WorldWideScience

Sample records for beam induced luminescence

  1. Ion beam induced luminescence analysis of painting pigments

    International Nuclear Information System (INIS)

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields

  2. Ion beam induced luminescence analysis of painting pigments

    Science.gov (United States)

    Quaranta, A.; Salomon, J.; Dran, J. C.; Tonezzer, M.; Della Mea, G.

    2007-01-01

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields.

  3. Ion beam induced luminescence of materials

    CERN Document Server

    Brooks, R

    2001-01-01

    luminescence dead zone at the domain walls. Neodymium-yttrium-aluminium garnet (Nd:YAG) was examined and the spectra measured as a function of temperature to show the evolution of intensity of the narrow line emission from the Nd rare earth. Shifts and changes in the intrinsic UV band in the YAG material were also apparent. Thin films of alumina grown on silica on a silicon substrate, along with some that contained copper nanoclusters were also examined. TRIM software was used to model the rate of excitation within the different layers of the material for the various implant energies and to identify the source of the luminescence profile observed in each case. Evidence of thin film interference fringes was apparent in the spectra by fringe patterns modulated onto the luminescence signal as a function of wavelength and film thickness. Analysis of an alkali feldspar material using IBL, and combined with work done using RL and CL experiments, showed a shift towards lower wavelengths of the main red/IR band with ...

  4. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Gonon, P.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  5. Ion beam induced luminescence on white inorganic pigments for paintings

    International Nuclear Information System (INIS)

    Ion beam induced luminescence (IBIL) has been used for studying the emission features and the radiation hardness of white pigments. In particular, ZnO, gypsum and basic lead sulphate pigments have been analyzed with a 3.0 MeV H+ beam at the AGLAE Louvre laboratory. The same pigments mixed with different binders have been also analyzed on a canvas, in order to evaluate the contribution of the binders both to the IBIL spectra and to the radiation hardness. It turns out that the binder affects both the IBIL spectra and the radiation hardness of pigments when the emission bands are related to point defects, as occurs for ZnO

  6. Ion beam induced luminescence on white inorganic pigments for paintings

    Science.gov (United States)

    Quaranta, A.; Dran, J. C.; Salomon, J.; Tonezzer, M.; Scian, C.; Beck, L.; Carturan, S.; Maggioni, G.; Della Mea, G.

    2008-05-01

    Ion beam induced luminescence (IBIL) has been used for studying the emission features and the radiation hardness of white pigments. In particular, ZnO, gypsum and basic lead sulphate pigments have been analyzed with a 3.0 MeV H+ beam at the AGLAE Louvre laboratory. The same pigments mixed with different binders have been also analyzed on a canvas, in order to evaluate the contribution of the binders both to the IBIL spectra and to the radiation hardness. It turns out that the binder affects both the IBIL spectra and the radiation hardness of pigments when the emission bands are related to point defects, as occurs for ZnO.

  7. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  8. Ion beam induced luminescence of germano-silicate optical fiber preform

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyunkyu; Kim, Jongyeol; Lee, Namho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Youngwoong; Han, Wontaek [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Markovic, Nikola; Jaksic, Milko [Ruder Boskovic Institute, Zagred (Croatia)

    2014-05-15

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives.

  9. Ion beam induced luminescence of germano-silicate optical fiber preform

    International Nuclear Information System (INIS)

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives

  10. Radiation hardness of polysiloxane scintillators analyzed by ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A., E-mail: quaranta@ing.unitn.i [University of Trento, Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali - DIMTI, Via Mesiano 77, I-38050 Povo, Trento (Italy); INFN, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Universita di Padova, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Marchi, T.; Antonaci, A. [INFN, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Scian, C. [Universita di Padova, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Kravchuk, V.L. [Universita di Bologna, Dipartimento di Fisica, Viale Carlo Berti Pichat 6, I-40127 Bologna (Italy); Degerlier, M.; Gramegna, F. [INFN, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Maggioni, G. [Universita di Padova, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy)

    2010-10-01

    The radiation hardness of polysiloxane based scintillators has been measured by ion beam induced luminescence (IBIL). The light intensity as a function of the irradiation fluence with an He{sup +} beam at 1.8 MeV (1.0 {mu}A/cm{sup 2}) has been measured on undoped polymers synthesized with different amounts of phenyl units and on polysiloxanes doped with two different dye molecules (BBOT and Lumogen Violet) sensitizing the scintillation yield.

  11. Analysis of art objects by means of ion beam induced luminescence

    Science.gov (United States)

    Quaranta, A.; Dran, J. C.; Salomon, J.; Pivin, J. C.; Vomiero, A.; Tonezzer, M.; Maggioni, G.; Carturan, S.; Della Mea, G.

    2006-05-01

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study.

  12. Analysis of art objects by means of ion beam induced luminescence

    International Nuclear Information System (INIS)

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study

  13. Radiation damage mechanisms in CsI(Tl) studied by ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, Alberto [Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali - DIMTI, Universita di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy)], E-mail: quaranta@ing.unitn.it; Gramegna, Fabiana; Kravchuk, Vladimir [Laboratori Nazionali di Legnaro - INFN, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Scian, Carlo [Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali - DIMTI, Universita di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy)

    2008-06-15

    Ion beam induced luminescence (IBIL) has been used to study the kinetics of defect production under ion beam irradiation in CsI(Tl) crystals with different Tl{sup +} concentrations (250, 560, 3250 and 6500 ppm). The crystals have been irradiated with H{sup +} and {sup 4}He{sup +} at 1.8 MeV. Both the scintillator spectra after irradiation and the intensity decrease at different wavelengths as a function of the fluence have been measured. The emission bands shift to higher wavelengths after irradiation, and the light decrease has been interpolated following a saturation model for the point defect concentration. Crystals with low Tl{sup +} concentrations present the UV emission peak of pure CsI at 300 nm whose intensity during H{sup +} irradiation and reaches a maximum under He{sup +} irradiation. At low Tl{sup +} concentrations the damage rate depends on the ion stopping power, while at higher concentrations it depends on the activator concentration. The results can be interpreted by assuming that the defects affecting the light emission are point defects nearby Tl{sup +} ions.

  14. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Kersemans, Mathias, E-mail: Mathias.Kersemans@UGent.be; Lammens, Nicolas; Degrieck, Joris; Van Paepegem, Wim [Mechanics of Materials and Structures MMS, Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Smet, Philippe F. [LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium)

    2015-12-07

    We report on the conversion of ultrasound into light by the process of piezo-luminescence in epoxy with embedded BaSi{sub 2}O{sub 2}N{sub 2}:Eu as active component. We exploit this acoustically induced piezo-luminescence to visualize several cross-sectional slices of the radiation field of an ultrasonic piston transducer (f = 3.3 MHz) in both the near-field and the far-field. Simply combining multiple slices then leads to a fast representation of the 3D spatial radiation field. We have confronted the luminescent results with both scanning hydrophone experiments and digital acoustic holography results, and obtained a good correlation between the different approaches.

  15. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    Science.gov (United States)

    Czelusniak, C.; Palla, L.; Massi, M.; Carraresi, L.; Giuntini, L.; Re, A.; Lo Giudice, A.; Pratesi, G.; Mazzinghi, A.; Ruberto, C.; Castelli, L.; Fedi, M. E.; Liccioli, L.; Gueli, A.; Mandò, P. A.; Taccetti, F.

    2016-03-01

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  16. In situ ion-beam-induced luminescence analysis for evaluating a micrometer-scale radio-photoluminescence glass dosimeter

    Science.gov (United States)

    Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu

    2016-06-01

    Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.

  17. Ion beam-induced luminescence as method of characterization of radiation damage in polycrystalline materials

    Science.gov (United States)

    Jozwik, Iwona; Jagielski, Jacek; Gawlik, Grzegorz; Panczer, Gerard; Moncoffre, Nathalie; Ratajczak, Renata; Jozwik, Przemyslaw; Wajler, Anna; Sidorowicz, Agata; Thomé, Lionel

    2015-12-01

    The problem of information about damage build-up, intensively studied for single crystals, poses many difficulties for polycrystalline materials. The Rutherford Backscattering/Channeling (RBS/C) technique could be applied for single crystals only, but its use is excluded in polycrystalline materials. Therefore the development of a quantitative method well suited for the evaluation of damage level in polycrystalline materials is a must, and still constitutes a major challenge in materials analysis. A comparative study of damage accumulation in magnesium aluminate spinel (MgAl2O4) has been conducted using ionoluminescence (IL) and RBS/C techniques. The results obtained by both methods, demonstrate a two-step character of damage build-up process. The values of the cross-section on the damage creation in each case were estimated using MSDA model. The results presented here confirm the huge potential of the luminescence techniques for damage analysis in single- and polycrystalline samples, and ability of the IL method to perform fast, in situ analysis of damage accumulation process.

  18. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  19. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    International Nuclear Information System (INIS)

    Green luminescence and degradation of Ce3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce3+ nanocrystalline phosphors during electron bombardment in an O2 environment. The effect of different oxygen pressures ranging from 1 x 10-8 to 1 x 10-6 Torr on the CL intensity was also investigated. A CaSO4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10-6 Torr oxygen pressure after an electron dose of 50 C/cm2. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  20. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    CERN Document Server

    Gardés, E; Ban-d'Etat, B; Cassimi, A; Durantel, F; Grygiel, C; Madi, T; Monnet, I; Ramillon, J -M; Ropars, F; Lebius, H

    2013-01-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/\\mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteri...

  1. Towards the differentiation of non-treated and treated corundum minerals by ion-beam-induced luminescence and other complementary techniques.

    Science.gov (United States)

    Calvo del Castillo, H; Deprez, N; Dupuis, T; Mathis, F; Deneckere, A; Vandenabeele, P; Calderón, T; Strivay, D

    2009-06-01

    Differentiation of treated and non-treated gemstones is a chief concern for major jewellery import companies. Low-quality corundum specimens coming from Asia appear to be often treated with heat, BeO or flux in order to enhance their properties as precious minerals. A set of corundum samples, rubies and sapphires from different origins, both treated and non-treated has been analysed at the Centre Européen d'Archéométrie, with ion-beam-induced luminescence (IBIL) and other complementary techniques such as Raman, proton-induced X-ray emission (PIXE), and proton-induced gamma-ray emission (PIGE). IBIL, also known as ionoluminescence, has been used before to detect impurities or defects inside synthetic materials and natural minerals; its use for the discrimination of gemstone simulants or synthetic analogues has been elsewhere discussed (Cavenago-Bignami Moneta, Gemología, Tomo I Piedras preciosas, perlas, corales, marfil. Ediciones Omega, Barcelona, 1991). PIXE has been frequently applied in the archaeometric field for material characterisation and provenance studies of minerals (Hughes, Ruby & sapphire. RWH Publishing, Fallbrook, 1997; Calvo del Castillo et al., Anal Bioanal Chem 387:869-878, 2007; Calligaro et al., NIM-B 189:320-327, 2002) and PIGE complements the elemental analysis by detecting light elements in these materials such as-and lighter than-sodium that cannot be identified with the PIXE technique (Sanchez et al., NIM-B 130:682-686, 1997; Emmett et al., Gems Gemology 39:84-135, 2003). The micro-Raman technique has also been used complementarily to ion beam analysis techniques for mineral characterisation (Novak et al., Appl Surf Sci 231-232:917-920, 2004). The aim of this study is to provide new means for systematic analysis of corundum gemstone-quality mineral, alternative to the traditional gemmologic methods; for this purpose, a Spanish jewellery import company supplied us with a number of natural corundum samples coming from different places

  2. In situ variations of carrier decay and proton induced luminescence characteristics in polycrystalline CdS

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Jasiunas, A.; Kalesinskas, V.; Meskauskaite, D.; Pavlov, J.; Tamulaitis, G.; Tekorius, A. [Institute of Applied Research, Vilnius University, Vilnius LT-10222 (Lithuania); Brytavskyi, I. [Odessa I.I.Mechnikov National University, Odessa 65082 (Ukraine); Kovalevskij, V.; Remeikis, V. [Centre for Physical Sciences and Technology, Vilnius LT-02300 (Lithuania)

    2014-06-28

    Evolution of the microwave-probed photoconductivity transients and of the proton induced luminescence has simultaneously been examined in polycrystalline CdS layers evaporated in vacuum during exposure to a 1.6 MeV proton beam. The decrease of the intensity of luminescence peaked at 510 and 709 nm wavelengths and of values of the effective carrier lifetime has been correlated in dependence of proton irradiation fluence. The defect introduction rate has been evaluated by the comparative analysis of the laser and proton beam induced luminescence. The difference of a carrier pair generation mechanism inherent for light and for a proton beam has been revealed.

  3. Luminescence characterization and electron beam induced chemical changes on the surface of ZnAl2O4:Mn nanocrystalline phosphor

    International Nuclear Information System (INIS)

    Luminescence characteristics and surface chemical changes of nanocrystalline Mn2+ doped ZnAl2O4 powder phosphors are presented. Stable green cathodoluminescence (CL) or photoluminescence (PL) with a maximum at ∼512 nm was observed when the powders were irradiated with a beam of high energy electrons or a monochromatic xenon lamp at room temperature. This green emission can be attributed to the 4T1 → 6A1 transitions of the Mn2+ ion. Deconvoluted CL spectra resulted in two additional emission peaks at 539 and 573 nm that may be attributed to vibronic sideband and Mn4+ emission, respectively. The luminescence decay of the Mn2+ 512 nm emission under 457 nm excitation is single exponential with a lifetime of 5.20 ± 0.11 ms. Chemical changes on the surface of the ZnAl2O4:Mn2+ phosphor during prolonged electron beam exposure were monitored using Auger electron spectroscopy. The X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the possible compounds formed on the surface as a result of the prolonged electron beam exposure. The XPS data suggest that the thermodynamically stable Al2O3 layer was formed on the surface and is possibly contributing to the CL stability of ZnAl2O4:Mn phosphor.

  4. Recent developments of ion beam induced luminescence at the external scanning microbeam facility of the LABEC laboratory in Florence

    Science.gov (United States)

    Colombo, E.; Calusi, S.; Cossio, R.; Giuntini, L.; Giudice, A. Lo; Mandò, P. A.; Manfredotti, C.; Massi, M.; Mirto, F. A.; Vittone, E.

    2008-04-01

    A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps. The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.

  5. Luminescence efficiency of silica during ion beam excitation

    Science.gov (United States)

    Abu-Hassan, L. H.; Townsend, P. D.

    1988-05-01

    During ion beam implantation of silica light is produced by electronic excitation of the glass network. In order to vary the mechanisms of excitation and decay data were taken with a wide range of ions and ion energies (e.g. H +, H +2, He +, Ne +, N +, N +2 and A + from 5 keV to 2.8 MeV). The results suggest that the light is generated with different luminescence efficiency in regions of electronic damage, collision damage and, in the case of nitrogen, of impurities. Additionally, exciton or electron diffusion from the implanted region generates luminescence several microns beneath the implant. The relative efficiencies in these processes are discussed. One consequence of these differences is that in measurements of the luminescence efficiency as a function of energy one observes an apparent peak in efficiency if the sequence commences at high energy. The "peak" is a function of the initial energy.

  6. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  7. Dehydration-induced luminescence in clay minerals

    Science.gov (United States)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  8. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongmei; Zhu, Shouping, E-mail: zhusp2009@gmail.com; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin [Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  9. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  10. Plasmonic off-axis unidirectional beaming of quantum-well luminescence

    Energy Technology Data Exchange (ETDEWEB)

    DiMaria, Jeff; Dimakis, Emmanouil; Moustakas, Theodore D.; Paiella, Roberto, E-mail: rpaiella@bu.edu [Department of Electrical and Computer Engineering and Photonics Center, Boston University, Boston, Massachusetts 02215 (United States)

    2013-12-16

    Plasmonic off-axis unidirectional beaming of luminescence is demonstrated using nitride semiconductor quantum wells. The underlying mechanism involves the near-field excitation of surface plasmon polaritons on an ultrathin metal film, which are then diffractively scattered by an adjacent periodic array of asymmetric metallic nanoparticles. By tailoring the nanoparticles shape, we show that forward scattering can be suppressed in favor of backward diffraction (or vice versa), thereby enabling unidirectional beaming at geometrically tunable oblique angles. These nanostructures can be used to control the output light directionality of arbitrary planar luminescent devices, with a spatial resolution that would be unattainable with bulk optics.

  11. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels;

    Introduction: The radioluminescence (RL) and optically stimulated luminescence (OSL) response of Al2O3:C crystals attached to optical fibres can be used for active and passive in-vivo dosimetry in radiotherapy treatments and clinical imaging techniques. Their use in particle beams, however, can b...

  12. Aggregation-induced emission molecules in layered matrices for two-color luminescence films.

    Science.gov (United States)

    Guan, Weijiang; Lu, Jun; Zhou, Wenjuan; Lu, Chao

    2014-10-14

    We fabricated two-color luminescence ultrathin films (UTFs) composed of the layered double hydroxide host-aggregation-induced emission guests by LBL assembly. The fabricated UTFs were simple, tunable, controllable and highly luminescent. Moreover, reversible thermochromic luminescence further exhibited their potential in practical applications. PMID:25154856

  13. Beta-induced luminescence of some crystalline inorganic materials

    International Nuclear Information System (INIS)

    The beta-particle-induced luminescence spectra of a number of crystalline solids have been recorded using a single-photon -counting spectrometer in the search for high-stability u.v. light sources for use in analytical instrumentation. Of particular interest are the emissions from CaF2,sapphire and spinel, all of which produce useful emission intensities below 300 nm. The kinetic behaviour of the emissions from 1:1 and 1.8:1 spinels have been studied in some detail, and it is found that the noise level of the emitted light is significantly reduced by the 'smoothing' action of a long luminescence decay time. The results are consistent with the view that the spinel emission is associated with the recombination of electrons trapped on [AL]+sub(Mg) with holes trapped on [Mg]-sub(Al) centres. (author)

  14. Space-radiation-induced Photon Luminescence of the Moon

    Science.gov (United States)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  15. GCR-Induced Photon Luminescence of the Moon

    Science.gov (United States)

    Lee, K. T.; Wilson, T. L.

    2008-01-01

    It is shown that the Moon has a ubiquitous photon luminescence induced by Galactic cosmic-rays (GCRs), using the Monte Carlo particle-physics program FLUKA. Both the fluence and the flux of the radiation can be determined by this method, but only the fluence will be presented here. This is in addition to thermal radiation emitted due to the Moon s internal temperature and radioactivity. This study is a follow-up to an earlier discussion [1] that addressed several misconceptions regarding Moonshine in the Earth-Moon system (Figure 1) and predicted this effect. There also exists a related x-ray fluorescence induced by solar energetic particles (SEPs, <350 MeV) and solar photons at lower x-ray energies, although this latter fluorescence was studied on Apollo 15 and 16 [2- 5], Lunar Prospector [6], and even EGRET [7].

