove most of the extraction loss caused by the slow rise time of the kicker field.

  16. Dispersion Matching of a Space Charge dominated Beam at Injection into the CERN PS Booster

    CERN Document Server

    Hanke, Klaus; Scrivens, Richard

    2005-01-01

    In order to match the dispersion at injection into the CERN PS Booster, the optics of the injection line was simulated using two different codes (MAD and TRACE). The simulations were benchmarked versus experimental results. The model of the line was then used to re-match the dispersion. Experimental results are presented for different optics of the line. Measurements with varying beam current show the independence of the measured quantity of space-charge effects.

  17. Status of the ITER heating neutral beam system

    Science.gov (United States)

    Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; DeEsch, H. P. L.; Geli, F.; Milnes, J.; Inoue, T.; Marcuzzi, D.; Sonato, P.; Zaccaria, P.

    2009-04-01

    The ITER neutral beam (NB) injectors are the first injectors that will have to operate under conditions and constraints similar to those that will be encountered in a fusion reactor. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV D- beams for pulse lengths of up to 3600 s. Significant design changes have been made to the ITER heating NB (HNB) injector over the past 4 years. The main changes are: Modifications to allow installation and maintenance of the beamline components with an overhead crane. The beam source vessel shape has been changed and the beam source moved to allow more space for the connections between the 1 MV bushing and the beam source. The RF driven negative ion source has replaced the filamented ion source as the reference design. The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF6 insulated HV deck located above the injector. Introduction of an all metal absolute valve to prevent any tritium in the machine to escape into the NB cell during maintenance. This paper describes the status of the design as of December 2008 including the above mentioned changes. The very important power supply system of the neutral beam injectors is not described in any detail as that merits a paper beyond the competence of the present authors. The R&D required to realize the injectors described in this paper must be carried out on a dedicated neutral beam test facility, which is not described here.

  18. Micro Injection Molding of Thin Walled Geometries with Induction Heating System

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2014-01-01

    and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios...... heating system with respect to improvement of replication quality, reduction of injection pressure and injection velocity as well as reduction of cycle time has been verified....

  19. Experience of direct percutaneous sac injection in type II endoleak using cone beam computed tomography.

    Science.gov (United States)

    Park, Yoong-Seok; Do, Young Soo; Park, Hong Suk; Park, Kwang Bo; Kim, Dong-Ik

    2015-04-01

    Cone beam CT, usually used in dental area, could easily obtain 3-dimensional images using cone beam shaped ionized radiation. Cone beam CT is very useful for direct percutaneous sac injection (DPSI) which needs very precise measurement to avoid puncture of inferior vena cava or vessel around sac or stent graft. Here we describe two cases of DPSI using cone beam CT. In case 1, a 79-year-old male had widening of preexisted type II endoleak after endovascular aneurysm repair (EVAR). However, transarterial embolization failed due to tortuous collateral branches of lumbar arteries. In case 2, a 72-year-old female had symptomatic sac enlargement by type II endoleak after EVAR. However, there was no route to approach the lumbar arteries. Therefore, we performed DPSI assisted by cone beam CT in cases 1, 2. Six-month CT follow-up revealed no sign of sac enlargement by type II endoleak.

  20. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  1. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    OpenAIRE

    Voutta, Robert

    2016-01-01

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  2. Neutral Beam Injection System for the C-2W Field Reversed Configuration Experiment

    Science.gov (United States)

    Dunaevsky, Alexander; Ivanov, Alexander; Kolmogorov, Vyacheslav; Smirnov, Artem; Korepanov, Sergey; Binderbauer, Michl; TAE Team; BINP Team

    2016-10-01

    C-2U Field-Reversed Configuration (FRC) experiment proved substantial reduction in turbulence-driven losses via tangential neutral beam injection (NBI) coupled with electrically biased plasma guns at the plasma ends. Under such conditions, highly reproducible, advanced beam-driven FRCs were produced and sustained for times significantly longer (more than 5 ms) than all characteristic plasma decay times without beams. To further improve FRC sustainment and demonstrate the FRC ramp-up, the C-2U experimental device is undergoing a major upgrade. The upgrade, C-2W, will have a new NBI system producing a record total hydrogen beam power of 20 + MW in a 30ms pulse. The NBI system consists of eight positive-ion based injectors featuring flexible, modular design. Four out of eight NBI injectors have a capability to switch the beam energy during a shot from the initial 15 keV to 40 keV at a constant beam current. This feature allows to increase the beam energy and thereby optimize the beam-plasma coupling during the magnetic field ramp up. This presentation provides an overview of the C-2W NBI system, including the design of the switchable energy injectors, layout of the power supply system, and results of the prototype testing.

  3. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    CERN Document Server

    Annenkov, V V; Volchok, E P

    2015-01-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in the realistic formulation allowing for the continuous injection of a relativistic electron beam through the plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of electromagnetic plasma eigenmodes, as in the infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  4. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Science.gov (United States)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  5. Beam Loss Control for the Unstripped Ions from the PS2 Charge Exchange Injection

    CERN Document Server

    Bartmann, W; Benedikt, M; Goddard, B; Kramer, T; Papaphilippou, Y; Vincke, Hel

    2010-01-01

    Control of beam losses is an important aspect of the H-injection system for the PS2, a proposed replacement of the CPS in the CERN injector complex. H- ions may pass the foil unstripped or be partially stripped to excited H0 states which may be stripped in the subsequent strong-field chicane magnet. Depending on the choice of the magnetic field, atoms in the ground and first excited states can be extracted and dumped. The conceptual design of the waste beam handling is presented, including local collimation and the dump line, both of which must take into account the divergence of the beam from stripping in fringe fields. Beam load estimates and activation related requirements of the local collimators and dump are briefly discussed.

  6. Beam Commissioning Results of the J-PARC 3-GeV RCS Injection System with Upgraded 400 MeV Beam

    Science.gov (United States)

    Saha, P. K.

    In order to achieve 1 MW beam power, injection system of the 3-GeV Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) was upgraded to the design injection energy of 400 MeV in the 2013 from that of 181 MeV. The higher injection energy plays a key role to mitigate the space charge effect at lower energy region so as to realize 1 MW beam. The beam commissioning with newly installed and upgraded components was successful to demonstrate a more than 550 kW beam power in the RCS with sufficiently low beam loss. This is a milestone towards realizing 1 MW, which is scheduled in October 2014. A detail of the design criteria along with 1st stage beam commissioning results are presented.

  7. Effect of mass-addition distribution and injectant on heat transfer and transition criteria.

    Science.gov (United States)

    Bertin, J. J.; Mccloskey, M. H.; Stalmach, C. J., Jr.; Wright, R. L.

    1972-01-01

    Surface pressures, heat-transfer rates, and transition locations for a sharp cone (whose semivertex angle is 12 deg) were obtained in a hypervelocity wind tunnel at a free-stream Mach number of 12 and a free-stream Re/ft range of 3,000,000 to 6,000,000. The effects of injecting either methane, nitrogen, or Freon-22 (at rates up to 2.1% of free-stream rate) were studied for a uniform injection-distribution and for a variable injection-distribution. Gaseous injection had little effect on the surface pressure measurements. For a given mass injection distribution, the laminar region heat-transfer decreases as the injection rate increases or as the molecular weight of the injectant decreases. For a given mass-injection rate (integrated over the surface of the entire cone), the transition location and heat-transfer rates were sensitive to the injection distribution. The transition Reynolds numbers were significantly greater when the local injection rate was constant over the surface of the cone.

  8. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  9. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Dario, E-mail: dario.nicolosi@lns.infn.it; Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  10. R & D on Beam Injection and Bunching Schemes in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-01-01

    Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developed an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.

  11. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-28

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.

  12. Controlling domain wall nucleation and injection through focussed ion beam irradiation in perpendicularly magnetized nanowires

    Science.gov (United States)

    Beguivin, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P.

    2017-01-01

    Using Ga+ focussed ion beam irradiation of Ta/Pt/CoFeB/Pt perpendicularly magnetized nanowires, the nucleation and injection fields of domain walls into the nanowires is controlled. The nucleation and injection fields can be varied as a function of dose, however, the range of injection fields is found to be limited by the creation of a step in anisotropy between the irradiated and unirradiated regions. This can be altered by defocussing the beam, which allows the injection fields to be further reduced. The ability to define an arbitrary dose profile allows domain walls to be injected at different fields either side of an asymmetrically irradiated area, which could form the initial stage of a logic device. The effect of the thickness of the magnetic layer and the thickness of a Ta underlayer on the dose required to remove the perpendicular anisotropy is also studied and is seen that for similar Ta underlayers the dose is determined by the thickness of the magnetic layer rather than its anisotropy. This finding is supported by some transport of ions in matter simulations.

  13. Investigation of heat release in the targets during irradiation by ion beams

    CERN Document Server

    Dalkarov, O D; Rusetskii, A S

    2015-01-01

    The DD-reaction is investigated and the heat emission off the targets during their irradiation with ion beams is studied at the HELIS ion accelerator at LPI. The heat emission is observed to be significantly higher in the case of irradiation of the Ti/TiO2:Dx-targets by a D+ beam, as compared to the H+ and Ne+ beams. Furthermore, it depends on the concentration of deuterium in the target and current density of the deuteron beam.

  14. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  15. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness, ...

  16. Coating synthesis controlled by electron-beam heating

    Science.gov (United States)

    Gordienko, A. I.; Knyazeva, A. G.; Pobol, I. L.

    2016-07-01

    The methods of combined electron-beam treatment of parts made of steel with one- and two-layer coatings are studied experimentally. Ti-Ni, Ni-Al and Al-Ti systems were used as the examples in the experiments. The mathematical model is suggested for coating formation in the controlled regime of high temperature synthesis during high energy source motion along the preliminarily deposited layer of exothermic composition. The study takes into account the difference in thermophysical properties of the materials of coating and substrate, heat release from chemical reaction that leads to the coating properties formation and other factors. The realization of the synthesis depends on technological parameters. Various regimes of the treatment process are investigated numerically.

  17. Reduction of Surface Flashover of the Beam Screen of the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Calatroni, S; Caspers, F; Ducimetière, L; Gomes Namora, V; Mertens, V; Noulibos, R; Taborelli, M; Teissandier, B; Uythoven, J; Weterings, W

    2013-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wake fields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. LHC operation with increasingly higher bunch intensity and short bunch lengths, requires improved ferrite screening. This will be implemented by additional conductors; however these must not compromise the good high-voltage behaviour of the kicker magnets. Extensive studies have been carried out to better satisfy the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time, ultra-high vacuum and good high voltage behaviour. A new design is proposed which significantly reduces the electric field associated with the screen conductors. Results of high voltage tests are also presented.

  18. High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Bregliozzi, G; Calatroni, S; Costa Pinto, P; Day, H; Ducimetière, L; Kramer, T; Namora, V; Mertens, V; Taborelli, M

    2014-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.

  19. Rare-earth neutral metal injection into an electron beam ion trap plasma

    Energy Technology Data Exchange (ETDEWEB)

    Magee, E. W., E-mail: magee1@llnl.gov; Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  20. Investigation of damages induced by ITER-relevant heat loads during massive gas injections on Beryllium

    Directory of Open Access Journals (Sweden)

    B. Spilker

    2016-12-01

    Full Text Available Massive gas injections (MGIs will be used in ITER to mitigate the strong damaging effect of full performance plasma disruptions on the plasma facing components. The MGI method transforms the stored plasma energy to radiation that is spread across the vacuum vessel with poloidal and toroidal asymmetries. This work investigated the impact of MGI like heat loading on the first wall armor material beryllium. ITER-relevant power densities of 90-260MWm−2in combination with pulse durations of 5-10ms were exerted onto the S-65 grade beryllium specimens in the electron beam facility JUDITH 1. All tested loading conditions led to noticeable surface morphology changes and in the expected worst case scenario, a crater with thermally induced cracks with a depth of up to ∼340µm formed in the loaded area. The level of destruction in the loaded area was strongly dependent on the pulse number but also on the formation of beryllium oxide. The cyclic melting of beryllium could lead to an armor thinning mechanism under the presence of melt motion driving forces such as surface tension, magnetic forces, and plasma pressure.

  1. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano;

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  2. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  3. Convective Heating of the LIFE Engine Target During Injection

    Energy Technology Data Exchange (ETDEWEB)

    Holdener, D S; Tillack, M S; Wang, X R

    2011-10-24

    Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

  4. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Science.gov (United States)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  5. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  6. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  7. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    Science.gov (United States)

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  8. 6 Batch Injection and Slipped Beam Tune Measurements in Fermilab?s Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.J.; Capista, D.; Kourbanis, I.; Seiya, K.; Yan, M.-J.; /Fermilab

    2012-05-01

    During NOVA operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is decelerated by changing the RF frequency have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.

  9. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  10. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  11. Development of injection gas heating system for introducing large droplets to inductively coupled plasma.

    Science.gov (United States)

    Kaburaki, Yuki; Nomura, Akito; Ishihara, Yukiko; Iwai, Takahiro; Miyahara, Hidekazu; Okino, Akitoshi

    2013-01-01

    We developed an injection gas heating system for introducing large droplets, because we want to effectively to measure elements in a single cell. This system was applied to ICP-atomic emission spectrometry (ICP-AES), to evaluate it performance. To evaluate the effect of the emission intensity, the emission intensity of Ca(II) increased to a maximum of tenfold at 147°C and the peak was shifted upstream of the plasma. To investigate in detail the effect of an injection gas heating system, we studied different conditions of the injection gas temperature and droplet volume. When the injection gas temperature was 89°C, smaller droplets were easily ionized. At 147°C, the emission intensity ratio and the absolute amount of the sample including the droplet exhibited close agreement. These results show the advantages of the injection gas heating system for large droplet introduction, and the sufficient reduction in the solvent load. The solvent load could be reduced by heating to 147°C using the system.

  12. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    Science.gov (United States)

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  13. Achieving a long-lived high-beta plasma state by energetic beam injection.

    Science.gov (United States)

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  14. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  15. Rematching AGS Booster synchrotron injection lattice for smaller transverse beam emittances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Beebe-Wang, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-01-25

    The polarized proton beam is injected into the booster via the charge-exchange (H- to H+) scheme. The emittance growth due to scattering at the stripping foil is proportional to the beta functions at the foil. It was demonstrated that the current scheme of reducing the beta functions at the stripping foil preserves the emittance better; however the betatron tunes are above but very close to half integer. Due to concern of space charge and half integer in general, options of lattice designs aimed towards reducing the beta functions at the stripping foil with tunes at more favorable places are explored.

  16. Design of Control Server Application Software for Neutral Beam Injection System

    Institute of Scientific and Technical Information of China (English)

    施齐林; 胡纯栋; 盛鹏; 宋士化

    2012-01-01

    For the remote control of a neutral beam injection (NBI) system, a software NBIcsw is developed to work on the control server. It can meet the requirements of data transmission and operation-control between the NBI measurement and control layer (MCL) and the remote monitoring layer (RML). The NBIcsw runs on a Linux system, developed with client/server (C/S) mode and multithreading technology. It is shown through application that the software is with good efficiency.

  17. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  18. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    , in this paper, been characterized for their temperature-dependent magnetic properties. The properties have been measured using a vibrating sample magnetometer, able to reach to 350 °C. The established material database comprises the B–H loops, from which the mean B–H curve, relative permeability versus magnetic......To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  19. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  20. Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. [Brown U.; Bhat, C. M. [Fermilab; Hendricks, B. S. [Fermilab

    2017-07-01

    We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution data from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.

  1. Long term creep tests on timber beams in heated and non-heated environments

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, S.; Kortesmaa, M.; Ranta-Maunus, A. [VTT Building Technology, Espoo (Finland). Building Materials and Products

    1996-12-31

    The aim of this research investigation was to study the long term effect of creep on different wood materials under natural environmental conditions. The tests were initiated in the summer of 1992 and the results collected until the end of 1995 are reported here. The experiments on sawn timber of pine and spruce, glulam, Kerto-LVL and I-profile with hard board web structural size members were carried out in a sheltered environment, where the changes in moisture and temperature of the surrounding followed the natural climatic conditions of Southern Finland. In addition, separate tests on eight glulam beams were carried out in a heated room environment. The experiments were carried out at low load levels (2-7 MPa). The surface of few groups of specimens were treated with alkyd and emulsion paint, some were creosoted and salt impregnated, while few samples had no treatment. The creep test data of all specimens were analysed systematically to obtain creep curves. The data showed significant variation in creep among wood materials with different treatments. Creep of glulam was same in heated and non-heated environment. (orig.) (3 refs.)

  2. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  3. Novel Approach for Heat Transfer Characterization in EOR Steam Injection Wells

    Directory of Open Access Journals (Sweden)

    Mohd. Amin Shoushtari

    2014-03-01

    Full Text Available Steam injection into hydrocarbon reservoirs involves significant heat exchange between the wellbore fluid and its surroundings. During injection, the hot fluid loses heat to the cold surroundings, continuously as it moves down the borehole. The heat transfer process impacts well-integrity and, in turn, the ability of the well to perform its required function effectively and efficiently with regard to safety and environmental factors. During the design phase of a steam injection well, it is necessary to avoid risks and uncertainties and accurately plan the life cycle of wellbore. The present study aims to investigate the nature and predict the natural convection heat transfer coefficient in the annulus. The approach to model the natural convection heat transfer in this study is by analytical and numerical techniques. The annular space between the tubing and the casing was treated as a finite space bounded by walls and filled with fluid media (enclosures. Correlations for vertical enclosures were employed in the work. The flow field was modeled and simulated for numerical analysis, using ANSYS-FLUENT software package. Some boundary parameters have been defined by the user and fed to the software. The predicted values of Nusselt numbers from both analytical and numerical approaches were compared with those of previous experimental investigations. The results of the present study can be used for preliminary design calculations of steam injection wells to estimate rate of heat transfer from wells. This study also provides a novel baseline assessment for temperature related well-integrity problems in steam injection wells.

  4. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  5. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  6. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    Science.gov (United States)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  7. A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection

    Science.gov (United States)

    Nelson, Jovan; Bhat, Chandrashekhara; Hendricks, Brian

    2016-03-01

    We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. Thank you to the SIST program at Fermilab.

  8. Injection molding of nanopatterned surfaces in the sub-micrometer range with induction heating aid

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    Replication of sub-micrometer structures by injection molding leads to special requirements for the mold in order to ensure proper replica and acceptable cycle time. This paper investigates the applicability of induction heating embedded into the mold for the improvement of nanopattern replicatio...

  9. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction hea...

  10. Heating of Microchannel Plates Detector Positioned Inside the LHC Beam Pipe by the Electromagnetic Fields of Relativistic Beams

    CERN Document Server

    Dubenskiy, V P; CERN. Geneva; Tsimbal, F A

    1995-01-01

    Here we present the results of our estimates of upper limits for heating induced by the relativistic beams of charged particles at the future LHC in the MCP detector placed inside the beam pipe. The energy losses are small for the uppermost intensities of the beams to be expected: less than 0.0033 Wt for the conductive cromium MCP cladding and not greater than 0.02 Wt for the dialectric MCP body (for the whole MCP disk of 100 sq.cm area). The special measurements of the dispersion law e(w) of the MCP dialectric material have been performed in order to get the reference data to the analytical calculations. The approaches outlined here could be applied to any detector positioned in the vicinity of the beams. The possible problems of the beam induced electrical signal in the detector circuits are touched also.

  11. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2010-01-01

    Full Text Available Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection and hydrodynamic thermodispersion (diffusion and mechanical dispersion. If the groundwater flows, the advective components tend to dominate the heat transfer process within the aquifer and the diffusion can be considered negligible. This study illustrates the experimental results derived from the groundwater monitoring in the surrounding area of an injection well connected to an open-loop GWHP plant which has been installed in the "Politecnico di Torino" (NW Italy for cooling some of the university buildings. Groundwater pumping and injection interfere only with the upper unconfined aquifer. Approach: After the description of the hydrogeological setting the authors examined the data deriving from multiparameter probes installed inside the pumping well (P2, the injection well (P4 and a downgradient piezometer (S2. Data refers to the summer 2009. To control the aquifer thermal stratification some multi-temporal temperature logs have been performed in the S2. Results: After the injection of warm water in P4 the plume arrived after 30 days in the S2. That delay is compatible with the calculated plume migration velocity (1.27 m d-1 and their respective distance (35 m. The natural temperature in the aquifer due to the switching-off of the GWHP plant has been reached after two month. The Electrical Conductivity (EC values tend to vary out of phase with the temperature. The temperature logs in the S2 highlighted a thermal stratification in the aquifer due to a low vertical

  12. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  13. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-11-29

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  14. Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating

    Institute of Scientific and Technical Information of China (English)

    MALIK Pravin; KADOLI Ravikiran; GANESAN N.

    2007-01-01

    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.

  15. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    Science.gov (United States)

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe.

  16. Non-Fourier Heat Conduction Effects During High-Energy Beam Metalworking

    Institute of Scientific and Technical Information of China (English)

    张海泉; 张彦华; 赵海燕

    2004-01-01

    Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi-infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a criterion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.

  17. Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

    CERN Document Server

    Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C H; Lu, W; Mori, W B; Joshi, C

    2015-01-01

    An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beam's energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rm...

  18. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  19. Beam diagnostics, collimation, injection/extraction, targetry, accidents and commissioning: Working group C&G summary report

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; /Fermilab; Hasegawa, K.; /JAEA, Ibaraki; Henderson, S.; /Oak Ridge; Schmidt, R.; /CERN; Tomizawa, M.; /KEK, Tsukuba; Wittenburg, K.; /DESY

    2006-11-01

    The performance of accelerators with high beam power or high stored beam energy is strongly dependent on the way the beam is handled, how beam parameters are measured and how the machine is commissioned. Two corresponding working groups have been organized for the Workshop: group C ''Beam diagnostics, collimation, injection/extraction and targetry'' and group G ''Commissioning strategies and procedures''. It has been realized that the issues to be discussed in these groups are interlaced with the participants involved and interested in the above topics, with an extremely important subject of beam-induced accidents as additional topic. Therefore, we have decided to combine the group sessions as well as this summary report. Status, performance and outstanding issues of each the topic are described in the sections below, with additional observations and proposals by the joint group at the end.

  20. Simulation of ionization-front-forming process at injection of relativistic electron beam with a gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dolya, S.N.; Zhidkov, E.P.; Rubin, S.B.; Semerdzhiev, Kh.I.

    1982-01-01

    The methodical work on creation of computer program for numerical study of the processes of forming and motion of a virtual cathode at the injection of relativistic electron beam into a short cylindrical chamber, filled with gas, has been carried out. The obtained plots of the distributions of fields, potential and density appearing out of ion and electron gas of the beam itself are presented. The dependence of cross-section ionization on the electron velocity has been taken into account at the calculation; the resonance contribution into summarized cross-section of ionization was simulated. It is shown that the injection into the chamber without gas, some oscillations of the virtual cathode are observed. At the presence of the final front of the beam, the fields level at the initial stage is smaller than for the beam with a sharp front. However, in some time the field amplitudes are compared. The motion of simulated probe ions in the chamber is analyzed.

  1. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  2. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  3. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  4. State-space approach to vibration of gold nano-beam induced by ramp type heating

    Institute of Scientific and Technical Information of China (English)

    Hamdy M Youssef; Khaled A Elsibai

    2010-01-01

    In the nanoscale beam, two effects become domineering. One is the non-Fourier effect in heat conduction and the other is the coupling effect between temperature and strain rate. In the present study, a generalized solution for the generalized thermoelastic vibration of gold nano-beam resonator induced by ramp type heating is developed. The solution takes into account the above two effects. State-space and Laplace transform methods are used to determine the lateral vibration, the temperature, the displacement, the stress and the strain energy of the beam. The effects of the relaxation time and the ramping time parameters have been studied.

  5. Preferential heating of light ions during an ionospheric Ar(+) injection experiment

    Science.gov (United States)

    Pollock, C. J.; Chandler, M. O.; Moore, T. E.; Arnoldy, R. L.; Kintner, P. M.; Chesney, S.; Cahill, L. J., Jr.

    1995-01-01

    The Argon Release for Controlled Studies (ARCS) 4 sounding rocket was launched northward into high altitude from Poker Flat Research Range on February 23, 1990. The vehicle crossed geomagnetic field lines containing discrete auroral activity. An instrumented subpayload released 100-eV and 200-eV Ar(+) ion beams sequentially, in a direction largely perpendicular to both the local geomagnetic field and the subpayload spin axis. The instrumented main payload was separated along field lines from the beam emitting subpayload by a distance which increased at a steady rate of approximately 2.4 m/s. Three dimensional mass spectrometric ion observations of ambient H(+) and O(+) ions, obtained on board the main payload, are presented. Main payload electric field observations in the frequency range 0-16 kHz, are also presented. These observations are presented to demonstrate the operation of transverse ion acceleration, which was differential with respect to ion mass, primarily during 100-eV beam operations. The preferential transverse acceleration of ambient H(+) ions, as compared with ambient O(+) ions, during the second, third, fourth, and fifth 100-eV beam operations, is attributed to a resonance among the injected Ar(+) ions, beam-generated lower hybrid waves, and H(+) ions in the tail of the ambient thermal distribution. This work provides experimental support of processes predicted by previously published theory and simulations.

  6. Determination of heat transfer coefficients at the polymer-mold-interface for injection molding simulation by means of calorimetry

    Science.gov (United States)

    Stricker, M.; Steinbichler, G.

    2014-05-01

    Appropriate modeling of heat transfer from the polymer material to the injection mold is essential to achieve accurate simulation results. The heat transfer is commonly modeled using convective heat transfer and applying heat transfer coefficients (HTC) to the polymer-mold-interface. The set HTC has an influence on the results for filling pressure, cooling performance and shrinkage, among others. The current paper, presents a new strategy to measure HTC in injection molding experiments using Newtons law of cooling. The heat flux is calculated out of demolding heat (measured by means of calorimetry), injection heat (measured by means of an IR-sensor), cooling time and part mass. Cavity surface area, average mold surface temperature and average part surface temperature lead to the HTC.

  7. Numerical modeling of magnetic induction and heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Hattel, Jesper Henri

    2013-01-01

    Injection molding of parts with special requirements or features such as micro- or nanostructures on the surface, a good surface finish, or long and thin features results in the need of a specialized technique to ensure proper filling and acceptable cycle time. The aim of this study is to increase...... numerical modeling of the induction heating in the mold to investigate how the temperature in the mold will be distributed and how it is affected by different material properties....