  16. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  17. LUMINESCENCE BEAM PROFILE MONITOR FOR THE RHIC POLARIZED HYDROGEN JET POLARIMETER.

    Energy Technology Data Exchange (ETDEWEB)

    LUCIANO, N.; NASS, A.; MAKDISI, Y.; THIEBERGER, P.; TRBOJEVIC, D.; ZELENSKI, A.

    2005-05-16

    A new polarized hydrogen jet target was used to provide improved beam polarization measurements during the second polarized proton m in the Relativistic Heavy Ion Collider (RHIC). The luminescence produced by beam-hydrogen excitations was also used to test the feasibility of a new beam profile monitor for RFPIC based on the detection of the emitted light. Lenses, a view-port and a sensitive CCD camera were added to the system to record the optical signals from the interaction chamber. The first very promising results are reported here. The same system with an additional optical spectrometer or optical filter system may be used in the future to detect impurities in the jet, such as oxygen molecules, which affect the accuracy of the polarization measurements.

  18. Scattering-compensated cone beam x-ray luminescence computed tomography

    Science.gov (United States)

    Gao, Peng; Rong, Junyan; Pu, Huangsheng; Liu, Wenlei; Liao, Qimei; Lu, Hongbing

    2016-04-01

    X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with x-ray. It is a dual modality imaging technique based on the principle that some nanophosphors can emit near-infrared (NIR) light when excited by x-rays. The x-ray scattering effect is a great issue in both CT and XLCT reconstruction. It has been shown that if the scattering effect compensated, the reconstruction average relative error can be reduced from 40% to 12% in the in the pencil beam XLCT. However, the scattering effect in the cone beam XLCT has not been proved. To verify and reduce the scattering effect, we proposed scattering-compensated cone beam x-ray luminescence computed tomography using an added leading to prevent the spare x-ray outside the irradiated phantom in order to decrease the scattering effect. Phantom experiments of two tubes filled with Y2O3:Eu3+ indicated that the proposed method could reduce the scattering by a degree of 30% and can reduce the location error from 1.8mm to 1.2mm. Hence, the proposed method was feasible to the general case and actual experiments and it is easy to implement.

  19. Luminescence and superradiance in electron-beam-excited Al{sub x}Ga{1-sub x}N

    Energy Technology Data Exchange (ETDEWEB)

    Bokhan, P. A.; Gugin, P. P.; Zakrevsky, Dm. E.; Malin, T. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13, Lavrentieva av., Novosibirsk 630090 (Russian Federation); Zhuravlev, K. S.; Osinnykh, I. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13, Lavrentieva av., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090 (Russian Federation); Solomonov, V. I.; Spirina, A. V. [Institute of Electrophysics, Ural Division of the Russian Academy of Sciences, 106, Amundsen str., Ekaterinburg 620016 (Russian Federation)

    2014-09-21

    Luminescence and superradiance characteristics of 0.5–1.2-μm thick Al{sub x}Ga{sub 1-x}N films grown by molecular-beam epitaxy on sapphire substrates were studied under excitation of the films with low-energy (<20 keV) and high-energy (170 keV) electron beams. In both cases, the luminescence spectra looked quite similarly; they exhibited a band-edge luminescence with x-dependent wavelength ranging from 365 nm to 310 nm and a broadband emission taking over the whole visible spectral region. Superradiance within the broad band was obtained by pumping the samples with powerful an electron beam in the form of an open-discharge-generated filament.

  20. Radiation induced luminescence processes in c-BN

    DEFF Research Database (Denmark)

    Trinkler, L.; Berzina, B.; Benabdesselam, M.;

    2004-01-01

    Spectral properties of cubic boron nitride have been studied using methods of photoluminescence (PL), X-ray excited luminescence (XL), thermoluminescence (TL) and optically stimulated luminescence. It is found that emission of cubic boron nitride is presented by 4 subbands, their relative yield...

  1. Luminescence from pigments and resins for oil paintings induced by laser excitation

    Science.gov (United States)

    Borgia, Ilaria; Fantoni, Roberta; Flamini, Chiara; Di Palma, Tonia M.; Giardini Guidoni, Anna; Mele, Aldo

    1998-05-01

    The present work reports results of an extensive study of laser induced luminescence by tripled Nd:YAG laser ( λ=355 nm) of a few most common painting materials, namely, natural and synthetic pigments and resins. The luminescence spectra have been analyzed by an Optical Multichannel Analyzer (OMA III). Luminescence time decay has been measured by a Streak camera or by the OMA III. Pigments and resins show characteristic emission spectra with bands peaking in the visible. The decay ranges from less than 1 ns up to 700 μs for pigments and for resins. The mechanism of excitation and relaxation leading to luminescence is discussed for the various materials. Oil colour specimens have been irradiated by a UV KrF laser ( λ=248 nm). Luminescence photographs have been detected by an intensified charge coupled device (ICCD) camera at different time delays.

  2. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    DEFF Research Database (Denmark)

    Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L.;

    2004-01-01

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm), high sensitivity...

  3. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Feng; Kuang, Yanmin; Yu, Yunjie; Liao, Yuan; Zhang, Yao; Zhang, Yang; Dong, Zhenchao, E-mail: zcdong@ustc.edu.cn

    2015-01-15

    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate.

  4. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  5. Photomultiplier nonlinear response in time-domain laser-induced luminescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Leandro José Bossy Schip

    2007-02-01

    Full Text Available A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS, is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.

  6. Luminescence of insulating crystals induced by an XUV laser

    Energy Technology Data Exchange (ETDEWEB)

    Belsky, A.N. [Moscow State Univ. (Russian Federation). Dept. of Optics and Spectroscopy; Centre Lasers Intenses et Applications, Univ. de Bordeaux 1, Talence (France); Kamenskikh, I.A. [Moscow State Univ. (Russian Federation). Dept. of Optics and Spectroscopy; Sebban, S. [Lab. de Spectroscopie Atomique et Ionique, Orsay (France); LOA, ENSTA, Palaiseau (France); Jaegle, P.; Jamelot, G.; Carillon, A.; Klisnick, A.; Zeitoun, P.; Albert, F.; Ros, D. [Lab. de Spectroscopie Atomique et Ionique, Orsay (France); Rus, B. [Dept. of Gas Lasers, Inst. of Physics, Prague (Czech Republic); Martin, P. [Centre Lasers Intenses et Applications, Univ. de Bordeaux 1, Talence (France); Pedrini, C. [Lab. de Physico-Chimie des Materiaux Luminescents, Villeurbanne (France)

    2001-07-01

    Results of the study of CsI luminescence excited by 58.5 eV photons of the XUV laser of LULI are presented. The energy of the exciting photons was sufficient for the creation of core holes at the 4d-iodine level. Following a single laser pulse luminescence spectra in the range 200 - 900 nm were detected. Using foil filters the density of excitation was varied from 10{sup 9} to 10{sup 13} photons/cm{sup 2}. The luminescence spectra measured following the laser pulse were substantially different from those measured using synchrotron radiation of the same energy or with X-rays. The following effect observed is discussed: manifestation of a new band attributed to the creation of complex defects (550 nm). (orig.)

  7. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  8. Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics

    International Nuclear Information System (INIS)

    Radioluminescence (RL) and thermoluminescence (TL) in spinel crystals and ceramics were investigated to elucidate the radiation-induced electronic processes in single crystals grown by Verneuil and Czochralski methods as well as transparent and translucent ceramics. Both RL and TL spectra demonstrate a UV-band related to electron-hole recombination luminescence at intrinsic defects; green and red luminescence are identified with emission of Mn2+- and Cr3+-ions, respectively. The kinetics of growth of different RL luminescence bands depending on dose at the prolonged X-irradiation shows the competitive character of charge and energy transfer between defects and impurity ions. The dependence of RL intensity on the temperature of the sample was measured in the range of 300-750 K and compared with TL for different emission bands. The variety of maxima in the temperature dependence of RL and in the glow curves of TL measured for different luminescence bands in spinels of different origins and crystalline forms is used to show that charge carrier traps and luminescence centers are not isolated defects but are complexes of defects and impurities. The formation, structure and properties of these complexes depend on the processing conditions

  9. Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics

    Science.gov (United States)

    Gritsyna, V. T.; Kazarinov, Yu. G.; Kobyakov, V. A.; Reimanis, I. E.

    2006-09-01

    Radioluminescence (RL) and thermoluminescence (TL) in spinel crystals and ceramics were investigated to elucidate the radiation-induced electronic processes in single crystals grown by Verneuil and Czochralski methods as well as transparent and translucent ceramics. Both RL and TL spectra demonstrate a UV-band related to electron-hole recombination luminescence at intrinsic defects; green and red luminescence are identified with emission of Mn 2+- and Cr 3+-ions, respectively. The kinetics of growth of different RL luminescence bands depending on dose at the prolonged X-irradiation shows the competitive character of charge and energy transfer between defects and impurity ions. The dependence of RL intensity on the temperature of the sample was measured in the range of 300-750 K and compared with TL for different emission bands. The variety of maxima in the temperature dependence of RL and in the glow curves of TL measured for different luminescence bands in spinels of different origins and crystalline forms is used to show that charge carrier traps and luminescence centers are not isolated defects but are complexes of defects and impurities. The formation, structure and properties of these complexes depend on the processing conditions.

  10. Ag7+ ion induced modification of morphology, optical and luminescence behaviour of charge compensated CaMoO4 nanophosphor

    Science.gov (United States)

    Dutta, S.; Som, S.; Kunti, A. K.; Sharma, S. K.; Kumar, Vijay; Swart, H. C.; Visser, H. G.

    2016-10-01

    The present paper reports on the swift heavy ion (SHI) induced structural, optical and luminescence properties of CaMoO4:Dy3+/K+ nanophosphor synthesized via hydrothermal route. Herein 100 MeV Ag7+ ion beam was used varying fluence from 1 × 1011 to 1 × 1013 ions/cm2. The depth profile of the Ag7+ ions was estimated using SRIM code. XRD and FESEM results revealed the loss of crystallinity and reduction in particle size after SHI irradiations. The XPS technique confirmed the stability of oxidation states of the elements. Reflectance spectra exhibited a red shift in the absorption band, followed by a decrease in band gap. Decrease in the intensity of the photoluminescence peaks without any change in band positions was also obtained after ion irradiation. The thermoluminescence (TL) characteristics were discussed in detail, and the trapping parameter was calculated. The results were compared on the grounds of linear energy transfer of the irradiated ions.

  11. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  12. Multistimuli-Responsive Luminescence of Naphthalazine Based on Aggregation-Induced Emission

    OpenAIRE

    Yao, Xiang; Ru, Jia-Xi; Xu, Cong; Liu, Ya-Ming; Dou, Wei; Tang, Xiao-Liang; Zhang, Guo-lin; Liu, Wei-Sheng

    2015-01-01

    Stimuli-responsive luminescent materials, which are dependent on changes in physical molecular packing modes, have attracted more and more interest over the past ten years. In this study, 2,2-dihydroxy-1,1-naphthalazine was synthesized and shown to exhibit different fluorescence emission in solution and solid states with characteristic aggregation-induced emission (AIE) properties. A remarkable change in the fluorescence of 2,2-dihydroxy-1,1-naphthalazine occurred upon mechanical grinding, he...

  13. Beam induced RF cavity transient voltage

    International Nuclear Information System (INIS)

    We calculate the transient voltage induced in a radio frequency (RF) cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ωr of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω0. The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(jhω0t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting RF cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kind of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  14. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  15. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  16. Internal photoradiation effect. Radiation-induced luminescence and its influence on radiation processes

    International Nuclear Information System (INIS)

    Effect of radiation-induced luminescence on stabilization and reactions of intermediate charged particles in polymers in course of radiolysis is experimentally and theoretically investigated. The subjects of inquiry are polystyrene and polyvinyl alcohol films. Irradiation was carried out by 60Co γ-quanta in liquid nitrogen up to 5-10 kGy, the dose rate being approximately 5 Gy/s. It is stated that polymer luminescence results in decrease of concentration of stabilized charged particles, determines inequality of their distribution with respect to polymer volume and causes photochemical reactions. Contribution of photoradiation processes to radiation changes of material properties is defined by molecule properties, irradiation conditions, form and size of irradiated sample

  17. Removing Noises Induced by Gamma Radiation in Cerenkov Luminescence Imaging Using a Temporal Median Filter.

    Science.gov (United States)

    Cao, Xu; Li, Yang; Zhan, Yonghua; Chen, Xueli; Kang, Fei; Wang, Jing; Liang, Jimin

    2016-01-01

    Cerenkov luminescence imaging (CLI) can provide information of medical radionuclides used in nuclear imaging based on Cerenkov radiation, which makes it possible for optical means to image clinical radionuclide labeled probes. However, the exceptionally weak Cerenkov luminescence (CL) from Cerenkov radiation is susceptible to lots of impulse noises introduced by high energy gamma rays generating from the decays of radionuclides. In this work, a temporal median filter is proposed to remove this kind of impulse noises. Unlike traditional CLI collecting a single CL image with long exposure time and smoothing it using median filter, the proposed method captures a temporal sequence of CL images with shorter exposure time and employs a temporal median filter to smooth a temporal sequence of pixels. Results of in vivo experiments demonstrated that the proposed temporal median method can effectively remove random pulse noises induced by gamma radiation and achieve a robust CLI image. PMID:27648450

  18. The application of visible-induced luminescence imaging to the examination of museum objects

    Science.gov (United States)

    Verri, G.

    2009-07-01

    Visible-induced luminescence imaging in the near infrared range (800-1700 nm) can play a key role in the spatial characterization of certain historical blue pigments (principally Egyptian blue, Han blue and Han purple). All three of these pigments show a very strong infrared emission when excited across the visible range. The setup required for this type of measurement comprises a recording device with some sensitivity to near infrared radiation and an excitation source in the visible range. Inexpensive and widely available excitation radiation sources that can be used for this application include fluorescent lamps and LEDs. While visible LEDs do not usually emit infrared radiation, commercially available fluorescent tubes may emit some stray infrared radiation. Although the presence of such stray infrared radiation may in some cases be considered beneficial, allowing the user easily to locate the presence of the pigments under investigation within the composition of the piece, it can be easily removed using a simple subtraction method. This method, based on the measurement of the reflective properties of the surface under investigation in the emission range of the luminescent pigments, is described. The emission results obtained for Egyptian blue, Han blue and Han purple are compared to those of a set of representative historical and modern blue pigments, including manganese blue, which was the only other pigment found to show detectable luminescence properties. Examples of the application of visible-induced luminescence imaging to archaeological objects of the Antonine period (AD 100-200) in the collections of the British Museum are also presented.

  19. Effect of acoustic, deformation on radiation-induced luminescence of pyrolytic boron nitride

    CERN Document Server

    Kardashev, B K; Plaksin, O A; Stepanov, V A; Stepanov, P A; Chernov, V M

    2001-01-01

    The effect of the ultrasound oscillations with the frequency of approximately 100 kHz on the radiation-induced luminescence on the pyrolytic boron nitride, originating by the protons irradiation (the energy of 8 MeV, the flux of 1.6 x 10 sup 1 sup 2 p/cm s), is studied. The impact of the ultrasound oscillations manifests itself by high deformation amplitudes (approximately 10 sup - sup 4), when the nonlinear, amplitude-dependent ultrasound absorption is observed. The obtained data are explained by the change in the kinetics of recrystallization, induced by irradiation, whereby the disappearance (radiation annealing) of the small angle boundaries occurs

  20. Beam-induced tensor pressure tokamak equilibria

    International Nuclear Information System (INIS)

    D-shaped tensor pressure tokamak equilibria induced by neutral-beam injection are computed. The beam pressure components are evaluated from the moments of a distribution function that is a solution of the Fokker-Planck equation in which the pitch-angle scattering operator is ignored. The level-psub(perpendicular) contours undergo a significant shift away from the outer edge of the device with respect to the flux surfaces for perpendicular beam injection into broad-pressure-profile equilibria. The psub(parallel) contours undergo a somewhat smaller inward shift with respect to the flux surfaces for both parallel and perpendicular injection into broad-pressure-profile equilibria. For peaked-pressure-profile equilibria, the level pressure contours nearly co-incide with the flux surfaces. (author)

  1. Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation.

    Science.gov (United States)

    Li, Hui; Zhang, Cheng-Yun; Li, Xian-Feng; Xiang, Jin; Tie, Shao-Long; Lan, Sheng

    2015-11-16

    ZnO/Zn hybrid nanostructures including nanowires and nanonets were induced on a Zn foil by using 400-nm femtosecond (fs) laser pulses with a low repetition rate of 1 kHz and duration of 100 fs. The laser fluence was chosen to be slightly above the ablation threshold of Zn. The luminescence of the formed ZnO/Zn hybrid nanostructures was examined by using fs laser pulses with a high repetition rate of 76 MHz and duration of ~130 fs through both single-photon and multiphoton excitation. While the luminescence spectrum under the single-photon excitation exhibited a single peak at ~480 nm, a broadband upconversion luminescence with many ripples was observed under the multiphoton excitation. More interestingly, the upconversion luminescence of the ZnO/Zn hybrid nanostructures was significantly enhanced by the underlying Zn nanostructures which induced strongly localized electric field. The enhancement of the upconversion luminescence was verified by the short lifetime of only ~79 ps observed for the ZnO/Zn hybrid nanostructures, which is nearly one order of magnitude smaller as compared with the luminescence lifetime of the ZnO nanorods synthesized by using the chemical coprecipitation method. The localization of electric field in the ZnO/Zn hybrid nanostructures was confirmed by the numerical simulations based the finite-difference time-domain technique. PMID:26698492

  2. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Marianne C [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Andersen, Claus E [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Boetter-Jensen, Lars [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Baeck, Sven A J [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden); Mattsson, Soeren [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden); Kjaer-Kristoffersen, Flemming [Department of Radiation Physics, Rigshospitalet, National University Hospital, Copenhagen (Denmark); Medin, Joakim [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden)

    2004-05-07

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm{sup 3}), high sensitivity, real-time read-out and the ability to measure both dose rate and absorbed dose. The measurements describing reproducibility and output dependence on dose rate, field size and energy all had standard deviations smaller than 1%. The signal variation with the angle of incidence was smaller than 2% (1 SD). Measurements performed in clinical situations suggest the potential of using this real-time system for in vivo dosimetry in radiotherapy.