  8. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  9. Method of the ion beam emittance measurement in the injection beam line of DC-72 cyclotron in the presence of its space charge using the scanner to determine beam dimensions

    CERN Document Server

    Kasarinov, N Y; Kalagin, I V; Kazacha, V I

    2002-01-01

    The gradient method for measuring the transversal emittance of a high current ion beam in the injection channel of the cyclotron DC-72 is considered. The standard scanner is proposed for measuring the transversal dimensions of the beam. The formulae for determination of the mean square beam dimensions by current signals from the scanner needle are adduced. The method of the emittance recovery for axial-symmetric ion beam is set for the case when the space charge effect is essential. The algorithm for tuning of the quadrupole lenses in the injection channel of the cyclotron DC-72 for obtaining the axial-symmetric ion beam is proposed. The evaluations of the expected accuracy of the proposed method for the emittance recovery have been carried out.

  10. Steerable beam systems for electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, J.

    1985-08-31

    Several methods are discussed for steering a 200 kW pencil beam of electromagnetic waves in the 60 GHz to 200 GHz frequency range. These include methods incorporating swivelling mirrors, phased arrays, mode converters, and optical materials. It is found that for the near term, the mechanical systems are best, capable of steering times of 3 ms to 100 ms and losses of less than 5%. Optical methods, as yet virtually uninvestigated, appear to offer the only means of beam-steering in the 5..mu..s to 100..mu..s range necessary for MHD mode tracking.

  11. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Lin, L. [University of California, Los Angeles, California 90095 (United States); Liu, D. [University of California, Irvine, California 92697 (United States); and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  12. Optics Measurements and Matching of TT2-TT10 Line for Injection of the LHC Beam in the SPS

    CERN Document Server

    Benedetto, E; Guerrero, A; Jacquet, D

    2008-01-01

    A well matched injection in the SPS is very important for preserving the emittance of the LHC beam. The paper presents the algorithms used for the analysis and the results of the optics measurements done in the transfer line TT2-TT10 and in the SPS. The dispersion is computed by varying the beam momentum and recording the offsets at the BPMs, while the Twiss parameters and emittance measurements in TT2-TT10 are performed with beam profile monitors equipped with OTR screens. These results are completed by those obtained with a matching monitor installed in the SPS as a prototype for the LHC. This device makes use of an OTR screen and a fast acquisition system, to get the turn by turn beam profiles right at injection in the ring, from which the beam mismatch is computed and compared with the results obtained in the line. Finally, on the basis of such measurements, a betatron and dispersion matching of TT2-TT10 for injection in the SPS has been performed and successfully put in operation.

  13. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  14. Optics Measurements and Matching of TT2-TT10 Line for Injection of the LHC Beam in the SPS

    CERN Document Server

    Benedetto, E

    2008-01-01

    A well matched injection in the SPS is very important for preserving the emittance of the LHC beam. The paper presents the algorithms used for the analysis and the results of the 2007 optics measurements campaign done in the transfer line TT2-TT10 and in the SPS. The dispersion is computed by varying the beam momentum and recording the offsets at the BPMs, while the Twiss parameters and emittance measurements in TT2-TT10 are performed with beam profile monitors equipped with OTR screens. Finally, on the basis of such measurements, a betatron and dispersion matching of TT2-TT10 for injection in the SPS has been performed and successfully put in operation since October 2007.

  15. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  16. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    CERN Document Server

    Zeng, Ming; Chen, Min; Mori, Warren B; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-01-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of $2.4\\rm \\mu m$ and $0.8\\rm \\mu m$ for wakefield excitation and for triggering electron injection via field ionization, respectively. A laser pulse at $2.4\\rm \\mu m$ wavelength enables one to drive an intense acceleration structure with relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our full three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around one percent) and high charges (several tens of picocoulomb) can be obtained by this scheme with laser parameters achievable in the near future.

  17. Evolution of High Intensity Beams in the CERN PS Booster after H⁻ Injection and Phase Space Painting

    CERN Document Server

    Cieslak-Kowalska, Magdalena; Benedetto, Elena; Bracco, Chiara

    2016-01-01

    With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H⁻ injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.

  18. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  19. High-temperature heat pump, phase 1: using a compressor with a vapour injection port; Pompe a chaleur haute temperature, phase 1: solution avec compresseur a injection vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Brand, F.; Zehnder, M.; Favrat, D.

    2000-07-01

    The High Temperature Heat Pump project aims at developing an air-to-water heat pump that can replace a gas or fuel boiler in a house. To reach this goal, the heat pump must be able to produce domestic hot water at high temperature to allow the house's network to properly operate. A first objective is to produce hot water at 65 {sup o}C. A first prototype has been developed, starting from one of the most efficient heat pumps on the market. The pump was modified so as to function with a prototype compressor equipped with a vapour injection port. A series of tests highlighted not only the performance improvements due to the vapour injection but also the increase of the operation range of the heat pump and the optimal operating range of the injection. In terms of the coefficient of performance (COP) the gain increases with the reduction in temperature of the intake air; the improvement is on an average 13% in the operating range tested. With an ambient-air temperature of -12 {sup o}C it is possible to obtain hot water at 65 {sup o}C, whereas without injection the intake air must be at least 2 {sup o}C to reach the same water temperature. An average gain of 25% is obtained by injection for hot power. For measurement with de-icing, point A2/W50 with an optimal injection makes it possible to obtain a COP of 2.7 with a hot power of 9.4 kW. The defrosting cycle analysis makes possible to expect an improvement of these performances by optimisation and adjustment of the heat pump parameters. A thermostatic valve, whose probe is placed at the compressor output, controls the injection. It makes it possible to obtain an optimal operation for flows injected. Measurement results support a theoretical analysis of the whole installation and in particular of the compressor with injection port. This analysis will be used within the framework of a more detailed thermo economic heat pump study. (author)

  20. Research on modeling of heat source for electron beam welding fusion-solidification zone

    Institute of Scientific and Technical Information of China (English)

    Wang Yajun; Fu Pengfei; Guan Yongjun; Lu Zhijun; Wei Yintao

    2013-01-01

    In this paper,the common heat source model of point and linear heat source in the numerical simulation of electron beam welding (EBW) were summarized and introduced.The combined point-linear heat source model was brought forward and to simulate the welding temperature fields of EBW and predicting the weld shape.The model parameters were put forward and regulated in the combined model,which included the ratio of point heat source to linear heat source Qpr and the distribution of linear heat source Lr.Based on the combined model,the welding temperature fields of EBW were investigated.The results show that the predicted weld shapes are conformable to those of the actual,the temperature fields are reasonable and correct by simulating with combined point-linear heat source model and the typical weld shapes are gained.

  1. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    Science.gov (United States)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  2. Neutral beam injection in a D-{sup 3}He FRC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Hugo; Farengo, Ricardo [Centro Atomico Bariloche (CNEA) and Instituto Balseiro (UNC-CNEA) 8400 S. C. de Bariloche, RN (Argentina)

    2007-06-15

    The use of neutral beam injection (NBI) to sustain a fraction of the plasma current in a field reversed configuration (FRC) reactor operating with the D-{sup 3}He reaction is studied. A Monte Carlo code already used to study NBI in medium size FRCs is employed (Lifschitz A F, Farengo R and Arista N R 2002 Nucl. Fusion 42 863, Lifschitz A F, Farengo R and Arista N R 2002 Plasma Phys. Control. Fusion 44 1979, Lifschitz A F, Farengo R and Hoffman A L 2004 Nucl. Fusion 44 1015) and the plasma parameters are similar to those proposed in the ARTEMIS (Momota H, Ishida A, Kohzaki Y, Miley G, Ohi S, Ohnishi M, Sato K, Steinhauer L, Tomita Y and Tuszewki M 1992 Fusion Technol. 21 2307) conceptual reactor design. A simple analysis shows that the driven current cannot reach the values quoted in the ARTEMIS project and a procedure to search for plasma parameters that result in higher efficiencies is presented.

  3. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection

    Science.gov (United States)

    Chang, F.; Dhir, V. K.

    1995-04-01

    The turbulent flowfield in a tube heated uniformly from the wall has been experimentally studied when fluid is injected tangentially. The experiments were conducted by injecting air through injectors placed on the periphery of a 88.9-mm inside diameter and 2.5-m long acrylic tube. Six injectors of 22.23-mm inside diameter were used and tangential to total momentum flux ratio of 2.67 was obtained in the experiments. Temperature profiles were measured with a resistance thermometer probe. Profiles for mean velocities in the axial and tangential directions, as well as the Reynolds stresses were obtained using a single rotated straight hot wire and a single rotated slanted hot wire anemometer. No significant difference in mean velocities and Reynolds stresses were found between the adiabatic experiments and diabatic ones. Two major mechanisms for enhancement of heat transfer are identified: (1) high maximum axial velocity near the wall produces higher heat flux from the wall; and (2) high turbulence level in the middle region of the tube improves mixing and, thus, rate of heat transfer. Furthermore, it is observed that both the kinetic energy of the mean flow and the turbulence level decrease as swirl decays. However, during the decay process, the high turbulence-energy-production from Reynolds stresses is necessary to transfer the kinetic energy of the mean flow to the turbulence energy. This high turbulence-production, in turn, slows down the rate of decrease of the turbulence level. As a result, the swirl and the heat transfer enhancement are preserved for a long distance.

  4. Control of Electron Beam Using Strong Magnetic Field for Efficient Core Heating in Fast Ignition

    CERN Document Server

    Johzaki, T; Sentoku, Y; Sunahara, A; Nagatomo, H; Sakagami, H; Mima, K; Fujioka, S; Shiraga, H

    2014-01-01

    For enhancing the core heating efficiency in electron-driven fast ignition, we proposed the fast electron beam guiding using externally applied longitudinal magnetic fields. Based on the PIC simulations for the FIREX-class experiments, we demonstrated the sufficient beam guiding performance in the collisional dense plasma by kT-class external magnetic fields for the case with moderate mirror ratio (~<10 ). Boring of the mirror field was found through the formation of magnetic pipe structure due to the resistive effects, which indicates a possibility of beam guiding in high mirror field for higher laser intensity and/or longer pulse duration.

  5. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  6. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yuan, E-mail: jtext@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  7. A Case Study of Heat Transfer from Hot Runner Mould to the Fix Platen of the Injection-moulding Machine

    Institute of Scientific and Technical Information of China (English)

    C; H; Tan; K; S; Lee

    2002-01-01

    In an injection moulding process, the parallelism b et ween the tie bars of the injection moulding machine is very important as it will affect the mould closing and clamping system. In recent years, more and more ho t runner systems are being applied in the moulding industry to save material and decrease the losses of injection pressure. Heat transfer from hot runner system from the fixed half which is secured in the fix machine platen could transmit s o much heat that it may cause high temperature diffe...

  8. Heat transfer between a fluid-saturated porous medium and a permeable wall with fluid injection or withdrawal

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1994-01-01

    The present paper addresses heat and mass transfer between a permeable wall and a fluid-saturated porous medium. To assess the effect of wall suction or injection on sensible heat transfer, a stagnant film model is developed. The model yields a thermal correction factor accounting for the effect of

  9. Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating

    Science.gov (United States)

    Lysenko, Elena N.; Surzhikov, Anatoliy P.; Vlasov, Vitaliy A.; Nikolaev, Evgeniy V.; Malyshev, Andrey V.; Bryazgin, Alexandr A.; Korobeynikov, Mikhail V.; Mikhailenko, Mikhail A.

    2017-02-01

    Synthesis of substituted lithium ferrites with chemical formulas Li0.6Fe2.2Ti0.2O4 and Li0.649Fe1.598Ti0.5Zn0.2Mn0.051O4 under the pulsed and continuous electron beam heating was investigated by X-ray diffraction and thermomagnetometric analysis. The electron beams heating of Li2CO3-Fe2O3-TiO2 or Li2CO3-ZnO-Fe2O3-TiO2-MnO mixtures was carried out at a temperature of 750 °C during 60 min using two types of electron accelerators: ELV accelerator generating continuous electron beam or ILU-6 accelerator generating pulse electron beam. It was established that a high energy electron beam heating of initial reagents mixtures allows obtaining the substituted lithium ferrites with final composition at significantly lower temperatures (at least 200 °C lower than in the case of using traditional thermal synthesis) and times of synthesis. That statement is in agreement with results obtained by XRD analysis, showing single phase formation; by magnetic measurements, showing high values of specific magnetization; by DTG measurements showing the certain Curie temperatures of the synthesized samples.

  10. Effect of the focal plane position on CO2 laser beam cutting of injection molded polycarbonate sheets

    Science.gov (United States)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2016-11-01

    In the present research, the effect of laser beam focal plane position (FPP) on the kerf quality of the polycarbonate laser cutting is investigated. Low power CO2 laser is used as the heat source of the cutting runs. In the experiments, FPP is varied from 0 to -4mm while other processing parameters (i.e. laser power, cutting speed and gas pressure) are considered constant. Upper and lower kerf width, kerf taper, upper heat affected zone and surface roughness of the kerf wall are also considered as the responses. Observations signified that reducing the position of the laser beam focal point from zero to - 3mm reduces the upper and lower kerf width. However reducing FPP below -3mm leads to an increase in the kerf width. Results also reveals that upper heat affected zone value reduces by reduction in FPP. Moreover the best kerf wall surface roughness occurred at FPP= -3mm.

  11. In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating

    DEFF Research Database (Denmark)

    Homann, Lasse Vinther; Booth, Tim; Lei, Anders;

    2011-01-01

    min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from...

  12. Performance of Chilled Beam with Radial Swirl Jet and Diffuse Ceiling Air Supply in Heating Mode

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Melikov, Arsen Krikor

    2013-01-01

    The performance of diffuse ceiling air supply and chilled beam with swirl jet (CSW) in heating mode (winter situation) was studied and compared with regard to the generated indoor environment. An office mock-up with one occupant was simulated in a test room (4.5 x 3.95 x 3.5 m3 (L x W x H...

  13. Metastable states' population of uranium atoms produced by electron-beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Akihiko; Ogura, Koichi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)

    2000-08-01

    The metastable states' population densities of uranium atoms produced by electron-beam heating were measured by the laser induced fluorescence method. The atomic excitation temperature derived from the metastable state distribution was lower than the evaporation surface temperature. With increasing deposition rate, the atomic excitation temperature decreased to about 2000 K. (author)

  14. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  15. Enhancement of resistance against high energy laser pulse injection with chevron beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, Eiichi; Hatae, Takaki [Japan Atomic Energy Agency, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Bassan, Michele; Vayakis, George; Walsh, Michael [ITER Organization, St Paul Lez Durance Cedex, Provence 13067 (France); Itami, Kiyoshi [Japan Atomic Energy Agency, Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The laser irradiation tests onto flat-mirror-molybdenum sample were carried out. • The absorbed energy density is the correct figure of the laser-induced damage. • Experiments validated the design of a new beam dump called chevron beam dump. • The chevron beam dump would have much longer lifetime than conventional beam dumps. - Abstract: The laser beam dump of the Edge Thomson scattering (ETS) in ITER is being developed and a new type of beam dump called the chevron beam dump was proposed recently. The laser-induced damage on the surface is one of the most severe issues to be overcome. The key concept of the chevron beam dump is to reduce the laser energy absorption per unit area and to absorb the laser beam gradually. The laser irradiation tests onto flat-mirror-molybdenum sample were carried out. It was clarified that the absorbed (rather than incident) energy density of the laser pulses should be the correct figure of merit for the laser-induced damage. Therefore, the concept of the chevron beam dump design, that minimizes the absorbed laser energy density per unit area, was validated experimentally. The chevron beam dump enables us to extend its lifetime drastically relative to conventional beam dumps. Potential methods to improve the laser-induced damage threshold (LIDT) are also discussed in this paper.

  16. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  17. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  18. Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings

    Science.gov (United States)

    Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.

    2017-03-01

    Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.

  19. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  20. The application of arbitrary incidence laser beams heat treatment temperature field calculation formulas

    Institute of Scientific and Technical Information of China (English)

    Kun Ma; Junchang Li; Zebin Fan; Jinbin Gui; Yingxiong Qin; Qiguang Zheng

    2005-01-01

    @@ Based on the calculation formulas of heat treatment temperature field for an arbitrary incident laser intensity distribution, the transformation intensity distribution of CO2 laser beam passing an integrating mirror is studied theoretically and experimentally. The derived formulas are applied in laser heat treatment research which is transformed by optical system, and the theoretical calculation results are compared with experimental results. It is shown that the formulas can be used to calculate the laser heat treatment temperature field accurately, and the calculation speed is obviously faster than the numerical calculation methods with the same precision. The calculation software can be used to select proper experiment parameters.

  1. EPOCH code simulation of a non-thermal distribution driven by neutral beam injection in a high-beta plasma

    Science.gov (United States)

    Necas, A.; Tajima, T.; Nicks, S.; Magee, R.; Clary, R.; Roche, T.; Tri Alpha Energy Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection. The dominant fast ion population made a dramatic impact on the overall plasma performance. To explain an experimentally observed anomalous neutron signal (100x thermonuclear), we use EPOCH PIC code to simulate possible beam driven non-destructive instabilities that transfer energy from fast ions to the plasma, causing phase space bunching. We propose that the hydrogen beam ion population drives collective modes in the deuterium target plasma, giving rise to the instability and increased fusion rate. The instability changes character from electrostatic in the low beta edge to fully electromagnetic in the core, with an associated reduction in growth rates. The DD reactivity enhancement is calculated using a two-body correlation function and compared to the experimentally observed neutron yield. The high-energy tails in the distributions of the plasma deuterons and beam protons are observed via a mass-resolving Neutral Particle Analyzer (NPA) diagnostic. This observation is qualitatively consistent with EPOCH simulation of the beam-plasma instability.

  2. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    Science.gov (United States)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  3. A double-beam magnetron-injection gun for third-harmonic continuous wave 1-THz gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Glyavin, M. [Faculty of Radiophysics, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), Nizhny Novgorod 603600 (Russian Federation); Research Center for Development of Far Infrared Region, University of Fukui (FIR FU), Fukui-shi 910-8507 (Japan); Manuilov, V. [Faculty of Radiophysics, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Research Center for Development of Far Infrared Region, University of Fukui (FIR FU), Fukui-shi 910-8507 (Japan); Idehara, T. [Research Center for Development of Far Infrared Region, University of Fukui (FIR FU), Fukui-shi 910-8507 (Japan)

    2013-12-15

    The concept of a continuous wave 1-kW/1-THz gyrotron operated at the third cyclotron harmonic of the transverse electric TE{sub 9,7} operating mode has been developed. To suppress the mode competition effects in a terahertz gyrotron, we propose a scheme with two generating helical electron beams (HEBs) formed in a double-beam triode magnetron-injection gun (MIG), where both emitters of the electron beams are located on a common cathode of the conventional MIG. An optimal geometry of the MIG electrodes is found. It is shown that in a proposed scheme two HEBs having close pitch factors and a moderate velocity spread can be formed. This makes them suitable for high-efficiency single-mode generation in the high frequency gyrotron at high harmonic.

  4. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    energy between zones with one hydronic circuit, operating with a water temperature between 20°C and 23°C. To calculate the energy performance of the system, simulation-based research was developed. The two-pipe system was modelled by using EnergyPlus, a whole building energy simulation program. Hourly......The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  5. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  6. Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ionization, Heating and Photon Production from Arbitrary Energy Injections

    CERN Document Server

    Slatyer, Tracy R

    2015-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-alpha photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this note we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the ne...

  7. Numerical Computation of Flow and Heat Transfer from an Enclosed Rotating Disk with Suction and Injection

    Directory of Open Access Journals (Sweden)

    R. S. Agarwal

    1980-04-01

    Full Text Available The Newton Raphson technique has been employed to solve the set of non-linear equations governing the problem of flow and heat transfer from an enclosed rotating disc. /The disc called rotor is subjected to uniform injection while the top of the housing called stator, to an equal suction. The results for small Reynold numbers are found in good agreement to that obtained earlier by series solution. The radial and transverse velocity profiles for large Reynolds have been plotted in the regions of no recirculation. The effect of net radial inflow and outflow on temperature in the no-recirculation region has also been studied. The method is significant in this respect that it yields satisfactory results for large Reynolds numbers.

  8. Simulation on the Pulsed Beam Transport for Injection Line of CYCIAE-10

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    1 Introduction The development of a 40 keV, 18 mA multi-cusp H- ion source and beam pulsing system have been completed successfully at CIAE. The pulsed H- beam with a repetition rate of 4.4 MHz and a pulse length of 9.6 ns has been obtained. In order to

  9. A novel approach of manufacturing Nickel Wicks for loop heat pipes using Metal Injection Moulding (MIM)

    Indian Academy of Sciences (India)

    S K Samanta; Prosenjit Das; A K Lohar; H Roy; S Kumar; A K Chowdhury

    2013-04-01

    Sintered nickel powder is proposed to be used as porous wicks in loop heat pipes used for space applications such as satellites and space crafts. In this work, the manufacturing procedure for tubular wicks through novel Metal Injection Moulding (MIM) route is discussed. Nickel powder, Polypropylene powder and thermoplastic binder are used to produce feedstock for injection moulding. Ideal sintering condition identified as 900° C and 60 minutes. Porosity, pore diameter of the wicks are evaluated by geometric measurements using an electronic weight measuring machine and a micrometer and extrusion flow Porosimeter, respectively. Permeability was calculated according to the Carmen–Kozeny equation. Experimental finding shows that porosity level of 55 vol%, average pore diameter of 2.6 m, permeability of 1.94 × 10−12m2 and roundness of 5% have been achieved in the porous wick. SEM investigation of pore structures shows the presence of large pores which leads to enhanced porosity and interconnected fine pore network responsible for generation of required capillary pumping pressure.

  10. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene octene copolymer

    Science.gov (United States)

    Mishra, Joy K.; Chang, Young-Wook; Lee, Byung Chul; Ryu, Sung Hun

    2008-05-01

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  11. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Joy K. [Department of Chemical Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Chang, Young-Wook [Department of Chemical Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)], E-mail: ywchang@hanyang.ac.kr; Lee, Byung Chul [Korea Atomic Energy Research Institute, Dukjin-Dong, Yusong-Gu, Daejon 305-354 (Korea, Republic of); Ryu, Sung Hun [College of Environmental and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)

    2008-05-15

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  12. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    Science.gov (United States)

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  13. Effects of heat treatment on the properties of powder injection molded AIN ceramics

    Institute of Scientific and Technical Information of China (English)

    DU Xueli; QIN Mingli; Akhtar Farid; FENG Peizhong; QU Xuanhui

    2008-01-01

    The effects of two different heat-treatment atmospheres,nitrogen atmosphere and reducing nitrogen atmosphere with carbon,on the properties of Y2O3-doped aluminum nitride (AlN) ceramics were investigated.The AlN powder as a raw material was synthesized by self-propagating high-temperature synthesis (SHS) and compacts were fabricated by employing powder injection molding technique.The polymer-wax binder consisted of 60 wt.% paraffin wax (PW),35 wt.% polypropylene (PP),and 5 wt.% stearic acid (SA).After the removal of binder,specimens were sintered at 1850℃ in nitrogen atmosphere under atmospheric pressure.To improve the thermal conductivity,sintered samples were reheated.The result reveals that the heat-treatment atmosphere has significant effect on the properties and secondary phase of AlN ceramics.The thermal conductivity and density of AlN ceramics reheated in nitrogen gas are 180 W·m-1 K-1 and 3.28 g,cm-3 and the secondary phase is yttrium aluminate.For the sample reheated in reducing nitrogen atmosphere with carbon,the thermal conductivity and density are 173 W.m-1.K-1 and 3.23 g·cm-3,respectively,and the secondary phase is YN.

  14. Development of ion source with a washer gun for pulsed neutral beam injection.

    Science.gov (United States)

    Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N

    2008-06-01

    A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.

  15. Effect of two steel plate's interface on heat transfer under laser beam irradiation

    CERN Document Server

    Zhao Jian Heng; Zhang Shi Wen; Gui Yuan Zhen; Wang Chun Yan; Tang Xiao Song; Zhang Da Yong

    2002-01-01

    It is supposed that there is a gap in the interface of two contacting steel plates due to thermal deformation under laser beam irradiation, and this gap will affect heat transfer in this interface obviously. This supposition is testified by experiments and simulation. This work is helpful to the study of the destruction mechanism under high power laser loading, and provides an effective way for anti-laser research

  16. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    Science.gov (United States)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  17. Non-invasive measurement of X-ray beam heating on a surrogate crystal sample.

    Science.gov (United States)

    Snell, Edward H; Bellamy, Henry D; Rosenbaum, Gerd; van der Woerd, Mark J

    2007-01-01

    Cryocooling is a technique routinely used to mitigate the effects of secondary radiation damage on macromolecules during X-ray data collection. Energy from the X-ray beam absorbed by the sample raises the temperature of the sample. How large is the temperature increase and does this reduce the effectiveness of cryocooling? Sample heating by the X-ray beam has been measured non-invasively for the first time by means of thermal imaging. Specifically, the temperature rise of 1 mm and 2 mm glass spheres (sample surrogates) exposed to an intense synchrotron X-ray beam and cooled in a laminar flow of nitrogen gas is experimentally measured. For the typical sample sizes, photon energies, fluxes, flux densities and exposure times used for macromolecular crystallographic data collection at third-generation synchrotron radiation sources and with the sample accurately centered in the cryostream, the heating by the X-ray beam is only a few degrees. This is not sufficient to raise the sample above the amorphous-ice/crystalline-ice transition temperature and, if the cryostream cools the sample to 100 K, not even enough to significantly enhance radiation damage from secondary effects.

  18. Localization of the large-angle foil-scattering beam loss caused by the multiturn charge-exchange injection

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Yoshimoto, Masahiro; Harada, Hiroyuki; Kinsho, Michikazu

    2013-07-01

    In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, significant losses were observed at the branching of the H0 dump line and the beam position monitor that was inserted downstream of the H0 dump branch duct. These losses were caused by the large-angle scattering of the injection and circulating beams at the charge-exchange foil. To realize high-power operation, these losses must be mitigated. Therefore, a new collimation system was developed and installed in October 2011. To efficiently optimize this system, the behavior of particles scattered by the foil and produced by the absorber were simulated, and the optimal position and angle of the absorber were investigated. During this process, an angle regulation method for the absorber was devised. An outline of this system, the angle regulation method for the absorber, and the performance of this new collimation system are described.

  19. Simulation study on the performance of an Injection Scroll Compressor in a Heat Pump for Electric Vehicles

    OpenAIRE

    Jung, Jongho; Kim, Dongwoo; Jeon, Yongseok; Kim, Yongchan

    2014-01-01

    This paper presents the development and validation of a simulation model of an injection scroll compressor that can be used for optimization of a heat pump system for electric vehicles. The modeling considered the effects of refrigerant leakage and suction gas heating. The simulation model solved continuity and energy conservation equations using 4th Runge-Kutta scheme to predict the pressure and temperature variations according to scroll revolution. The refrigerant mass flow rate, compressor...