  3. Application of laser-induced luminescence technique to the analysis of ultratrace levels of uranium

    International Nuclear Information System (INIS)

    Laser-induced luminescence technique with a compact nitrogen laser as an excitation source has been successfully applied to the determination of ultratrace quantities of uranium. The alteration in emission spectra, intensity, and lifetime produced by the addition of chemical enhancers is examined. The intensity of the emission is linear with respect to the concentration of the uranium in samples. The detection limits are better than those obtained with conventional methods, ranging from 30 to 0.5 parts per trillion. Analytical data using this method are presented for environmental and biological samples containing parts-per-billion of uranium

  4. GCR-induced Photon Luminescence of the Moon: The Moon as a CR Detector

    Science.gov (United States)

    Wilson, Thomas L.; Lee, Kerry; Andersen, Vic

    2007-01-01

    We report on the results of a preliminary study of the GCR-induced photon luminescence of the Moon using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) in FLUKA to determine the photon fluence when there is no sunshine or Earthshine. From the photon fluence we derive the energy spectrum which can be utilized to design an orbiting optical instrument for measuring the GCR-induced luminescence. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of its radiogenic constituents lying in the surface and interior. Also, we investigate transient optical flashes from high-energy CRs impacting the lunar surface (boulders and regolith). The goal is to determine to what extent the Moon could be used as a rudimentary CR detector. Meteor impacts on the Moon have been observed for centuries to generate such flashes, so why not CRs?

  5. Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property.

    Science.gov (United States)

    Wu, Zhennan; Liu, Jiale; Gao, Yang; Liu, Huiwen; Li, Tingting; Zou, Haoyang; Wang, Zhigang; Zhang, Kai; Wang, Yue; Zhang, Hao; Yang, Bai

    2015-10-14

    Metal nanoclusters (NCs) as a new class of phosphors have attracted a great deal of interest owing to their unique electronic structure and subsequently molecule-like optical properties. However, limited successes have been achieved in producing the NCs with excellent luminescent performance. In this paper, we demonstrate the significant luminescence intensity enhancement of 1-dodecanethiol (DT)-capped Cu NCs via self-assembly strategy. By forming compact and ordered assemblies, the original nonluminescent Cu NCs exhibit strong emission. The flexibility of self-assembly allows to further control the polymorphism of Cu NCs assemblies, and hence the emission properties. Comparative structural and optical analysis of the polymorphic NCs assemblies permits to establish a relationship between the compactness of assemblies and the emission. First, high compactness reinforces the cuprophilic Cu(I)···Cu(I) interaction of inter- and intra-NCs, and meanwhile, suppresses intramolecular vibration and rotation of the capping ligand of DT, thus enhancing the emission intensity of Cu NCs. Second, as to the emission energy that depends on the distance of Cu(I)···Cu(I), the improved compactness increases average Cu(I)···Cu(I) distance by inducing additional inter-NCs cuprophilic interaction, and therewith leads to the blue shift of NCs emission. Attributing to the assembly mediated structural polymorphism, the NCs assemblies exhibit distinct mechanochromic and thermochromic luminescent properties. Metal NCs-based white light-emitting diodes are further fabricated by employing the NCs assemblies with blue-green, yellow, and red emissions as phosphors. PMID:26397821

  6. Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors

    Science.gov (United States)

    Ma, Hong-Ru; Peng, Hong-shang; You, Fang-tian; Ping, Jian-tao; Zhou, Chao; Guo, Lan-ying

    2016-09-01

    In this work luminescent nanosensors specifically created for intracellular oxygen (ic-O2) were utilized to assess photodynamic therapy (PDT) -induced cell damages. Firstly, ic-O2 was demonstrated to be consumed much faster than extracellular O2 with respective O2 nanosensors. Using the ic-O2 nanosensors, PDT-treated cells with different degree of impairment were then resolved according to the oxygen consumption rate (OCR). The evolving trend of cytotoxicity derived from OCRs was in agreement with cell viability obtained from 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Moreover, the direct damage of PDT on cell mitochondria was successfully detected by monitoring respiration instantly after PDT treatment, which is actually beyond the scope of MTT assay. These results suggest that fluorescence sensing of ic-O2-associated cell respiration is promising and even may become a standardized method, complementary to MTT assay, to evaluate PDT-induced cytotoxicity.

  7. Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a "one-pot" multicomponent reaction.

    Science.gov (United States)

    Wan, Qing; Liu, Meiying; Xu, Dazhuang; Mao, Liucheng; Tian, Jianwen; Huang, Hongye; Gao, Peng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Chitosan based nanomaterials have been extensively examined for biomedical applications for their biodegradability, low toxicity, biological activity and low cost. In this work, a novel strategy for fabrication of luminescent polymeric nanoparticles (LPNs) based on aggregation induced emission (AIE) dye and water soluble chitosan (WS-Chitosan) were firstly developed via a highly efficient mercaptoacetic acid (MA) locking imine reaction. In this multicomponent reaction (MCR), MA serves as "lock" to connect 9,10-Bis(aldehydephenl)anthracene dye (An-CHO) and amino-containing WS-Chitosan under mild reaction conditions. The obtained WS-Chitosan@An-CHO LPNs show strong yellow emission and great water dispersibility. Biological evaluation results demonstrated that synthetic luminescent polymeric nanoparticles possess desirable cytocompatibility and distinct imaging properties. Therefore, we have developed a facile and useful method to fabricate AIE active nanoprobes with desirable properties for various biomedical applications. This strategy should be a general and easy handling tool to fabricate many other AIE dye based materials. PMID:27516264

  8. Time-resolved optically stimulated luminescence of Al2O3:C for ion beam therapy dosimetry.

    Science.gov (United States)

    Yukihara, Eduardo G; Doull, Brandon A; Ahmed, Md; Brons, Stephan; Tessonnier, Thomas; Jäkel, Oliver; Greilich, Steffen

    2015-09-01

    The objective of this study was to characterize the time-resolved (TR) optically stimulated luminescence (OSL) from Al2O3:C detectors and investigate methodologies to improve the accuracy of these detectors in ion beam therapy dosimetry, addressing the reduction in relative response to high linear energy transfer (LET) particles common to solid-state detectors. Al2O3:C OSL detectors (OSLDs) were exposed to proton, (4)He, (12)C and (16)O beams in 22 particle/energy combinations and read using a custom-built TR-OSL reader. The OSL response rOSL, relative to (60)Co gamma dose to water, and the ratio between the UV and blue OSL emission bands of Al2O3:C (UV/blue ratio) were determined as a function of the LET. Monte-Carlo simulations with the multi-purpose interaction and transport code FLUKA were used to estimate the absorbed doses and particle energy spectra in the different irradiation conditions. The OSL responses rOSL varied from 0.980 (0.73 keV μm(-1)) to 0.288 (120.8 keV μm(-1)). The OSL UV/blue ratio varied by a factor of two in the investigated LET range, but the variation for (12)C beams was only 11%. OSLDs were also irradiated at different depths of carbon ion spread-out Bragg peaks (SOBPs), where it was shown that doses could be obtained with an accuracy of ± 2.0% at the entrance channel and within the SOBP using correction factors calculated based on the OSL responses obtained in this study. The UV/blue ratio did not allow accurate estimation of the dose-averaged LET for (12)C SOBPs, although the values obtained can be explained with the data obtained in this study and the additional information provided by the Monte-Carlo simulations. The results demonstrate that accurate OSLD dosimetry can be performed in ion beam therapy using appropriate corrections for the OSL response. PMID:26270884

  9. Update on Beam Induced RF Heating in the LHC

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J; Nosych, A; Nougaret, J; Persichelli, S; Piguiet, A; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M; Fassnacht, P; Jakobsen, S; Deile, M

    2013-01-01

    Since June 2011 the rapid increase of the luminosity performance of the LHC has come at the expense of both increased temperature and pressure of specific, near-beam, LHC equipment. In some cases, this beam induced heating has caused delays while equipment cool-down, beam dumps and even degradation of some devices. This contribution gathers the observations of beam induced heating, attributed to longitudinal beam coupling impedance, their current level of understanding and possible actions planned to be implemented during the 1st LHC Long Shutdown (LS1) in 2013-2014.

  10. Light emission from particle beam induced plasma - An overview

    CERN Document Server

    Ulrich, A

    2015-01-01

    Experiments to study the light emission from plasma produced by particle beams are presented. Fundamental aspects in comparison with discharge plasma formation are discussed. It is shown that the formation of excimer molecules is an important process. This paper summarizes various studies of particle beam induced light emission and presents first results of a direct comparison of light emission induced by electron- and ion beam excitation. Both high energy heavy ion beam and low energy electron beam experiments are described and an overview over applications in the form of light sources, lasers, and ionization devices is given.

  11. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  12. Piezoelectrically-induced stress-luminescence phenomenon in CaAl{sub 2}O{sub 4}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-10-15

    Piezoelectrically-induced stress-luminescence in the CaAl{sub 2}O{sub 4}:Eu{sup 2+} was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl{sub 2}O{sub 4}:Eu{sup 2+} arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl{sub 2}O{sub 4}:Eu{sup 2+} ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl{sub 2}O{sub 4}:Eu{sup 2+} was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors.

  13. Focused electron beam induced deposition: A perspective

    Directory of Open Access Journals (Sweden)

    Michael Huth

    2012-08-01

    Full Text Available Background: Focused electron beam induced deposition (FEBID is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states.Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical

  14. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  15. Electron-beam-induced conduction in polyethylene

    International Nuclear Information System (INIS)

    The electrical conduction in polyethylene induced by the irradiation of the short-pulsed-electron-beam (100 nsec time width) consists of the fast and the slow components. The former is attributed to the carrier transport in the crystalline part and the latter to that in the amorphous part. Logarithmic plot (Scher-Montroll plot) of the slow part of the induced current vs. time gives a knee at time T sub(r), which is thought to be the transit time of the carrier front between electrodes. Simple calculation by the formula μ = L/T sub(r) E gives the apparent slow carrier mobility μ of 5.6 x 10-7 cm2/V.sec and 3.2 x 10-7 cm2/V.sec for the electron and the hole respectively at 343 K under the field E of 1.2 MV/cm for the sample thickness L of 12 μm. These apparent slow carrier mobilities are dependent on both the thickness and the field strength. These behavior are discussed in terms of Scher-Montroll theory on the transport in amorphous substances. The activation energy of the mobility is in good agreement with the apparent trap depth obtained from the TSC measurement. (author)

  16. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots.

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K; Porter, Ashlin G; Bartko, Samuel G; Choi, Jung Kyu; Leonard, Brian M; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2013-12-23

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by postsynthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Time Dependent Density Functional Theory (TDDFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The origin of the induced chirality is consistent with the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand.

  17. Luminescence characterization of CdTe:In grown by molecular beam epitaxy

    Science.gov (United States)

    Bassani, F.; Tatarenko, S.; Saminadayar, K.; Bleuse, J.; Magnea, N.; Pautrat, J. L.

    1991-06-01

    We report on the incorporation of indium as a shallow donor in CdTe by molecular beam epitaxy. Using proper surface stoichiometry conditions, we demonstrate that it is possible to incorporate and activate up to 1018 cm-3 indium impurities. The doped layers have been characterized by secondary-ion mass spectroscopy, capacitance-voltage and Hall-effect measurements. Photoluminescence (PL) and resonant excitation of the PL clearly identify indium as the chemical dopant, acting as an effective mass donor with an energy of 14 meV. Incorrect stoichiometry conditions lead to a poor dopant activity and to complex centers formation.

  18. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference ...

  19. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    Science.gov (United States)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  20. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  1. Laser-induced time-resolved luminescence of natural sillimanite Al2SiO5 and synthetic Al2SiO5 activated by chromium

    International Nuclear Information System (INIS)

    Luminescence of natural sillimanite Al2SiO5 was studied by a laser-induced time-resolved technique combined with absorption spectroscopy. It was found that two red broad emission bands are connected to Fe3+ and Cr3+ luminescence centers. Chromium participation in luminescence was proved by the study of synthetic sillimanite activated by Cr. Several narrow emission lines have been found which were preliminary ascribed to Mn4+ and V2+ luminescence centers. - Highlights: ► We studied luminescence centers in natural sillimanite by time-resolved technique ► We proved Cr3+ emission by the study of artificial sillimanite activated by Cr ► We proved that broad red emission band with long decay is connected to Fe3+ ► We substantiate that narrow emission lines are connected to Mn4+ and V2+.

  2. Femtosecond Laser-Induced Upconversion Luminescence in Rare-Earth Ions by Nonresonant Multiphoton Absorption.

    Science.gov (United States)

    Yao, Yunhua; Xu, Cheng; Zheng, Ye; Yang, Chengshuai; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2016-07-21

    The upconversion luminescence of rare-earth ions has attracted considerable interest because of its important applications in photoelectric conversion, color display, laser device, multiplexed biolabeling, and security printing. Previous studies mainly explored the upconversion luminescence generation through excited state absorption, energy transfer upconversion, and photon avalanche under the continuous wave laser excitation. Here, we focus on the upconversion luminescence generation through a nonresonant multiphoton absorption by using the intense femtosecond pulsed laser excitation and study the upconversion luminescence intensity control by varying the femtosecond laser phase and polarization. We show that the upconversion luminescence of rare-earth ions under the intense femtosecond laser field excitation is easy to be obtained due to the nonresonant multiphoton absorption through the nonlinear interaction between light and matter, which is not available by the continuous wave laser excitation in previous works. We also show that the upconversion luminescence intensity can be effectively controlled by varying the femtosecond pulsed laser phase and polarization, which can open a new technological opportunity to generate and control the upconversion luminescence of rare-earth ions and also can be further extended to the relevant application areas. PMID:27367751

  3. Luminescence from hydrodynamic cavitation

    OpenAIRE

    Farhat, Mohamed; Chakravarty, Avik; Field, John E.

    2010-01-01

    The majority of the research on cavitation luminescence has focused on the sonoluminescence or chemiluminescence generated by cavitation induced through ultrasound, with a lesser body of work on the luminescence induced by laser- or spark induced cavitation. In such circumstances, the cavitation is generated in liquids where, on the broad scale, there is usually assumed to be no net liquid flow (although of course there are small-scale flows as a result of the cavitation itself, through radia...

  4. Soft beams: When capillarity induces axial compression

    Science.gov (United States)

    Neukirch, S.; Antkowiak, A.; Marigo, J.-J.

    2014-01-01

    We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.

  5. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  6. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  7. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, Johan [Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Guldbrand, Stina [Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Evenbratt, Hanne [Pharmaceutical Technology, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg (Sweden); Kirejev, Vladimir; Ericson, Marica B., E-mail: marica.ericson@chem.gu.se [Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Grönbeck, Henrik [Department of Applied Physics, Chalmers University of Technology, Kemivägen 9, 412 96 Gothenburg (Sweden)

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  8. Self-assembly of α-6T Molecule on Ag(100) and Related STM Induced Luminescence

    Institute of Scientific and Technical Information of China (English)

    Liu-guo Chen; Chao Zhang; Rui Zhang; Zhen-chao Dong

    2011-01-01

    We have investigated the self-assembly and light emission properties of organic αsexithiophene (α-6T) molecules on Ag(100) under different coverage by scanning tunneling microscopy (STM).At very low coverage,the α-6T molecules form a unique enantiomer by grouping four molecules into a windmill supermolecular structure.As the coverage is increased,α-6T molecules tend to pack side by side into a denser stripe structure.Further increase of the coverage will lead to the layer-by-layer growth of molecules on Ag(100)with the lower-layer stripe pattern serving as a template.Molecular fluorescence for α-6T molecules on Ag(100) at a coverage of five monolayers has been detected by light excitations,which indicates a well decoupled electronic states for the top-layer α-6T molecules.However,the STM induced luminescent spectra for the same sample reveal only plasmonic-like emission.The absence of intramolecular fluorescence in this case suggests that the electronic decoupling is not a sufficient condition for generating photon emission from molecules.For intramolecular fluorescence to occur,the orientation of the dynamic dipole moment of molecules and the energy-level alignment at the molecule-metal interface are also important so that molecules can be effectively excited through efficient dipolar coupling with local plasmons and by injecting holes into the molecules.

  9. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    International Nuclear Information System (INIS)

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region

  10. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Van Veldhoven, E.; Maas, D.; Sadeghian, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope(AFM) probes by He+beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+beam during exposure to a PtC precursor gas. In the fina

  11. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the f

  12. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  13. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  14. Highly Nonlinear Luminescence Induced by Gold Nanoparticles on Glass Surfaces with Continuous-Wave Laser Illumination

    CERN Document Server

    Wu, Yong; Toro, Ligia; Stefani, Enrico

    2015-01-01

    We report on highly nonlinear luminescence being observed from individual spherical gold nanoparticles immobilized on a borosilicate glass surface and illuminated by continuous-wave (CW) lasers with relatively low power. The nonlinear luminescence shows optical super-resolution beyond the diffraction limit in three dimensions compared to the scatting of the excitation laser light. The luminescence intensity from most nanoparticles is proportional to the 5th--7th power of the excitation laser power and has wide excitation and emission spectra across the visible wavelength range. Strong nonlinear luminescence is only observed near the glass surface. High optical nonlinearity excited by low CW laser power is related to a long-lived dark state of the gold nanoparticles, where the excitation light is strongly absorbed. This phenomenon has potential biological applications in super-resolution and deep tissue imaging.

  15. Luminescence-induced noise in single photon sources based on BBO crystals

    Science.gov (United States)

    Machulka, Radek; Lemr, Karel; Haderka, Ondřej; Lamperti, Marco; Allevi, Alessia; Bondani, Maria

    2014-11-01

    Single-photon sources based on the process of spontaneous parametric down-conversion play a key role in various applied disciplines of quantum optics. We characterize the intrinsic luminescence of BBO crystals as a source of non-removable noise in quantum-optics experiments. By analysing its spectral and temporal properties together with its intensity, we evaluate the impact of luminescence on single-photon state preparation using spontaneous parametric down-conversion.

  16. In situ luminescence qualification of radiation damage in aluminas: F-aggregation and Al colloids

    Energy Technology Data Exchange (ETDEWEB)

    Malo, M., E-mail: marta.malo@ciemat.es; Moroño, A.; Hodgson, E.R.

    2014-10-15

    Highlights: •Correlation between IBIL and surface electrical degradation. •Potential to remotely monitor degradation of insulating materials. •Possibility for in situ recovery of the insulating properties by thermal annealing. -- Abstract: Recent work for in situ sequential measurement of ion beam induced luminescence and surface electrical conductivity has identified a correlation between surface electrical degradation and the luminescence for aluminas and sapphire during 45 keV He ion bombardment. Detailed measurements for the initial stages of degradation where rapid changes in the luminescence emission bands occur, have now identified processes related to oxygen vacancy (F centre) aggregation and aluminium colloid production as precursors to measurable surface electrical degradation in the irradiated region. This understanding enhances the possibility of using ion beam induced luminescence as a potential monitoring tool for material evolution and insulator surface degradation during irradiation, not only in ITER and future fusion devices, but also in present experimental reactor materials test programmes.