  20. MD 1266: Injection of "high performance reach" 80b 25 ns beam

    CERN Document Server

    Bartmann, Wolfgang; Iadarola, Giovanni; Kain, Verena; Velotti, Francesco Maria; Muller, Jeremy Alfred; CERN. Geneva. ATS Department

    2017-01-01

    This note summarises the measurements and observations performed during the LHC Machine Development concerning the injection of batches of 80 bunches for future “high performance reach” of the LHC.

  1. Modelling the neutralisation process in neutral beam injectors

    OpenAIRE

    Fitzgerald, Niall J.

    2009-01-01

    High power neutral beams currently play an important role in heating, fuelling and diagnosing magnetically confined thermonuclear fusion plasmas. At the Joint European Torus (JET) in Oxfordshire, England, the formation of such a beam involves passing a positive ion beam through a neutral gas target wherein beam electron-capture collisions result in a neutral beam component. The subsequent beam injection into the fusion plasma requires the sole use of this neutral component, since the charged ...

  2. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    Science.gov (United States)

    Hotchi, Hideaki; Tani, Norio; Watanabe, Yasuhiro

    2015-04-01

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations.

  3. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    Science.gov (United States)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  4. STRUCTURE AND CHARACTERISTICS OF TI-AL-NI SYSTEM COVERING, APPLIED ON THE STEEL GROUND USING ELECTRON-BEAM HEATING

    Directory of Open Access Journals (Sweden)

    I. V. Murashova

    2011-01-01

    Full Text Available The morphology of the system Ti-Al-Ni covering, received by means of self-distributing high-temperature synthesis, initiated by electron-beam heating, on the basis of steel St3 is investigated.

  5. Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

    Indian Academy of Sciences (India)

    A K Sinha; K J S Sawhney; R V Nandedkar

    2001-12-01

    This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation source. The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of the beam stop have been optimised. It is also shown that radiation cooling alone is not sufficient for taking away the heat load. Water-cooling of the beam stop is essential.

  6. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  7. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    Science.gov (United States)

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  8. Logical and Timing Control for Diagnostic Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Du Shaowu; Ge Suoliang; Zhang Jian; Su Yu; Liu Baohua; Huang He

    2005-01-01

    The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.

  9. NUMERICAL ANALYSIS OF RESIDUAL STRESSES IN TITANIUM ALLOY DURING ELECTRON BEAM LOCAL POST-WELD HEAT TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Huo Lixing; Zhang Yufeng; Liu Fangjun; Chen Gang

    2005-01-01

    The distributions of temperature and residual stresses in thin plates of BT20 titanium alloy are numerically analyzed by three-dimensional finite element software during electron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined with numerical calculating results, the effects of different EBLPWHT mode and parameters, including heat treating position,heating width and heating time, on the distribution of welding residual stresses are analyzed. The results show that, the residual tensile stresses in weld center can be largely decreased when the weld is heat treated at back preface of the plate. The numerical results also indicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinity of the weld is decreased, and the range of the residual longitudinal stresses is increased along with the increase of heating width and heating time.

  10. Beam Envelope, Injection and Acceleration in a Compact, High Current, Strong Focused Recirculating Accelerator Scheme

    Science.gov (United States)

    1988-12-01

    fixed vertical (berding) magnetic field, the insensitivity to energy i tdh poses a problem for ban trqaing and injectin. It is shoam that a ber trapping...Institute for Acetor and Plasma Beam Technology University of New Mexico A~xxpierque, N 87131 1 Dr. C. L. Hanner De e of Physics Iowa State University

  11. Correction of resist heating effect on variable shaped beam mask writer

    Science.gov (United States)

    Nakayamada, Noriaki; Suganuma, Mizuna; Nomura, Haruyuki; Kato, Yasuo; Kamikubo, Takashi; Ogasawara, Munehiro; Zable, Harold; Masuda, Yukihiro; Fujimura, Aki

    2016-04-01

    The specifications for critical dimension (CD) accuracy and line edge roughness are getting tighter to promote every photomask manufacturer to choose electron beam resists of lower sensitivity. When the resist is exposed by too many electrons, it is excessively heated up to have higher sensitivity at a higher temperature, which results in degraded CD uniformity. This effect is called "resist heating effect" and is now the most critical error source in CD control on a variable shaped beam (VSB) mask writer. We have developed an on-tool, real-time correction system for the resist heating effect. The system is composed of correction software based on a simple thermal diffusion model and computational hardware equipped with more than 100 graphical processing unit chips. We have demonstrated that the designed correction accuracy was obtained and the runtime of correction was sufficiently shorter than the writing time. The system is ready to be deployed for our VSB mask writers to retain the writing time as short as possible for lower sensitivity resists by removing the need for increased pass count.

  12. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding

    Directory of Open Access Journals (Sweden)

    Bingyan Jiang

    2016-05-01

    Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.

  13. Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

    CERN Document Server

    Iadarola, Giovanni; Rumolo, Giovanni

    2016-01-01

    The expected heat load induced on the beam screens has been evaluated for all the twin-bore magnets in the Insertion Regions (IRs) of the HL-LHC. The contribution from the impedance of the beam screen has been evaluated taking into account the presence of a longitudinal weld in the beam screen and the impact of the temperature and of the magnetic field on the resistivity of the surface. The contribution coming from electron cloud effects has been evaluated for different values of the Secondary Electron Yield of the surface based PyECLOUD build-up simulations.

  14. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  15. Approaching viscosity control: electrical heating of extra heavy oil as alternative to diluent injection in down hole in Cerro Negro Field, Faja Petrolifera del Orinoco

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Manuel [Petroleos de Venezuela SA, PDVSA (Venezuela)

    2011-07-01

    Electrical heating is a method used to enhance oil recovery in extra heavy oil reservoirs. This method can be used when diluent injection or other methods are not able to reduce oil viscosity sufficiently or when problems of product quality or quantity arise. The aim of this paper is to evaluate the performance of electrical heating, individually and simultaneously with injection of diluents. For this purpose, simulations were undertaken in one well with integrated electrical heating and diluent injection in Cerro Negro Field in the Orinoco oil belt, Venezuela. Results have shown that the application of both methods together is more profitable than the application of electrical heating alone. This paper demonstrated that the use of electrical heating and diluent injection combined is a valid alternative to diluent injection alone, reducing production loss.

  16. Ion beam transport: modelling and experimental measurements on a large negative ion source in view of the ITER heating neutral beam

    Science.gov (United States)

    Veltri, P.; Sartori, E.; Agostinetti, P.; Aprile, D.; Brombin, M.; Chitarin, G.; Fonnesu, N.; Ikeda, K.; Kisaki, M.; Nakano, H.; Pimazzoni, A.; Tsumori, K.; Serianni, G.

    2017-01-01

    Neutral beam injectors are among the most important methods of plasma heating in magnetic confinement fusion devices. The propagation of the negative ions, prior to their conversion into neutrals, is of fundamental importance in determining the properties of the beam, such as its aiming and focusing at long-distances, so as to deposit the beam power in the proper position inside the confined plasma, as well as to avoid interaction with the material surfaces along the beam path. The final design of the ITER Heating Neutral Beam prototype has been completed at Consorzio RFX (Padova, Italy), in the framework of a close collaboration with European, Japanese and Indian fusion research institutes. The physical and technical rationales on which the design is based were essentially driven by numerical modelling of the relevant physical processes, and the same models and codes will be useful to design the DEMO neutral beam injector in the near future. This contribution presents a benchmark study of the codes used for this purpose, by comparing their results against the measures performed in an existing large-power device, hosted at the National Institute for Fusion Science, Japan. In particular, the negative ion formation and acceleration are investigated. A satisfactory agreement was found between codes and experiments, leading to an improved understanding of beam transport dynamics. The interpretation of the discrepancies identified in previous works, possibly related to the non-uniformity of the extracted negative ion current, is also presented.

  17. The influence of Laval nozzle throat size on supersonic molecular beam injection

    Institute of Scientific and Technical Information of China (English)

    Xinkui He; Xianfu Feng; Mingmin Zhong; Fujun Gou; Shuiquan Deng; Yong Zhao

    2014-01-01

    In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diam-eter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift pro-gressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.

  18. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    Energy Technology Data Exchange (ETDEWEB)

    Giuliano, Paul N.; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  19. Unsteady Stagnation Point Flow and Heat Transfer over a Stretching/Shrinking Sheet with Suction or Injection

    Directory of Open Access Journals (Sweden)

    M. Suali

    2012-01-01

    Full Text Available The unsteady stagnation point flow and heat transfer over a stretching/shrinking sheet with suction/injection is studied. The governing partial differential equations are converted into nonlinear ordinary differential equations using a similarity transformation and solved numerically. Both stretching and shrinking cases are considered. Results for the skin friction coefficient, local Nusselt number, velocity, and temperature profiles are presented for different values of the governing parameters. It is found that the dual solutions exist for the shrinking case, whereas the solution is unique for the stretching case. Numerical results show that the range of dual solutions increases with mass suction and decreases with mass injection.

  20. Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights

    CERN Document Server

    Gruber, Matthew; Hartogensis, Oscar

    2014-01-01

    Displaced-beam scintillometer measurements of the turbulence inner-scale length $l_o$ and refractive index structure function $C_n^2$ resolve area-average turbulent fluxes of heat and momentum through the Monin-Obukhov similarity equations. Sensitivity studies have been produced for the use of displaced-beam scintillometers over flat terrain. Many real field sites feature variable topography. We develop here an analysis of the sensitivity of displaced-beam scintillometer derived sensible heat fluxes to uncertainties in spacially distributed topographic measurements. Sensitivity is shown to be concentrated in areas near the center of the beam and where the underlying topography is closest to the beam height. Uncertainty may be decreased by taking precise topographic measurements in these areas.

  1. Numerical modeling of heat transfer and fluid flow in laser metal deposition by powder injection

    Science.gov (United States)

    Fan, Zhiqiang

    Laser metal deposition is an additive manufacturing technique which allows quick fabrication of fully-dense metallic components directly from Computer Aided Design (CAD) solid models. A self-consistent three-dimensional model was developed for the laser metal deposition process by powder injection, which simulates heat transfer, phase changes, and fluid flow in the melt pool. The governing equations for solid, liquid and gas phases in the calculation domain have been formulated using the continuum model. The free surface in the melt pool has been tracked by the Volume of Fluid (VOF) method, while the VOF transport equation was solved using the Piecewise Linear Interface Calculation (PLIC) method. Surface tension was modeled by taking the Continuum Surface Force (CSF) model combined with a force-balance flow algorithm. Laser-powder interaction was modeled to account for the effects of laser power attenuation and powder temperature rise during the laser metal deposition process. The governing equations were discretized in the physical space using the finite volume method. The advection terms were approximated using the MUSCL flux limiter scheme. The fluid flow and energy equations were solved in a coupled manner. The incompressible flow equations were solved using a two-step projection method, which requires a solution of a Poisson equation for the pressure field. The discretized pressure Poisson equation was solved using the ICCG (Incomplete Cholesky Conjugate Gradient) solution technique. The energy equation was solved by an enthalpy-based method. Temperature-dependent thermal-physical material properties were considered in the numerical implementation. The numerical model was validated by comparing simulations with experimental measurements.

  2. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  3. Electron gun with off-axis beam injection for a race-track microtron

    Energy Technology Data Exchange (ETDEWEB)

    Aloev, A.V. [Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Carrillo, D. [CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Kubyshin, Yu.A., E-mail: iouri.koubychine@upc.ed [Institute of Energy Technologies, Technical University of Catalonia, Campus Sud, Av. Diagonal 647, 08028 Barcelona (Spain); Pakhomov, N.I.; Shvedunov, V.I. [Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2010-12-01

    A miniature 12 MeV race-track microtron for medical applications is under construction at the Technical University of Catalonia in collaboration with several Spanish centers and companies and the Skobeltsyn Institute of Nuclear Physics of the Moscow State University. As a source of electrons a compact 3D on-axis electron gun with an off-axis cathode has been designed to allow a direct and efficient injection into the accelerating structure. Its prototype has been built and successfully tested. Results of the electron gun design simulations and of the prototype performance are herein described.

  4. Air-source heat pump coupled with economized vapor injection scroll compressor and ejector:Design and experimental research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ejector can utilize high pressure energy from liquid mechanism,it can be used in heat pump system coupled with economized vapor injection(EVI)scroll compressor.When running under low temperature conditions,the performance of the EVI system with ejector can be improved further.In this paper,the design method of the heat pump system with ejector is presented,and the process for designing the heat pump with ejector(EVIe)was summarized.One prototype heat pump was designed under the condition of the evaporation temperature of -20oC,and an experimental setup was established to test the prototype.The measured results demonstrated that the heating EER(energy efficiency ratio)of the EVIe could reach about 4%higher than that of the system without the ejector when the heating capacity remained nearly constant.The design method is helpful to development of a heat pump system coupled with scroll compressor and ejector.

  5. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  6. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  7. Demonstration of counter beam fast heating scheme by using a spherical CD shell target

    Science.gov (United States)

    Mori, Y.; Nishimura, Y.; Hanayama, R.; Nakayama, S.; Ishii, K.; Kitagawa, Y.; Sekine, T.; Takeuchi, Y.; Kurita, T.; Kato, Y.; Sato, N.; Kurita, N.; Kawashima, T.; Hioki, T.; Motohiro, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2016-10-01

    We report fast heating of a shock-imploded core under counter beam configuration that published in recent. Experiments are performed by using a repetitive IFE driver HAMA. Experiments results show that (i) a shock-imploded core with 70 micron diameter, originally deuterated polystyrene (CD) spherical shell of 500 micron diameter, is flashed by counter irradiating 110 fs, 7 TW laser pulses. The coupling efficiency from the laser to the core emission was inferred 13%. A collisional Particle-In-Cell simulation code PICLS2D indicates a possibility that counter hot electron currents generate magnetic filaments in the imploded core. (ii) Fast electrons with energy bellow a few MeV might be trapped by these filaments in the core region supposed to be contributing to the observed X-ray flash and the high coupling efficiency. These results indicate a possibility that counter irradiating fast heating scheme can improve the energy coupling into the core by hot electrons those are limited to less 10% for one-side irradiation fast heating conducted so far.

  8. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  9. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  10. Injection MD

    CERN Document Server

    Bartmann, W; Bracco, C; Drosdal, L; Gianfelice, E; Goddard, B; Kain, V; Papaphilippou, Y; Vanbavinckhove, G

    2012-01-01

    This note summarizes the results obtained at injection during the 2nd MD block and the floating MD block in July. Highlights are presented for injection in the LHC with the Q20 SPS optics, influence of the supercycle and injection with 25 ns bunch spacing. Beams were successfully injected into the LHC using the Q20 optics [1, 3]. Small corrections were needed to steer the beam in the transfer lines. Dispersion measurements were conducted for both beams. The horizontal normalized dispersion in TI2 was a factor 2 smaller for Q20 with respect to Q26, for TI8 on the other hand the opposite was observed. The results for injection loss dependency on super cycle composition show only a small increase in losses for beam 2. The losses observed must therefore mainly come from other sources such as shot-by-shot stability or quality of scraping. For the injection with 25 ns bunch spacing bunches were injected for both beams. For B1 up to the maximum of 288 bunches. For B2 on the other only up to 144 bunches were injected...

  11. Comparison of the Performance of Chilled Beam with Swirl Jet and Diffuse Ceiling Air Supply: Impact of Heat Load Distribution

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Kosonen, Risto

    2013-01-01

    The impact of heat load strength and positioning on the indoor environment generated by diffuse ceiling air supply and chilled beam with radial swirl jet was studied and compared. An office room with two persons and a meeting room with six persons were simulated in a test room (4.5 x 3.95 x 3.5 m3...... (ventilation effectiveness of 0.4) and the air flow rate had to be above minimum to safeguard the indoor air quality. The radial swirl jet of chilled beam also was not capable of creating complete mixing at high and concentrated heat load (ventilation effectiveness of 0.7)....

  12. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  13. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  14. Non-inductive current built-up by local electron cyclotron heating and current drive with a 28 GHz focused beam on QUEST

    Science.gov (United States)

    Onchi, Takumi; Idei, Hiroshi; Hasegawa, Makoto; Ohwada, Hiroaki; Zushi, Hideki; Hanada, Kazuaki; Kariya, Tsuyoshi; Mishra, Kishore; Shikama, Taichi; Quest Team

    2016-10-01

    The plasma current can be driven solely by injecting electron cyclotron waves (ECWs) in spherical tokamak (ST) configuration. A system of 28 GHz gyrotron (maximum power: 270 kW) is renewed and reinstalled on QUEST. A focused ECW beam, whose diameter is about 5 cm at the second harmonic resonance, is injected for local ECW heating and current drive. The local power density at resonance exceeds 75 MW/m2 at an injection power of 150 kW. The incident ECW polarization can be adjusted employing the phase shifter consisting of two corrugated plates. During 1.25 second pulse of ECH, plasma current is built up to Ip = 70 kA fully non-inductively with a core electron density of ne > 1018 m-3. The closed flux in such ST plasma is determined at the inboard limiter on the center stack. Energetic electrons are also responsible for the pressure and equilibrium. This work is supported by JSPS KAKENHI (15H04231, 15K17800), NIFS Collaboration Research program (NIFS13KUTR085, NIFS11KUTR069, NIFS16KUTR114).

  15. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  16. Formation of Sunquakes in Hydrodynamic Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, V. V.; Zharkov, S.

    2015-12-01

    We present hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams and investigate their effects on the solar interior beneath the photosphere for production of acoustic waves, or sunquakes. The temperature, density and macro-velocity variations are calculated as functions of both column and linear depths for different mixed beams revealing strong sweeping of a flaring atmosphere under the quiet photosphere level (QFL). This results in subsequent plasma evaporation into the upper atmosphere and formation of supersonic shocks moving into the solar interior and terminating at depths of 300-5000 km beneath the QFL. The shocks deposited at different depths below the photosphere are found to define the parameters of seismic responses in the interior and their observation as sunquakes, according to the hydrodynamic model of wave propagation (Zharkov, 2013). In addition, we compare temporal and spatial distributions of HXR and optical emission in a few acoustically active flares with those produced by the complex simulations above, in attempt to resolve the puzzle of co-spatial formation of HXR and WL emission reported by Martinez-Oliveros et al. (2012).

  17. Gas injection to inhibit migration during an in situ heat treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  18. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2013-01-01

    by two thermocouples placed in the die insert. The system was used to heat up the cavity wall with heating rates of up to 10 °C/s. Experiments were carried out with ABS material. The lengths of the object were measured by a suitable measurement set up. The experimental result show that the use...

  19. 电加热高光注塑模具设计%Electric Heating High Light Injection Mold Design

    Institute of Scientific and Technical Information of China (English)

    黄元贵

    2011-01-01

    A high gloss injection molding, in mold core equipped with electric heating components, in the mold core with insulation on the tank, while the main body in the mold and the mold core with insulation between the plates, to achieve high optical injection in At the same time, greatly reduce energy consumption. This method and technology is useful in the practical production.%一种高光注塑模具在模芯内设有电加热件,在模芯上设有隔热槽,同时在模具主体与模芯之间设有隔热板,使其在实现高光注塑的同时,大幅地降低了能耗.该工艺方法的设计研究,具有显著的科研和工程实用价值.

  20. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  1. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    Science.gov (United States)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T.; Hippler, R.

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 °C with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (˜10-6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 °C of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  2. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  3. Induction Heating System Applied to Injection Moulding of Micro and Nano Structures

    DEFF Research Database (Denmark)

    Menotti, Stefano

    part. In fact one of the main problems in micro injection moulding is the premature freezing of the polymer flow inside the cavity and often is not possible to obtain a full replica of the nano/micro structures embed on the surfaces. Some other defects that can be avoided with the use of an additional...... and for understanding the influence of the main process parameters on the quality of the parts. The experiments were conducted on a manual injection machine for the first campaign and in a second phase on two different completely automatic injection moulding machines. Metrology was performed to characterize the moulded...... parts. The polymer parts were mainly measured with atomic force microscopy (AFM) and an optical coordinate measurement machine (CMM). The results show that the main influencing factor on the replica quality is the mould temperature. Another part of the project consisted in benchmarking of the developed...

  4. A novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    CERN Document Server

    AUTHOR|(SzGeCERN)395725

    2015-01-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fastpulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the inco...

  5. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  6. Overview of the design of the ITER heating neutral beam injectors

    Science.gov (United States)

    Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.

    2017-02-01

    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H‑ and D‑ remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be

  7. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  8. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  9. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  10. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  11. Detailed magnetic model simulations of the H- injection chicane magnets for the CERN PS Booster Upgrade, including eddy currents and influence on beam dynamics

    CERN Document Server

    Benedetto, E; Borburgh, J; Carli, C; Martini, M; Forte, V

    2014-01-01

    The CERN PS Booster will be upgraded with an H- injection system. The chicanemagnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The -beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and correction on beam dynamics.

  12. The influence of plasma horizontal position on the neutron rate and flux of neutral atoms in injection heating experiment on the TUMAN-3M tokamak

    Science.gov (United States)

    Kornev, V. A.; Chernyshev, F. V.; Melnik, A. D.; Askinazi, L. G.; Wagner, F.; Vildjunas, M. I.; Zhubr, N. A.; Krikunov, S. V.; Lebedev, S. V.; Razumenko, D. V.; Tukachinsky, A. S.

    2013-11-01

    Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by Δ R = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.

  13. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, James C.; Szybist, James P. [Oak Ridge National Laboratory, 2360 Cherahala Blvd, Knoxville, TN 37932 (United States)

    2010-04-15

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP{sub steam}). The valve closing timing for maximum MEP{sub steam} is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP{sub steam} calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP{sub combustion}) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy. (author)

  14. Pilot study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-06-01

    Full Text Available Maxim A Shevtsov,1,2 Alexander V Kim,2 Konstantin A Samochernych,2 Irina V Romanova,3 Boris A Margulis,1 Irina V Guzhova,1 Igor V Yakovenko,2 Alexander M Ischenko,4 William A Khachatryan2 1Institute of Cytology of the Russian Academy of Sciences, 2AL Polenov Russian Research Scientific Institute of Neurosurgery, 3IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 4Research Institute of Highly Pure Biopreparations, St Petersburg, Russian Federation Abstract: Intratumoral injections of recombinant heat shock protein (Hsp70 were explored for feasibility in patients with brain tumors. Patients aged 4.5–14 years with untreated newly diagnosed tumors (n=12 were enrolled. After tumor resection, five injections of recombinant Hsp70 (total 2.5 mg were administered into the resection cavity through a catheter. Before administration of Hsp70 and after the last injection, specific immune responses to the autologous tumor lysate were evaluated using the delayed-type hypersensitivity test. Further, peripheral blood was monitored to identify possible changes in lymphocyte subpopulations, cytokine levels, and the cytolytic activity of natural killer cells. The follow-up period in this trial was 12 months. Intratumoral injections of Hsp70 were well tolerated by patients. One patient had a complete clinical response documented by radiologic findings and one patient had a partial response. A positive delayed-type hypersensitivity test was observed in three patients. In peripheral blood, there was a shift from cytokines provided by Th2 cells toward cytokines of a Th1-cell-mediated response. These data corresponded to changes in lymphocyte subpopulations. Immunosuppressive T-regulatory cell levels were also reduced after injection of Hsp70, as well as production of interleukin-10. The cytolytic activity of natural killer cells was unchanged. The present study demonstrates the feasibility of intratumoral delivery

  15. Evaluation of electron beam irradiation under heating process on vulcanized EPDM

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Leandro; Cardoso, Jessica R.; Moura, Eduardo; Geraldo, Aurea B.C., E-mail: lgabriell@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Global consumption of rubber is estimated around 30.5 million tons in 2015, when it is expected an increase of 4.3% of this volume in the coming of years. This demand is mainly attributed to the production of elastomeric accessories for the automotive sector. However, the generation of this type of waste also reaches major proportions at the end of its useful life, when it is necessary to dispose the environmental liability. Rubber reprocessing is an alternative where it can be used as filler in other polymer matrices or in other types of materials. The devulcanization process is another alternative and it includes the study of methods that allow economic viability and waste reduction. Therefore, this study aims to recycle vulcanized EPDM rubber with the use of ionizing radiation. In this work we are using the electron beam irradiation process with simultaneous heating at absorbed doses from 150 kGy to 800 kGy, under high dose rate of 22.3 kGy/s on vulcanized EPDM powder and on samples about 4 mm thick. Their characterization, before and after the irradiation process, have been realized by thermal analysis and their changes have been discussed. (author)

  16. Three dimensional modeling of combustion process and emission formation in a low heat rejection indirect injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar S.

    2014-01-01

    Full Text Available Higher heat losses and brake specific fuel consumption (BSFC are major problems in an indirect injection (IDI diesel engine, which can be overcome by means of low heat rejection (LHR concept. This concept is based on the approach of insulating of piston and liner of main chamber in IDI engine. At the present work, the combustion process and emission formation in baseline and LHR engines are studied by a Computational Fluid Dynamics (CFD code at four different loads (25%, 50%, 75% and 100% in maximum torque engine speed 730rpm. The numerical results for the pressure in cylinder and emissions for baseline engine at full load operation are compared to the corresponding experimental data and show good agreement. The comparison of the results for two cases show that when the load increases from 25% to 100% in 25% steps, heat loss in LHR engine decrease 40.3%, 44.7%,44.6% and 45.2%, respectively. At full load operation in LHR engine, NOx and Soot emissions decrease 13.5% and 54.4%, respectively and engine efficiency increases 6.3% in comparison to baseline engine.

  17. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  18. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    Directory of Open Access Journals (Sweden)

    Igor Savukov

    2016-10-01

    Full Text Available Atomic magnetometers (AM are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz, which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG, magneto-cardiography (MCG, underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  19. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.

    Science.gov (United States)

    Savukov, Igor; Boshier, Malcolm G

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz(1/2) sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz(1/2) and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  20. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    Science.gov (United States)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  1. Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

  2. Device for measuring level of heat-transfer agent in injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, M.F.; Bar-Sliva, V.I.; Chelenkov, S.V.; Dichenko, M.A.; Nikiforov, Yu.V.; Petrov, A.I.; Turchaninov, Yu.N.; Zevelev, S.Ya.

    1981-01-01

    A device is claimed for measuring level of heat-transfer agent in wells. It consists of a body, turbine, and a tachometric transformer that switches a magnet located on the turbine shaft, and the core with winding (in the housing), and a secondary transformer. To assure reliability of device, a frequency limiting generator, a comparison scheme, a control unit and source of continuous current have been included. The ends of the tachometric transformer's winding are connected to the secondary transformer and the control unit. The latter is connected to the continuous current source and the output of the comparison scheme; intakes of the comparison scheme are tied to the secondary transformer and the frequency limiting generator.