  17. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  18. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  19. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  20. Relativistic-electron-beam-induced fusion

    International Nuclear Information System (INIS)

    The interaction of a focussed relativistic electron beam (REB) with a solid target has been investigated. The beam performance of the REB generator ''REIDEN III'' is 500 kV, 80 kA at a focal spot of 1.5 mm diameter, which gives 2X1012Wcm-2. High-temperature dense plasmas are produced at the focal point on the solid target. It expands radially along the target surface. The measured electron temperature (1-2 keV) and the ion energy (approximately 2 keV) endorse the existence of enhanced REB absorption in a dense plasma. The neutrons observed (approximately 109/shot, 2.45 MeV) in the case of a CD2 target are of thermonuclear origin and compatible with the plasma temperature. On the assumption that the electron beam of radius r is stopped at a length Λ and deposits its energy, the energy balance equation is approximately given by πr2Λn1kT=IVtau. On inserting beam current I, voltage V, pulse time tau and density n1, the energy deposition distance Λ can be estimated. For a fusion temperature of 1 keV, the distance Λ must be two orders of magnitude shorter than the simple classical stopping length, which seems to be due to non-linear coupling. A pellet implosion experiment of a multi-structure target has been performed. (author)

  1. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B; Bednarek, M; Bellodi, G; Bracco, C; Bruce, R; Cerutti, F; Chetvertkova, V; Dehning, B; Granieri, P P; Hofle, W; Holzer, E B; Lechner, A; Del Busto, E Nebot; Priebe, A; Redaelli, S; Salvachua, B; Sapinski, M; Schmidt, R; Shetty, N; Skordis, E; Solfaroli, M; Steckert, J; Valuch, D; Verweij, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2015-01-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  2. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jung Park, Han; Diebold, Gerald J. [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxide concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.

  3. Stimulated luminescence of AlN ceramics induced by ultraviolet radiation

    DEFF Research Database (Denmark)

    Trinkler, L.; Bøtter-Jensen, L.; Christensen, P.;

    2001-01-01

    Properties of thermally stimulated luminescence (TL) and optically stimulated luminescence (OSL) of the ceramic material A1N-Y2O3 have been studied after exposure to ultraviolet radiation (UVR). The dosemeter material Al2O3 : C has been used for comparative measurements. The spectral sensitivity...... than that of Al2O3 : C in a broad spectral region. The possibility of using A1N-Y2O3 ceramic for UVR dosimetry is discussed. (C) 2001 Elsevier Science Ltd. All rights reserved....

  4. Laser-induced luminescence of singlet molecular oxygen: generation by drugs and pigments of biological importance

    Science.gov (United States)

    Egorov, Sergei Y.; Krasnovsky, Alexander A., Jr.

    1991-05-01

    The photon counting technique and flashlaser excitation were applied to the timeresolved measurement of photosensitized singlet oxygen luminescence in organic and aqueous media. The quantum yields for singlet oxygen generation have been measured in solutions of photosynthetic pigments synthetic and natural porphyrins porphyrins conjugated with monoclonal antibodies furocoumarins flavins fluorescein tetracycline and endogenous photosensitizers of human lens. The data obtained indicate that the measurement of the singlet oxygen luminescence is a reliable tool to study the photosensitizing activity of drugs and to elucidate primary mechanisms of photodynamic destruction. 1.

  5. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  6. Induced radioactivity of the IHEP proton synchrotron beam extraction equipment

    International Nuclear Information System (INIS)

    The measurement results of induced radioactivity of the beam extraction equipment during 1972-1978 are presented. All the values are given to the moment of the accelerator stop. The experimental data permits to predict further possible variations of the induced radioactivity levels of the equipment. Given are the measures required for reduction of the accelerator equipment irradiation, which are the following: 1) compensation of residual distortion of a closed beam orbit in the course of the induction system operation; 2) limitation of the intensity of drop on the internal targets up to the 11 protons per target level over a cycle; 3) putting into operation the program control system for the duration of a current pulse of a linear accelerator to minimize the beam residues at the 70 GeV energy during physical experiments; 4) construction of the system of beam interception and cutting-off to ensure effective energy suppression of uncontrolled beam residues and localization of their radiation effect; 5) extraction of a high-energy beam out of the accelerator during the experiments (e.g., into the neutrino channel for apparatus adjusting) instead of its dropping on the interceptor-target; 6) beam orbit controlling in the case of multiturn injection into the accelerator

  7. Beam-Induced Damage Mechanisms and their Calculation

    CERN Document Server

    Bertarelli, A

    2016-01-01

    The rapid interaction of highly energetic particle beams with matter induces dynamic responses in the impacted component. If the beam pulse is sufficiently intense, extreme conditions can be reached, such as very high pressures, changes of material density, phase transitions, intense stress waves, material fragmentation and explosions. Even at lower intensities and longer time-scales, significant effects may be induced, such as vibrations, large oscillations, and permanent deformation of the impacted components. These lectures provide an introduction to the mechanisms that govern the thermomechanical phenomena induced by the interaction between particle beams and solids and to the analytical and numerical methods that are available for assessing the response of impacted components. An overview of the design principles of such devices is also provided, along with descriptions of material selection guidelines and the experimental tests that are required to validate materials and components exposed to interactio...

  8. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar

    DEFF Research Database (Denmark)

    Guralnik, Benny; Li, Bo; Jain, Mayank;

    2015-01-01

    Optically stimulated luminescence (OSL) ages can determine a wide range of geological events or processes, such as the timing of sediment deposition, the exposure duration of a rock surface, or the cooling rate of bedrock. The accuracy of OSL dating critically depends on our capability to describ...

  9. Are laser-induced beams spin polarized?

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Markus; Lehrach, Andreas; Raab, Natascha [Institut fuer Kernphysik (IKP), Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Engin, Ilhan; Hessan, Mohammad Aziz [RWTH Aachen (Germany); Institut fuer Kernphysik (IKP), Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Gibbon, Paul; Karmakar, Anupam [Juelich Supercomputing Center (JSC), Forschungszentrum Juelich (Germany); Toncian, Monika; Toncian, Toma; Willi, Oswald [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet, Duesseldorf (Germany)

    2011-07-01

    The physics of laser-plasma interactions has undergone dramatic developments in recent years, both experimentally and in the theoretical understanding of high-brightness light and particle sources. However, it is a yet untouched issue whether the laser-generated particle beams are or can be spin-polarized and, thus, whether laser-based polarized sources are conceivable. A first measurement of the degree of polarization of laser-accelerated protons have recently been carried out at the Duesseldorf Arcturus Laser Facility where proton beams of typically 3 MeV were produced in foil targets. The results have been analysed with the help of particle-in-cell simulations to follow the generation of static magnetic field gradients ({proportional_to}100s of Megagauss per micron) in thin foil targets. As a next step, measurements with unpolarized H{sub 2} (for proton acceleration) and {sup 3}He gas (for {sup 3}He ions) are planned and, finally, pre-polarized {sup 3}He will be used.

  10. Nanopillar growth by focused helium ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping; Salemink, Huub W M; Alkemade, Paul F A [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Veldhoven, Emile van; Maas, Diederik J [TNO Science and Industry, Stieltjesweg 1, 2628 CK Delft (Netherlands); Sanford, Colin A [Carl Zeiss SMT, Inc., One Corporation Way, Peabody, MA 01960 (United States); Smith, Daryl A; Rack, Philip D, E-mail: p.f.a.alkemade@tudelft.nl [Department of Material Science and Engineering, University of Tennessee, Knoxville, TN 37996-2200 (United States)

    2010-11-12

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH{sub 3}){sub 3}Pt(C{sub P}CH{sub 3}) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

  11. Nanopillar growth by focused helium ion-beam-induced deposition

    International Nuclear Information System (INIS)

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3)3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

  12. Induced base transistor fabricated by molecular beam epitaxy

    Science.gov (United States)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  13. Coordination-Induced Syntheses of Two Hybrid Framework Iodides: A Thermochromic Luminescent Thermometer.

    Science.gov (United States)

    Zhang, Ren-Chun; Wang, Jun-Jie; Zhang, Jing-Chao; Wang, Meng-Qi; Sun, Min; Ding, Feng; Zhang, Dao-Jun; An, Yong-Lin

    2016-08-01

    Two new 3D hybrid framework iodides, Hmta[(Hmta)Ag4I4] (1; Hmta = hexamethylenetetramine) and [(Hmta)2Ag8I6]I2 (2), have been synthesized under solvothermal conditions. Compound 1 consists of a neutral 3D framework built up from alternation of the tetrahedral Ag4I4 unit and Hmta with dia-b topology. Compound 2 features a 3D cationic framework with flu topology, constructed by cationic [Ag8I6](2+) units linked with Hmta. Tetrahedral Hmta plays crucial structure-directing roles in the formation of these 3D frameworks with high symmetry. The temperature-dependent photoluminescent measurement reveals luminescent thermochromism of the compounds, the emission maximum of which shows a gradual blue shift with increasing temperature. The results indicate that 1 is a promising wavelength- and intensity-dependent luminescent thermometer applicable in two different temperature ranges. PMID:27438190

  14. Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study

    International Nuclear Information System (INIS)

    Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A

  15. Basic Studies on Radiation-Induced Luminescence from Natural Quartz and Its Application to Retrospective Dosimetry

    OpenAIRE

    Fujita, Hiroki; 藤田, 博喜

    2006-01-01

    It is very important to have a method of estimating radiation-dose received by people or irradiated in environmental space, without having or setting conventional dosemeters. However, dose evaluation method is not always established in the case of emergency situation. The purpose of this study was to confirm whether thermoluminescence (TL) and optically stimulated luminescence (OSL) from naturally occurring quartz could be used to estimate such accidental radiation doses or not. When ionizing...

  16. Protonation-induced red-coloured circularly polarized luminescence of [5]carbohelicene fused by benzimidazole.

    Science.gov (United States)

    Sakai, Hayato; Kubota, Takako; Yuasa, Junpei; Araki, Yasuyuki; Sakanoue, Tomo; Takenobu, Taishi; Wada, Takehiko; Kawai, Tsuyoshi; Hasobe, Taku

    2016-07-12

    Benzimidazole-fused [5]carbohelicene ([5]HeliBI) was newly synthesized to examine the spectroscopic and chiroptical properties. The reversible protonation and deprotonation processes of [5]HeliBI were successfully investigated using (1)H NMR, absorption and fluorescence spectral measurements. We also confirmed the circularly polarized luminescence of protonated [5]HeliBI (H(+)-[5]HeliBI). This is the first observation of red-coloured CPL of a helicene derivative. PMID:27319321

  17. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.;

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion...

  18. Fabrication of plasmonic nanostructures with electron beam induced deposition

    NARCIS (Netherlands)

    Acar, H.

    2013-01-01

    The work described in this thesis was shaped by the goal---coming up new approaches to fabricate plasmonic materials with electron beam induced deposition (EBID). One-step, bottom-up and direct-write are typical adjectives that are used to indicate the advantageous properties of this technique. Thes

  19. Sub-10 nm focused electron beam induced deposition

    NARCIS (Netherlands)

    Van Dorp, W.F.

    2008-01-01

    Work started with a critical review of literature from the past 70-odd years. The review shows that the physical processes occurring in EBID are generally well understood. By combining models for electron scattering in a solid and electron beam induced heating and knowledge of growth regimes, the ma

  20. Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate

    Science.gov (United States)

    Gourier, Didier; Bessière, Aurélie; Sharma, Suchinder. K.; Binet, Laurent; Viana, Bruno; Basavaraju, Neelima; Priolkar, Kaustubh R.

    2014-07-01

    ZnGa2O4:Cr3+ (ZGO:Cr) is a very bright persistent phosphor able to emit a near infrared light for hours following a UV (band to band excitation) or visible (Cr3 excitation) illumination. As such it serves as an outstanding biomarker for in vivo imaging. Persistent luminescence, due to trapping of electrons/holes at point defects, is studied here on a series of ZGO:Cr spinel compounds where the introduction of defects is controlled by varying the Zn/(Ga+Cr) nominal ratio during synthesis. Simulation of Electron Paramagnetic Resonance spectra revealed up to six types of Cr3+ ions with different neighboring defects and correlated to four emission lines in low temperature photoluminescence spectroscopy. Of particular importance, three EPR signals were attributed to Cr3+ with a pair of neighboring ZnGa' and GaZn0° antisite defects. They were identified to the emission line N2 that plays a key role in the persistent luminescence mechanism for both storage of visible excitation and persistent luminescence emission. A model is proposed whereby the local electric field at Cr3+ created by the two neighboring antisite defects triggers the electron-hole separation and trapping upon excitation of Cr3+. The process is equivalent to a photoinduced electron transfer from a donor (here ZnGa') to an acceptor (here GaZn0°) observed in some molecular systems.

  1. (AEDPH3)·(BtaH): a novel supramolecular plaster with formaldehyde adsorption and formaldehyde/ultraviolet ray-induced luminescence switching performance.

    Science.gov (United States)

    Chen, Shuo-ping; Hu, Le; Zhang, Yu-qin; Deng, Pu; Li, Cong; Chen, Xi; Yuan, Liang-jie

    2012-01-14

    A novel supramolecular plaster, (AEDPH(3))·(BtaH) (1), is synthesised and characterized. The supramolecular plaster is easy to synthesise and process, and displays good mechanical properties. It can adsorb and eliminate formaldehyde (HCHO) with high efficiency and exhibits very interesting HCHO/ultraviolet ray-induced luminescence switching.

  2. MgAl2O4 spinel: Synthesis, carbon incorporation and defect-induced luminescence

    Science.gov (United States)

    Raj, Sanu S.; Gupta, Santosh K.; Grover, V.; Muthe, K. P.; Natarajan, V.; Tyagi, A. K.

    2015-06-01

    The present work explores the synthesis of carbon-doped MgAl2O4 and investigates the effect of doping on the photophysical properties of MgAl2O4. Pure MgAl2O4 spinel was synthesized by gel combustion followed by annealing at 1100 °C. The carbon doping was performed by two methods. The first method involved heating the sample with electron beam (from electron gun) in graphite crucible (A) and second method involved heating the sample up to 2100 °C in graphite furnace (B). The photoluminescence spectroscopy exhibited defect-induced emissions with enhanced intensity in the case of sample B. A significant blue shift in the emission band was also observed in the case of sample B. The photoluminescence decay studies indicated that multiple trapping and detrapping events are experienced before the radiative recombination process, which eventually occurs. Average lifetime was observed to be 4.83 μs which is typical of defect-related emission. The results were complimented by electron paramagnetic resonance (EPR) technique. The CIE co-ordinates for sample B were found to be x = 0.231 and y = 0.227 which establish it as a blue-emitter.

  3. Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams

    International Nuclear Information System (INIS)

    The total momentum transfer from fast electron beams, like those employed in scanning transmission electron microscopy (STEM), to plasmonic nanoparticles is calculated. The momentum transfer is obtained by integrating the electromagnetic forces acting on the particles over time. Numerical results for single and dimer metallic nanoparticles are presented, for sizes ranging between 2 and 80 nm. We analyze the momentum transfer in the case of metallic dimers where the different relevant parameters such as particle size, interparticle distance, and electron beam impact parameter are modified. It is shown that depending on the specific values of the parameters, the total momentum transfer yields a force that can be either attractive or repulsive. The time-average forces calculated for electron beams commonly employed in STEM are on the order of piconewtons, comparable in magnitude to optical forces and are thus capable of producing movement in the nanoparticles. This effect can be exploited in mechanical control of nanoparticle induced motion.

  4. Short-living centers of color and luminescence in LiNbO3 crystals irradiated by pulsed electron beams

    International Nuclear Information System (INIS)

    Paper presents data on investigation into spectra of short-living optical absorption (SOA) and of luminescence inducted in lithium niobate crystals under pulsed electron irradiation (0.25 MeV, 20 ns, 15-160 mJ/Cm2) within 80-350 K temperature range. Within SOA spectra one distinguished anisotropic band with maximums at 1.6 and 4.0 eV resulting from capture of one or two conduction electrons for bunches (NbNb - NbLi) respectively as well as, slightly polarized bands at 2.5 and 3.3 eV caused by holes localized in Li and Nb vacancies. Cathodoluminescence (CL) of lithium niobate crystals is characterized by quick (τ < 4 ns) dying down. Variation of initial defect nature of crystal via their regeneration under 830 K is shown to result in similar for CL and for SOA variation of spectra

  5. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass

    Science.gov (United States)

    Zolotovskaya, S. A.; Tyrk, M. A.; Stalmashonak, A.; Gillespie, W. A.; Abdolvand, A.

    2016-10-01

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs’ surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

  6. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass.

    Science.gov (United States)

    Zolotovskaya, S A; Tyrk, M A; Stalmashonak, A; Gillespie, W A; Abdolvand, A

    2016-10-28

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios. PMID:27658641

  7. Electron beam induced surface activation of oxide surfaces for nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Vollnhals, Florian; Seiler, Steffen; Walz, Marie-Madeleine; Steinrueck, Hans-Peter; Marbach, Hubertus [Lehrstuhl fuer Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Woolcot, Tom; Thornton, Geoff [London Centre for Nanotechnology and Department of Chemistry, University College London (United Kingdom)

    2012-07-01

    The controlled fabrication of structures on the nanoscale is a major challenge in science and engineering. Direct-write techniques like Electron Beam Induced Deposition (EBID) were shown to be suitable tools in this context. Recently, Electron Beam Induced Surface Activation (EBISA) has been introduced as a new focused electron beam technique. In EBISA, a surface, e.g. SiO{sub 2}, is irradiated by a focused electron beam, resulting in an activation of the exposed area. The activated area can then react and decompose precursor gases like iron pentacarbonyl, Fe(CO){sub 5}. This leads to a primary deposit, which continues to grow autocatalytically as long as Fe(CO){sub 5} is supplied, resulting in pure (> 90 % at.), crystalline iron nanostructures. We expand the use of this concept by exploring EBISA to produce metallic nanostructures on TiO{sub 2}(110) in UHV; atomistic insight into the process is obtained via Scanning Tunneling Microscopy (STM) and chemical insight via Auger Electron Spectroscopy (AES).

  8. Quantitative Traits of Ion Beam Induced Mutagenesis in Triticum aestivum

    Institute of Scientific and Technical Information of China (English)

    Huan FANG; Zhen JIAO

    2012-01-01

    [Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of progenies derived from the same ion beam induced mutant were investigated. [Result] Morphological polymor- phism existed in some individuals. Plant height, spike length and protein content were significantly influenced by ion beam, and effective tiller number and wet gluten content were moderately influenced. Multiple comparisons of all the indices within groups indicated genomic instability among these groups. Coefficient of variation im- plied the differences within group were very low. [Conclusion] Ion beam irradiation displayed characteristics of multi-directivity and non-directiveness. It aroused multiple variations in the same mutant. Instability among progeny indicates cells had different fate even in the same irradiated tissue. It may take several generations for mutants to stabilize particular phenotypes. The effects of ion beam irradiation may be the in- terrelated direct irradiation damage, indirect irradiation damage and late effect, such as bystander effect and adaptive response.