  3. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  4. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  5. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  6. How radiation affects superbubbles: Through momentum injection in early phase and photo-heating thereafter

    CERN Document Server

    Gupta, Siddhartha; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Energetic winds and radiation from massive star clusters push the surrounding gas and blow superbubbles in the interstellar medium (ISM). Using 1-D hydrodynamic simulations, we study the role of radiation in the dynamics of superbubbles driven by a young star cluster of mass $10^{6}$ M$_{\\odot}$. We have considered a realistic time evolution of the mechanical power as well as radiation power of the star cluster, and detailed heating and cooling processes. We find that the ratio of the radiation pressure on the shell (shocked ISM) to the thermal pressure ($\\sim10^{7}$ K) of the shocked wind region is almost independent of the ambient density, and it is greater than unity before $\\lesssim 1$ Myr. We explore the parameter space of density and dust opacity of the ambient medium, and find that the size of the hot gas ($\\sim$ 10$^{7}$ K) cavity is insensitive to the dust opacity ($\\sigma_{d}\\approx(0.1-1.5)\\times 10^{-21}$ cm$^{2}$), but the structure of the photoionized ($\\sim10^4$ K) gas depends on it. Most of th...

  7. Apparatus for measuring the flow rate of a heat carrier and injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, M.F.; Bar-Sliva, V.I.; Dichenko, M.A.; Nikiforov, Yu.V.; Petrov, A.I.; Turchaninov, Yu.N.

    1981-01-01

    A device is proposed for measuring the flow rate of the heat carrier in N wells, which contains a housing, turbine ( a permanent magnet is attached to the shaft eccentrically), a reed relay, a secondary converter and a power supply. In order to expand the measurement range by developing torque in the turbine it is equipped with additional reed relay, which is installed diametrically opposite the primary reed relay, and it also has a breaking unit made in the form of an additional permanent magnet placed on the turbine shaft. There was also a torodial core with a two-section winding and a winding power supply polarity switch in the frame. The primary and secondary reed relays are connected to the winding power supply polarity switch circuit. It in turn is connected to the secondary converter. In order to assure the possibility of changing the slope of the flow rate converter into a number of turbine revolutions it is equipped with a frequency to voltage converter with a setting mechanism. The frequency to voltage converter input is connected to the secondary converter, and the output is connected to the power supply source.

  8. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.;

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH ...

  9. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    Science.gov (United States)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  10. Using Quasi-3D OSIRIS simulations of LWFA to study generating high brightness electron beams using ionization and density downramp injection

    Science.gov (United States)

    Dalichaouch, Thamine; Davidson, Asher; Xu, Xinlu; Yu, Peicheng; Tsung, Frank; Mori, Warren; Li, Fei; Zhang, Chaojie; Lu, Wei; Vieira, Jorge; Fonseca, Ricardo

    2016-10-01

    In the past few decades, there has been much progress in theory, simulation, and experiment towards using Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as a controllable injection scheme for creating higher quality and ultra-bright relativistic electron beams using LWFA. However, full-3D simulations of plasma-based accelerators are computationally intensive, sometimes taking 100 millions of core-hours on today's computers. A more efficient quasi-3D algorithm was developed and implemented into OSIRIS using a particle-in-cell description with a charge conserving current deposition scheme in r - z and a gridless Fourier expansion in ϕ. Due to the azimuthal symmetry in LWFA, quasi-3D simulations are computationally more efficient than 3D cartesian simulations since only the first few harmonics in are needed ϕ to capture the 3D physics of LWFA. Using the quasi-3D approach, we present preliminary results of ionization and down ramp triggered injection and compare the results against 3D LWFA simulations. This work was supported by DOE and NSF.

  11. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  12. Effects of zonal heat treatment on residual stresses and mechanical properties of electron beam welded TC4 alloy plates

    Institute of Scientific and Technical Information of China (English)

    HU Mei-juan; LIU Jin-he

    2009-01-01

    Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses, microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT, and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%, respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint, which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.

  13. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Koester, Petra; Cecchetti, Carlo A. [Intense Laser Irradiation Laboratory at INO, CNR, Pisa (Italy); Booth, Nicola; Woolsey, Nigel [Physics Department, University of York, York (United Kingdom); Chen, Hui [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Evans, Roger G. [Imperial College London, London (United Kingdom); Gregori, Gianluca; Li, Bin; Mithen, James; Murphy, Christopher D. [Physics Department, University of Oxford, Oxford (United Kingdom); Labate, Luca; Gizzi, Leonida A. [Intense Laser Irradiation Laboratory at INO, CNR, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Levato, Tadzio [Intense Laser Irradiation Laboratory at INO, CNR, Pisa (Italy); University of Rome Tor Vergata, Rome (Italy); Makita, Mikako; Riley, David [Physics Department, Queens University Belfast, Belfast (United Kingdom); Notley, Margaret; Pattathil, Rajeev [Rutherford Appleton Laboratory, STFC, Didcot (United Kingdom)

    2015-02-15

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.

  14. COMBUSTION HEAT RELEASE RATE ANALYSIS OF C.I. ENGINE WITH SECONDARY CO-INJECTION OF DEE-H2O SOLUTION - A VIBRATIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANA MURTHY

    2015-08-01

    Full Text Available This paper discusses the combustion propensity of single cylinder direct injection engine fueled with palm kernel methyl ester (PKME, which is non- edible oil and a secondary co-injection of saturated Diethyl ether (DEE with water. DEE along with water is fumigated through a high pressure nozzle fitted to the inlet manifold of the engine and the flow rate of the secondary injection was electronically controlled. DEE is known to improve the cold starting problem in engines when used in straight diesel fuel. However, its application in emulsion form is little known. Experimental results show that for 5% DEE- H2O solution injection, occurrence of maximum net heat release rate is delayed due to controlled premixed combustion, which normally helped in better torque conversion when the piston is in accelerated mode. Vibration measurements in the frequency range of 900Hz to 1300Hz revealed that a new mode of combustion has taken place with different excitation frequencies.

  15. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation); Dinamica de Impurezas durante la Inyeccion de Haces Neutros en el TJ-II (simulacion)

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-07-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100{sub 4}4{sub 6}4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs.

  16. Experimental study of the dependence of beam current on injection magnetic field in 6.4 GHz ECR ion source

    Indian Academy of Sciences (India)

    G S Taki; P R Sarma; D K Chakraborty; R K Bhandari; P K Ray

    2006-09-01

    The ion current from an electron cyclotron resonance (ECR) heavy ion source depends on the confining axial and radial magnetic fields. Some efforts were made by earlier workers to investigate magnetic field scaling on the performance of the ECR source. In order to study the dependence of the ion current on the injection magnetic field in the 6.4 GHz ECR source, we have measured the current by varying the peak injection field and have inferred that the variation of the current is exponential up to our maximum design injection field of 7.5 kG. An attempt has been made to understand this exponential nature on the basis of ion confinement time.

  17. Application of heat pipe air heat exchanger in steam injection boiler%热管式空气换热器在注汽锅炉上的应用

    Institute of Scientific and Technical Information of China (English)

    张伟

    2015-01-01

    本文针对油田专用注汽锅炉的特殊性采取了多项措施,更适用于油田注汽锅炉尾部烟气的余热回收。%Resolutions are adopted i this paer for steam injection boilrn oilfld, and for heat recoveryf tail flue gas.

  18. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  19. Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams

    Directory of Open Access Journals (Sweden)

    Khalane Sanjay Anandrao

    2013-05-01

    Full Text Available The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in terms of buckling temperatures and frequencies, is presented, considering the temperature independent and temperature dependent material properties. The buckling temperature and fundamental frequency obtained using the temperature independent material properties is higher than that obtained by using the temperature dependent material properties, for all the material distributions, geometrical parameters in terms of length to thickness ratios and the boundary conditions considered. It is also observed that the frequencies of the FGM beam will reduce with the increase in temperature. This observation is applicable for the higher modes of vibration also. The necessity of considering the temperature dependency of material properties in determining thermal buckling and vibration characteristics of FGM beams is clearly demonstrated.Defence Science Journal, 2013, 63(3, pp.315-322, DOI:http://dx.doi.org/10.14429/dsj.63.2370

  20. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  1. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    Energy Technology Data Exchange (ETDEWEB)

    King, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  2. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  3. Finite element analysis of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals

    Science.gov (United States)

    Westerberg, K. W.; McClelland, M. A.; Finlayson, B. A.

    1998-03-01

    A numerical analysis is made of the liquid flow and energy transport in a system to evaporate metals. The energy from an electron-beam heats an axisymmetric metal disk supported by a water-cooled platform. Metal evaporates from the surface of a hot pool of liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces, and is located in the transition region between laminar and turbulent flow. The evaporation rate is strongly influenced by the locations of the free boundaries. A modified finite element method is used to calculate the steady state flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an arrow matrix and are solved using the Newton-Raphson method. The electron-beam power and platform contact resistance are varied for cases involving the evaporation of aluminum. The results reveal the interaction of liquid flow, heat transfer and free interfaces.

  4. Effect of In-Ovo Ascorbic Acid Injection on the Bone Development of Broiler Chickens Submitted to Heat Stress During Incubation and Rearing

    Directory of Open Access Journals (Sweden)

    S Sgavioli

    2016-03-01

    Full Text Available Abstract This experiment was conducted to evaluate the effect of in-ovo ascorbic acid (AA injection on the bone development of broilers submitted to heat stress during incubation and rearing. One thousand (1,000 Cobb(rfertile broiler eggs were randomly distributed according to the weight into five incubators, with 200 eggs per incubator. The incubation treatments were: eggs not injected with AA and incubated at 37.5°C; eggs not injected with AA and incubated at 39°C; and eggs injected with 6 µg AA/100 µL water prior to incubation and incubated at 39ºC. The hatched birds were reared at three different house temperatures: cold, thermoneutral, or and hot. The high incubation temperature negatively influenced broilers' bone characteristics. The femur of the birds hatched from eggs incubated at 39°C and injected with AA presented lower shaft mineral density, lower maximum force and lower elongation at maximum force. Their tibia presented reduced mineral density at the proximal and distal epiphysis. In-ovo AA injection of eggs incubated at high temperature did not minimize the negative effects of high rearing temperature on the performance andbone development of broiler chickens reared until 42 days of age.

  5. Characteristics of confinement and fusion reactivity in JT-60U high-{beta}{rho} and TFTR supershot regimes with deuterium neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.K.; Bell, M.G.; Yamada, M.

    1995-03-01

    The high performance regimes achieved in JT-60U and TFTR have produced peak DD fusion neutron rates up to 5.6 {times} 10{sup 16}/s for similar heating beam powers, in spite of considerable differences in machine operation and plasma configuration. A common scaling for the DD fusion neutron rate (S{sub DD} {proportional_to} P{sub abs}{sup 2.0} H{sub ne} V{sub p}{sup {minus}0.9}) is obtained, where P{sub abs} and H{sub ne} are the absorbed beam power and beam fueling peaking factor, respectively, and V{sub p} is the plasma volume. The maximum stored energy obtained in each machine has been up to 5.4 MJ in TFTR and 8.7 MJ in JT-60U. Further improvements in the fusion neutron rate and the stored energy are limited by the {beta}-limit in Troyon range, {beta}{sub N} {approximately} 2.0--2.5. A common scaling for the stored energy (W{sub tot} {proportional_to} P{sub abs}V{sub p}H{sub ne}{sup 0.2}) is also proposed.

  6. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  7. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  8. Optical beam dynamics in a gas repetitively heated by femtosecond filaments

    CERN Document Server

    Jhajj, N; Wahlstrand, J K; Milchberg, H M

    2013-01-01

    We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.

  9. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Science.gov (United States)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z.; Shikhovtsev, I. V.

    2017-01-01

    An injector of hydrogen atoms with an energy of 0.5-1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  10. Beam Dynamics Studies of ECR Injections for the Coupled Cyclotron Facility at NSCL%NSCL从ECR离子源向CCF注入的离子束流动力学研究

    Institute of Scientific and Technical Information of China (English)

    X.Wu; Q.Zhao; D.Cole; M.Doleans; G.Machicoane; F.Marti; P.Miller; J.Stetson; M.Steiner; P.Zavodszky

    2007-01-01

    The Coupled Cyclotron Facility(CCF)has been operating at the NSCL since 2001,providing up to 160MeV/u heavy ion beams for nuclear physics experiments.Recent steps,particularly the improvement of the ECR-to-K500 injection line,were taken to improve the CCF performance.For that purpose an off-line ECR source.ARTEMIS-B,was built and used to investigate the impact on beam brightness under various source operating conditions,different initial focusing systems and current analysis dipole.Beam dynamics simulations including space-charge and 3D electrostatic field effects were performed and beam diagnostics including emittance scanner were used,leading to a better understanding of the CCF beam injection process New initial electrostatic focusing elements such as a large-bore quadrupole triplet and a quadrupole doubledoublet with compensating octupole were tested,and a new beam tuning procedure was established to improve the beam brightness for the CCF.Following these efforts,a significant increase of primary beam power out of the CCF has been achieved.

  11. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.

    Science.gov (United States)

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  12. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition

    Science.gov (United States)

    Pinkerton, Andrew J.

    2007-12-01

    In the laser direct metal deposition process, interaction between the laser beam and powder from a coaxial powder delivery nozzle alters the temperature of powder and the amount and spatial distribution of laser intensity reaching the deposition melt pool. These factors significantly affect the process and are also important input parameters for any finite element or analytical models of the melt pool and deposition tracks. The analytical model in this paper presents a method to calculate laser attenuation and powder temperatures at every point below such a nozzle. It is applicable to laser beams that are approximately parallel over the beam-powder interaction distance of any initial intensity distribution (Top Hat, Gaussian, TEM01ast or other). The volume below the nozzle is divided into the region above the powder consolidation plane, where the powder stream is annular, and below it, where it is a single Gaussian stream, and expressions derived for each region. Modelled and measured results are reasonably matched. Results indicate that attenuation is more severe once the annular powder stream has consolidated into a single stream but is not zero before that point. The temperature of powder reaching any point is not constant but the mean value is a maximum at the centre of the stream.

  13. Patient-specific minimum-dose imaging protocols for statistical image reconstruction in C-arm cone-beam CT using correlated noise injection

    Science.gov (United States)

    Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.

    2014-03-01

    Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise injection method applied to images of an anthropomorphic head phantom and cadaveric torso across a range of lower-dose techniques. Results: Comparison of preview and real CBCT images across a full range of techniques demonstrated accurate noise magnitude (within ~5%) and correlation (matching noise-power spectrum, NPS). Other image quality characteristics (e.g., spatial resolution, contrast, and artifacts associated with beam hardening and scatter) were also realistically presented at all levels of dose and across reconstruction methods, including statistical reconstruction. Conclusion: Generating low-dose preview images for a broad range of protocols gives a useful method to select minimum-dose techniques that accounts for complex factors of imaging task, patient-specific anatomy, and observer preference. The ability to accurately simulate the influence of low-dose acquisition in statistical reconstruction provides an especially valuable means of identifying low-dose limits in a manner that does not rely on a model for the nonlinear

  14. Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Paroli, B., E-mail: bruno.paroli@unimi.it [Dipartimento di Fisica, Universitá degli Studi di Milano and INFN Sezione di Milano, via G. Celoria, 16, 20133 Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, via E. Fermi, 00044 Frascati (Italy); Mostacci, A. [“La Sapienza” University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); INFN-LNF, via E. Fermi, 00044 Frascati (Italy); Petrillo, V.; Potenza, M.A.C.; Rossi, A.R.; Serafini, L. [Dipartimento di Fisica, Universitá degli Studi di Milano and INFN Sezione di Milano, via G. Celoria, 16, 20133 Milano (Italy)

    2015-07-15

    A 3-dimensional time-domain simulation of X-ray produced by a laser wakefield accelerated electron beam was performed in order to know its properties like intensity, spectrum, divergence and coherence. Particular attention was paid to the coherence around the acceleration axis. The broad spectrum of betatron radiation (1–10 keV) leads to a short coherence length. Nevertheless we observe that under particular detection condition the spatial coherence has a characteristic enlargement. We give a simplified interpretation of this effect in terms of phase shift of the electric field on a virtual detector. Moreover we describe a near field scattering technique to characterize the betatron radiation. This diagnostics will be used to map the transverse spatio-temporal coherence of X-ray radiation in the laser wakefield accelerator under development at Frascati National Laboratories (LNF)

  15. Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel

    Science.gov (United States)

    Paroli, B.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Petrillo, V.; Potenza, M. A. C.; Rossi, A. R.; Serafini, L.

    2015-07-01

    A 3-dimensional time-domain simulation of X-ray produced by a laser wakefield accelerated electron beam was performed in order to know its properties like intensity, spectrum, divergence and coherence. Particular attention was paid to the coherence around the acceleration axis. The broad spectrum of betatron radiation (1-10 keV) leads to a short coherence length. Nevertheless we observe that under particular detection condition the spatial coherence has a characteristic enlargement. We give a simplified interpretation of this effect in terms of phase shift of the electric field on a virtual detector. Moreover we describe a near field scattering technique to characterize the betatron radiation. This diagnostics will be used to map the transverse spatio-temporal coherence of X-ray radiation in the laser wakefield accelerator under development at Frascati National Laboratories (LNF).

  16. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E. M.; Moyer, R. A. [University of California-San Diego, La Jolla, California 92093 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Eidietis, N. W.; Parks, P. B. [General Atomics, San Diego, California 92186 (United States); Lasnier, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-15

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  17. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, F., E-mail: federica.bonomo@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Istituto Gas Ionizzati - CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Barbisan, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cristofaro, S. [Universitá degli Studi di Padova, Via 8 Febbraio 2, 35122 Padova (Italy)

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  18. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  19. Flare plasma dynamics obseved with the YOHKOH Bragg crystal spectrometer. III. Spectral signatures of electron-beam-heated atmospheres.

    Science.gov (United States)

    Marriska, John. T.

    1995-05-01

    Using numerical simulations of an electon-beam-heated solar flare, we investigate the observational consequences of variations in the electron beam total energy flux and the low-energy cut off value for models with both low and high initial densities. To do this we use the evolution of the physical parameters of the simulated flares to synthesize the time evolution of the spectrum in the wavelength region surrounding tha Ca xix resonance line. These spectra are then summed over a 9 s time interval to simulate typical spectra from the Yohkoh Bragg crystal spectometer and the first three moments are computed for comparison with observational results. This comparison shows that no single low or high initial density model satisfies the observed average behavior of the Ca xix resonance line. Low initial density models produce too large a blue shift velocity, while high initial density model have lines that are too narrow. Comparison of these models with the Yohkok data suggests that the key problem for models of the impulsive phase ofa solar flare is producing significant amounts of stationary hot plasma early in the flare.

  20. Beyond ITER: Neutral beams for DEMO

    CERN Document Server

    McAdams, R

    2013-01-01

    In the development of magnetically confined fusion as an economically sustainable power source, ITER is currently under construction. Beyond ITER is the DEMO programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  1. Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves

    Science.gov (United States)

    Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  2. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    CERN Document Server

    O'Flannagain, A; Gallagher, P T

    2014-01-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  3. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    Science.gov (United States)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  4. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, T., E-mail: Thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Bolle, B. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), ENIM, Ile du Saulcy, 57045 Metz (France); Hao, S.Z.; Dong, C. [Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    High current pulsed electron beam is a recently developed technique for surface modification. The pulsed electron irradiation introduces concentrated energy depositions in the thin surface layer of the treated materials, giving rise to an extremely fast heating and subsequent rapid cooling of the surface together with the formation of dynamic stress waves. Improved surface properties (hardness, corrosion resistance) can be obtained under the 'melting' mode when the top surface is melted and rapidly solidified (10{sup 7} K/s). In steels, this is essentially the result of nanostructures formed from the highly undercooled melt, melt surface purification, strain hardening induced by the thermal stress waves as well as metastable phase selections in the rapidly solidified melted layers. The use of the 'heating' mode is less conventional, combining effects of the heavy deformation and recrystallization/recovery mechanisms. A detailed analysis of a FeAl alloy demonstrates grain size refinement, hardening, solid-state enhanced diffusion and texture modification without modification of the surface geometry.

  5. Determination of Kinetic Parameters and Metal Ions in Urea-Urease System Based on the Biochemical Reaction Heat Induced Laser Beam Deflection

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (Km) of urease and apparent inhibition constant (Ki) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.

  6. Upgrade of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, M J; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an adequately low beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, has resulted in substantial heating of the ferrite yoke, sometimes requiring cool-down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all eight kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will be modified to...

  7. Experimental Studies on Finite Element Model Updating for a Heated Beam-Like Structure

    Directory of Open Access Journals (Sweden)

    Kaipeng Sun

    2015-01-01

    Full Text Available An experimental study was made for the identification procedure of time-varying modal parameters and the finite element model updating technique of a beam-like thermal structure in both steady and unsteady high temperature environments. An improved time-varying autoregressive method was proposed first to extract the instantaneous natural frequencies of the structure in the unsteady high temperature environment. Based on the identified modal parameters, then, a finite element model for the structure was updated by using Kriging meta-model and optimization-based finite-element model updating method. The temperature-dependent parameters to be updated were expressed as low-order polynomials of temperature increase, and the finite element model updating problem was solved by updating several coefficients of the polynomials. The experimental results demonstrated the effectiveness of the time-varying modal parameter identification method and showed that the instantaneous natural frequencies of the updated model well tracked the trends of the measured values with high accuracy.

  8. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven E., E-mail: steven.finkelstein@moffitt.org [H. Lee Moffitt Cancer Center, Tampa, FL (United States); Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J. [H. Lee Moffitt Cancer Center, Tampa, FL (United States); Gabrilovich, Dmitry I., E-mail: dmitry.gabrilovich@moffitt.org [H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  9. Slip effects on flow, heat, and mass transfer of nanofluid over stretching horizontal cylinder in the prescence of suction/injection

    Directory of Open Access Journals (Sweden)

    Elbashbeshy Elsayed M.A.

    2016-01-01

    Full Text Available Two slip effects, Brownian diffusion and thermophoresis, on flow, heat, and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder in the presence of suction/injection are discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases and found to be in a good agreement.

  10. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  11. Effect of post-weld heat treatment on microstructure, hardness and low-temperature impact toughness of electron beam welds of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy

    Directory of Open Access Journals (Sweden)

    V. Tsisar

    2016-12-01

    Full Text Available Bead-on-plate electron beam welding in high vacuum atmosphere was applied to the plates of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy. Effect of post-weld heat treatment (PWHT in the temperature range 673–1273K on the hardness, impact toughness at 77K and microstructure of weld metal was investigated. After PWHT at 773K, hardness of weld metal slightly decreases from 180HV100 (as-welded state to ∼170HV100 while absorbed energy increases up to ∼10J showing ductile fracture mode. PWHT at 973K results in re-hardening of weld metal up to ∼180HV100 caused by re-precipitation of Ti–C,O,N precipitates and corresponding decreasing absorbed energy to ∼2J with brittle fracture mode. PWHT in-between 1073–1273K results in gradual recovery of hardness towards values comparable with those of base metal. Impact toughness (77 K of weld metal after PWHT at 1073K is not recovered nether to the value in as-welded state nor to that one of base metal.

  12. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    Science.gov (United States)

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.

  13. Relativistic Pair Beams from TeV Blazars: A Source of Reprocessed GeV Emission rather than IGM Heating

    CERN Document Server

    Sironi, Lorenzo

    2013-01-01

    The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the non-linear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors gamma_b>>1 and beam-to-plasma density ratios alpha 0.2 (as typically expected for blazar-induced beams), the fraction of beam energy deposited into the IGM is much smaller than ~10%. It follows that at least ~90% of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the Cosmic Microwave Background by the beam pairs.

  14. Fibre-optical measurement of the time curve of layer temperatures in a well as a result of heat injection and heat extraction; Untersuchung der zeitlichen Entwicklung von Schichttemperaturen in einer Bohrung bei Waermeaus- und Waermeeinspeisung mit Hilfe faseroptischer Temperaturmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Hurtig, E.; Groswig, S.; Kasch, M. [GESO GmbH, Jena (Germany)

    1997-12-01

    The relations between the thermal processes around a 200 m deep geothermal well and the petrographic composition were studied using the fibre optic temperature sensing method. The heat injection and heat extraction properties depend on the petrographic properties (porosity, permeability) of the individual layers. Coarse sandy, water saturated layers have good properties, silts and clays have poor properties for het storage and heat extraction. Heat transport occurs in well defined layers with good hydraulic properties and can be explained by a convective heat transport model. (orig.) [Deutsch] Mit faseroptischen Temperaturmessungen in einer Erdwaermesonde (EWS)-Bohrung wurde der Zusammenhang zwischen den thermischen Prozessen unmittelbar um die EWS und dem petrographischen Aufbau untersucht. Das Waermeein- bzw. -ausspeisevermoegen haengt von der petrographischen Ausbildung der einzelnen Schichten ab (Porositaet, Kf-Wert). Grobsandige bis kiesige, wassergesaettigte Schichten haben guenstige, schluffig-tonige unguenstige Eigenschaften fuer die Waermeaus- bzw. -einspeisung. Der wesentliche Waermetransport erfolgt in definierten geringmaechtigen Schichten mit guten hydraulischen Eigenschaften. Der Waermetransport in poroesen, wassergefuellten Schichten kann mit einem konvektiven Waermetransportmodell erklaert werden. (orig.)

  15. Impact properties of electron beam welds of V–4Ti–4Cr alloys NIFS-HEAT-2 and CEA-J57

    Energy Technology Data Exchange (ETDEWEB)

    Tsisar, Valentyn, E-mail: valentyn_tsisar@ipm.lviv.ua [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Physical–Mechanical Institute of National Academy of Sciences of Ukraine (PhMI NASU), 5 Naukova Street, 79601 Lviv (Ukraine); Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Material Process Technology (IAM-WPT), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Nagasaka, Takuya [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Le Flem, Marion [CEA, DEN, DMN, SRMA, F-91191 Gif Sur Yvette (France); Yeliseyeva, Olga [Physical–Mechanical Institute of National Academy of Sciences of Ukraine (PhMI NASU), 5 Naukova Street, 79601 Lviv (Ukraine); Konys, Jürgen [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Material Process Technology (IAM-WPT), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Muroga, Takeo [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2014-10-15

    Highlights: • Electron beam welding was applied for V–4Ti–4Cr alloys NIFS-HEAT-2 and CEA-J57. • Weld metal showed superior impact properties in comparison with base metal. • Expected shift in DBTT to higher temperatures does not take place. - Abstract: The Charpy impact properties and microstructure of bead-on-plate electron beam welds of V–4Ti–4Cr alloys NIFS-HEAT-2 (NH-2) and CEA-J57 (J57) were investigated. Weld metal of both grades demonstrated increase in hardness (HV{sub 100} ∼ 180) in comparison with base metal (HV{sub 100} ∼ 135) due to decomposition of Ti–C,O,N precipitates followed by the solid-solution hardening of V-matrix with oxygen. Hardness decreases gradually from the weld metal through the heat affected zone toward the base metal indicating partial decomposition of precipitation bands from the side of heat affected zone directly adjoining weld metal. The latter consists of columnar crystallites (grains) possessing with inner dendritic structure and elongated from the center of weld belt in the direction of heat removal. Thickness of weld metal does not exceed 1 mm while heat affected zone is about 3 mm thick. Absorbed energies of weld metal are superior in comparison with base metal for both grades (NH-2 and J57) while the fracture mode is mainly ductile in the temperature range of impact test from 17 to −196 °C.

  16. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment.

    Science.gov (United States)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-06

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  17. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    Science.gov (United States)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  18. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  19. Investigation of in situ and conventional post-weld heat treatments on dual-laser-beam-welded {gamma}-TiAl-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Ventzke, Volker; Kashaev, Nikolai; Huber, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Staron, Peter; Schell, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Physics Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2012-10-15

    This paper describes a way to improve the microstructure and mechanical properties of welding seams by in situ and conventional post-weld heat treatments for laser beam welding of the Ti-45Al-5Nb-0.2C-0.2B alloy. The seams are crack-free with reduced longitudinal residual stress and higher elongation to fraction after post-weld heat treatment. The welding zone consists of {alpha}{sub 2} after welding, transforms to a massive {gamma} during in situ post-weld heat treatment, and finally forms a convoluted microstructure after conventional heating. The phase composition across the welding zone is discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. High Heat Flux Testing of B4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam

    Institute of Scientific and Technical Information of China (English)

    刘翔; 谌继明; 张斧; 许增裕; 葛昌纯; 李江涛

    2002-01-01

    B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.

  1. Unenhanced Cone Beam Computed Tomography and Fusion Imaging in Direct Percutaneous Sac Injection for Treatment of Type II Endoleak: Technical Note

    Energy Technology Data Exchange (ETDEWEB)

    Carrafiello, Gianpaolo, E-mail: gcarraf@gmail.com; Ierardi, Anna Maria [Insubria University, Interventional Radiology, Department of Radiology (Italy); Radaelli, Alessandro [Philips Healthcare (Netherlands); Marchi, Giuseppe De; Floridi, Chiara [Insubria University, Interventional Radiology, Department of Radiology (Italy); Piffaretti, Gabriele [University of Insubria, Vascular Surgery Department (Italy); Federico, Fontana [Insubria University, Interventional Radiology, Department of Radiology (Italy)

    2016-03-15

    AimTo evaluate safety, feasibility, technical success, and clinical success of direct percutaneous sac injection (DPSI) for the treatment of type II endoleaks (T2EL) using anatomical landmarks on cone beam computed tomography (CBCT) and fusion imaging (FI).Materials and MethodsEight patients with T2EL were treated with DPSI using CBCT as imaging guidance. Anatomical landmarks on unenhanced CBCT were used for referencing T2EL location in the first five patients, while FI between unenhanced CBCT and pre-procedural computed tomography angiography (CTA) was used in the remaining three patients. Embolization was performed with thrombin, glue, and ethylene–vinyl alcohol copolymer. Technical and clinical success, iodinated contrast utilization, procedural time, fluoroscopy time, and mean radiation dose were registered.ResultsDPSI was technically successful in all patients: the needle was correctly positioned at the first attempt in six patients, while in two of the first five patients the needle was repositioned once. Neither minor nor major complications were registered. Average procedural time was 45 min and the average administered iodinated contrast was 13 ml. Mean radiation dose of the procedure was 60.43 Gy cm{sup 2} and mean fluoroscopy time was 18 min. Clinical success was achieved in all patients (mean follow-up of 36 months): no sign of T2EL was reported in seven patients until last CT follow-up, while it persisted in one patient with stability of sac diameter.ConclusionsDPSI using unenhanced CBCT and FI is feasible and provides the interventional radiologist with an accurate and safe alternative to endovascular treatment with limited iodinated contrast utilization.

  2. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat

    2015-04-01

    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  3. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Burrell, K. H.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  4. Device self-heating effects in deep UV LEDs studied by systematic variation in pulsed current injection

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Meredith L.; Wraback, Michael [U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Rd, Adelphi, Md 20783 (United States); Lunev, A.; Bilenko, Y.; Hu, X.; Sattu, A.; Deng, J.; Shatalov, M.; Gaska, R. [Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, SC 29209 (United States)

    2008-07-01

    SET, Inc. 280 nm LEDs were studied under various DC and pulse conditions to demonstrate the impact of self-heating associated with non-radiative recombination on the output power and lifetime of the devices. A reduction in output power occurs as the pulse width and duty cycle are increased. For 1 {mu}sec pulse width the output power at saturation current decreases from 30 mW to 4 mW as the duty cycle is increased from 1% to 50%, while for 100 {mu}sec pulse width, the output power at saturation current decreases from 10 mW to 3.5 mW for the same range of duty cycle. In both cases, the output power at 50% duty cycle approaches that of the DC conditions, indicating that self-heating has a significant impact on the device performance. Lifetime testing at 100 mA was performed under DC and pulse conditions of 100 {mu}sec and 1% duty cycle, with half-lives of 20 hours and 1400 hours, respectively. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    Science.gov (United States)

    Burrell, K. H.; Barada, K.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Rhodes, T. L.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; Zeng, L.

    2016-05-01

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H98y2 international tokamak energy confinement scaling (H98y2 = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant βN = 1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with

  6. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.

    Science.gov (United States)

    Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  7. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    Science.gov (United States)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  8. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  9. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  10. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    Science.gov (United States)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  11. Surface modification produced by a nitrogen operated plasma focus device: the role of the ion beam in the heating of a substrate

    Science.gov (United States)

    Lepone, A.; Kelly, H.; Lamas, D.; Márquez, A.

    1999-04-01

    The role of the nitrogen ion beam generated with a small energy plasma focus (PF) device in the thermal processing of an austenitic stainless steel substrate is discussed. A numerical solution of the heat equation which takes into account the temperature variations of the thermal coefficients of the material is presented. By using several characteristics of the beam determined in previous works, it is found that the energy content of the beam is not enough to promote a strong heating of the outer layers of the substrate, which is required to explain the introduction of foreign particles to depths well beyond the ion range in the material, and also the martensitic transformation of steel up to a depth of ≈0.6 μm found in this work. The surface treatment is thus attributed to a plasma bubble generated by the disruption of the plasma column, and some evidence of its presence is obtained by employing a Faraday cup (FC). When the numerical model is used with an input energy density corresponding to the experimental value, and with a delivery time equal to the temporal width of the bubble, the evolution of the temperature profiles along the substrate depth shows a melting front reaching the proper depth to explain the penetration of Ti and N atoms found in a previous work, and the martensitic transformation depth presented in this work.

  12. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  13. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  14. Effect of heating samples during pulsed electron beam annealing on the open-circuit voltage of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, A.; Barbier, D.; Doghmane, M.S.; Chemisky, G. (Institut National des Sciences Appliquees de Lyon, 69 - Villeurbanne (France))

    1983-01-01

    Defects associated with pulsed electron beam annealing of P implanted Si solar cells lead to poor Vsub(oc) (< 500mV). Their nature is discussed on the basic of S.E.M. observations, deep level transient spectroscopy study and degradation of electrical characteristics of Schottky barriers. An improved pulsed electron beam annealing process is determined, characterized by a low mean energy electron beam (10 keV) associated to a starting temperature of 450/sup 0/C and low fluences (<= 1J/cm/sup 2/). Values of Vsub(oc) similar to conventional thermal annealing are obtained.

  15. Examination of material performance of W exposed to high heat load: Postmortem analysis of W exposed to TEXTOR plasma and E-beam test stand

    Science.gov (United States)

    Tanabe, T.; Philipps, V.; Nakamura, K.; Fujine, M.; Ueda, Y.; Wada, M.; Schweer, B.; Pospieszczyk, A.; Unterberg, B.

    1997-02-01

    We have examined the behavior of high Z limiters exposed to TEXTOR edge plasma and found that under certain conditions high Z materials are compatible with plasmas. In high density Ohmic plasmas the accumulation of a high Z impurity in the plasma center with significant radiation is observed, whereas an auxiliary heating like NBI and ICRH enhances the impurity exhaust with saw tooth activity. For a practical use of high Z plasma facing materials, extremely high heat load from the plasma becomes a serious concern. In the present work we have conducted the high heat load tests of tungsten (W) using two different heat sources, one is the W limiter exposed to TEXTOR plasma and the other is various W samples heat loaded with an intense E-beam using the JEBIS facility in Japan Atomic Energy Research Institute (JAERI). From the test results we have to conclude that W, if applied in the form of the bulk material, should be used above the ductile brittle transition temperature (DBTT) but below about 1500°C to avoid the recrystallization. Maximum heat load tolerable without surface melting is about 20 MW/m 2 for several seconds. The monocrystalline used at high temperatures shows very good performance, though the production of the monocrystalline with a desired shape is not easy. Considering its brittle nature, hard machining and heavy mass, bulk W cannot be a structure material but be used as a thin tile or deposited film on some structure materials. Unfortunately, however, the thermal expansion coefficient of W is so small that brazing of W to a heat sink material like Cu which has a much larger thermal expansion coefficient would easily result in cracking due to the large thermal stress. Thus the development of tungsten plasma facing component (PFC) needs much effort in future.

  16. Optimization Design and Application of Cantilever Roller in Walking-Beam Heating Furnace%炉内悬臂辊道的优化设计和应用

    Institute of Scientific and Technical Information of China (English)

    李君美; 杨威

    2013-01-01

    The structure of cantilever roller in walking-beam heating furnace is designed, and the application practice show that it improves the effect of the water cool, extends the service life, and reduces the costs.%对步进梁式加热炉内悬臂辊道的结构进行优化设计,应用实践表明,它提高了水冷效果,延长了使用寿命,降低了成本.

  17. X-ray photoelectron spectroscopic study of the oxide removal mechanism of GaAs /100/ molecular beam epitaxial substrates in in situ heating

    Science.gov (United States)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    A standard cleaning procedure for GaAs (100) molecular beam epitaxial (MBE) substrates is a chemical treatment with a solution of H2SO4/H2O2/H2O, followed by in situ heating prior to MBE growth. X-ray photoelectron spectroscopic (XPS) studies of the surface following the chemical treatment show that the oxidized As is primarily As(+ 5). Upon heating to low temperatures (less than (350 C) the As(+ 5) oxidizes the substrate to form Ga2O3 and elemental As, and the As(+ 5) is reduced to As(+ 3) in the process. At higher temperatures (500 C), the As(+ 3) and elemental As desorb, while the Ga(+ 3) begins desorbing at about 600 C.

  18. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  19. PS injection area

    CERN Multimedia

    1974-01-01

    Looking against the direction of protons in the main ring (left): the beam coming from the linac 1 either goes to the booster (on the right) or is deflected towards the PS to be directly injected into section 26 (facing the camera). Also shown the start of the TT2 line, ejected from straight section 16 to go towards the ISR passing over the beam line from the linac. (see Photo Archive 7409009)

  20. Injection and Dump Systems

    CERN Document Server

    Bracco, C; Barnes, M J; Carlier, E; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Performance and failures of the LHC injection and ex- traction systems are presented. In particular, a comparison with the 2010 run, lessons learnt during operation with high intensity beams and foreseen upgrades are described. UFOs, vacuum and impedance problems related to the injection and extraction equipment are analysed together with possible improvements and solutions. New implemented features, diagnostics, critical issues of XPOC and IQC applications are addressed.

  1. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  2. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  3. Effect of Li on mechanical and corrosion properties of electron beam welds of V–4Ti–4Cr alloy (NIFS-HEAT-2)

    Energy Technology Data Exchange (ETDEWEB)

    Tsisar, Valentyn, E-mail: valentyn_tsisar@ukr.net [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Physical-Mechanical Institute of NASU, 5 Naukova St., 79601 Lviv (Ukraine); Nagasaka, Takuya; Muroga, Takeo; Miyazawa, Takeshi [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Yeliseyeva, Olga [Physical-Mechanical Institute of NASU, 5 Naukova St., 79601 Lviv (Ukraine)

    2013-11-15

    The 4 mm thick plate of V–4Ti–4Cr alloy (NIFS-HEAT-2) was bead-on-plate welded by electron beam (1.5 kW) under high vacuum atmosphere. The samples were placed in V–5Ti capsule subsequently filled by liquid Li (8 g) in glove box under high-purity He atmosphere in order to avoid contamination of Li by O and/or N. Static corrosion tests were carried out at 700 °C for 500 h utilizing vertical water cooling furnace placed in the same glove box. During the test, liquid Li contacted with recirculating helium which was continuously purified with respect to O (4–30 wppm). After the test, the samples were cleaned against adhered Li in 30%H{sub 2}O{sub 2} at 5 °C in order to avoid hydrogenation of V-alloy. After the welding, the impact properties of the weld metal measured at 77 K remained high enough (9.5 J) while fracture mode was ductile in spite of the solid-solution hardening by O released from Ti–C,O,N precipitates during high temperature electron beam welding. In contrast, impact properties of weld metal degraded after exposure to liquid Li (2.2 J) and post welding heat treatment (1.8 J) both carried out at 973 K. Character of fracture mode also changed to brittle due to the re-precipitation assisted hardening caused by aging effect.

  4. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  5. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    Science.gov (United States)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  6. MKI UFOs at Injection

    CERN Document Server

    Baer, T; Bartmann, W; Bracco, C; Carlier, E; Chanavat, C; Drosdal, L; Garrel, N; Goddard, B; Kain, V; Mertens, V; Uythoven, J; Wenninger, J; Zerlauth, M

    2011-01-01

    During the MD, the production mechanism of UFOs at the injection kicker magnets (MKIs) was studied. This was done by pulsing the MKIs on a gap in the circulating beam, which led to an increased number of UFOs. In total 43 UFO type beam loss patterns at the MKIs were observed during the MD. The MD showed that pulsing the MKIs directly induces UFO type beam loss patterns. From the temporal characteristics of the loss profile, estimations about the dynamics of the UFOs are made.

  7. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    NARCIS (Netherlands)

    Bsat, S.; Yavari, S.; Munsch, M.; Valstar, E.R.; Zadpoor, A.A.

    2015-01-01

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bi

  8. Pentamidine Injection

    Science.gov (United States)

    Pentamidine injection is used to treat pneumonia caused by a fungus called Pneumocystis carinii. It is in ... Pentamidine injection comes as powder to be mixed with liquid to be injected intramuscularly (into a muscle) ...

  9. First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core

    Science.gov (United States)

    Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team

    2016-10-01

    Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.

  10. Radiation Heat Waves in Gold Plasma

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-Min; XU Yan; DING Yao-Nan; LAI Dong-Xian; DING Yong-Kun; JIANG Shao-En; ZHENG Zhi-Jian; MIAO Wen-Yong

    2003-01-01

    Eight beams 0.35/um laser with pulse duration of about 1.0ns and energy of 260 J per beam was injected into a cylindrical cavity to generate intense x-ray radiation on the "Shengguang I" high power laser facility. Gold foils with a thickness in the range of 0.09-0.52/j,m were attached on the diagnostic hole of the cavity and ablated by the intense x-ray radiation. The propagating radiation heat wave in the high-Z gold plasma was observed clearly. For comparison, we also simulated the experimental results.

  11. Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemens, M.; Li, Q.; Yang, R.; Nelson, K.; Anderson, E.; Murnane, M.; Kapteyn, H.

    2009-03-02

    Understanding heat transport on nanoscale dimensions is important for fundamental advances in nanoscience, as well as for practical applications such as thermal management in nano-electronics, thermoelectric devices, photovoltaics, nanomanufacturing, as well as nanoparticle thermal therapy. Here we report the first time-resolved measurements of heat transport across nanostructured interfaces. We observe the transition from a diffusive to a ballistic thermal transport regime, with a corresponding increase in the interface resistivity for line widths smaller than the phonon mean free path in the substrate. Resistivities more than three times higher than the bulk value are measured for the smallest line widths of 65 nm. Our findings are relevant to the modeling and design of heat transport in nanoscale engineered systems, including nanoelectronics, photovoltaics and thermoelectric devices.

  12. Analysis of waste water treatment of heat injection boiler in oilfield%油田热注锅炉外排污水的回收利用分析

    Institute of Scientific and Technical Information of China (English)

    张琳琳

    2015-01-01

    This paper investigates the issues of waste water treatment from heat injection boiler in oilfields to offer suggestions for water recycling.%本文着手于处理油田热注锅炉外排污水过程中常见的问题,通过对相关文献进行分析,总结出若干污水回收与利用的有效策略.

  13. Transient Enhancement ('Spike-on-Tail') Observed on Neutral-Beam-Injected Energetic Ion Spectra Using the E||B Neutral Particle Analyzer in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, N. N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Roquemore, A. L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2010-06-01

    An increase of up to four-fold in the E||B Neutral Particle Analyzer (NPA) charge exchange neutral flux localized at the Neutral Beam (NB) injection full energy is observed in the National Spherical Torus Experiment (NSTX). Termed the High-Energy Feature (HEF), it appears on the NB-injected energetic ion spectrum only in discharges where tearing or kink-type modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak (δBrms < 75 mGauss) and CAE/GAE activity (f ~ 400 – 1200 kHz) is robust. The feature exhibits a growth time of ~ 20 - 80 ms and occasionally develops a slowing down distribution that continues to evolve over periods of 100's of milliseconds, a time scale long compared with the typical ~ 10's ms equilibration time of the NB injected particles. The HEF is observed only in H-mode (not L-mode) discharges with injected NB power of 4 MW or greater and in the field pitch range v||/v ~ 0.7 – 0.9; i.e. only for passing (never trapped) energetic ions. The HEF is suppressed by vessel conditioning using lithium deposition at rates ~ 100 mg/shot, a level sufficient to suppress ELM activity. Increases of ~ 10 - 30 % in the measured neutron yield and total stored energy are observed to coincide with the feature along with broadening of measured Te(r), Ti(r) and ne(r) profiles. However, TRANSP analysis shows that such increases are driven by plasma profile changes and not the HEF phenomenon itself. Though a definitive mechanism has yet to be developed, the HEF appears to be caused by a form of TAE/CAE wave-particle interaction that distorts of the NB fast ion distribution in phase space.

  14. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    Science.gov (United States)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  15. Radiation and MHD Boundary Layer Stagnation-Point of Nanofluid Flow towards a Stretching Sheet Embedded in a Porous Medium: Analysis of Suction/Injection and Heat Generation/Absorption with Effect of the Slip Model

    Directory of Open Access Journals (Sweden)

    Emad H. Aly

    2015-01-01

    Full Text Available In existence of the velocity slip model, suction/injection, and heat source/sink, the boundary layer flow near a stagnation-point over a heated stretching sheet in a porous medium saturated by a nanofluid, with effect of the thermal radiation and magnetic field, has been studied. The governing system of partial differential equations was transformed into a system of nonlinear ordinary equations using the appropriate similarity transforms. Then, the obtained system has been numerically solved by the Chebyshev pseudospectral differentiation matrix (ChPDM approach. It was found that, at some special cases, the current results are in a very good agreement with those presented in the literature. In addition, the flow velocity, surface shear stress, temperature, and concentration are strongly influenced on applying the slip model, which is, therefore, extremely important to predict the flow characteristics accurately in the nanofluid mechanics. It was proved that this velocity slip condition is mandatory and should be taken into account in nanoscale research; otherwise, false results and a spurious physical sight are to be gained. Further, it was deduced that the influence of the stream velocity and shear stress reaches very rapidly the stable manner for both cases of the velocity ratio. However, when this ratio is equal to one, the skin friction coefficient, reduced Nusselt number, and reduced Sherwood number are constant and equal to zero, 0.721082, and 3.06155, respectively. Furthermore, it was proved that the reduced Nusselt number decreases with increase of Brownian motion and thermophoresis; has a very weak effect on increasing Lewis number; increases with increase of Prandtl number; and is higher in the cases of suction, velocity ratio > 1 and heat source in comparison with injection, velocity ratio 1 in comparison with injection and velocity ratio < 1, respectively; and is approximately the same in the heat source and heat sink cases. Finally

  16. Numerical Analysis of a Single Microchannel Within a High-Temperature Hydrogen Heat Exchanger for Beamed Energy Propulsion Applications

    Science.gov (United States)

    2013-07-01

    Conference Paper 3. DATES COVERED (From - To) 14 Jul 2013 – 19 Jul 2013 4. TITLE AND SUBTITLE Numerical Analysis of a Single Microchannel Within a High...propulsion spacecraft. It was found that despite the very small diameter of the microchannels , each design produced extreme temperature...2013, Minneapolis, MN, USA HT2013-17217 DRAFT NUMERICAL ANALYSIS OF A SINGLE MICROCHANNEL WITHIN A HIGH- TEMPERATURE HYDROGEN HEAT EXCHANGER FOR

  17. Effects of Laser Pulse Heating of Copper Photocathodes on High-brightness Electron Beam Production at Blowout Regime

    CERN Document Server

    Zheng, Lianmin; Tang, Chuanxiang; Gai, Wei

    2016-01-01

    Producing high-brightness and high-charge (>100 pC) electron bunches at blowout regime requires ultrashort laser pulse with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed in this paper. The electron and lattice temperature is calculated using an improved two-temperature model, and an extended Dowell-Schmerge model is employed to calculate the thermal emittance and quantum efficiency. A time-dependent growth of the thermal emittance and the quantum efficiency is observed. For a fixed amount of charge, the projected thermal emittance increases with the decreasing laser radius, and this effect should be taken into account in the laser optimization at blowout regime. Moreover, laser damage threshold fluence is simulated, showing that the maximum local fluence should be less than 40 mJ/cm^2 to prevent damage to the cathode. The cryogenic effect on the laser pulse heating is studied, showing that the hazards caused by the laser pulse heating will be significantly mitigated ...

  18. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall.

  19. International Workshop on Beam Injection Assessment of Defects in Semiconductors Held in Meudon-Bellevue (France) on 18-20 July 1988

    Science.gov (United States)

    1989-07-20

    Research Office of the U.S.Army Commissariat A l’Energie Atornique - Leti Laboratoire d’’ Electronique et de Physique Appliqu~e Thomson - Laboratoire...imperial College of Science and Technology. LONDON SW7 2BP Abstract - Scanning elect-Dn microscope (SE.M) EBIC (electron beam induced current) and CL...Bologna, Via ’rnerio 46, Bologna ITALY A.Poggi. E.Susi CNR-LAMEL Institute, Via Castagnoll I, Bologna ITALY ABSTRACT Microscopic inhomogeneities in the

  20. Review of Recent Advances in Heating and Current Drive on Textor

    NARCIS (Netherlands)

    Messiaen, A. M.; Van Eester, D.; Koch, R.; Ongena, J.; van Wassenhove, G.; Weynants, R. R.; Borgermans, P.; Conrads, H.; Dumortier, P.; Durodie, F.; Fuchs, G.; Euringer, H.; Giesen, B.; Hillis, D.; Hoenen, F.; Koslowski, H. R.; KramerFlecken, A.; Lochter, M.; Oyevaar, T.; Soltwisch, H.; Tammen, H. F.; Telesca, G.; Uhlemann, R.; van den Durpel, L.; Vandenplas, P. E.; Soltwisch, H.; Tammen, H. F.; Telesca, G.; Uhlemann, R.; van den Durpel, L.; Vandenplas, P. E.; Vannieuwenhove, R.; Van Oost, G.; Vervier, M.; Waidmann, G.

    1993-01-01

    Co-injection (DO --> D+) applied to TEXTOR leads to a hot ion node regime with enhanced confinement. A synergistic increase of the beam effects is observed with the addition of ICRH at omega = 2omega(cD) = omega(cH) (H minority heating scenario) resulting, beside other reviewed effects, in a sign

  1. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  2. Exact triple integrals of beam functions. [in application of Galerkin method to heat and mass transfer problems

    Science.gov (United States)

    Jhaveri, B. S.; Rosenberger, F.

    1982-01-01

    Definite triple integrals encountered in applying the Galerkin method to the problem of heat and mass transfer across rectangular enclosures are discussed. Rather than evaluating them numerically, the technique described by Reid and Harris (1958) was extended to obtain the exact solution of the integrals. In the process, four linear simultaneous equations with triple integrals as unknowns were obtained. These equations were then solved exactly to obtain the closed form solution. Since closed form representations of this type have been shown to be useful in solving nonlinear hydrodynamic problems by series expansion, the integrals are presented here in general form.

  3. High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers

    CERN Document Server

    Maciariello, Fausto; Butcher, Mark; Calviani, Marco; Folch, Ramon; Kain, Verena; Karagiannis, Konstantinos; Lamas Garcia, Inigo; Lechner, Anton; Nuiry, Francois-Xavier; Steele, Genevieve; Uythoven, Jan

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the resul...

  4. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO) (invited)

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R., E-mail: roy.mcadams@ccfe.ac.uk [EURATOM/CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2014-02-15

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  5. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    Science.gov (United States)

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  6. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    Science.gov (United States)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  7. Doxycycline Injection

    Science.gov (United States)

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  8. Pembrolizumab Injection

    Science.gov (United States)

    Pembrolizumab injection is used to treat melanoma (a type of skin cancer) that cannot be treated with ... who have a specific type of melanoma tumor. Pembrolizumab injection is also used to treat a certain ...

  9. Lacosamide Injection

    Science.gov (United States)

    ... injection is in a class of medications called anticonvulsants. It works by decreasing abnormal electrical activity in ... older (about 1 in 500 people) who took anticonvulsants like lacosamide injection to treat various conditions during ...

  10. Paclitaxel Injection

    Science.gov (United States)

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  11. Obinutuzumab Injection

    Science.gov (United States)

    Obinutuzumab injection is used with chlorambucil (Leukeran) to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white blood cells). Obinutuzumab injection is in a class of medications called ...

  12. Moxifloxacin Injection

    Science.gov (United States)

    ... Moxifloxacin injection may also be used to treat bronchitis or sinus infections but should not be used for these conditions if there are other treatment options available.Moxifloxacin injection is in a class ...

  13. Temozolomide Injection

    Science.gov (United States)

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called alkylating ... Temozolomide injection comes as a powder to be added to fluid and injected over 90 minutes intravenously ( ...

  14. Midazolam Injection

    Science.gov (United States)

    ... injection is in a class of medications called benzodiazepines. It works by slowing activity in the brain ... breast-feeding.talk to your doctor about the risks and benefits of receiving midazolam injection if you ...

  15. Methotrexate Injection

    Science.gov (United States)

    Methotrexate injection is used alone or in combination with other medications to treat gestational trophoblastic tumors (a ... in bones) after surgery to remove the tumor. Methotrexate injection is also used to treat severe psoriasis ( ...