  9. Limits for Beam Induced Damage: Reckless or too Cautious?

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Peroni, L; Scapin, M

    2011-01-01

    Accidental events implying direct beam impacts on collimators are of the utmost importance as they may lead to serious limitations of the overall LHC Performance. In order to assess damage threshold of components impacted by high energy density beams, entailing changes of phase and extreme pressures, state-of-the-art numerical simulation methods are required. In this paper, a review of the different dynamic response regimes induced by particle beams is given along with an indication of the most suited tools to treat each regime. Particular attention is paid to the most critical case, that of shock waves, for which standard Finite Element codes are totally unfit. A novel category of numerical tools, named Hydrocodes, has been adapted and used to analyse the consequences of an asynchronous beam abort on Phase 1 Tertiary Collimators (TCT). A number of simulations has been carried out with varying beam energy, number of bunches and bunch sizes allowing to identify different damage levels for the TCT up to catastr...

  10. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  11. Electron beam induced current in photovoltaics with high recombination

    OpenAIRE

    Haney, Paul M.; Yoon, Heayoung P.; Koirala, Prakash; Collins, Robert W.; Zhitenev, Nikolai B.

    2014-01-01

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Ideally, an EBIC measurement reflects the spatially resolved quantum efficiency of the device. In this work, a model for EBIC measurements is presented which applies when recombination within the depletion region is substantial. This model is motivated by cross-sectional EBIC experiments on CdS-CdTe photovoltaic cells which show th...

  12. A critical literature review of focused electron beam induced deposition

    Science.gov (United States)

    van Dorp, W. F.; Hagen, C. W.

    2008-10-01

    An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally

  13. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    Science.gov (United States)

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  14. Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5

    International Nuclear Information System (INIS)

    Usually, Sm2+ ions could be reduced by heating the materials in reducing atmospheres. Exposure to ionizing radiations is also known to cause Sm3+→Sm2+ conversion. In this work, BaBPO5 doped with the samarium ion was prepared by high temperature solid-state reaction. Sm2+ ions were obtained by two different reduction methods, i.e., heating in H2 reduced atmosphere and X-ray irradiation. The measurements of X-ray diffraction (XRD), and scanning electron microscope (SEM) were investigated. It is found that the conversion of Sm3+→Sm2+ is very efficient in BaBPO5 hosts after X-ray irradiation. Sm2+ ions under these two reduction methods exhibit different characteristics that were studied by measurements of luminescence and decay. The results showed that the luminescence properties of Sm2+ ions in BaBPO5 were highly dependent on the sample preparation conditions. - Graphical abstract: The Sm doped in BaBPO5 as-prepared in air contains only Sm3+ ions and shows its fluorescence bands due to the 4G5/2 to 6H5/2, 6H7/2, 6H9/2, and 6H11/2 transitions (a) under the excitation of 488 nm Ar+-ion laser. The emission spectra of the samples after X-ray subsequentially irradiations are characteristic of Sm2+ transitions between the energy levels of 4f6 electronic configurations (b). It is found that the conversion of Sm3+→Sm2+ is very efficient in BaBPO5 hosts after X-ray irradiation

  15. Change of silica luminescence due to fast hydrogen ion bombardment

    Directory of Open Access Journals (Sweden)

    Zhurenko Vitaliy P.

    2015-06-01

    Full Text Available This paper deals with the luminescence of silica (KV-type induced by beam of hydrogen ions with the energy of 210 keV per nucleon. An average implantation dose of up to 3.5 × 1021 cm−3 (5 × 1010 Gy was accumulated during irradiation over an extended period. The luminescent spectra consisted of the blue band (maximum at 456 nm and the red band (650 nm in the visible range. It was shown that increase in the absorption dose had an effect on the silica luminescence. It was found that the most significant changes in the spectrum occurred during the dose accumulation in the region of 550–700 nm. The shape of the spectrum of the luminescent radiation in this wavelength range was affected both by the oxygen deficient centres (blue band and non-bridging oxygen hole centers (red band. Mathematical processing of the experimental spectra permitted to identify contributions to the luminescent radiation coming from both types of defects.

  16. Semiconductor characterization by scanning ion beam induced charge (IBIC) microscopy

    CERN Document Server

    Vittone, E; Olivero, P; Manfredotti, C; Jaksic, M; Giudice, A Lo; Fizzotti, F; Colombo, E

    2016-01-01

    The acronym IBIC (Ion Beam Induced Charge) was coined in early 1990's to indicate a scanning microscopy technique which uses MeV ion beams as probes to image the basic electronic properties of semiconductor materials and devices. Since then, IBIC has become a widespread analytical technique to characterize materials for electronics or for radiation detection, as testified by more than 200 papers published so far in peer-reviewed journals. Its success stems from the valuable information IBIC can provide on charge transport phenomena occurring in finished devices, not easily obtainable by other analytical techniques. However, IBIC analysis requires a robust theoretical background to correctly interpret experimental data. In order to illustrate the importance of using a rigorous mathematical formalism, we present in this paper a benchmark IBIC experiment aimed to test the validity of the interpretative model based on the Gunn's theorem and to provide an example of the analytical capability of IBIC to characteriz...

  17. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.;

    atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far......The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...

  18. Application of cold beam of atoms and molecules for studying luminescence of oxygen atoms stimulated by metastable helium

    International Nuclear Information System (INIS)

    We describe a method for creating a high flux beam of cold atoms and molecules. By using this beam method, spectroscopic studies of the afterglow of oxygen-helium gas mixtures at cryogenic temperatures were performed. The cooling by helium vapor of a helium jet containing trace amounts of oxygen after passing through a radiofrequency discharge zone led to the observation of strong emissions from atomic oxygen. The effect results from the increased efficiency of energy transfer from metastable helium atoms and molecules to the atomic oxygen in the cold dense helium vapor. The effect might find application for the detection of small quantities of impurities in helium gas as well as possible laser action

  19. Mapping ion beam induced current changes in a commercial MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.D.C.; Thompson, S.; Yang, C. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Jamieson, D.N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2011-10-15

    We demonstrate a novel nuclear microprobe imaging and analysis modality for micrometre-scale field effect transistor devices probed with focused beams of MeV ions. By recording the drain current as a function of time during ion irradiation it is possible to identify current transients induced by the passage of single ions through the sensitive structures of the device. This modality takes advantage of the fact that the ionization produced by the passage of a single ion acts in an equivalent way to a transient change in the gate bias which therefore modulates the drain current as a function of time. This differs from the traditional ion beam induced charge technique where the ionization drifts in an internal electric field and induces a single charge pulse in an electrode applied to the device. Instead a richer variety of phenomena are observed, with different time constants which depend on the proximity of the ion strike to the channel of the device. The signals may be used to examine device function, radiation sensitivity or to count ion impacts within the channel.

  20. Bimetallic Au2 Cu6 Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species.

    Science.gov (United States)

    Kang, Xi; Wang, Shuxin; Song, Yongbo; Jin, Shan; Sun, Guodong; Yu, Haizhu; Zhu, Manzhou

    2016-03-01

    The concept of aggregation-induced emission (AIE) has been exploited to render non-luminescent Cu(I) SR complexes strongly luminescent. The Cu(I) SR complexes underwent controlled aggregation with Au(0) . Unlike previous AIE methods, our strategy does not require insoluble solutions or cations. X-ray crystallography validated the structure of this highly fluorescent nanocluster: Six thiolated Cu atoms are aggregated by two Au atoms (Au2 Cu6 nanoclusters). The quantum yield of this nanocluster is 11.7 %. DFT calculations imply that the fluorescence originates from ligand (aryl groups on the phosphine) to metal (Cu(I) ) charge transfer (LMCT). Furthermore, the aggregation is affected by the restriction of intramolecular rotation (RIR), and the high rigidity of the outer ligands enhances the fluorescence of the Au2 Cu6 nanoclusters. This study thus presents a novel strategy for enhancing the luminescence of metal nanoclusters (by the aggregation of active metal complexes with inert metal atoms), and also provides fundamental insights into the controllable synthesis of highly luminescent metal nanoclusters. PMID:26890334

  1. Laser-Induced Luminescence Study of Samarium(III) Thiodiglycolate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Yong; Lee, Eil Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kimura, Takaumi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    2003-09-15

    The hydration number of Sm(III) has been obtained by using the difference in the decay rate constants in H{sub 2}O and D{sub 2}O solutions. In general, k{sub obs}(H{sub 2}O) >> k{sub obs}(D{sub 2}O), k{sub obs}(D{sub 2}O) ≅ constant, and ligands are not as effective in causing non-radiative de-excitation of the excited state. For Sm(III), a relationship has been proposed in which the hydration number is related directly to the decay rate constant in H{sub 2}O. If there is no contribution from the ligand to the de-excitation of the luminescence excited state, the hydration of Sm(III) in the different complexes can be obtained directly from the values of k{sub obs} measured in H{sub 2}O. The number and the geometric distribution of solvent molecules around a metal ion in solution are an important factor in the structural and chemical behavior of cation. Indeed, such information has been utilized to design novel ionophores and receptors. However, there have been few studies of hydration structure for lanthanides. The fact that many f-element salts which have relatively large lattice energies are fairly soluble in water is a reflection of the strength of the interactions between the metal cations and water molecules.

  2. Industrial perspective on focused electron beam-induced processes

    Energy Technology Data Exchange (ETDEWEB)

    Bret, Tristan; Hofmann, Thorsten; Edinger, Klaus [Betriebsstaette Rossdorf, Carl Zeiss SMS GmbH, Rossdorf (Germany)

    2014-12-15

    After a short overview of the historical developments of the technique of gas-assisted focused electron beam-induced processing (mostly deposition and etching), this paper deals with the applications of this technology to photolithographic mask repair. A commented list of results is shown on different mask types, for different types of defects, and at different node generations. The scope of this article is double: summarize the state of the art in a fast-paced highly specific industrial environment driven by ''Moore's law'' and feedback to academic researchers some technologically relevant directions for further investigations. (orig.)

  3. Volume changes in glass induced by an electron beam

    International Nuclear Information System (INIS)

    Three glasses (float, borosilicate float and Schott D263 glasses) were irradiated by 50 keV electron beams with doses within the range of 0.21–318.5 kC/m2. Volume changes induced by electron bombarding were monitored by means of Atomic Force Microscopy. Incubation doses, related to mobility of alkali ions, were measured. Low doses showed compaction of all glasses while higher doses revealed volume inflation, except for borosilicate float glass. Both surfaces of float glass were irradiated and significant differences between them were found

  4. Rapid ion-beam-induced Ostwald ripening in two dimensions

    International Nuclear Information System (INIS)

    Ion-beam-induced grain coarsening in initially amorphous (Zr,Y)Ox layers is observed by atomic force microscopy. The films were bombarded at room temperature. Grain-boundary grooves indicate that the larger grains have a diameter of about 83 nm at 2 min, and 131 nm at 5 min. Up to 5 min, the grain size evolves with time as tβ, with β=0.5±0.2. Based on a new parametrization of ion-induced grain-boundary translation, we derive a theoretical estimate of β=3/7, consistent with our measurement. By 7.5 min, many of the grain-boundary grooves are shallow and indistinct, suggesting that the surviving grains are mutually well aligned. Such rapid grain growth at room temperature is unusual and is enabled by the ion bombardment. Similar grain growth processes are expected during ion-beam-assisted deposition film growth. The status of ion-textured yttria stabilized zirconia films as buffer layers for high-current high-temperature superconducting films is briefly summarized

  5. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    Science.gov (United States)

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

  6. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    Science.gov (United States)

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage. PMID:27336595

  7. Photopolymerization-Induced Two-Beam Coupling and Light-Induced Scattering in Polymethyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; GAO Feng; TANG Bai-Quan; Christian Pruner; ZHANG Xin-Zheng; SHI Yan-Li; XU Jing-Jun; QIAO Hai-Jun; WU Qiang; Romano A. Rupp; LOU Ci-Bo; WANG Zhen-Hua

    2008-01-01

    @@ Light amplification due to two-beam coupling is realized in doped polymethyl methacrylate (PMMA) glasses. A coupling gain as large as 14 cm-1 is obtained. The dynamic behaviour of absorption and light-induced scattering due to the process of photopolymerization are also studied. The results show that the amplification and its dynamic process enable possible applications of PMMA in optical devices.

  8. Comparison of luminescence spectra of natural spodumene under KrCl laser and e-beam excitation

    International Nuclear Information System (INIS)

    Spectral characteristics of pulsed photoluminescence (PL) and pulsed cathodoluminescence (PCL) of a natural spodumene were investigated. PL was excited by laser radiation at 222 nm with pulse duration of 10 ns at FWHM. PCL was excited by electron beams with pulse duration from 0.1 up to 4 ns and with current densities of 40-200 A/cm2. There was a dominant broad band at 600 nm due to the manganese impurity in PCL spectra. But in PL spectra, the orange band had the intensity comparable with intensities of intrinsic defect bands. At sample cooling by liquid nitrogen, the intensity of orange band in the PCL spectrum increased by two times and the short-wave shoulder of the band reduced

  9. THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.

    Energy Technology Data Exchange (ETDEWEB)

    RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

    2007-06-25

    A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

  10. Beam-induced backgrounds in detectors at the ILC

    International Nuclear Information System (INIS)

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 1034 cm-2s-1 in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  11. Beam-induced backgrounds in detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Adrian

    2008-11-15

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10{sup 34} cm{sup -2}s{sup -1} in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  12. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  13. Luminescence Study of Structural-Changes Induced by Laser Cutting in Diamond Films

    OpenAIRE

    Cremades Rodríguez, Ana Isabel; Piquiras, J.

    1995-01-01

    The effect of laser cutting on the structure of a chemical vapor deposited diamond film has been investigated by cathodoluminescence (CL) in the scanning electron microscope. The variation of particle morphology and CL spectra as a function of the distance to the cutting edge is described and possible laser induced structural changes are discussed. At the damaged region total CL emission increases and nitrogen-vacancy centers are detected.

  14. Efficient manganese luminescence induced by Ce3+-Mn2+ energy transfer in rare earth fluoride and phosphate nanocrystals

    Directory of Open Access Journals (Sweden)

    Ding Yun

    2011-01-01

    Full Text Available Abstract Manganese materials with attractive optical properties have been proposed for applications in such areas as photonics, light-emitting diodes, and bioimaging. In this paper, we have demonstrated multicolor Mn2+ luminescence in the visible region by controlling Ce3+-Mn2+ energy transfer in rare earth nanocrystals [NCs]. CeF3 and CePO4 NCs doped with Mn2+ have been prepared and can be well dispersed in aqueous solutions. Under ultraviolet light excitation, both the CeF3:Mn and CePO4:Mn NCs exhibit Mn2+ luminescence, yet their output colors are green and orange, respectively. By optimizing Mn2+ doping concentrations, Mn2+ luminescence quantum efficiency and Ce3+-Mn2+ energy transfer efficiency can respectively reach 14% and 60% in the CeF3:Mn NCs.

  15. Focused electron beam induced deposition of magnetic nanostructures

    Science.gov (United States)

    de Teresa, Jose M.

    2011-03-01

    Nanopatterning strategies of magnetic materials normally rely on standard techniques such as electron-beam lithography using electron-sensitive resists. Focused electron beam induced deposition (FEBID) is currently being investigated as an alternative single-step route to produce functional magnetic nanostructures. Thus, Co-based and Fe-based precursors have been recently investigated for the growth of magnetic nanostructures by FEBID. In the present contribution, I will give an overview of the existing literature on magnetic nanostructures by FEBID and I will focus on the growth of Co nanostructures by FEBID using Co 2 (CO)8 as precursor gas. The Co content in the nanostructures can reach 95%. Magnetotransport experiments indicate that full metallic behaviour is displayed with relatively low residual resistivity and standard anisotropic magnetoresistance (0.8%). The coercive field of nanowires with changing aspect ratio has been determined in nanowires with width down to 150 nm by means of Magneto-optical Kerr Effect and the magnetization reversal has been imaged by means of Magnetic Force Microscopy, Scanning Transmission X-ray Microscopy as well as Lorentz Microscopy experiments. Nano-Hall probes have been grown with remarkable minimum detectable magnetic flux. Noticeably, it has been found that the domain-wall propagation field is lower than the domain-wall nucleation field in L-shaped nanowires, with potential applications in magnetic logic, sensing and storage. The spin polarization of these Co nanodeposits has been determined through Andreev-Reflection experiments in ferromagnetic-superconducting nanocontacts and amounts to 35%. Recent results obtained in Fe-based nanostructures by FEBID using Fe 2 (CO)9 precursor will be also presented. I acknowledge the collaboration in this field with A. Fernandez-Pacheco, R. Cordoba, L. Serrano, S. Sangiao, L.A. Rodriguez, C. Magen, E. Snoeck, L. Morellon, M.R. Ibarra.

  16. The effect of laser beam size on laser-induced damage performance

    Institute of Scientific and Technical Information of China (English)

    Han Wei; Wang Fang; Zhou Li-Dan; Feng Bin; Jia Huai-Ting; Li Ke-Yu; Xiang Yong; Zheng Wan-Guo

    2012-01-01

    The influence of laser beam size on laser-induced damage performance,especially damage probability and the laser-induced damage threshold (LIDT),is investigated.It is found that damage probability is dependent on beam size when various damage precursors with different potential behaviors are involved.This causes the damage probability and the LIDT to be different between cases under a large-aperture beam and a small-aperture beam.Moreover,the fluence fluctuation of the large-aperture laser beam brings out hot spots,which move randomly across the beam from shot to shot.Thus this leads the most probable maximum fluence after many shots at any location on the optical component to be several times the average beam fluence.These two effects result in the difference in the damage performance of the optical component between the cases under a large-aperture and small-aperture laser.

  17. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  18. Monte Carlo modeling of ion beam induced secondary electrons.

    Science.gov (United States)

    Huh, U; Cho, W; Joy, D C

    2016-09-01

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10-100keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. PMID:27337603

  19. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    International Nuclear Information System (INIS)

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes

  20. Colloidal luminescent silicon nanorods.

    Science.gov (United States)

    Lu, Xiaotang; Hessel, Colin M; Yu, Yixuan; Bogart, Timothy D; Korgel, Brian A

    2013-07-10

    Silicon nanorods are grown by trisilane decomposition in hot squalane in the presence of tin (Sn) nanocrystals and dodecylamine. Sn induces solution-liquid-solid nanorod growth with dodecylamine serving as a stabilizing ligand. As-prepared nanorods do not luminesce, but etching with hydrofluoric acid to remove residual surface oxide followed by thermal hydrosilylation with 1-octadecene induces bright photoluminescence with quantum yields of 4-5%. X-ray photoelectron spectroscopy shows that the ligands prevent surface oxidation for months when stored in air. PMID:23731184

  1. High-power, electron beam-induced switching in diamond

    International Nuclear Information System (INIS)

    The authors are developing a high-voltage, high-average-power, electron beam-controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron beam-controlled, thin film diamond could switch, with high efficiency, well over 100 kW average power at MHz frequencies greater than 5kV. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. The authors' electron beam penetration-depth measurements agree with their Monte Carlo calculations. They have not observed electron beam damage in diamond for beam energies up to 150 keV. This report describes their experimental and calculational results and research objectives

  2. Temperature behaviour of photoluminescence and electron-beam-induced current recombination behaviour of extended defects in solar grade silicon

    CERN Document Server

    Arguirov, T; Kittler, M; Reif, J

    2002-01-01

    The temperature dependence of D-band and band-to-band (BB) luminescence was measured in EFG samples between 80 K and room temperature for defects/dislocations presenting different amounts of contamination. The contamination density was estimated from the temperature behaviour of the electron-beam-induced current contrast, ranging between about 10 sup 4 and 10 sup 6 impurities cm sup - sup 1 dislocation length. The D1 line became already visible at room temperature but its intensity was found to exhibit a maximum at about 150 K. D2, D3 and D4 start to show up at about 250, 190 and 170 K, respectively, and increase their intensities upon lowering temperature. At room temperature the width of the D1 line is broad and becomes narrower upon lowering the temperature. D2 shows the opposite behaviour. The intensities of D1 and D2 were observed to show strong variations across the sample, whereas this was not observed for the pair D4/D3. In particular, the origin of the lines D1 and D2 is still far from being understo...

  3. Beam-Induced Deposition of Thin Metallic Films.

    Science.gov (United States)

    Funsten, Herbert Oliver, III

    1990-01-01

    Ion and electron beam induced deposition (BID) of thin (1 μm), conductive films is accomplished by dissociating and removing the nonmetallic components of an adsorbed, metal-based, molecular gas. Current research has focused primarily on room temperature (monolayer adsorption) BID using electrons and slow, heavy ions. This study investigates low temperature (50 to 200 K) BID in which the condensation of the precursor gases (SnCl _4 and (CH_3) _4Sn) maximizes the efficiency of the incident radiation which can create and remove nonmetallic fragments located several monolayers below the film surface. The desired properties of the residual metallic films are produced by using as incident radiation either nuclear (35 keV Ar ^+) or electronic (2 keV electrons, 25 keV H^+, or 50 keV H ^+) energy loss mechanisms. Residual films are analyzed ex situ by Scanning Electron Microscopy (SEM), thickness measurements, resistivity measurements, Rutherford Backscattering Spectroscopy (RBS), and infrared spectroscopy. Low temperature BID film growth models, which are derived from both a computer simulation and a mathematical analysis, closely agree. Both the fragmentation and sputtering cross sections for a particular ion and energy are derived for films created from (CH_3) _4Sn. The fragmentation cross section, which corresponds to film growth, is roughly related to the electronic stopping power by the 1.9 power. The loss of carbon in films which were created from (CH_3) _4Sn is strongly dependent on the nuclear stopping power. Film growth rates for low temperature BID have been found to be 10 times those of room temperature BID.

  4. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  5. Luminescent screens

    International Nuclear Information System (INIS)

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  6. Localization induced intense red upconversion luminescence in monodispersed K3ZrF7:Yb3+/Er3+ nanocrystals

    Science.gov (United States)

    Luo, Wenqin; Wu, Haiyan; Li, Bin

    2016-08-01

    There are increasing demands for upconversion (UC) nanocrystals since they are found to have important applications in the field of bio-imaging. Herein, novel monodispersed Yb3+/Er3+ co-doped K3ZrF7 nanocrystals with tunable sizes of 6-30 nm were prepared by high temperature co-precipitation method. Intense UC emission of Er3+ with large red to green ratio was obtained under the excitation of 980 nm-laser due to the cation localization effects. The UC luminescent lifetimes of 4S3/2 and 4F9/2 were determined to be 0.137 and 0.217 ms, respectively. At last, the possible upconversion mechanism was proposed basing on the pump power dependent UC luminescence experiments.

  7. Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes.

    Science.gov (United States)

    Semin, S; van Etteger, A; Cattaneo, L; Amdursky, N; Kulyuk, L; Lavrov, S; Sigov, A; Mishina, E; Rosenman, G; Rasing, Th

    2015-03-01

    Diphenylalanine peptide nano- and microtubes formed by self-assembly demonstrate strongly enhanced and tunable single-photon and two-photon luminescence in the visible range, which appears after heat- or laser treatment of these self-organized peptide microtubes. This process significantly extends the functionality of these microstructures and can trigger a new interest in the optical properties of structures based on short peptides. PMID:25074710

  8. Effect of hydrogenation on the luminescence evolution of GaN under low energy electron beam irradiation%氢化作用对低能电子束辐照下GaN发光演变的影响

    Institute of Scientific and Technical Information of China (English)

    王彦; 沈波; Dierre Benjamin; Sekiguchi Takashi; 许福军

    2009-01-01

    Luminescence evolution of GaN irradiated by low energy electron beam before and after hydrogenation has been investigated by means of cathodoluminescence (CL), in connection with the diffusion properties of hydrogen in GaN. It is found that under low energy electron beam irradiation, the band to band emission of GaN shows a decrease before hydrogenation, while it shows an initial increase and a subsequent decrease after hydrogenation, and the decrease after hydrogenation is relatively weak. Moreover, there is no luminescence recovery in 20 hours after the first irradiation after hydrogenation. The experimental results indicate a luminescence enhancement effect of hydrogen by passivating certain defects in GaN. However, such effect must be realized by overcoming high migration barrier in GaN. In the experiments, low energy electron beam supports enough energy to hydrogen to diffuse and passivate defects in CaN. These results show strongly the importance of diffusion of hydrogen in the passivation process in semiconductors.%结合氢在GaN中的扩散特性,运用阴极荧光(CL)谱,对氢化前后低能电子束辐照下GaN带边发光强度的演变进行了研究.实验发现,氢化前GaN在低能电子束辐照下带边发光强度呈现衰减的趋势,而氢化后带边发射强度先上升后衰减,而且氢化后的衰减比氢化前弱.1 h辐照过程中,氢化后GaN带边发光强度的变化比氢化前要小很多.另外,实验中发现经过氢化处理的GaN在辐照后20 h内没有观察到带边发射强度的恢复.研究表明氢原子在GaN中可以钝化缺陷来增强发光,但这种钝化缺陷的作用必须通过克服高的扩散势垒来实现,而低能电子束可以提供足够的能量使得氢原子克服扩散势垒来实现钝化作用.研究实验充分证明了氢的扩散是GaN中实现氢钝化作用的一个重要前提.

  9. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  10. Detecting Thermal Barrier Coating Delamination Using Visible and Near-Infrared Luminescence from Erbium-Doped Sublayers

    Science.gov (United States)

    Eldridge, J. I.; Bencic, T. J.; Martin, R. E.; Singh, J.; Wolfe, D. E.

    2007-01-01

    Nondestructive diagnostic tools are needed to monitor early stages of delamination progression in thermal barrier coatings (TBCs) because the risk of delamination induced coating failure will compromise engine performance and safety. Previous work has demonstrated that for TBCs composed of yttria-stabilized zirconia (YSZ), luminescence from a buried europium-doped sublayer can be utilized to identify the location of TBC delamination from the substantially higher luminescence intensity observed from the delaminated regions of the TBC. Luminescence measurements from buried europium-doped layers depend on sufficient transmittance of the 532 nm excitation and 606 nm emission wavelengths through the attenuating undoped YSZ overlayer to produce easily detected luminescence. In the present work, improved delamination indication is demonstrated using erbium-doped YSZ sublayers. For visible-wavelength luminescence, the erbium-doped sublayer offers the advantage of a very strong excitation peak at 517 nm that can be conveniently excited a 514 nm Ar ion laser. More importantly, the erbium-doped sublayer also produces near-infrared luminescence at 1550 nm that is effectively excited by a 980 nm laser diode. Both the 980 nm excitation and the 1550 nm emission are transmitted through the TBC with much less attenuation than visible wavelengths and therefore show great promise for delamination monitoring through thicker or more highly scattering TBCs. The application of this approach for both electron beam physical vapor deposited (EB-PVD) and plasma-sprayed TBCs is discussed.

  11. Limitations and design considerations for donor-acceptor systems in luminescent solar concentrators: the effect of coupling-induced red-edge absorption

    Science.gov (United States)

    MacQueen, Rowan W.; Tayebjee, Murad J. Y.; Webb, James E. A.; Falber, Alexander; Thordarson, Pall; Schmidt, Timothy W.

    2016-06-01

    Luminescent solar concentrators (LSCs) use luminescence and waveguiding to concentrate photons within thin dielectric slabs for use in photovoltaic, lighting, and photobioreactor applications. Donor-acceptor systems of organic chromophores are widely used in LSCs to broaden the sunlight absorption range and attempt to reduce loss-inducing reabsorption by the emitting chromophore. We use raytrace simulations across a large parameter space to model the performance of LSCs containing two novel donor-acceptor trimers based on the perylene moiety. We find that under certain conditions, trimers outperform single-dye LSCs as expected. However, at higher concentrations, a slight increase in red-edge absorption by the trimers increases reabsorption and has a deleterious effect on LSC performance. This underscores the large effect that even small changes in the red edge can have, and may discourage the use of donor-acceptor schemes with high interchromophore coupling that promotes red-edge absorption. Finally, we show that for a LSC-PV pair, selecting a PV cell that is well-matched with the LSC emission spectrum has a large effect on the flux gain of the system, and that the systems studied here are well-matched to emerging PV technologies.

  12. STUDY OF THE BEAM INDUCED RADIATION IN THE CMS DETECTOR AT THE LARGE HADRON COLLIDER

    CERN Document Server

    Singh, Amandeep P; Mokhov, Nikolai; Beri, Suman Bala

    2009-01-01

    point, are most vulnerable to beam-induced radiation. We have recently carried out extensive monte carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton-proton collisions at $\\sqrt s $=14 TeV and from machine induced background such as beam-gas interactions and beam-halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detec...

  13. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  14. Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Michio, E-mail: okada@chem.sci.osaka-u.ac.j, E-mail: mokada@cw.osaka-u.ac.j [Renovation Center of Instruments for Science Education and Technology, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 and 1-2 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2010-07-07

    I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams suggest that the translational energy of the incident molecules plays a significant role. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths, and to develop new methods for the fabrication of thin films. Oriented molecular beams also demonstrate the possibility for controlling surface chemical reactions by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of achieving material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for creating new materials on surfaces with well-controlled chemical reactions. (topical review)

  15. The importance of inversion disorder in the visible light induced persistent luminescence in Cr$^{3+}$ doped AB$_2$O$_4$ (A = Zn or Mg and B = Ga or Al)

    OpenAIRE

    Basavaraju, Neelima; Priolkar, K. R.; Gourier, Didier; Sharma, Suchinder K.; Bessiere, Aurelie; Viana, Bruno

    2014-01-01

    Cr$^{3+}$ doped spinel compounds AB$_2$O$_4$ with A=Zn, Mg and B=Ga, Al exhibit a long near infrared persistent luminescence when excited with UV or X-rays. In addition, persistent luminescence of ZnGa$_2$O$_4$ and to a lesser extent MgGa$_2$O$_4$, can also be induced by visible light excitation via $^4$A$_2$ $ \\rightarrow $ $^4$T$_2$ transition of Cr$^{3+}$, which makes these compounds suitable as biomarkers for in vivo optical imaging of small animals. We correlate this peculiar optical pro...

  16. Turbulence-induced persistence in laser beam wandering

    CERN Document Server

    Zunino, Luciano; Funes, Gustavo; Pérez, Darío G

    2015-01-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  17. Turbulence-induced persistence in laser beam wandering.

    Science.gov (United States)

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere. PMID:26125388

  18. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    Science.gov (United States)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  19. Temperature dependence of gamma ray induced luminescence of ethanolamine based liquid scintillator between 212 and 273 K

    International Nuclear Information System (INIS)

    The luminescence response of ethanolamine based liquid scintillator (Ethanolamine + 1g/l Butyle PBD + 0.1g/l BBOT) has been investigated as a function of temperature in the range 212-273 K. It has been observed that under gamma excitation the scintillation efficiency increases by a factor of 1.37 with decrease in temperature. The data obtained conforms to Arrhenius relation in which activation energy of rate process (.20 ev) is typical for thermal activated diffusion controlled process. (author)

  20. Coherent detection of THz waves based on THz-induced time-resolved luminescence quenching in bulk gallium arsenide.

    Science.gov (United States)

    Chu, Zheng; Liu, Jinsong; Wang, Kejia

    2012-05-01

    A kind of photoluminescence quenching, in which the time-resolved photoluminescence is modulated by a THz pulse, has been theoretically investigated by performing the ensemble Monte Carlo method in bulk gallium arsenide (GaAs) at room temperature. The quenching ratio could reach up to 50% under a strong THz field (100  kV/cm). The range in which luminescence quenching is linearly proportional to the THz field could be over 60  kV/cm. On the basis of these results, a principle for THz modulation and coherent detection is proposed. PMID:22555695

  1. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  2. Laser-induced time-resolved luminescence of natural sillimanite Al{sub 2}SiO{sub 5} and synthetic Al{sub 2}SiO{sub 5} activated by chromium

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M., E-mail: michaelg@laserdetect.com [Laser Distance Spectrometry Company (LDS), Petach Tikva (Israel); Strek, W. [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Nagli, L. [Laser Distance Spectrometry Company (LDS), Petach Tikva (Israel); Panczer, G. [Physical Chemistry of Luminescence Materials Laboratory, Lyon 1 University, UMR 5620 CNRS, Villeurbanne (France); Rossman, G.R. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125-2500 (United States); Marciniak, L. [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)

    2012-11-15

    Luminescence of natural sillimanite Al{sub 2}SiO{sub 5} was studied by a laser-induced time-resolved technique combined with absorption spectroscopy. It was found that two red broad emission bands are connected to Fe{sup 3+} and Cr{sup 3+} luminescence centers. Chromium participation in luminescence was proved by the study of synthetic sillimanite activated by Cr. Several narrow emission lines have been found which were preliminary ascribed to Mn{sup 4+} and V{sup 2+} luminescence centers. - Highlights: Black-Right-Pointing-Pointer We studied luminescence centers in natural sillimanite by time-resolved technique Black-Right-Pointing-Pointer We proved Cr{sup 3+} emission by the study of artificial sillimanite activated by Cr Black-Right-Pointing-Pointer We proved that broad red emission band with long decay is connected to Fe{sup 3+} Black-Right-Pointing-Pointer We substantiate that narrow emission lines are connected to Mn{sup 4+} and V{sup 2+}.

  3. Beam induced electron cloud resonances in dipole magnetic fields

    Science.gov (United States)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  4. Luminescence induced by dehydration of kaolin - Association with electron-spin-active centers and with surface activity for dehydration-polymerization of glycine

    Science.gov (United States)

    Coyne, L.; Hovatter, W.; Sweeney, M.

    1983-01-01

    Experimental data concerning emission of light upon dehydration as a function of preheating and pre-gamma-irradiation are correlated with reported studies of electron-spin resonance (ESR) activity after similar pretreatments. The effect of these pretreatments on the kaolin-promoted incorporation of glycine into peptide oligomers in a wet/cold, hot/dry fluctuating environment is compared to their effect on the ESR and luminescent signals. The existence of spectroscopically active centers appears to be loosely anticorrelated with reaction yield; these yields are increased by increasing the overall energy content of the material. It is concluded that some part of the chemical yield is produced by a mechanism involving intrinsic, excited electronic states of the clay crystal lattice. These states may be derived from thermally, interfacially, and/or mechanically induced charge reorganization within interspersed energy levels in the band structure of the material.

  5. Transparency induced by two photon interference in a beam splitter

    Institute of Scientific and Technical Information of China (English)

    Wang Kai-Ge; Yang Guo-Jian

    2004-01-01

    We propose a special two-photon state which is completely transparent in a 50/50 beam splitter. This effect is caused by the destructive two-photon interference and shows the signature of photon entanglement. We find that the symmetry of the two-photon spectrum plays the key role for the properties of two-photon interference.

  6. Beam induced deposition of platinum using a helium ion microscope

    NARCIS (Netherlands)

    Sanford, C.A.; Stern, L.; Barriss, L.; Farkas, L.; DiManna, M.; Mello, R.; Maas, D.J.; Alkemade, P.F.A.

    2009-01-01

    Helium ion microscopy is now a demonstrated practical technology that possesses the resolution and beam currents necessary to perform nanofabrication tasks, such as circuit edit applications. Due to helium’s electrical properties and sample interaction characteristics relative to gallium, it is like

  7. Beam induced deposition of platinum using a helium ion microscope

    NARCIS (Netherlands)

    Sanford, C.A.; Stern, L.; Barriss, L.; Farkas, L.; DiManna, M.; Mello, R.; Maas, D.J.; Alkemade, P.F.A.

    2009-01-01

    Helium ion microscopy is now a demonstrated practical technology that possesses the resolution and beam currents necessary to perform nanofabrication tasks, such as circuit edit applications. Due to helium's electrical properties and sample interaction characteristics relative to gallium, it is like

  8. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    CERN Document Server

    Tahir, Naeem Ahmad; Schmidt, Rudiger; Shutov, A; Wollmann, Daniel; Piriz, A

    2016-01-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80–100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850  km/h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC...

  9. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  10. Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts

    Institute of Scientific and Technical Information of China (English)

    CHEN Sheng-Bing; WEN Ji-Hong; WANG Gang; HAN Xiao-Yun; WEN Xi-Sen

    2011-01-01

    @@ Periodic arrays of shunted piezoelectric patches are employed to control the propagation of elastic waves in phononic beams.Each piezo-patch is connected to a single resistance-inductance-capacitance shunting circuit.Therefore,the resonances of the shunting circuits will produce locally resonant gaps in the phononic beam.However,the existence of locally resonant gaps induced by resonant shunts has not been clearly proved by experiment so far.In this work,the locally resonant gap in a piezo-shunted phononic beam is investigated theoretically and verified by experiment.The results prove that resonances of shunting circuits can produce locally resonant gaps in phononic beams.%Periodic arrays of shunted piezoelectric patches are employed to control the propagation of elastic waves in phononic beams. Each piezo-patch is connected to a single resistance-inductance-capacitance shunting circuit. Therefore, the resonances of the shunting circuits will produce locally resonant gaps in the phononic beam. However, the existence of locally resonant gaps induced by resonant shunts has not been clearly proved by experiment so far. In this work, the locally resonant gap in a piezo-shunted phononic beam is investigated theoretically and verified by experiment. The results prove that resonances of shunting circuits can produce locally resonant gaps in phononic beams.