  16. Doripenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such ... if you are allergic to doripenem injection; other carbapenem antibiotics such as imipenem/cilastatin (Primaxin) or meropenem ( ...

  17. Cefotaxime Injection

    Science.gov (United States)

    Cefotaxime injection is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory ... skin, blood, bone, joint, and urinary tract infections. Cefotaxime injection may also be used before surgery, and ...

  18. Bendamustine Injection

    Science.gov (United States)

    Bendamustine injection is used to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white ... injection. You should use birth control to prevent pregnancy in yourself or your partner during your treatment ...

  19. Caspofungin Injection

    Science.gov (United States)

    Caspofungin injection is used in adults and children 3 months of age and older to treat yeast ... people with a weakened ability to fight infection. Caspofungin injection is in a class of antifungal medications ...

  20. Estrogen Injection

    Science.gov (United States)

    The estradiol cypionate and estradiol valerate forms of estrogen injection are used to treat hot flushes (hot ... should consider a different treatment. These forms of estrogen injection are also sometimes used to treat the ...

  1. Optimum Location of Pumping and Injection Wells of Groundwater Heat Exchange System Using Numerical Modeling of Water and Heat Transport%应用水热运移数值模拟优化地下水源热泵系统抽灌井布局

    Institute of Scientific and Technical Information of China (English)

    靳孟贵; 汤庆佳; 栗现文

    2012-01-01

    合理布局抽水井和回灌井是地下水源热泵系统长期有效运行的关键因素.以郑州市郑东新区为例,利用HST3D软件建立水热运移数值模型,优化设计地下水源热泵系统抽灌水井布局,预测地下水源热泵系统长期运行后对含水层的水热影响.结果表明:介质比热容及渗透率分别对含水层温度及水位影响显著,是较敏感的参数.方案3(3个回灌井垂直天然流向分布且位于抽水井下游)为最佳布井方式.抽灌量900,1200,1500及2000m3/d所对应的合理布井间距分别为50,65,70及75m.相应布井方案的水源热泵系统运行20 a,对含水层温度场的影响仅限于200 m×200m的范围,抽水井温度变化小于1℃.%Rational location of pumping and injection wells is a key for long-term efficient operation of a groundwater heat exchange system. Numerical modeling of groundwater and heat transport in Zhengdong New District of Zhengzhou was established to optimally locate the pumping and injection wells of groundw-ater heat exchange system, and to forecast the influence of long term operation of groundwater heat exchange system on flow and heat in aquifers. It is concluded that specific heat capacity and permeability are sensitive parameter and their changes will significantly impact on heat and head in aquifers respectively. Scheme 3 (three injection well vertical to natural flow direction and downwards the pumping well) is an optimized location of the wells. Rational distances between pumping and injection wells for the pumping/ injection rates of 900, 1 200, 1 500 and 2 000 m3/d are 50, 65, 70 and 75 m respectively. The influence of the groundwater heat exchange system that wells are located as scheme 3 is limited to the range of 200 m× 200 m after 20 year operation and the change of temperature in the pumping well is fewer than 1℃.

  2. Ranitidine Injection

    Science.gov (United States)

    Ranitidine injection comes as a solution (liquid) to be mixed with another fluid and injected intravenously (into a vein) over 5 to 20 minutes. Ranitidine may also be injected into a muscle. It is usually given every 6 to 8 hours, but may also be given ...

  3. Ustekinumab Injection

    Science.gov (United States)

    ... Do not inject into an area where the skin is tender, bruised, red, or hard or where you have scars or stretch marks.Your doctor or pharmacist will ... injection.you should know that ustekinumab injection may decrease your ability ... new or changing skin lesions, minor infections (such as open cuts or ...

  4. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  5. SPS injection kicker magnet

    CERN Multimedia

    1975-01-01

    One of the first-generation SPS injection kicker magnets, view of the complete tank. First proton beam from the PS was injected into the SPS in 1976, at a beam momentum of 10 GeV/c. These kickers served until the end of 1979 and were replaced at the beginning of 1980 by stronger ones, in preparation for the SPS as a proton-antiproton collider. For this, transfer momentum from the PS to the SPS was raised to 26 GeV/c, so as to avoid acceleration of the dense p and pbar bunches through SPS transition energy. Bearded Roland Tröhler is at the left, Giacomo Busetta smiles at the right. See also 7502073X, 7502074X and Annual Report 1975, 162.

  6. Simulation of Gas Injection-Heating Process of In Situ Combustion%火烧油层注气加热过程的模拟计算研究

    Institute of Scientific and Technical Information of China (English)

    潘竟军; 周杨平; 陈龙; 马远乐

    2012-01-01

    在火烧油层的注气加热过程中,需要根据点火需求优化注气参数.考虑了空气在井筒、油层的流动及换热过程,包括空气进入油层的混合过程、水蒸发进入空气和湿空气降温后凝结为水的组分及相态变化、油层之间的导热过程,建立了相应的瞬态模型,提出了基于龙格库塔法的求解方法.利用该模型及求解方法进行了模拟注气验证,并用于油田的实际火烧油层点火过程的监测系统.研究表明:点火过程中加热带扩展速度非常有限(6 d后加热带半径仍小于0.6m),并且受油层中含水率影响较大,加热带温度主要受电加热器功率和注气速度影响,受注气时间长短影响较小.点火过程中应保持电加热器功率和注气速度稳定.%It is necessary to optimize the parameters of gas injection heating during the gas injection-heating process in situ combustion. A transient model is proposed to simulate the flow and the heat exchange of air in the well tube and oil reservoirs including the mixing process of air and oil reservoirs, change of component and phase state such as evaporation of hot water and condensation of cold wet air, the heat exchange among different oil reservoirs and rock. A solving method based on Rung-Kutta and a simulation program is programmed. After the verification of simulating injection. This mathematical model and its solving method are applied to the simulation and monitoring of gas injection heating process in situ combustion at actual oil field. It was found that the extension of heating zone is slow (radius of heating zone is less than 0.6 m after a 5-day injection) and greatly influenced by the moisture content of oil reservoir, and the temperature of it is almost constant and determined by the power of electric heater and gas flow rate. The power of electric heater and gas flow rate should keep in a stable state during the heating process.

  7. 高能聚束微波热疗联合沙培林胸腔注射治疗恶性胸水%High power focused-beam microwave hyperthermia combined with intrapleural injection of Shapeilin in the treatment of patients with malignant hydrothorax

    Institute of Scientific and Technical Information of China (English)

    Lingqin Song; Jianjun He; Xijing Wang; Hongbing Ma; Shuqun Zhang; Zhijun Dai; Baofeng Wang; Xiaobin Ma

    2011-01-01

    Objective: The aim of the study was to evaluate the efficacy and toxicity of high power focused-beam microwave hyperthermia with intrapleural injection of Shapeilin for patients with malignant hydrothorax. Methods: Fifty-eight patients with malignant hydrothorax were divided into group A and group B randomly. All patients underwent indwelling pleural catheter and were treated by intrapleural injection of Shapeilin once three days. Treatment was composed of 3 times injection. Patients of group B received high power focused-beam microwave hyperthermia after injection of Shapeilin. Results: The response rate of group B (79.3%) was higher than that of group A (48.3%) (P < 0.05). Incidence of main adverse reactions, associated with Shapeilin, of two groups including fever and thoracodynia were similar (P > 0.05). Patients of group B didn't encounter severe toxicities of microwave hyperthermia. Conclusion: High power focused-beam microwave hyperthermia combined with intrapleural injection of Shapeilin is effective and tolerable for patients with malignant hydrothorax.

  8. 液氢加注系统漏热故障对火箭发射的影响%Impact of Liquid Hydrogen Injection System Heat Leakage Fault on the Rocket Launch

    Institute of Scientific and Technical Information of China (English)

    马昕晖; 栾骁; 陈景鹏; 孙克

    2013-01-01

    Using AMEsim modeling object-oriented software, with resistance to fluid and friction loss equation (Darcy-Weisbach) formula, extrusion and heat leakage model, based on liquid hydrogen injection system of the launch range, the paper establishes liquid flow and gas-liquid two-phase flow model, and analyzes the different heat leakage rate, pipe and device thermal failure, which affect the rocket changes in the tank. The results show that high-purity hydrogen flow compared with the actual value, in the two-phase flow model gasification hydrogen pressure, resistance, flow and other parameters have changed the role of the rocket tank's injection height and air pillow pressure; the two-phase flow model can simulate the heat leakage fault and can also indicate injection system failure process and results.%以AMEsim面向对象软件作为建模工具,以液阻与摩擦损失方程Darcy Weisbach公式、挤压与漏热模型为基础,基于发射场液氢加注系统,建立液相流动和气液两相流动模型,分析了不同漏热率,管路、器件漏热故障时对火箭贮箱的影响变化情况.研究结果表明:与液氢流动实际数值相比,两相流模型中气化液氢的压力、阻力、流量等参数的作用,改变了火箭贮箱的加注工位高度和贮箱气枕压力;两相流模型可进行加注系统漏热故障仿真,并能预示加注故障过程与结果.

  9. Measurement of HL-2A NBI Beam Profile and Beam Power

    Institute of Scientific and Technical Information of China (English)

    LIU He; CAO Jianyong; JIANG Shaofeng; LUO Cuiwen; TANG Lixin; LEI Guangjiu; RAO Jun; LI Bo

    2009-01-01

    To optimize the operation parameters of the beam line of NBI on HL-2A,features of the beam line,including the beam profile and the power deposited on components and injected into the tokamak plasma,were measured.The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power,and the transmission efficiency of the NBI injected power was therefore increased.A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.

  10. Reconnection Remnants in the Magnetic Cloud of October 18-19, 1995: A Shock, Monochromatic Wave, Heat Flux Dropout and Energetic Ion Beam

    Science.gov (United States)

    Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.

    2000-01-01

    Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.

  11. Tritium pellet injection sequences for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments.

  12. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure...... build-up was evaluated indirectly from the changes in the flow rate between subcutaneous injections and air injections. This method enabled the tissue counter pressure to be evaluated without a formal clinical study approval. The measurements were coupled to a model for the pressure evolution...

  13. Effect of Lenient Steam Injection (LSI) heat treatment of bovine milk on the activities of some enzymes, the milk fat globule and pH

    DEFF Research Database (Denmark)

    Dickow, Jonatan A.; Nielsen, Martin Thorup; Hammershøj, Marianne

    2012-01-01

    This study investigated the effects of Lenient Steam Injection (LSI) treatment at temperatures 70–150 C on the enzymatic activities of the indigenous milk enzymes alkaline phosphatase, lactoperoxidase (LPO), xanthine oxidase (XO), lipoprotein lipase (LPL) and plasmin in comparison with two...

  14. RESEARCH OF HIGH-GLOSS INJECTION TECHNOLOGY WITH DIRECT STEAM HEATING THE MOLD CAVITY%蒸汽直接加热模腔的高光注塑技术研究

    Institute of Scientific and Technical Information of China (English)

    梁业兴; 余春晖; 柴金龙; 林国勇; 李春波; 潘莹; 凌中水; 黄虹宾

    2011-01-01

    提出了蒸汽直接加热模具型腔表面的高光注塑新方法,研制了蒸汽直接加热模具型腔的高光注塑模具及模具温度控制机.该装置将高温蒸汽直接通入模腔,使模腔表面达到所需的温度,然后通入高温干空气,吹除模腔内残留的冷凝水,再注射、保压、冷却、开模,完成一个注塑周期.该方法使动定模模面得到均匀加热,熔融科前锋温度和速度高,且只加热模面以下1~2mm的模芯,能有效地缩短加热和冷却时间.结果表明,该技术能够有效地解决塑料件的熔接痕、流痕、翘曲、缩水、尺寸变形等缺陷,使塑料件获得极高的表面粗糙度等级,且节省热能,降低相关的模具制造成本.%A novel high-gloss injection method which the mold cavity was heated by steam directly was presented, the related high-gloss mold and special high-gloss mold temperature controller was developed. By this machine, the high-temperature steam was input the mold cavity for several seconds and the surface of mold cavity gained the demandable temperature, then the high-temperature dry air was switched to the mold cavity for blowing off residual condensation water on the surface of mold cavity. Subsequently, a cycle of injection molding was completed, including injection, packing, cooling, and mold opening. Surface of fixed and moving half molds were heated evenly by this method, the speed and temperature of the front of molten plastic were very high , and the metal of mold cores with depth of only 1-2 mm from mold surfaces was heated, so the method greatly shortened the heating and cooling time. The experimental results showed that the surface defects of plastic parts were improved effctively such as welding mark, flow mark, warping, craters, size deformation, et al. And extreme high grade of surface roughness was obtained, the technology also reduced heat energy consumption and saved mold manufacturing costs.

  15. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Le Renard, Pol-Edern, E-mail: lerenard.pe@gmail.co [School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva (Switzerland); Lortz, Rolf [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Senatore, Carmine [Department of Condensed Matter Physics and MaNEP/NCCR, University of Geneva, Geneva (Switzerland); Rapin, Jean-Philippe [Laboratory of Crystallography, University of Geneva, Geneva (Switzerland); Buchegger, Franz [Service of Nuclear Medicine, University Hospital of Lausanne, Lausanne, University Hospital of Geneva, Geneva (Switzerland); Petri-Fink, Alke [Department of Chemistry, University of Fribourg, Fribourg (Switzerland); Hofmann, Heinrich [Laboratory for Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Doelker, Eric [School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva (Switzerland); Jordan, Olivier, E-mail: olivier.jordan@unige.c [School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva (Switzerland)

    2011-04-15

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 {sup o}C, as in vivo. Using two orthogonal methods, a common SLP (20 W g{sup -1}) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: > Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. > Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. > Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  16. Design of heating and thermal protection of lubricator of water injection well linkage test%注水井联动测试防喷管加热保温技术设计

    Institute of Scientific and Technical Information of China (English)

    韩文超

    2012-01-01

    The linkage test technology combines with bridge the eccentric water distribution to short testing time and advance testing effect for water injection well. But in winter linkage test could not be applied smoothly because low temperature made water in lubricator to ice. Three heating and thermal protection technologies which were carbon fibre inner heating, ribbon heater whole casting heating and silica gel hot plate heating split to solute the problems and make sure linkage test applied smoothly in winter.%注水井联动测试技术与桥式偏心分层配水工艺相结合,可缩短测试时间,提高测调效率,但在进行联动测试时,防喷管内部的水几乎不流动,随着冬季气温降低,管内极易结冰,使得冬季联动测试工作无法正常开展.为此,本文提出3种防喷管加热保温技术设计,碳纤维内衬加热技术、电热带整体外包加热技术和硅胶电热板分体加热技术,解决防喷管内部水结冻的问题,保证冬季水井联动测试工作顺利开展.

  17. Coupled Thermal-Hydrological-Mechanical Analysis of Exploiting Coal Methane by Heat Injection%煤层气注热开采的热-流-固耦合作用分析

    Institute of Scientific and Technical Information of China (English)

    张凤婕; 吴宇; 茅献彪; 张丽萍; 姚邦华

    2012-01-01

    Improving coal methane production is an important subject in the current research for coal methane exploration.Some researches show that, coal methane exist mainly as adsorption state in coal seam pores.Improving coal seam temperature can make gas change into free forms from adsorption forms.and improve its seepage-diffusion ability. According to the thermoelasticity, nonlinear Darcy seepage theory and porous medium thermodynamics principle, this paper studied the mechanism of im-proving coal methane production by heat injection. The multiphysical coupling equations were been es-tablished, including coal deformation equation,gas percolation equation and heat transfer equation. By means of COMSOL numerical software ,the numerical solution of coupling model was been pro-ceeded .The results demonstrated that rising injecting heat could promote desorption of coal methane, improve the permeability, achieve the purpose of improving coal methane production. The research re-sults could provide corresponding theoretical basis for engineering practices of exploiting coal methane by heat injection.%如何提高煤层气产量是目前煤层气开采研究中的重要课题.煤层气在煤层孔隙中主要以吸附状态存在,提高煤层温度可以促使气体由吸附态转变为游离态,增加其渗流扩散能力.根据热弹性力学、非线性达西渗流理论和多孔介质热力学原理,对在煤层中注热提高煤层气产量的机理进行了系统研究,建立了包含煤的变形方程、气体渗流方程、热传导方程的热流固多物理场耦合数学模型.在此基础上利用COMSOL Multiphysics数值软件,对耦合模型进行了数值求解,结果表明:注热后煤层温度升高可以促进煤层气解吸、提高煤层渗透率,增加煤层气产量.研究成果可为煤层中注热开采煤层气的工程实践提供相应的理论基础.

  18. Electron Beam-Blip Spectroscopic Diagnostics of the Scrape-off-Layer Parallel Transport in C-2

    Science.gov (United States)

    Osin, Dmitry; Thompson, Matthew; Garate, Eusebio; TAE Team

    2015-11-01

    C-2 is a microscopically stable, high-performance field-reversed configuration (FRC), where high plasma temperatures with significant fast ion population and record lifetimes were achieved by a combination of tangential neutral beam injection, electrically biased plasma guns at the ends and wall conditioning. FRC confinement depends on the properties of both the open and closed field lines, therefore, understanding the electron transport in the scrape-of-layer (SOL) is critical. To study parallel heat conduction in SOL, a high-energy pulsed electron beam (e-beam) was injected on-axis into C-2 to produce a heat pulse, which causes a fast rise and slower decay of the electron temperature, Te, in the SOL. The heat-blip was observed by means of He-jet spectroscopy. A small fraction of the total deposited e-beam energy is necessary to explain the measured Te increase. The electron thermal conductivity along the magnetic field lines can be inferred from the Te decay. Experiments suggest that a high energy e-beam pulse can serve as a direct diagnostic of heat transport in the SOL.

  19. Recent Progress in the Negative-Ion-Based Neutral Beam Injectors in Large Helical Device

    Science.gov (United States)

    Takeiri, Y.; Tsumori, K.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Oka, Y.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Komada, S.; Kaneko, O.

    2009-03-01

    Negative-ion-based neutral beam injection (negative-NBI) system has been operated for 10 years in Large Helical Device (LHD). The injection power has been increased year by year, according to the improvement of the negative ion sources. Up to now, every injector achieves the designed injection energy and power of 180 keV-5 MW with hydrogen beams, and the total injection power exceeds 16 MW with three injectors. In the multi-round aperture grounded grid (GG), the diameter of a round aperture has been enlarged for higher GG transparency. Then, the GG heat load is reduced, as well as in the multi-slotted GG, and the voltage holding ability in the beam acceleration was improved. As a result, the beam energy is raised and the injection power is increased. To improve the anisotropic property of the beamlet convergence condition between the perpendicular and the parallel directions to the slots in the multi-slotted GG, a round-shape aperture of the steering grid (SG) has been changed to a racetrack shape. As a result, the difference of the beamlet conversion condition is much mitigated, and the injection efficiency (port-transmission efficiency) is improved, leading to 188 keV-6.4 MW injection. The Cs consumption is observed to be proportional to the tungsten evaporation from filaments. The Cs behavior is investigated with optical emission spectroscopy. During the beam extraction, the Cs recycling is dominated by Cs on the backplate, which is evaporated into the plasma by the backstreaming positive ions, and the wall surfaces should be loss regions for the supplied Cs.

  20. LHC injection and dump protection

    CERN Document Server

    Bartmann, W; Bracco, C; Goddard, B; Kain, V; Rossi, A; Wollmann, D

    2010-01-01

    The machine protection against fast failures including injection or dump kickers relies on fixed and movable devices. Results will be shown from the low-intensity beam commissioning of the moveable injection protection devices in the SPS to LHC transfer lines and downstream of the LHC injection kickers, and of the LHC dump protection elements in IR6. This paper is almost exclusively focussing on the issues arising during the 2009 commissioning. The implications of these results and a commissioning status report with the planning for 2010 will be addressed.

  1. Oxytocin Injection

    Science.gov (United States)

    Oxytocin injection is used to begin or improve contractions during labor. Oxytocin also is used to reduce bleeding after childbirth. ... other medications or procedures to end a pregnancy. Oxytocin is in a class of medications called oxytocic ...

  2. Cidofovir Injection

    Science.gov (United States)

    Cidofovir injection is used along with another medication (probenecid) to treat cytomegaloviral retinitis (CMV retinitis) in people with acquired immunodeficiency syndrome (AIDS). Cidofovir is in a class of medications called antivirals. ...

  3. Brivaracetam Injection

    Science.gov (United States)

    ... older. Brivaracetam in a class of medications called anticonvulsants. It works by decreasing abnormal electrical activity in ... older (about 1 in 500 people) who took anticonvulsants like brivaracetam injection to treat various conditions during ...

  4. Fluconazole Injection

    Science.gov (United States)

    ... and fungal infections of the eye, prostate (a male reproductive organ), skin and nails. Fluconazole injection is ... Motrin, others) and naproxen (Aleve, Anaprox, Naprelan); oral contraceptives (birth control pills); oral medication for diabetes such ...

  5. Certolizumab Injection

    Science.gov (United States)

    ... and swelling and scales on the skin), active ankylosing spondylitis (a condition in which the body attacks the ... continues. When certolizumab injection is used to treat ankylosing spondylitis, it is usually given every 2 weeks for ...

  6. Butorphanol Injection

    Science.gov (United States)

    ... not understand the directions.Butorphanol injection may be habit-forming. Do not use a larger dose, use ... tiredness difficulty falling asleep or staying asleep unusual dreams headache constipation stomach pain feeling hot flushing pain, ...

  7. Dexamethasone Injection

    Science.gov (United States)

    ... body tissues,) gastrointestinal disease, and certain types of arthritis. Dexamethasone injection is also used for diagnostic testing. ... effects.tell your doctor if you have a fungal infection (other than on your skin or nails). ...

  8. Hydrocortisone Injection

    Science.gov (United States)

    ... own organs), gastrointestinal disease, and certain types of arthritis. Hydrocortisone injection is also used to treat certain ... effects.tell your doctor if you have a fungal infection (other than on your skin or nails). ...

  9. Methylprednisolone Injection

    Science.gov (United States)

    ... own organs), gastrointestinal disease, and certain types of arthritis. Methylprednisolone injection is also used to treat certain ... effects.tell your doctor if you have a fungal infection (other than on your skin or nails). ...

  10. Ciprofloxacin Injection

    Science.gov (United States)

    ... attack) . Ciprofloxacin may also be used to treat bronchitis and sinus infections, but should not be used for these conditions if there are other treatment options available. Ciprofloxacin injection is in a class ...

  11. Golimumab Injection

    Science.gov (United States)

    Golimumab injection is used alone or with other medications to relieve the symptoms of certain autoimmune disorders ( ... did not help or could not be tolerated. Golimumab is in a class of medications called tumor ...

  12. Evolocumab Injection

    Science.gov (United States)

    ... autoinjector in hot water, microwave, or place in sunlight.Before you use evolocumab injection, look at the ... chills pain or burning during urination muscle or back pain dizziness stomach pain Some side effects can be ...

  13. Glatiramer Injection

    Science.gov (United States)

    ... To inject glatiramer, follow these steps: Remove one blister pack from the carton of glatiramer syringes and place ... paper label and remove the syringe from the blister pack. Check your prefilled syringe to be sure it ...

  14. Insulin Injection

    Science.gov (United States)

    ... or buttocks. Do not inject insulin into muscles, scars, or moles. Use a different site for each ... you are using insulin.Alcohol may cause a decrease in blood sugar. Ask your doctor about the ...

  15. Tigecycline Injection

    Science.gov (United States)

    ... in a person who was not in the hospital), skin infections, and infections of the abdomen (area between the ... that developed in people who were in a hospital or foot infections in people who have diabetes. Tigecycline injection is ...

  16. Fludarabine Injection

    Science.gov (United States)

    Fludarabine injection is used to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white ... a reliable method of birth control to prevent pregnancy during this time. Talk to your doctor for ...

  17. Ferumoxytol Injection

    Science.gov (United States)

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  18. Alemtuzumab Injection

    Science.gov (United States)

    Alemtuzumab injection is used to treat B-cell chronic lymphocytic leukemia (a slowly developing cancer in which ... of white blood cell accumulate in the body). Alemtuzumab is in a class of medications called monoclonal ...

  19. Alirocumab Injection

    Science.gov (United States)

    ... further decrease the amount of low-density lipoprotein (LDL) cholesterol ('bad cholesterol') in the blood. Alirocumab injection is ... antibodies. It works by blocking the production of LDL cholesterol in the body to decrease the amount of ...

  20. Chloramphenicol Injection

    Science.gov (United States)

    ... an arm or leg sudden changes in vision pain with eye movement Chloramphenicol injection may cause a condition called gray syndrome in premature and newborn infants. There have also been reports of gray ...

  1. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  2. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  3. Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals

    CERN Document Server

    Sobiech, Z; Bouleghlimat, S; Ducimetière, L; Garlaschè, M; Kramer, T; Namora, V; Noulibos, R; Sillanoli, Y; Weterings, W

    2014-01-01

    LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated...

  4. Effect of free-carrier concentration and optical injection on carrier lifetimes in undoped and iodine doped CdMgTe/CdSeTe double heterostructures grown by molecular beam epitaxy

    Science.gov (United States)

    Sohal, S.; Edirisooriya, M.; Ogedengbe, O. S.; Petersen, J. E.; Swartz, C. H.; LeBlanc, E. G.; Myers, T. H.; Li, J. V.; Holtz, M.

    2016-12-01

    Time-resolved and time integrated photoluminescence (PL) studies are reported for undoped and doped CdMgTe/CdSeTe double heterostructures (DHs) grown by molecular beam epitaxy. Undoped DHs are studied with absorber layer thickness varying from 0.5 to 2.5 µm. The n-type free-carrier concentration is varied ~7  ×  1015, 8.4  ×  1016, and 8.4  ×  1017 cm-3 using iodine as a dopant in different absorber layer thicknesses (0.25-2.0 µm). Optical injection is varied from 1  ×  1010 to 3  ×  1011 photons/pulse/cm2, corresponding to the initial injection of photo-carriers up to ~8  ×  1015 cm-3, to examine the effects of excess carrier concentration on the PL lifetimes. Undoped DHs exhibit an initial rapid decay followed by a slower dependence with carrier lifetimes up to ~485 ns. The dependence of carrier lifetimes on the thickness of the absorber layers (0.5-2.5 µm) suggests interface recombination velocities ({{v}\\operatorname{int}}~ ) ~ 1288 and 238 cm s-1 in the initial and later decay times, respectively, corresponding to high and low photo-carrier concentrations. The Shockley-Read-Hall model is used to describe the results in which variations are observed in {{v}\\operatorname{int}}~ for undoped DHs. The lifetimes of doped DHs show a consistent trend with thickness. The {{v}\\operatorname{int}}~ ~ 80-200 cm s-1 is estimated for doping n ~ 7  ×  1015 cm-3 and 240-410 cm s-1 for n ~ 8.4  ×  1016 cm-3. The observed decrease in carrier lifetimes with increasing n is consistent with growing importance of the radiative recombination rate due to the excess carrier concentration. The effect of carrier concentration on the PL spectrum is also discussed.