  11. Acetone and the precursor ligand acetylacetone : distinctly different electron beam induced decomposition?

    NARCIS (Netherlands)

    Warneke, Jonas; Van Dorp, Willem F.; Rudolf, Petra; Stano, Michal; Papp, Peter; Matejcik, Stefan; Borrmann, Tobias; Swiderek, Petra

    2015-01-01

    In focused electron beam induced deposition (FEBID) acetylacetone plays a role as a ligand in metal acetylacetonate complexes. As part of a larger effort to understand the chemical processes in FEBID, the electron-induced reactions of acetylacetone were studied both in condensed layers and in the ga

  12. Defects induced luminescence and tuning of bandgap energy narrowing in ZnO nanoparticles doped with Li ions

    KAUST Repository

    Awan, Saif Ullah

    2014-08-28

    Microstructural and optical properties of Zn1-yLiyO (0.00 ≤y ≤0.10) nanoparticles are investigated. Li incorporation leads to substantial changes in the structural characterization. From micro-structural analysis, no secondary phases or clustering of Li was detected. Elemental maps confirmed homogeneous distribution of Li in ZnO. Sharp UV peak due to the recombination of free exciton and defects based luminescence broad visible band was observed. The transition from the conduction band to Zinc vacancy defect level in photoluminescence spectra is found at 518±2.5nm. The yellow luminescence was observed and attributed to Li related defects in doped samples. With increasing Li doping, a decrease in energy bandgap was observed in the range 3.26±0.014 to 3.17±0.018eV. The bandgap narrowing behavior is explained in terms of the band tailing effect due to structural disorder, carrier-impurities, carrier-carrier, and carrier-phonon interactions. Tuning of the bandgap energy in this class of wide bandgap semiconductor is very important for room temperature spintronics applications and optical devices. © 2014 AIP Publishing LLC.

  13. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  14. Focused electron beam induced etching of titanium with XeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenaker, F J; Cordoba, R; Fernandez-Pacheco, R; Magen, C; Zuriaga-Monroy, C; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Stephan, O [Laboratoire de Physique des Solides, CNRS UMR 8502, Universite Paris Sud XI, Batiment 510, F-91405 Orsay (France); De Teresa, J M, E-mail: deteresa@unizar.es [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2011-07-01

    Titanium is a relevant technological material due to its extraordinary mechanical and biocompatible properties, its nanopatterning being an increasingly important requirement in many applications. We report the successful nanopatterning of titanium by means of focused electron beam induced etching using XeF{sub 2} as a precursor gas. Etch rates up to 1.25 x 10{sup -3} {mu}m{sup 3} s{sup -1} and minimum pattern sizes of 80 nm were obtained. Different etching parameters such as beam current, beam energy, dwell time and pixel spacing are systematically investigated, the etching process being optimized by decreasing both the beam current and the beam energy. The etching mechanism is investigated by transmission electron microscopy. Potential applications in nanotechnology are discussed.

  15. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  16. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  17. Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators

    CERN Document Server

    Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

    2009-01-01

    In the beam pipe of high-energy proton or positron accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential “magnetron effect” has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

  18. Extrinsic Influence of Environment-Induced Degradation on Load Carrying Capacity of Steel Beams

    Science.gov (United States)

    Gowda, Sunil; Patnaik, A.; Payer, J.; Srivatsan, T. S.

    2015-11-01

    In this paper, the results of a study aimed at evaluating the strength of wide-flanged beams subjected to corrosion-induced damage, modeled using a standard finite element program (ABAQUS) is presented and discussed. Typical beams in consideration were subjected to different cases of corrosion-induced damage, such as non-uniform and varying degree of material loss that simulates pitting corrosion. Many variables, such as (a) shape of pitting damage, (b) location of pits along the length of the beam, (c) number of pits, and (d) depth of pits, were considered to facilitate a better understanding of the load carrying capacity of steel I-beams having damage quite similar to pitting damage to the web. The results are compared with an "as-new" beam for purpose of evaluation of the reduction in strength due to environment-induced deterioration. A "corrosion strength reduction factor (CSRF)" is introduced to help identify the reduction in load carrying capacity as a consequence of both height and depth of the damage due to corrosion. The results are presented in charts for purpose of practical beam design.

  19. On compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Wang, G.

    2014-05-09

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  20. Quantum Interference of Multiple Beams Induced by Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter

    2011-01-01

    We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging.......We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging....

  1. The transverse shift of a high order paraxial vortex-beam induced by a homogeneous anisotropic medium

    CERN Document Server

    Fadeyeva, T A; Volyar, A V

    2008-01-01

    We consider the propagation of a tilted high order paraxial vortex-beam through a homogeneous anisotropic medium of a uniaxial crystal. We found that the initially circularly polarized beam bearing the l-order optical vortex splits into ordinary and extraordinary beams with a complex vortex structure. After a series of dislocation reactions the vortices gather together at the axis of the partial beam with the initial circular polarization shaping the l-order optical vortex. However, only l-1 vortices gather together on the axis of the partial beam with the orthogonal circular polarization. One optical vortex is shifted along the direction perpendicular to the inclination plane of the beam. Such a vortex displacement induces the transverse shift of the partial beam. In fact, we deal with the beam quadrefringence in a uniaxial, homogeneous anisotropic medium. The first two beams is a result of the splitting of the initial tilted beam into the ordinary and extraordinary once.

  2. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  3. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  4. Photon Luminescence of the Moon

    Science.gov (United States)

    Wilson, T.L.; Lee, K.T.

    2009-01-01

    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed.

  5. Construction of TSL lector equipment with spectral resolution for the determination of thermally stimulated luminescence (TSL) properties of NaCl: Tl+ induced by UV-visible radiation

    International Nuclear Information System (INIS)

    A revision of physical models of thermally stimulated luminescence (TSL) in crystals induced by both ionizing and non-ionizing radiation is presented. Particular emphasis is given to the connection of TSL with other thermally stimulated processes and physico-chemical phenomena because basic information on physical mechanics for TSL can be obtained through them. Glow curves of TSL induced by UV-visible radiation in NaCl: Tl+ were measured. Additionally, the following spectrums were obtained for the same samples: optical absorption, excitation, fluorescent emission, and TSL emission. An optical absorption peak was correlated with the Thallium ion concentration. With respect to the TSL emission spectrums, some peaks associated to Thallium dimmers were at 298 and at 480 nm; others which were attributed to NaCl intrinsic properties were at 365, 430, 450 and 525 nm. Also TSL glow curves were studied as a function of the Thallium ion concentration (0.8 ppm to 14.8 ppm). They were de convoluted so as to calculate the activation energy, the frequency factor and the kinetic order for each separate TSL peak. Anomalous values were observed for some frequency factors. A method and TSL lector equipment to obtain TSL emission spectra were developed. (Author)

  6. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals

    Science.gov (United States)

    Sarkar, Rohit; Rentenberger, Christian; Rajagopalan, Jagannathan

    2015-11-01

    A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80-400 nanometers) and grain sizes (50-220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts.

  7. Low level RF systems for synchrotrons part II: High Intensity. Compensation of the beam induced effects

    CERN Document Server

    Baudrenghien, P

    2005-01-01

    The high intensity regime is reached when the voltage induced by the beam in the RF cavities is of an amplitude comparable to the desired accelerating voltage. In steady state this beam loading can be compensated by providing extra RF power. Transient beam loading occurs at injection or in the presence of a beam intensity that is not uniform around the ring. The transients are periodic at the revolution frequency. Without correction transient beam loading can be very harmful: The stable phase and bucket area will not be equal for all bunches. Strong beam loading often goes in pair with longitudinal instabilities because the RF cavities are a large contributor to the total ring impedance. The low level systems that reduce the effect of the transient beam loading will also increase the threshold intensity of the longitudinal instability caused by the cavity impedance at the fundamental RF frequency. Four classic methods are presented here: Feedforward, RF feedback, long delay feedback and bunch by bunch feedbac...

  8. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  9. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  10. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  11. Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective

    NARCIS (Netherlands)

    Botman, A.; Mulders, J.J.L.; Hagen, C.W.

    2009-01-01

    The creation of functional nanostructures by electron-beam-induced deposition (EBID) is becoming more widespread. The benefits of the technology include fast ‘point-and-shoot’ creation of three-dimensional nanostructures at predefined locations directly within a scanning electron microscope. One sig

  12. Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair

    NARCIS (Netherlands)

    Gonzalez, Carlos M.; Timilsina, Rajendra; Li, Guoliang; Duscher, Gerd; Rack, Philip D.; Slingenbergh, Winand; van Dorp, Willem F.; De Hosson, Jeff T. M.; Klein, Kate L.; Wu, Huimeng M.; Stern, Lewis A.

    2014-01-01

    The gas field ion microscope was used to investigate helium and neon ion beam induced etching of nickel as a candidate technique for extreme ultraviolet (EUV) lithography mask editing. No discernable nickel etching was observed for room temperature helium exposures at 16 and 30 keV in the dose range

  13. Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition

    NARCIS (Netherlands)

    Botman, A.; Hesselberth, M.; Mulders, J.J.L.

    2008-01-01

    Focused electron-beam-induced deposition (EBID) allows the rapid fabrication of three-dimensional nanodevices and metallic wiring of nanostructures, and is a promising technique for many applications in nanoresearch. The authors present two topics on platinum-containing nanostructures created by EBI

  14. Electron beam induced oxidation of Ni3Al surfaces : electron flux effects

    NARCIS (Netherlands)

    Koch, S.A.; Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam irradiation of polycrystalline boron doped Ni3Al (at 300 K and under ultrahigh vacuum conditions) induces fast oxidation. The rate and depth of oxidation initially increase with increasing electron flux as indicated by results from Auger electron spectroscopy. Curves of oxygen developm

  15. Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition

    NARCIS (Netherlands)

    Chen, P.

    2010-01-01

    The direct writing technology known as ion-beam-induced deposition (IBID) has been attracting attention mainly because of its high degree of flexibility of locally prototyping three-dimensional (3D) nanostructures. These high-resolution nanostructures have various research applications. However, no

  16. Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam

    NARCIS (Netherlands)

    Mollema, A. K.; Wansbeek, L. W.; Willmann, L.; Jungmann, K.; Timmermans, R. G. E.; Hoekstra, R.

    2008-01-01

    We demonstrate a spectroscopy method that can be applied in an atomic beam, light-pressure-induced spectroscopy (LiPS). A simple pump and probe experiment yields a dispersivelike spectroscopy signal that can be utilized for laser frequency stabilization. The underlying principles are discussed and c

  17. The ultraviolet and blue luminescence properties of ZnO:Zn thin film

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ultraviolet (UV) and blue luminescence of Zn-rich zinc oxide thin film deposited by electron-beam evaporation have been investigated at room temperature (RT). We observed that the UV and blue electroluminescence (EL) emission band centered around 480 nm which is blue shifted in comparison with that of the ZnO thin film prepared by low pressure metal organic chemical vapor deposition (LP MOCVD). The UV emission is much stronger than blue emission in the photoluminescence (PL) spectra. The field-induced ionization of excited luminescent centers of ZnO:Zn thin film at high electric field and the difference between PL and EL are discussed. The experiments show that the ZnO:Zn thin film provides a hopeful new mechanism to obtain UV and blue emission.

  18. Intra-zoned luminescence in alkali earth metal carbonates

    International Nuclear Information System (INIS)

    Full text: The fundamental plasma luminescence of wide band alkali halide crystals has been found out by Vaisburd et al. This broadband luminescence with very short duration of attenuation (∼10-12 s) arises at an irradiations of crystals with electronic beam powerful pulses of nanosecond duration. It is related to radiating 'hot' electrons and holes in a conductivity zone and in a valent zone, accordingly and in later time began to refer to as an intra-zoned luminescence. The data set on revealing features of display of an intra-zoned luminescence in different classes of crystals now proceeds. We investigated a fast luminescence at excitation with pulse electrons (3 nanoseconds) in crystals CaCO3, SrCO3, BaCO3 and MgCO3. In spectra all investigated carbonates it is possible to allocate two areas: area concerning high intensity of a fast luminescence (from 2 eV down 3 eV) and area of low intensity (is higher 4 eV) with slow recession at increase in photon energy. Thus it is typical, that in area concerning high intensity at rise in temperature from 80 up to 300 K a sample intensity of luminescence falls down, whereas in area is higher 5 eV with rise in temperature of a sample increase of intensity is observed. This broadband fast (is shorter than the time sanction of the equipment) should be connected a luminescence poorly dependent on temperature and a modular status of a sample with intra zoned transitions This luminescence reaches from 2 eV down to 7 eV but as for carbonates while is absent the reliable data on structure of a valent zone, division of an intra-zoned luminescence into electronic and hole components is not obviously possible on the basis of spectra of a fast luminescence. The nature of other luminescence processes arising at excitation with pulse electrons is discussed

  19. Evaluation of source term induced by beam loss in the superconducting linear accelerator at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kim, Su Na; Nam, Shin Woo; Chung, Yon Sei [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2014-11-15

    As a new world-class heavy ion accelerator, RAON is able to accelerate heavy ions from proton to uranium with the energy up to -400 MeV/u and produce rare isotopes. These high purity, high intensity, and high energy beams generate the various secondary radiation which will impact on the shielding aspects of the main linear accelerator tunnels. In the main tunnel the secondary neutrons are produced by uniform beam-loss or accident criteria. In this paper evaluations of several source terms induced by beam-loss will be discussed along with the physics model of the Monte Carlo simulation codes. The beam-loss criteria were tested for the evaluation of source term for the main beam line tunnel of the RAON accelerator. It was found that the amount of the secondary neutrons depends on the incident angle of projectile on the beam pipe and the mass and energy of projectile. The influence of selected physics models and libraries of MCNPX and PHITS has been examined. The secondary neutrons were produced most in the CEM and LAQGSM model.

  20. Some properties of atomic beam produced by laser induced ablation of Li target

    International Nuclear Information System (INIS)

    Pulsed atomic beams produced in vacuum by laser induced ablation from a lithium target are analyzed by laser induced fluorescence (LIF). The 1-mixing processes induced in the n = 9, 10 Li Rydberg states by collisions with CO2 molecules illustrate the application of the method. Resolution is limited by the 1 mm diameter of the probe laser beam. Combining LIF and absorption measurements gives nLi as a function of time at various distances from the target surface. The investigation of the Li-C02 1-mixing process in a heat pipe oven proved impossible due to the high reactivity of Li with C02. This problem was solved by renewing the Li atoms at each laser shot. Values obtained for n = 9, n = 10 are k = 17 x 10-8 and 15 x 10-8 cc/sec, respectively

  1. Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams.

    Science.gov (United States)

    Fargette, Aurélie; Neukirch, Sébastien; Antkowiak, Arnaud

    2014-04-01

    We report on the capillarity-induced snapping of elastic beams. We show that a millimeter-sized water drop gently deposited on a thin buckled polymer strip may trigger an elastocapillary snap-through instability. We investigate experimentally and theoretically the statics and dynamics of this phenomenon and we further demonstrate that snapping can act against gravity, or be induced by soap bubbles on centimeter-sized thin metal strips. We argue that this phenomenon is suitable to miniaturization and design a condensation-induced spin-off version of the experiment involving a hydrophilic strip placed in a steam flow. PMID:24745456

  2. Theoretical evaluation of induced radioactivity in food products by electron or X-ray beam sterilization

    International Nuclear Information System (INIS)

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons, based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γn) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γn) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. For electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10 to 11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. (author)

  3. Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface

    Science.gov (United States)

    Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.

    2016-07-01

    We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.

  4. Setup for Fission and Evaporation Cross-Section Measurements in Reactions Induced by Secondary Beams

    CERN Document Server

    Hassan, A A; Kalpakchieva, R; Skobelev, N K; Penionzhkevich, Yu E; Dlouhý, Z; Radnev, S; Poroshin, N V

    2002-01-01

    A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of alpha-particle and fission fragment energy spectra. By measuring the alpha-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30 % of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion?fission reactions and of reactions leading to evaporation residue production.

  5. Solid solution luminescence properties

    International Nuclear Information System (INIS)

    Concentration and kinetic dependences of cathodo- and radioluminescence of Mn2+ ion in CaF2 base solid solutions with Zr, Hf, Pb additions are studied. It is shown that introduction of 2-3 mass % of Zr and Hf into matrix composition causes increase of Mn2+ luminescence intensity with simultaneous increase of persistance duration and a small shift of luminescence band to larger wave lengths. Pb introduction results in efficient quenching of luminescence. 5 refs.; 3 figs.; 1 tab

  6. Fibre-Coupling Zig-Zag Beam Deflection Technology for Investigation of Attenuation Process of Laser-Induced Shock Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; BIAN Bao-Min; LI Zhen-Hua

    2005-01-01

    @@ A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors,a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.

  7. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  8. Contribution of nitric oxide radicals in bystander and adaptive responses induced by heavy ion-beams

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate whether radioadaptive responses were induced after irradiation with accelerated ion beams through nitric oxide-mediated bystander response in cultured cells in vitro and in some organs of mice in vivo. Human non-small cell lung carcinoma cells transfected with wild-type p53 (H1299/wtp53 cells) were used. The cells were irradiated with accelerated neon (400 MeV/u, 31 keV/μm) or iron (500 MeV/u, 200 keV/μm) ion beams. Then, the cells were allowed forming colonies, were cultured for 48 h to obtained samples for Western blot analysis, or were cultured for several weeks to fix mutations in the locus of hprt gene. ICR male mice (Jcl:ICR) were used. The mice were irradiated on 2 days with accelerated carbon ion beams (290 MeV/u, 13 keV/μm) or argon ion beams (500 MeV/u, 90 keV/μm). The intestine and testis were excised 2 days after the last irradiation. These excised tissues were fixed, embedded in paraffin and made of thin-sections on slide glasses. Then the TdT-mediated dUTP-biotin nick end-labeling (TUNEL)- and activated caspase-3-positive cells in the thin-sections of tissues were detected by the immunohistochemical method. A significant reduction of mutation rate of the hprt gene was observed when the cells were challengingly irradiated after the priming irradiation with accelerate neon or iron ion beams. This reduction was partially suppressed by NO radical scavenger, carboxy-PTIO. The bystander-induced apoptotic and activated caspase-3-positive cells were obviously observed in unirradiated intestine and testis when mice were irradiated with carbon or argon ion beams across the upper body. These observations were partially suppressed by carboxy-PTIO into the peritoneal cavity. (author)

  9. Nanodot and nanocrystal pattern formation and luminescent properties of BiB{sub 3}O{sub 6} glasses after moderate energy ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, J.L., E-mail: joseluis.plaza@uam.es [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O., E-mail: oscar@fmc.uva.es [GdS-Optronlab, Dpto. Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Hortelano, V., E-mail: vhorsan@gmail.com [GdS-Optronlab, Dpto. Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Bensalah, H., E-mail: bensalahhakima@yahoo.fr [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Dieguez, E., E-mail: ernesto.dieguez@uam.es [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-02-01

    In this work we study the nanopatterning effect on the surface of BIBO glasses by means of Ion Beam Sputtering (IBS), using moderate energy (<5 kV) Ar ions. The analysis, changing the energy of the Ar ions, has demonstrated the formation of nanodots, nanorripples, and nanopyramids. We have also analysed the dependence of the nanopatterns on the sample thickness for the same experimental conditions. The sizes of the nanodots have been analysed by AFM, while their optical properties studied by means of {mu}-Raman/{mu}-photoluminescence techniques.