  5. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  6. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  7. Global anomalous transport of ICRH- and NBI-heated fast ions

    Science.gov (United States)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  8. 注汽锅炉剩余饱和水余热再利用技术%Waste-Heat Utilization Technology of Residual Saturation Water in Steam Injection Boiler

    Institute of Scientific and Technical Information of China (English)

    于慧鹏; 刘宝玉; 李明川; 张玉廷

    2013-01-01

    Steam injection boiler is one of the main power and energy consumption equipments in oil thermal production.Generally,the high temperature saturated water enthalpy which is separated by the steam separator is used through the heat exchanger.However the water treatment system of the steam injection boiler is so simple and the separated saturated water is rich in calcium,magnesium and other ions which are easy to foul pipe surface and affects the heat transfer efficiency of the heat exchange equipment.Comparing with the case of no using the equipment,the screw expander which is of a self-cleaning ability recycled the waste heat of the saturated water,which can improve the thermal efficiency by 10.2% and save about 4.56× 107 kW · h amount to 18 422.4 t of standard coal in the service period.The effect is significant.%注汽锅炉是油田热采的主要动力设备、耗能设备之一.汽水分离器分离出的高温饱和水的热焓一般通过换热器加以利用.但是,注汽锅炉水处理系统简单,而分离出来的饱和水中富含的钙、镁等离子易使管道表面结垢,从而影响换热设备的换热效率.利用具有自洁能力的螺杆膨胀机回收饱和水余热,与未使用该设备的情况相比,可提高注汽锅炉的热效率约10.2%,在服务期内可节省约4.56×107度电,折合标煤约18 422.4 t,效果显著.

  9. Flow and heat transfer regulation of multi-thermal fluids injection in wellbore%多元热流体在井筒中的流动与传热规律

    Institute of Scientific and Technical Information of China (English)

    李兆敏; 张丁涌; 衣怀峰; 杜文军; 薛兴昌; 麻涛

    2012-01-01

    建立高温烟气与水的热交换模型以及多元热流体在井筒内流动传热的温度场、压力场计算模型,计算含过热蒸汽和两相流状态的多元热流体在不同井深时的温度、压力以及其他参数.结果表明:随着井筒深度的增加,多元热流体的温度、压力均有所降低,并在某一深度多元热流体中水蒸气开始凝结,进入两相流状态,与纯蒸汽注入相比,其热损失量小,干度下降慢,在井底干度较大;井口注入温度越高、压力越小、流量越大,多元热流体的压降、温降幅度越大,热损失量越小;随着注入温度的降低,环空介质导热系数和注汽流量的增大,多元热流体干度的变化越早或过热度降幅越大,而注入压力对干度的影响有一个最优点,此时蒸汽在井底干度最大.%A heat transfer model between high temperature gas and water was established, and the wellbore temperature and pressure models calculating the temperature field, pressure field and other parameters of multi-thermal fluids single phase flow and two phase flow were developed. The results show that the temperature and pressure of multi-thermal fluids reduce with the increase of the wellbore depth. And at a certain depth, the water vapor of multi-thermal fluids condenses into two phase flow state, and compared with the pure steam injection, the heat loss is small, dryness descends slowly and the bottom-hole dryness is high. The influence of annulus media on the decrease of temperature and pressure is small. The higher inject temperature, the smaller pressure and greater flow rate lead to the faster temperature and pressure declining, and the smaller heat loss. At the same time, the dryness of multi-thermal fluids changes earlier or degree of superheat drops greatly with the diminution of injection temperature, the increase of the annulus media heat conductivity and injection flow, but the influence of pressure on dryness has a best point, and the

  10. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    Science.gov (United States)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (BIB-SEM, down to a resolution of ~ 50 nm² pixel-size, indicates an interconnected porosity fraction of ~ 80 %, of a total measured 2D porosity of ~ 20 %. Determining and distinguishing between pore bodies and pore throats enables us to compare 3D FIB-SEM pore-size distributions to 2D BIB-SEM data, as well as MIP data. Results show a good agreement between the 2D BIB-SEM and 3D FIB-SEM inferred pore

  11. Control And Transport Of Intense Electron Beams

    CERN Document Server

    Li, H

    2004-01-01

    The transport of intense beams for advanced accelerator applications with high-intensity beams such as heavy-ion inertial fusion, spallation neutron sources, and intense light sources requires tight control of beam characteristics over long distances. The University of Maryland Electron Ring (UMER), which uses low energy, high current electron beams to model the transport physics of intense space-charge-dominated beams, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe in this dissertation the main beam control techniques used in UMER, which include optimal beam steering by quadrupole scans, beam rotation correction using a skew corrector, rms envelope matching and optimization, empirical envelope matching, beam injection, and phase space reconstruction using a tomographic method. Using these control techniques, we achieved the design goals for UMER. The procedure is not only indispensable for optimum beam transport over l...

  12. 血必净注射液对热射病大鼠保护机制的研究%The protective role of Xuebijing injection to heat stroke in rats

    Institute of Scientific and Technical Information of China (English)

    纪筠; 宋青; 岳慧; 周飞虎

    2011-01-01

    Objective To analyze the variations in coagulation function, biochemical indicator and cytokines of the rats suffering from heat stroke, and explore the protective effects of Xuebijing injection against heat stroke. Methods Twenty-four SPF male SD rats were randomly divided into the following three groups (8 each) : normal control ( NC group) , saline treatment for heat stroke ( NS-HS group), and Xuebijing injection treatment for heat stroke (XBJ-HS group). 2.3ml blood samples were drawn from femoral artery at 0, 47 and 57 min after the initiation of heat exposure to measure the plasma levels of APTT, PT, FDP, D-dimers, Cr, BUN, AST, ALT,ALP, IL-1β, IL-6 and TNF-α. The rats were sacrificed immediately at 57 min after the initiation of heat exposure, and the liver was then harvested and fixed with formalin. The paraffin section of liver was stained by HE and observed under the light microscope. Results Rats in both NS-HS and XBJ-HS group displayed an excessive systemic inflammation and excessive coagubility, as well as the tissue ischemia and injury. Excessive svstemic inflammation during heat stroke was shown by increased levels of IL-1β, IL-6, and TNF-α in plasma.Hypercoagubility were shown by increased plasma levels of APTT, PT, FDP, and D-dimers. Tissue ischemia and injury was shown by increased levels of creatinine, BUN, AST, ALT, and ALP in plasma. Xuebijing injection significantly decreased the plasma levels of APTT, PT, FDP, D-dimers, Cr, BUN, AST, ALT, ALP, IL-1β, IL-6, and TNF-α(P<0. 05) , and alleviate the pathological lesion of liver. Conclusions Early administration of Xuebijing injection before the onset of heat-stress can prolong the survival time of rats with heat stroke by alleiating systemic inflammation, attenuating coagulability and tissue ischemia/injury.%目的 检测热射病(HS)大鼠凝血功能、生化指标及细胞因子的变化,探讨血必净注射液(XBJ)在对抗HS中的作用机制.方法 清洁级成年雄性SD大鼠24

  13. Dexrazoxane Injection

    Science.gov (United States)

    ... are used to treat or prevent certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent ... this medication.If you experience a serious side effect, you or your doctor ... (FDA) MedWatch Adverse Event Reporting program online (http://www.fda.gov/ ...

  14. Fluorouracil Injection

    Science.gov (United States)

    ... of a doctor who is experienced in giving chemotherapy medications for cancer. Treatment with fluorouracil injection may cause serious side effects. ... this medication.If you experience a serious side effect, you or your doctor ... (FDA) MedWatch Adverse Event Reporting program online (http://www.fda.gov/ ...

  15. Cyanocobalamin Injection

    Science.gov (United States)

    ... used to treat inherited conditions that decrease the absorption of vitamin B12 from the intestine. Cyanocobalamin injection is also sometimes used to treat methylmalonic aciduria (an inherited disease in which the body cannot break down protein) and is sometimes given to unborn babies to ...

  16. Lanreotide Injection

    Science.gov (United States)

    Lanreotide injection is used to treat people with acromegaly (condition in which the body produces too much growth hormone, causing enlargement of the hands, feet, and facial features; joint pain; and other symptoms) who have not successfully, or cannot be treated ...

  17. Runaway electron beam generation and mitigation during disruptions at JET-ILW

    Science.gov (United States)

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Boboc, A.; Brezinsek, S.; Coffey, I.; Decker, J.; Drewelow, P.; Devaux, S.; de Vries, P. C.; Fil, A.; Gerasimov, S.; Giacomelli, L.; Jachmich, S.; Khilkevitch, E. M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Lupelli, I.; Lomas, P. J.; Manzanares, A.; De Aguilera, A. Martin; Matthews, G. F.; Mlynář, J.; Nardon, E.; Nilsson, E.; Perez von Thun, C.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A. E.; Sips, G.; Sozzi, C.; contributors, JET

    2015-09-01

    Disruptions are a major operational concern for next generation tokamaks, including ITER. They may generate excessive heat loads on plasma facing components, large electromagnetic forces in the machine structures and several MA of multi-MeV runaway electrons. A more complete understanding of the runaway generation processes and methods to suppress them is necessary to ensure safe and reliable operation of future tokamaks. Runaway electrons were studied at JET-ILW showing that their generation dependencies (accelerating electric field, avalanche critical field, toroidal field, MHD fluctuations) are in agreement with current theories. In addition, vertical stability plays a key role in long runaway beam formation. Energies up to 20 MeV are observed. Mitigation of an incoming runaway electron beam triggered by massive argon injection was found to be feasible provided that the injection takes place early enough in the disruption process. However, suppressing an already accelerated runaway electron beam in the MA range was found to be difficult even with injections of more than 2 kPa.m3 high-Z gases such as krypton or xenon. This may be due to the presence of a cold background plasma weakly coupled to the runaway electron beam which prevents neutrals from penetrating in the electron beam core. Following unsuccessful mitigation attempts, runaway electron impacts on beryllium plasma-facing components were observed, showing localized melting with toroidal asymmetries.

  18. Unsteady mixed convection flow over stretching sheet in presence of chemical reaction and heat generation or absorption with non-uniform slot suction or injection

    Institute of Scientific and Technical Information of China (English)

    R. RAVINDRAN; N. SAMYUKTHA

    2015-01-01

    The article examines the unsteady mixed convection flow over a vertical stretching sheet in the presence of chemical reaction and heat generation or absorption with non-uniform mass transfer. The unsteadiness is caused by the time dependent free stream velocity varying arbitrarily with time. Non-similar solutions are obtained nu-merically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique in combination with an implicit finite difference scheme. To reveal the tendency of the solutions, typical results for the local skin friction coefficient and the local Nusselt and Sherwood numbers are presented for different values of parameters. The effects of various parameters on the velocity, temperature, and concentration distributions are discussed here. The present numerical results are compared with the previously pub-lished work, and the results are found to be in excellent agreement.

  19. Beam Transfer and Machine Protection

    CERN Document Server

    Kain, V

    2016-01-01

    Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.

  20. 海上多元热流体注入沿程热物性评价模型%An Evaluation Model on Along-Pipe Thermal Parameter of Multi-Component Heat Fluid Injected in Offshore Reservoirs

    Institute of Scientific and Technical Information of China (English)

    黄世军; 李秋; 程林松; 朱国金; 张萌

    2015-01-01

    稠油储量占渤海总石油储量的60%,是中国石油接替储量的重要组成部分。多元热流体的应用克服了海上平台承载能力有限的难题,是海上稠油热采的新方向。首次考虑井口注入条件变化及海水流动的影响,以一段时间内注入到管线中的多元热流体为控制体,分别考虑平台、海水段和地层注汽管柱结构的影响,建立了多组分热流体沿程热物性评价模型。计算结果与中国某油田实际热采井沿程热物性参数吻合较好。基于模块计算,评价了多元热流体组成,海水深度对其沿程热利用率的影响,为多元热流体在海上稠油油藏热采中的应用提供了一定的理论支持。%Heavy oil covers about 60%of the total reserve in Bohai Bay,which is a significant part in the succeeding petroleum industry in China. The application of multi-component heat fluid(MCHF)overcomes the problem of limited load of offshore platforms,serving as a new break through in offshore oil production. Considering the impact of various injection conditions and sea water flow for the first time,the model takes the amount of fluid injected within a certain period of time as control volume and concludes the influence of pipeline structures of platform,sea water section and sub-surface section. With Visual Basic program language,the results of the model show a good agreement with the field test data. Based on the model,the impact of the composition of multi-component heat fluid and the depth of sea water on the efficiency along the injection line are studied. Curves and conclusions of this essay would provide some support for the application of this new technology.

  1. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  2. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  3. 蓄热步进式加热炉在轧钢生产中的应用%Application of Regenerative Walking Beam Heating Furnace in Steel Rolling Process

    Institute of Scientific and Technical Information of China (English)

    黄强; 瞿春龙; 陈振伟

    2015-01-01

    介绍了蓄热步进式加热炉在轧钢厂生产中的应用,论述了其工作原理、蓄热单元的应用及改进、水封槽应用实践中的问题及改进措施。%The application of regenerative walking beam heating furnace in rolling mill is introduced. The working principle, application and improvement of the regenerative unit and problems in application of water seal tank and improvement measures are discussed.

  4. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus.

    Science.gov (United States)

    Gardenghi, Sara; Renaud, Tom M; Meloni, Alessandra; Casu, Carla; Crielaard, Bart J; Bystrom, Laura M; Greenberg-Kushnir, Noa; Sasu, Barbra J; Cooke, Keegan S; Rivella, Stefano

    2014-02-20

    Anemia of inflammation (AI) is commonly observed in chronic inflammatory states and may hinder patient recovery and survival. Induction of hepcidin, mediated by interleukin 6, leads to iron-restricted erythropoiesis and anemia. Several translational studies have been directed at neutralizing hepcidin overexpression as a therapeutic strategy against AI. However, additional hepcidin-independent mechanisms contribute to AI, which are likely mediated by a direct effect of inflammatory cytokines on erythropoiesis. In this study, we used wild-type, hepcidin knockout (Hamp-KO) and interleukin 6 knockout (IL-6-KO) mice as models of AI. AI was induced with heat-killed Brucella abortus (BA). The distinct roles of iron metabolism and inflammation triggered by interleukin 6 and hepcidin were investigated. BA-treated wild-type mice showed increased expression of hepcidin and inflammatory cytokines, as well as transitory suppression of erythropoiesis and shortened red blood cell lifespan, all of which contributed to the severe anemia of these mice. In contrast, BA-treated Hamp-KO or IL-6-KO mice showed milder anemia and faster recovery compared with normal mice. Moreover, they exhibited different patterns in the development and resolution of anemia, supporting the notion that interleukin 6 and hepcidin play distinct roles in modulating erythropoiesis in AI.

  5. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  6. 中性束注入在EAST中激发的离散阿尔文不稳定性%Neutral beam injection induced discrete Alfv´en instabilities on experimental advanced superconducting tokamak∗

    Institute of Scientific and Technical Information of China (English)

    王军; 胡纯栋; 胡双辉; 吴斌; 丁斯晔; 王进芳

    2013-01-01

    The neutral beam injection (NBI) system is applied to the experimental advanced superconducting tokamak (EAST). It will excite some Alfv´en instabilities when the plasma characteristics are improved. The numerical research on the NBI-induced discrete Alfv´en eigenmode (αTAE) and toroidal effect-induced Alfv´en eigenmode (TAE) in the pedestal region is presented in the paper. The research results show that plenty ofαTAEs appear in this region. TheαTAE is very different from the TAE. These modes are trapped by theα-induced potential wells along the magnetic field line. Due to negligible continuum damping via wave energy tunneling, similar to TAE, theαTAE can also be readily destabilized by energetic particles. Differently,αTAE frequency spectrum is more broad than TAE, and they are existed not only inside the gap but also outside the gap. The growth rate increases with injected power increasing. This instability maybe affects the physical behavior of the tokamak and the confinement of the plasma.%  中性束加热将应用于先进实验超导托卡马克装置中,在改善等离子性能的同时也会激发起多种阿尔文不稳定性。本文主要采用了数值模拟的方法在理论上研究了中性束注入时在台基区激发的离散阿尔文本征模(αTAE)和环效应阿尔文本征模(TAE),结果表明在这个区域会激发出丰富的离散阿尔文不稳定性,这种离散阿尔文不稳定性不同于传统的TAE,这种模式是俘获在气球模驱动势阱中的束缚态,由于气球模势阱的存在使它和连续谱解耦,从势阱中漏出去的能量可以忽略不计,和TAE类似都很容易被激发,这种模式可以存在于gap内,也可以存在于gap外,频谱更宽泛。注入功率越大这种不稳定性增长率越大。这种不稳定性可能会影响等离子体的物理行为,从而影响等离子体的约束。

  7. Effects of the laser beam superficial heat treatment on the gas Tungsten arc Ti-6al-4v welded metal microstructure

    Science.gov (United States)

    Voiculescu, I.; Dontu, Octavian; Geanta, V.; Ganatsios, S.

    2008-03-01

    The microstructure of the weld and the extent to which it is different from the thermo-mechanically processed base material is strongly influenced by the thermal cycle of welding. The mechanical properties of composite weld structures in titanium alloys depend on structural characteristics of each region (weld, base material and heat affected area), influenced by the specific thermal cycle imposed during welding and the subsequent post-weld heat treatment. In order to improve the as-welded metal toughness and ductility, the welded metal was subjected to various post weld laser heat treatments, above and below beta transus temperature in a shielding atmosphere of pure argon. Standard micro-hardness measurements and tensile strength techniques showed higher mechanical properties of the heat treated samples in different conditions with respect to the base metal. Metallographic investigations attribute this to the formation of α'phases in heat treated material, especially in the weld metal.

  8. Aperture and Delivery Precision of the LHC Injection System

    CERN Document Server

    Goddard, B; Jeanneret, J B; Kain, V; Lamont, M; Maire, V; Mertens, V; Wenninger, J

    2004-01-01

    The main LHC injection elements in interaction regions 2 and 8 comprise the injection septa (MSI), the injection kickers (MKI), together with three families of passive protection devices (TDI, TCDD and TCLI). The apertures of the two circulating beams are detailed for these elements, together with a summary of recent design modifications. The errors in the SPS, the transfer lines and the injection system are analysed, and the expected performance of the system derived, in terms of the expected delivery precision of the injected beam.

  9. 痰热清注射液联合注射用头孢呋辛钠治疗痰热壅肺型社区获得性肺炎30例疗效观察%Investigation of Tanreqing injection combined with cefuroxime sodium for injection on the treatment of phlegm-heat obstructing lung syndrome in patient with community acquired pneumonia

    Institute of Scientific and Technical Information of China (English)

    季蓓

    2014-01-01

    目的:观察痰热清注射液联合注射用头孢呋辛钠治疗痰热壅肺型社区获得性肺炎的临床疗效。方法将60例痰热壅肺型社区获得性肺炎患者随机分为2组。治疗组30例予痰热清注射液联合注射用头孢呋辛钠治疗,对照组30例予注射用头孢呋辛钠治疗。2组疗程均为10 d。观察2组治疗前后中医症状、中医证候积分情况及临床疗效。结果2组治疗后咳嗽咳痰、气急、发热、恶心呕吐、口渴、乏力、食欲不振、全身不适、胸闷、小便短赤、便秘,舌苔黄腻及脉濡数或滑数等程度与本组治疗前比较差异均有统计学意义(P<0.05)。治疗组在咳嗽咳痰、恶心呕吐、口渴、便秘、食欲不振、全身不适、舌苔、脉象改善方面均优于对照组(P<0.05)。2组治疗后中医证候积分均较本组治疗前减少(P<0.01),且治疗后治疗组证候积分明显低于对照组(P<0.01)。治疗组总有效率93.33%,对照组总有效率83.33%,2组总有效率比较差异有统计学意义(P<0.05),治疗组疗效优于对照组。结论痰热清注射液联合注射用头孢呋辛钠治疗痰热壅肺型社区获得性肺炎疗效确切。%Objective To observe effect of Tanreqing injection combined with cefuroxime sodium for injec-tion on the treatment of phlegm -heat obstructing lung syndrome in patient with community acquired pneumonia . Methods Sixty patients of phlegm -heat obstructing lung syndrome with community acquired pneumonia were ran-domly divided into two groups ,30 cases of each group .The treatment group was treated with Tanreqing injection com-bined with cefuroxime sodium for injection; the control group was treated with cefuroxime sodium for injection ,10 days for a course .The curative effect before and after treatment were evaluated by observing the main traditional Chi -nese medicine symptoms and signs in two groups .Results There were

  10. Eddy current septum magnets for injection and extraction at SSRF

    Science.gov (United States)

    Ouyang, Lian-Hua; Gu, Ming; Liu, Bo; Chen, Rong

    2010-03-01

    There are 6 in-vacuum eddy current septum magnets used for booster injection, extraction, and storage ring injection in SSRF. Special attention was paid to coils and their support designs because of the shock force they bear in the magnetic fields and the high heat which is hard to be dissipated in vacuum environment. For the storage ring magnets, good transverse homogeneity in the gap was achieved by careful design, precise machining and accurate assembly; and an extremely low leakage field on the stored beam is another key feature thanks to the high permeability Mu metal. Magnetic field measurement was conducted with both a point coil and a long integral coil, and the results agree well with the OPERA-2d/3d simulations. An inner tube is added to keep the continuity of impedance for the circulating beam with two RF finger flanges at each end. There is no vacuum separation between the inner tube and the magnet chamber. Sputter ion pumps integrated with NEG are used to acquire the UHV for the chamber.

  11. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  12. Injection and extraction for cyclotrons

    CERN Document Server

    Kleeven, W

    2006-01-01

    The main design goals for beam injection are explained and special problems related to a central region with internal ion source are considered. The principle of a PIG source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different ways of (axial) injection are briefly outlined. A proposal for a magnetostatic axial inflector is given. Different solutions for beam extraction are treated. These include the internal target, extraction by stripping, resonant extraction using a deflector and self-extraction. The different ways of creating a turn-separation are explained. The purpose of different types of extraction devices such as harmonic coils, deflectors and gradient corrector channels are outlined. Several illustrations are given in the form of photographs and drawings.

  13. Summary of Injection pre-cleaning tests performed on October 27, 2010

    CERN Document Server

    Boccardi, A; Roncarolo, F; Hofle, W; Shaposhnikova, E; Valuch, D; Kain, V; Bracco, C; Goddard, B; Meddahi, M; Uythoven, J; Gianfelice, E

    2010-01-01

    During the LHC filling, in order to reduce the particle losses coming from the un-bunched circulating beam, pre-cleaning of the injection slot has been tried. The cleaning of the injection slot, using 3 s pulse starting from the first bunch of the next batch injection, was performed before the injection of the requested batches. The cleaning was then moved to the next injection slot, just prior to the on-going injection request. The results were extremely encouraging, showing much less particle losses when both the cleaning of the injection slot and the abort gap are active and preventing diffusion of uncaptured beam into the injection slot.

  14. Based Self-Heating Dissipation Flow Velocity Sensor of the Liquid Injected into the Oil Well%自热耗散式油井注入液体流速传感器

    Institute of Scientific and Technical Information of China (English)

    方华军; 温殿忠

    2000-01-01

    Taking into consideration the characteristics of the under- well measurement of flow velocity, this paper discusses a new sensor for measurement of flow velocity of the injected liquid into the oil well that is low in velocity and high in viscosity, suitable for the under - well measurement. This sensor is based the theory on self-heating dissipation of PTCR. It solved the measurement problem that is little under- well space, high liquid viscosity and high operation temperature. We designed and made the entire under- well PTCR heated dissipation velocity sensor. Experiment states this sensor is good in performance, and there are great useful value for oil produce.%结合油田井下流速测量的特点,论述了一种适用于井下测量的低流速、高粘度油井注入液体流速检测的新型传感器。该传感器采用PTCR自热耗散原理检测油井注入液体流速。解决了井下空间狭窄、流体粘度大、工作温度偏高、环境压力偏大等测量难题。设计并制造了井下PTCR热耗散式流速传感器。实验和试用结果表明,该传感器具有良好的重复性和可靠性,对石油测井具有很大使用价值。

  15. FLUKA Simulation of Particle Fluences to ALICE due to LHC Injection Kicker Failures

    CERN Document Server

    Shetty, N V; Di Mauro, A; Lechner, A; Leogrande, E; Uythoven, J

    2014-01-01

    The counter-rotating beams of the LHC are injected in insertion regions which also accommodate the ALICE and LHCb experiments. An assembly of beam absorbers ensures the protection of machine elements in case of injection kicker failures, which can affect either the injected or the stored beam. In the first years of LHC operation, secondary particle showers due to beam impact on the injection beam stopper caused damage to the MOS injectors of the ALICE silicon drift detector as well as high-voltage trips in other ALICE subdetectors. In this study, we present FLUKA [1,2] simulations of particle fluences to the ALICE cavern for injection failures encountered during operation. Two different cases are reported, one where the miskicked beam is fully intercepted and one where the beam grazes the beam stopper.

  16. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  17. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  18. Measurement and Simulation of Beam Centering on CYCIAE-10

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The beam centering is very important for the compact cyclotron, especially for the cyclotrons with the axial injection. It is critical that the cyclotron has a good beam centering to increase the beam current and reduce the beam loss. In the accelerating process,

  19. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  20. The Research of Ion Beam Process Heat Dissipation and Integrated Processing for Main and Third Mirror%主、三镜离子束一体化加工散热方法研究

    Institute of Scientific and Technical Information of China (English)

    许艳军; 赵宇宸; 沙巍; 张帆

    2014-01-01

    离子束加工过程中,由于热能的传递会导致光学元件内部产生热应力和热变形,影响加工精度,严重时甚至会导致光学元件的损坏。本文提出了一种新型的主、三镜一体化离子束加工方式。在一体化加工的基础上利用UG/TMG有限元分析软件,对无散热和铜带散热两种加工状态下的光学元件表面温度场的分布进行了仿真分析。对比结果数据可以看出铜带散热可以使加工过程中最高温度降低10℃。最后通过实际加工过程,对热分析进行了验证。%In ion beam process, due to the transfer of heat, the optical elements cause an internal thermal stress and thermal deformation which affect machining precision, and can even lead serious damage to the optical element. This paper presents a new ion beam integration processing method for main and third mirror. On the basis of integration method,use finite element analysis software UG/TMG to analysis and simulation optical element thermal distribution in two processing state which include no heat dissipation and cooper dissipation. Comparison with data which shows cooper heat dissipation reduce the maximum temperature during processing by 10℃. Finally,adopt of the actual process to ver-ify the thermal analysis.

  1. X-ray analysis of electron Bernstein wave heating in MST

    Science.gov (United States)

    Seltzman, A. H.; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B.

    2016-11-01

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  2. High energy laser beam dump

    Science.gov (United States)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  3. 盐酸普鲁卡因注射液在光和热同时作用下的稳定性%Effect of light and heat on the stability of procaine hydrochloride injection

    Institute of Scientific and Technical Information of China (English)

    林涛; 李琳丽; 詹先成; 李开兰; 李志毅; 殷恭宽

    2001-01-01

    目的:以盐酸普鲁卡因注射液为例, 研究药物在光和热同时作用下的稳定性。方法:先考察该注射液在高温避光条件下的降解规律, 求出热反应的降解速率常数 k dark,指前因子 A dark和活化能 Ea , dark,再在烘箱内上方分别安装荧光高压汞灯和紫外高压汞灯, 考察其在高温和光照同时作用下的降解规律, 求出光反应的降解速率常数 k light , 指前因子 A light和活化能 Ea , light。结果:在高温光照试验中,该药物降解速率由两部分构成:d A total/d t = k d ark A dark n′+ k light A light n ,式中 A total为盐酸普鲁卡因注射液在440 nm处的总吸收度, A dark和 A light分别为该药在无光照时热作用下所产生的吸收度和光作用下所产生的吸收度(440 nm), n 为光化反应的级数, n′为热反应的级数。光化反应速率仍与温度有关: k light= A light*exp(- Ea ,light/ RT )* E , 式中 E 为光源的照度。结论:由于 k light的表达式与Arrhenius方程形式类似,式中 Ea ,light可能为光化反应后继过程的表观活化能,由实验得出 Ea ,light值几乎与光源种类无关而支持了这一观点; 根据光和热同时对盐酸普鲁卡因注射液稳定性的影响规律,预测了该药物在室温、室内自然光照射下的贮存期。%Objective: To study the effect of both lig ht and heat on drug stability with procaine hydrochloride injection as a model. Methods: The degrada tion of the injection was studied at high temperatures in dark at first, and sub sequently in light. The degradation rate constants k dark, and k light; pre-exponent ial factors A dark, and A light; as well as the observed activation energies Ea ,dark and Ea ,light of the thermal rea ctions were obtained. The experiments in light were performed with a fluorescent mercury-arc lamp or a UV mercury-arc lamp installed at the top of the isothermal heating oven respectively. Results: Under the exposure to both

  4. Experiment on single well groundwater heat pump systems in different distances between pumping and injection screens%不同抽回间距的单井循环地下水源热泵系统试验

    Institute of Scientific and Technical Information of China (English)

    宋伟; 倪龙; 姚杨

    2014-01-01

    As the global energy crises and environmental problems become more and more serious, ground source heat pump (GSHP) systems are perhaps the most widely used green HVAC system, with an estimated 1.1 million ground source heat pumps installed worldwide. These systems have become an important energy-saving and environment protection technology for use in residential and commercial buildings in China. These applications included two types of systems: closed-loop (ground-coupled) and open-loop. As one kind of semi-closed-loop systems, single well groundwater heat pump (SWGWHP) systems have become increasingly popular for use because of their economic advantages from lower installation cost, lower operating cost, and improved overall performance in regions with suitable geological conditions. In general, SWGWHP systems included three different variations, i.e. standing column well (SCW) system, pumping & recharging well (PRW) system, and pumping&recharging well filled with gravel (PRWFG) system. Compared with SCW system, the well pipe in PRW system and PRWFG system are divided into three parts by clapboards, i.e. production zone, seals zone and injection zone. In recent decades, considerable research efforts have been spent on SWGWHP systems, especially on SCW system. However, little attention has been focused on the PRW system and PRWFG system. For GSHP systems, sand tank experiment is one of the important methods of laboratory investigation for discussing the performance of geothermal heat exchanger, due to many parameters can be set and adjusted more easily and economically than that in in-situ experiments. In order to provide a framework for discussing the influence on distances between pumping and injection screens (DPI) in SWGWHP systems, a sand tank experiment system was designed and set up in Harbin Institute of Technology, China. In this study, we tested the temperature of outlet and inlet water, the aquifer temperature, and flow rate of outlet water. From the

  5. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  6. Developing target injection and tracking for inertial fusion energy power plants

    Science.gov (United States)

    Goodin, D. T.; Alexander, N. B.; Gibson, C. R.; Nobile, A.; Petzoldt, R. W.; Siegel, N. P.; Thompson, L.

    2001-05-01

    Fuelling of a commercial inertial fusion energy (IFE) power plant consists of supplying about 500 000 fusion targets each day. The most challenging type of target in this regard is that for laser driven direct drive IFE power plants. Spherical capsules with cryogenic DT fuel must be injected into the centre of a reaction chamber operating at temperatures as high as 1500° C and possibly containing as much as 0.5 torr of xenon fill gas. The DT layer must remain highly symmetric, have a smooth inner ice surface finish and reach the chamber centre (CC) at a temperature of about 18.5 K. This target must be positioned at the centre of the chamber with a placement accuracy of +/-5 mm. The accuracy of alignment of the laser driver beams and the target in its final position must be within +/-20 μm. All this must be repeated six times per second. The method proposed to meet these requirements is to inject the targets into the reaction chamber at high speed ( approx 400 m/s), track them, and hit them in flight with steerable driver beams. The challenging scientific and technological issues associated with this task are being addressed through a combination of analyses, modelling, materials property measurements and demonstration tests with representative injection equipment. Measurements of relevant DT properties are planned at Los Alamos National Laboratory. An experimental target injection and tracking system is now being designed to support the development of survivable targets and demonstrate successful injection scenarios. Analyses of target heating are under way. Calculations have shown that a direct drive target must have a highly reflective outer surface to prevent excess heating by thermal radiation. In addition, heating by hot chamber fill gas during injection far outweighs that by the thermal radiation. It is concluded that the dry wall, gas filled reaction chambers must have gas pressures and wall temperatures less than previously assumed in order to prevent

  7. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation%Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    G. Yu. YUSHKOV; K. P. SAVKIN; A. G. NIKOLAEV; E. M. OKS; A.V. VODOPYANOV; I. V. IZOTOV; D. A. MANSFELD

    2011-01-01

    A new method for the generation of high charged state metal ion beams is developed. This method is based on microwave heating of vacuum arc plasma in a magnetic trap under electron cyclotron resonance (ECR) conditions. Two gyrotrons for plasma heating were used, which were with the following parameters. The first is with a wave frequency of 37.5 GHz, a pulse duration of 1 ms and power of 100 kW, another is with 75 GHz, 0.15 ms and 400 kW. Two different magnetic traps were considered for vacuum arc plasma confinement. The first one is a simple mirror trap. Such system was already investigated and could provide high charge state ions. The second trap was with a cusp magnetic field configuration with native "minimum-B" field structure. Two different ways of metal plasma injection into the magnetic trap were used. The first one is an axial injection from an arc source located out of the trap, and the second is a radial injection from four arc sources mounted at the center of the trap. Both traps provide up to 200 eMA of ion beam current for platinum ions with highest charge state 10+. Ion beams were successfully extracted from the plasma and accelerated by a voltage of up to 20 kV.

  8. Alpha Heating in ITER L-mode and H-mode Plasma

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny

    2011-07-18

    There are many uses of predictions of ITER plasma performance. One is assessing requirements of different plasma regimes. For instance, what current drive and control are needed for steady state. The heating, current drive, and torque systems planned for initial DT operation are negative ion neutral beam injection (NB), ion cyclotron resonance (IC), and electron cyclotron resonance (EC). Which combinations of heating are optimal. What are benefits of the torques, current drive, and fueling using NB. What are the shine-through power and optimum voltage for the NB? What are optimal locations and aiming of the EC launchers? Another application is nuclear licensing (e.g. System integrity, how many neutrons).

  9. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Indian Academy of Sciences (India)

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  10. Overview of the negative ion based neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B., E-mail: email@none.edu; Boilson, D.; Chareyre, J.; Choi, C.-H.; Decamps, H.; El-Ouazzani, A.; Geli, F.; Graceffa, J.; Hemsworth, R.; Kushwah, M.; Roux, K.; Shah, D.; Singh, M.; Svensson, L.; Urbani, M. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France)

    2016-02-15

    The ITER baseline foresees 2 Heating Neutral Beams (HNB’s) based on 1 MeV 40 A D{sup −} negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H{sup 0} at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds—for the prototype route chosen—will soon be ready to start.

  11. Overview of the negative ion based neutral beam injectors for ITER.

    Science.gov (United States)

    Schunke, B; Boilson, D; Chareyre, J; Choi, C-H; Decamps, H; El-Ouazzani, A; Geli, F; Graceffa, J; Hemsworth, R; Kushwah, M; Roux, K; Shah, D; Singh, M; Svensson, L; Urbani, M

    2016-02-01

    The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D(-) negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H(0) at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds-for the prototype route chosen-will soon be ready to start.

  12. Predictions of Alpha Heating in ITER L-mode and H-mode Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny

    2011-01-06

    Predictions of alpha heating in L-mode and H-mode DT plasmas in ITER are generated using the PTRANSP code. The baseline toroidal field of 5.3 T, plasma current ramped to 15 MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance, and electron cyclotron resonance are assumed to start half-way up the density ramp. The time evolution of plasma temperatures and, for some cases, toroidal rotation are predicted assuming GLF23 and boundary parameters. Significant toroidal rotation and flow-shearing rates are predicted by GLF23 even in the L-mode phase with low boundary temperatures, and the alpha heating power is predicted to be significant if the power threshold for the transition to H-mode is higher than the planned total heating power. The alpha heating is predicted to be 8-76 MW in L-mode at full density. External heating mixes with higher beam injection power have higher alpha heating power. Alternatively if the toroidal rotation is predicted assuming that the ratio of the momentum to thermal ion energy conductivity is 0.5, the flow-shearing rate is predicted to have insignificant effects on the GLF23- predicted temperatures, and alpha heating is predicted to be 8-20 MW. In H-mode plasmas the alpha heating is predicted to depend sensitively on the assumed pedestal temperatures. Cases with fusion gain greater than 10 are predicted to have alpha heating greater than 80 MW.

  13. Beam emittance reduction during operation of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  14. 喷气增焓空气源热泵热性能评价及预测%Thermal performance evaluation and prediction of enhanced vapor injection air source heat pump

    Institute of Scientific and Technical Information of China (English)

    张东; 李金平; 刘伟; 南军虎; 王林军

    2014-01-01

    喷气增焓空气源热泵系统可显著提高系统低温性能,应用在寒冷地区时冬季环境温度普遍在−5℃以下,而且全年温度波动范围非常大,仅以名义工况(干球温度为7℃)评价系统性能,难以准确有效反映系统真实节能效果。为此在兰州地区建立了喷气增焓空气源热泵实验系统,实测不同环境温湿度条件下系统性能,结果表明系统COP在喷气电磁阀关闭时基本呈线性变化关系,瞬时COP可达6.5,在喷气电磁阀开启时COP衰减更为缓慢,瞬时COP在2.0左右;据此分段拟合出热泵COP的经验关联式,确定其适用范围,并进行实验验证,与本实验系统相比其平均相对误差在3%以内。%The enhanced vapor injection air source heat pump (EVI-ASHP) has better thermal performance at a low temperature, which has received much attention to supply hot water in cold region in recent years due to the growing space heating load and concern for environmental degradation. Environmental temperature is often below−5℃ in winter in cold region of China, and changes greatly throughout the year. Thus coefficient of performance (COP) under nominal working conditions (dry-bulb temperature of 7℃) is difficult to accurately reflect the actual energy-saving effect of the system. So, a set-up of EVI-ASHP system was built in Lanzhou, and thermal performance at different environmental temperatures and humidities was determined. COP of the EVI-ASHP system could reach above 6.5 when electromagnetic valve for vapor injection was off, and linear change of COP was observed. At a low temperature, when electromagnetic valve was on, COP was about 2.0. The fitting equations of the experimental data were obtained and verified, with average relative error below 3% compared with the experimental data from the set-up. An effective prediction method was established for thermal performance of the EVI-ASHP system at changeable environmental

  15. Operational considerations for the PSB H- Injection System

    CERN Document Server

    Weterings, W; Borburgh, J; Carli, C; Fowler, T; Goddard, B

    2010-01-01

    For the LINAC4 project the PS Booster (PSB) injection system will be upgraded. The 160 MeV Hbeam will be distributed to the 4 superimposed PSB synchrotron rings and horizontally injected by means of an H- charge-exchange system. Operational considerations for the injection system are presented, including expected beam losses from unwanted field stripping of H- and excited H0 and foil scattering, possible injection failure cases and expected stripping foil lifetimes. Loading assumptions for the internal beam dumps are discussed together with estimates of doses on various components.

  16. Analysis of Microstructural Evolution and Fracture Mechanisms in Ti-5Al-5V-5Mo-3Cr-0.4Fe in Response to Electron Beam Welding and Post Weld Heat Treatments

    Science.gov (United States)

    Sabol, Joseph C.

    Within the last half-century, advances in Ti and Ti alloys have increased their popularity in the aerospace industry as well as in commercial products. Some Ti alloys have even replaced steels and Ni-base alloys due to their high strength and superior corrosion resistance. Of the various Ti alloys, near-beta and metastable beta alloys have become more common since their first large-scale use in the SR-71 Blackbird. In particular, TIMET's Ti-5Al-5V-5Mo-3Cr (Timetal Ti555, Ti-5553) gained high attainable strengths, excellent forging characteristics, and increased sensitivity to heat treatments compared to other beta-Ti alloys. Ti-5553 has become widely known for its desirable attributes and has since become the baseline for the next generation of metastable beta and near-beta Ti alloys. However, as well known as Ti-5553 is in the aerospace and Ti industry, its responses to welding have, for the most part, gone uncharacterized. The work presented in this dissertation investigates the influence of electron beam welding and post weld heat treatments on the microstructural, mechanical, and fracture responses of Ti-5553. In this study, Ti-5553 was electron beam welded and heat-treated in accordance to three predetermined heat treatments: 700°C for 4 hours followed by air cooling to room temperature, 804°C for 1 hour followed by air cooling to room temperature, and 804°C for 1 hour followed by air cooling to room temperature then aging at 600°C for 4 hours followed by air cooling to room temperature. Subsequently, the mechanical properties, microstructure, solute partitioning, precipitate identities, and fracture characteristics were evaluated. With the use of traditional techniques and new technology it was shown that electron beam welded Ti-5553 in the as-welded condition and three post weld heat treatment conditions exhibited varying properties, distinctive to each of the corresponding microstructures. It was also found that the o-phase played a large role in the

  17. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  18. Beam instability studies for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  19. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  20. Crystal Collimation with protons at injection energy

    CERN Document Server

    Rossi, Roberto; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Redaelli, Stefano; Valentino, Gianluca; Scandale, Walter; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on August 30th, 2015, bent silicon crystals were tested with protons beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals, providing a crucial test of the hardware for precise crystal angle adjustments (goniometers). Proton channeling was observed for the first time with LHC beams and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  1. 低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟%Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection

    Institute of Scientific and Technical Information of China (English)

    杨新乐; 任常在; 张永利; 郭仁宁

    2013-01-01

    In order to obtain seepage rules and production of coal-bed methane in the process of heat injection exploitation,a coupled thermal-fluid-solid mathematical models of coal-bed mathane was established based on results that permeability,porosity of coal increases with temperature,stress and thermal conductivity coefficient of gas,Young' s modulus,Poisson' s ratio as a function of the temperature,combined with seepage mechanics,rock mechanics,heat transfer and so on.Multi-well exploitation way was used to simulate seepage rules during extracting methane in low-permeability coal bed by heat injection after three fields were discreted.The numerical simulation results show that after 10 d heat injection and 100 d coal-bed methane mining,the average velocity of heat transfer is 66.25 mm/h in coal bed under the action of conductivity of coal bed and convection of coal-bed methane,and pressure drop of reservoir cauesd by heat injection is 2.45 times without heat injection,and production of coal-bed methane under the conditons of heat injection is 2.2 time without heat injection.It is a effective way to production improvement of low permeability coal-bed methane.%为得到低渗透煤层气藏注热开采过程中煤层气渗流运移规律,探索原地煤层在注入蒸汽加热后对煤层气产量的影响,基于煤体渗透率、孔隙度随温度、应力,气体导热系数、杨氏模量、泊松比随温度变化的关系,综合运用渗流力学、岩石力学、传热学等相关理论,建立了低渗透煤层气注热开采过程煤层气渗流热-流-固多物理场耦合数学模型,采用多井开采方式进行了注热开采过程煤层气渗流规律的数值模拟.数值模拟结果表明:煤层注热10 d抽采100 d后,由于煤层的导热并伴有煤层气的对流传热,煤层平均传热速度为66.25 mm/h,注热开采造成储层压力降是无注热抽采压力降的2.45倍,在温度应力耦合作用下,煤层气注热抽

  2. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  3. Installation and Debugging of the Axial Injection Line for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    YAO; Hong-juan; ZHENG; Xia; MA; Ming-wu; PAN; Gao-feng; ZHANG; Su-ping; WU; Long-cheng; CAI; Hong-ru; GE; Tao

    2012-01-01

    <正>An external multi-cusp ion source and an axial injection line are used in CYCIAE-100 cyclotron for extracting and transporting H- beam. The beam is transported by the injection line and bended by a spiralinflector to the median plane of the machine, and begins to be accelerated by Dee voltage. The total length of the injection line and the ion source is 2 781 mm. The injection line is composed of a big vacuum

  4. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  5. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  6. Direct drive target survival during injection in an inertial fusion energy power plant

    Science.gov (United States)

    Petzoldt, R. W.; Goodin, D. T.; Nikroo, A.; Stephens, E.; Siegel, N.; Alexander, N. B.; Raffray, A. R.; Mau, T. K.; Tillack, M.; Najmabadi, F.; Krasheninnikov, S. I.; Gallix, R.

    2002-12-01

    In inertial fusion energy (IFE) power plant designs, the fuel is a spherical layer of frozen DT contained in a target that is injected at high velocity into the reaction chamber. For direct drive, typically laser beams converge at the centre of the chamber (CC) to compress and heat the target to fusion conditions. To obtain the maximum energy yield from the fusion reaction, the frozen DT layer must be at about 18.5 K and the target must maintain a high degree of spherical symmetry and surface smoothness when it reaches the CC. During its transit in the chamber the cryogenic target is heated by radiation from the hot chamber wall. The target is also heated by convection as it passes through the rarefied fill-gas used to control chamber wall damage by x-rays and debris from the target explosion. This article addresses the temperature limits at the target surface beyond which target uniformity may be damaged. It concentrates on direct drive targets because fuel warm up during injection is not currently thought to be an issue for present indirect drive designs and chamber concepts. Detailed results of parametric radiative and convective heating calculations are presented for direct-drive targets during injection into a dry-wall reaction chamber. The baseline approach to target survival utilizes highly reflective targets along with a substantially lower chamber wall temperature and fill-gas pressure than previously assumed. Recently developed high-Z material coatings with high heat reflectivity are discussed and characterized. The article also presents alternate target protection methods that could be developed if targets with inherent survival features cannot be obtained within a reasonable time span.

  7. Optical synchrotron radiation beam imaging with a digital mask

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Univ. of Maryland, College Park, MD (United States); Fiorito, Ralph [Univ. of Maryland, College Park, MD (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shkvarunets, Anatoly [Univ. of Maryland, College Park, MD (United States); Tian, Kai [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, Alan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mok, W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitsuhashi, T. [KEK, Tsukuba (Japan)

    2016-01-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  8. BEAM TRANSPORT LINES FOR THE BSNS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at the target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.

  9. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to treat ... in the treatment of certain serious infections. Penicillin G procaine injection is in a class of medications ...

  10. The CERN Beam Interlock System: Principle and Operational Experience

    CERN Document Server

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  11. Instability of Annular Beam with Finite Thickness in Dielectric-Loaded Cylindrical Waveguide

    OpenAIRE

    Tamura, Shusuke; Yamakawa, Mitsuhisa; Takashima, Yusuke; Ogura, Kazuo

    2008-01-01

    The cherenkov and slow cyclotron instabilities driven by an axially injected electron beam in a cylindrical waveguide are studied using a new version of the self-consistent linear theory considering three-dimensional beam perturbations. There are three kinds of models for beam instability analysis, which are based on a cylindrical solid beam, an infinitesimally thin annular beam, and a finitely thick annular beam. Among these models, the beam shape properly representing the often used actual ...

  12. EFFECT OF SPACE CHARGE ON STABILITY OF BEAM DISTRIBUTION IN THE SNS RING.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; WEI, J.; GLUCKSTERN, R.L.

    2001-06-18

    In the Spallation Neutron Source (SNS) ring, multi-turn injection is employed to obtain a large transverse beam size which significantly reduces the space-charge tune shift of the accumulated beam. Careful choice of the painting scheme and bump function is required to obtain the desired beam profile together with low beam loss. In this paper we examine, both analytically and numerically, the effect of the space charge on the beam profile during multi-turn injection painting.

  13. Iron Dextran Injection

    Science.gov (United States)

    ... allergic to iron dextran injection; any other iron injections such as ferric carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other ...

  14. 耦合抽-灌井式埋地换热系统咸水层传热过程研究%Researches of the Heat Transfer Process in Brackish Aquifers upon the Coupling Pumping and Injection Wells with Underground Heat Exchangers System

    Institute of Scientific and Technical Information of China (English)

    马玖辰; 张志刚

    2015-01-01

    基于多孔介质传热、传质控制方程与线热源理论,以耦合抽-灌井式埋管换热系统为研究对象,建立埋地换热器及咸水层水-热-盐运移耦合数学模型。选用有限元计算软件 FEFLOW6.1针对不同运行模式下咸水层温度场演变规律与传热过程开展模拟研究。计算结果得到,单独使用埋管换热系统,运行8年后观测井2所在咸水层温度上升1.4℃;采用耦合式系统,相同观测点未出现升温趋势,有效避免“热堆积”发生。在抽-灌水量不变条件下,采用去离子水回灌时观测井1所在中粉砂咸水层达西流速高于原水回灌工况54%。研究表明,回灌溶液盐度降低是诱导地下水渗流速度上升,对流换热与热弥散效应增强的主要作用机制。%A three-dimensional mathematical model coupling of heat transferring of ground heat exchangers and groundwater flow and thermal transferring and solute movement in brackish aquifers is established based upon the control equation of the ther-mal and mass transferring in porous media and the line heat source theory.The calibrated numerical model is used to probe into the variation regularity of the geo-temperature field and the thermal transfer characteristics in different operating modes adoption of finite element calculation software FEFLOW6.1 ,which the coupling pumping -injection wells and multi-borehole heat exchang-ers system is taken as the research object.The simulated calculation indicates that the temperature of the 2nd observation well in-creases 1.4℃ at the end of the 8th operation period in the medium silt aquifer when the ground heat exchangers are operated indi-vidually.However,the temperature of the same observation point is no rising trend during the couple system operating,which the hot stack can be avoided effectively.Meanwhile,the comparison demonstrates that the rate of improvement in Darcy velocity in the condition of recharging the

  15. Injection quality measurements with diamond based particle detectors

    CERN Document Server

    Stein, Oliver; CERN. Geneva. ATS Department

    2016-01-01

    During the re-commissioning phase of the LHC after the long shutdown 1 very high beam losses were observed at the TDI during beam injection. The losses reached up to 90% of the dump threshold. To decrease the through beam losses induced stress on the accelerator components these loss levels need to be reduced. Measurements with diamond based particle detectors (dBLMs), which have nano-second time resolution, revealed that the majority of these losses come from recaptured SPS beam surrounding the nominal bunch train. In this MD the injection loss patterns and loss intensities were investigated in greater detail. Performed calibration shots on the TDI (internal beam absorber for injection) gave a conversion factor from impacting particles intensities to signal in the dBLMs (0.1Vs/109 protons). Using the SPS tune kicker for cleaning the recaptured beam in the SPS and changing the LHC injection kicker settings resulted in a reduction of the injection losses. For 144 bunch injections the loss levels were decreased...

  16. Microstructural characteristics and mechanism of toughness improvement of laser and electron-beam welds of V-4Cr-4Ti following postwelding heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Park, J.H.; Gazda, J.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure for large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Microstructural characteristics were investigated by optical microscopy, X-ray diffraction, transmission electron microscopy, and chemical analysis to provide an understanding of the mechanism of the drastic improvement of impact toughness of laser and electron-beam (EB) welds of V-4Cr-4Ti following postwelding annealing at 1000{degrees}C. Transmission electron microscopy (TEM) revealed that annealed weld zones were characterized by extensive networks of fine V(C,O,N) precipitates, which appear to clean away O, C, and N from grain matrices. This process is accompanied by simultaneous annealing-out of the dense dislocations present in the weld fusion zone. It seems possible to produce high-quality welds under practical conditions by controlling and adjusting the cooling rate of the weld zone by some innovative method to maximize the precipitation of V(C,O,N).

  17. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  18. ALL-FERRITE RHIC INJECTION KICKER

    Energy Technology Data Exchange (ETDEWEB)

    HAHN,H.; FISCHER,W.; PTITSYN,V.I.; TUOZZOLO,J.E.

    2001-06-18

    Ion beams are transferred from the AGS into RHIC in boxcar fashion as single bunches. The nominal design assumes 60 bunches per ring but increasing the number of bunches to gain luminosity is possible, thereby requiring injection kickers with a shorter rise time. The original injection system consists of traveling-wave dielectric loaded kicker magnets and a Blumlein pulser with a rise time adequate for the present operation. Voltage breakdown in the dielectric kickers suggested the use of all-ferrite magnets. In order to minimize the conversion cost, the design of the all-ferrite kicker uses the same components as the dielectric loaded units. The all-ferrite kickers showed in bench measured good breakdown properties and a current rise time of < 50 ns. A prototype kicker has been installed in the blue ring and was tested with beam. Beam measurements indicate suitability of all-ferrite kicker magnets for upgraded operation.

  19. BEPCII Injector Linac Upgrade and Beam Instabilities

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-Hong; GENG Zhe-Qiao; PEI Shi-Lun; DENG Bing-Lin; CHEN Zhi-Bi; PEI Guo-Xi; CHI Yun-Long; CHEN Yan-Wei; CAO Jian-She; KONG Xiang-Cheng; ZHAO Feng-Li; HOU Mi; LIU Wei-Bin

    2008-01-01

    The upgrade project of the Beijing Electron Positron Collider (BEPCII) and its injector linac is working well.The linac upgrade aims at a higher injection rate of 50 mA/min into the storage ring,which requires an injected beam with low emittance,low energy spread and high beam orbit and energy stabilities. This goal is finally reached recently by upgrading the linac components and by dealing with rich and practical beam physics,which are described in this study.

  20. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.