  10. Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

    CERN Document Server

    Iadarola, Giovanni; Rumolo, Giovanni

    2016-01-01

    The expected heat load induced on the beam screens has been evaluated for all the twin-bore magnets in the Insertion Regions (IRs) of the HL-LHC. The contribution from the impedance of the beam screen has been evaluated taking into account the presence of a longitudinal weld in the beam screen and the impact of the temperature and of the magnetic field on the resistivity of the surface. The contribution coming from electron cloud effects has been evaluated for different values of the Secondary Electron Yield of the surface based PyECLOUD build-up simulations.

  11. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter

    2014-01-01

    Summary The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures. PMID:25161851

  12. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO.

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter; Marbach, Hubertus

    2014-01-01

    The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  13. Electron-beam induced deposition and autocatalytic decomposition of Co(CO3NO

    Directory of Open Access Journals (Sweden)

    Florian Vollnhals

    2014-07-01

    Full Text Available The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID and electron beam-induced surface activation (EBISA is studied for two precursors: iron pentacarbonyl, Fe(CO5, and cobalt tricarbonyl nitrosyl, Co(CO3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM and scanning transmission X-ray microscopy (STXM, including near edge X-ray absorption fine structure (NEXAFS spectroscopy. It has previously been shown that Fe(CO5 decomposes autocatalytically on Fe seed layers (EBID and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO3NO and compare it to results obtained from Fe(CO5. Co(CO3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  14. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    Science.gov (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  15. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    Science.gov (United States)

    Navin, A.; Tripathi, V.; Blumenfeld, Y.; Nanal, V.; Simenel, C.; Casandjian, J. M.; de France, G.; Raabe, R.; Bazin, D.; Chatterjee, A.; Dasgupta, M.; Kailas, S.; Lemmon, R. C.; Mahata, K.; Pillay, R. G.; Pollacco, E. C.; Ramachandran, K.; Rejmund, M.; Shrivastava, A.; Sida, J. L.; Tryggestad, E.

    2004-10-01

    Reactions induced by radioactive 6,8 He beams from the SPIRAL facility were studied on 63,65 Cu and 188,190,192 Os targets and compared to reactions with the stable 4He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam γ rays for the 6He + 63,65 Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic γ rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei 6He at 19.5 and 30 MeV and 8He at 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for 6,8 He +Cu systems. Cross sections for fusion and direct reactions with 4,6 He beams on heavier targets of 188,192 Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam γ -ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.

  16. Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    OpenAIRE

    O'Dwyer, Colm; Lavayen, Vladimir; Clavijo-Cedeno, C.; Sotomayor Torres, Clivia M.

    2008-01-01

    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself...

  17. ION-BEAM INDUCED GENERATION OF CU ADATOMS ON CU(100)

    NARCIS (Netherlands)

    BREEMAN, M; BOERMA, DO

    1992-01-01

    Low-energy ion scattering was used to study on-beam induced adatom generation during irradiation of a Cu(100) surface with 6 keV Ne ions at a sample temperature of 60 K. It was found that the number of adatoms produced per incoming ion decreases from an average of 3.5 to a saturation level of 1.8 af

  18. Direct simulation of ion beam induced stressing and amorphization of silicon

    OpenAIRE

    Beardmore, Keith M.; Gronbech-Jensen, Niels

    1999-01-01

    Using molecular dynamics (MD) simulation, we investigate the mechanical response of silicon to high dose ion-irradiation. We employ a realistic and efficient model to directly simulate ion beam induced amorphization. Structural properties of the amorphized sample are compared with experimental data and results of other simulation studies. We find the behavior of the irradiated material is related to the rate at which it can relax. Depending upon the ability to deform, we observe either the ge...

  19. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    OpenAIRE

    Bo Gao; Yi Hao; Ganfeng Tu; Wenyuan Wu

    2012-01-01

    Four techniques using high-current pulsed electron beam (HCPEB) were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the ma...

  20. Advanced ion beam analysis of materials using ion-induced fast electron

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi; Tanabe, Atsushi; Ishihara, Toyoyuki [Tsukuba Univ., Ibaraki (Japan)] [and others

    1997-03-01

    Recent progress in the study of high-energy shadowing effect using ion-induced electron spectroscopy is reported with emphasis on a possibility of determination of local electronic structure in solids, which has been a difficult problem to approach with other experimental techniques. We demonstrate real-space determination of covalent-bond electron distribution in Si crystal. The analysis technique may provide a new field of ion beam analysis of solids. (author)

  1. Contribution of nitric oxide radicals in bystander and adaptive responses induced by heavy ion-beams

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate whether radioadaptive responses were induced after irradiation with accelerated ion beams through nitric oxide-mediated bystander response in cultured cells in vitro and in some organs of mice in vivo. Human non-small cell lung carcinoma cells transfected with wild-type p53 (H1299/wtp53 cells) were used. The cells were irradiated with accelerated carbon ion beams (290 MeV/u, 31 keV/μm or 135 MeV/u, 31 keV/μm). Then, the cells were allowed forming colonies. ICR male mice (Jcl: ICR) were used. The mice were irradiated on 2 days with accelerated carbon ion beams (290 MeV/u, 13 keV/μm or 135 MeV/u, 25 keV/μm) or argon ion beams (500 MeV/u, 90 keV/μm). The small intestine and testis were excised 2 days after the last irradiation. These excised tissues were fixed, embedded in paraffin and made of thin-sections on slide glasses. Then the TUNEL- and activated caspase-3-positive cells in the thin-sections of tissues were detected by the immunohistochemical method. A significant elevated surviving fractions of cells was observed when the cells were challengingly irradiated after the priming irradiation with accelerate carbon ion beams. This enhancement was partially suppressed by Nitric oxide (NO) radical scavenger, carboxy-PTIO (c-PTIO). The bystander-induced apoptotic and activated caspase-3-positive cells were obviously observed in the unirradiated small intestine and testis when mice were irradiated with carbon or argon ion beams across the upper body. In addition, a significant reduction of apoptotic cells in the intestine and testis, when mice were challengingly irradiated after the priming irradiation with accelerate carbon or argon ion beams. These observations were partially suppressed by c-PTIO into the peritoneal cavity. Furthermore, it is suggested that the apoptosis may be induced in the tissue stem cells of small intestine and testis. (author)

  2. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States)

    2013-06-15

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight{sup TM} MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during

  3. The importance of inversion disorder in the visible light induced persistent luminescence in Cr³⁺ doped AB₂O₄ (A = Zn or Mg and B = Ga or Al).

    Science.gov (United States)

    Basavaraju, Neelima; Priolkar, Kaustubh R; Gourier, Didier; Sharma, Suchinder K; Bessière, Aurélie; Viana, Bruno

    2015-01-21

    Cr(3+) doped spinel compounds AB2O4 with A = Zn, Mg and B = Ga, Al exhibit a long, near infrared persistent luminescence when excited with UV or X-rays. In addition, the persistent luminescence of ZnGa2O4, and to a lesser extent MgGa2O4, can also be induced by visible light excitation via (4)A2→(4)T2 transition of Cr(3+), which makes these compounds suitable as biomarkers for in vivo optical imaging of small animals. We correlate this peculiar optical property with the presence of antisite defects, which are present in ZnGa2O4 and MgGa2O4. By using X-ray absorption fine structure (XAFS) spectroscopy, associated with electron paramagnetic resonance (EPR) and optical emission spectroscopy, it is shown that an increase in antisite defects concentration results in a decrease in the Cr-O bond length and the octahedral crystal field energy. A part of the defects occurs in the close environment of Cr(3+) ions, as shown by the increasing strain broadening of EPR and XAFS peaks observed upon increasing antisite disorder. It appears that ZnAl2O4, which exhibits the largest crystal field splitting of Cr(3+) and the smallest antisite disorder, does not show considerable persistent luminescence upon visible light excitation as compared to ZnGa2O4 and MgGa2O4. These results highlight the importance of Cr(3+) ions with neighboring antisite defects in the mechanism of persistent luminescence exhibited by Cr(3+) doped AB2O4 spinel compounds. PMID:25462833

  4. Luminescence techniques: Instrumentation and methods

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    1997-01-01

    This paper describes techniques, instruments and methods used in luminescence dating and environmental dosimetry in many laboratories around the world. These techniques are based on two phenomena - thermally stimulated luminescence and optically stimulated luminescence. The most commonly used...... luminescence stimulation and detection techniques are reviewed and information is given on recent developments in instrument design and on the stale of the art in luminescence measurements and analysis. (C) 1998 Elsevier Science Ltd. All rights reserved....

  5. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  6. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  7. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  8. Sensitivity Jump of Micro Accelerometer Induced by Micro-fabrication Defects of Micro Folded Beams

    Science.gov (United States)

    Zhou, Wu; Chen, Lili; Yu, Huijun; Peng, Bei; Chen, Yu

    2016-08-01

    The abnormal phenomenon occurring in sensor calibration is an obstacle to product development but a useful guideline to product improvement. The sensitivity jump of micro accelerometers in the calibrating process is recognized as an important abnormal behavior and investigated in this paper. The characteristics of jumping output in the centrifuge test are theoretically and experimentally analyzed and their underlying mechanism is found to be related to the varied stiffness of supporting beam induced by the convex defect on it. The convex defect is normally formed by the lithography deviation and/or etching error and can result in a jumping stiffness of folded microbeams and further influence the sensitivity when a part of the bending beams is stopped from moving by two surfaces contacting. The jumping level depends on the location of convex and has nothing to do with the contacting properties of beam and defects. Then the location of defect is predicted by theoretical model and simulation and verified by the observation of micro structures under microscopy. The results indicate that the tested micro accelerometer has its defect on the beam with a distance of about 290μm from the border of proof mass block.

  9. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    CERN Document Server

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  10. Time-of-flight MeV-SIMS with beam induced secondary electron trigger

    Science.gov (United States)

    Schulte-Borchers, Martina; Döbeli, Max; Müller, Arnold Milenko; George, Matthias; Synal, Hans-Arno

    2016-08-01

    A new Time-of-flight MeV Secondary Ion Mass Spectrometry (MeV-SIMS) setup was developed to be used with a capillary microprobe for molecular imaging with heavy primary ions at MeV energies. Due to the low output current of the ion collimating capillary a Time-of-flight (ToF) measurement method with high duty cycle is necessary. Secondary electrons from the sample surface and transmitted ions were studied as start signals. They enable measurements with a continuous primary beam and unpulsed ToF spectrometer. Tests with various primary ion beams and sample types have shown that a secondary electron signal is obtained from 30% to 40% of incident MeV particles. This provides a ToF start signal with considerably better time resolution than the one obtained from transmitted primary ions detected in a radiation hard gas ionization detector. Beam induced secondary electrons therefore allow for MeV-SIMS measurements with reasonable mass resolution at primary ion beam currents in the low fA range.

  11. Nanophotonic Luminescent Solar Concentrators

    CERN Document Server

    Rousseau, I

    2013-01-01

    We investigate the connection between photonic local density of states and luminescent solar concentrator (LSC) performance in two manufacturable nanocavity LSC structures, a bilayer slab and a slab photonic crystal. Finite-difference time-domain electromagnetic simulations show that the waveguided luminescence photon flux can be enhanced up to 30% for the photonic crystal design over a conventional LSC operating in the ray optic limit assuming the same number of excited lumophores. Further photonic engineering could realize an increase of up to one order of magnitude in the flux of waveguided luminescence.

  12. Study of muon-induced neutron production using accelerator muon beam at CERN

    International Nuclear Information System (INIS)

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production

  13. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guido, Elisa; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-01-01

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstra...

  14. Radiation-Induced Centers in Lead Silicate Glasses Irradiated by Stationary and Pulsed Electron Beams

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Konev, S. F.; Cholakh, S. O.

    2015-08-01

    Radiation-induced centers formed in heavy flint glasses irradiated by electron beams are investigated by the methods of optical and EPR spectroscopy. It is revealed that stable and short-living optical absorption centers of close natures are formed under irradiation by fast electrons. A correlation is established between the stable optical absorption bands and the EPR signals interpreted as signals of the (Pb2+)/h+ hole centers. The shortliving color centers are formed due to short-term distortion of the O-Pb bonds, and the stable centers are formed due to the spatial separation, thermalization, and subsequent stabilization of excited electrons and holes in tails of the localized states. Irradiation by electron beams leads to a change in the spectral characteristics of the fundamental absorption edge and, in particular, of the Urbach energy that determines the degree of structural disorder.

  15. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  16. Swift Heavy Ion Beam-induced Recrystallisation of Buried Silicon Nitride Layer (Review Paper

    Directory of Open Access Journals (Sweden)

    T. Som

    2009-07-01

    Full Text Available Studies on MeV heavy ion beam-induced epitaxial crystallisation of a buried silicon nitride layer are reported. Transmission electron micrographs and selected area diffraction patterns have been used to study the recrystallisation of an ion beam-synthesised layer. Complete recrystallisation of the silicon nitride layer having good quality interfaces with the top- and the substrate-Si has been obsorved. Recrystallisation is achieved at significantly lower temperatures of 100 and 200OC for oxygen and silver ions, respectively. The fact that recrystallisation is achieved at the lowest temperature for the oxygen ions is discussed on the basis of energy loss processes.Defence Science Journal, 2009, 59(4, pp.351-355, DOI:http://dx.doi.org/10.14429/dsj.59.1533

  17. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)

    Science.gov (United States)

    De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R.

    2016-06-01

    We review the current status of the use of focused electron beam induced deposition (FEBID) for the growth of magnetic nanostructures. This technique relies on the local dissociation of a precursor gas by means of an electron beam. The most promising results have been obtained using the Co2(CO)8 precursor, where the Co content in the grown nanodeposited material can be tailored up to more than 95 at.%. Functional behaviour of these Co nanodeposits has been observed in applications such as arrays of magnetic dots for information storage and catalytic growth, magnetic tips for scanning probe microscopes, nano-Hall sensors for bead detection, nano-actuated magnetomechanical systems and nanowires for domain-wall manipulation. The review also covers interesting results observed in Fe-based and alloyed nanodeposits. Advantages and disadvantages of FEBID for the growth of magnetic nanostructures are discussed in the article as well as possible future directions in this field.

  18. Polarization and collision-induced coherence in the beam-foil light source

    Science.gov (United States)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  19. Ion-beam induced structure modifications in amorphous germanium; Ionenstrahlinduzierte Strukturmodifikationen in amorphem Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Tobias

    2012-05-03

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy {epsilon}{sub n} deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 {mu}m thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of {epsilon}{sub e}{sup HRF}=(10.5{+-}1.0) kev nm{sup -1} was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation {epsilon}{sub e}{sup S{sub a}}=(12{+-}2) keV nm{sup -1} for the first

  20. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    Science.gov (United States)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  1. Pulsed-Laser-Induced Simple Synthetic Route for Tb3Al5O12:Ce3+Colloidal Nanocrystals and Their Luminescent Properties

    Directory of Open Access Journals (Sweden)

    Sasaki Takeshi

    2009-01-01

    Full Text Available Abstract Cerium-doped Tb3Al5O12(TAG:Ce3+ colloidal nanocrystals were synthesized by pulsed laser ablation (PLA in de-ionized water and lauryl dimethylaminoacetic acid betain (LDA aqueous solution for luminescent bio-labeling application. The influence of LDA molecules on the crystallinity, crystal morphology, crystallite size, and luminescent properties of the prepared TAG:Ce3+colloidal nanocrystals was investigated in detail. When the LDA solution was used, smaller average crystallite size, narrower size distribution, and enhanced luminescence were observed. These characteristics were explained by the effective role of occupying the oxygen defects on the surface of TAG:Ce3+colloidal nanocrystal because the amphoteric LDA molecules were attached by positively charged TAG:Ce3+colloidal nanocrystals. The blue-shifted phenomena found in luminescent spectra of the TAG:Ce3+colloidal nanocrystals could not be explained by previous crystal field theory. We discuss the 5d energy level of Ce3+with decreased crystal size with a phenomenological model that explains the relationship between bond distance with 5d energy level of Ce3+based on the concept of crystal field theory modified by covalency contribution.

  2. Structured luminescence conversion layer

    Science.gov (United States)

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  3. Numerical Simulation on Expansion Process of Ablation Plasma Induced by Intense Pulsed Ion Beam

    Institute of Scientific and Technical Information of China (English)

    TAN Chang; LIU Yue; WANG Xiao-Gang; MA Teng-Cai

    2006-01-01

    We present a one-dimensional time-dependent numerical model for the expansion process of ablation plasmainduced by intense pulsed ion beam(IPIB).The evolutions of density,velocity,temperature,and pressure of theablation plasma of the aluminium target are obtained.The numerical results are well in agreement with therelative experimental data.It is shown that the expansion process of ablation plasma induced by IPIB includesstrongly nonlinear effects and that shock waves appear during the propagation of the ablation plasma.

  4. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    International Nuclear Information System (INIS)

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  5. Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics

    International Nuclear Information System (INIS)

    The entire current transient induced by single 12 MeV Carbon ions was measured at a 5GHz analog bandwidth. A focused ion micro-beam was used to acquire multiple single ion transients at multiple locations of a single CMOS transistor. The current transients reveal clear and discernible contributions of drift and diffusive charge collection. Transients measured for drain and off-drain ion strikes compare well to 3D DAVINCI calculations. Estimates are presented for the drift assisted funneling charge collection depth

  6. Spectroscopic Evidence for Exceptional Thermal Contribution to Electron-Beam Induced Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Marissa A.; Haynor, Ben; Aloni, Shaul; Ogletree, D. Frank; Wong, H.-S. Philip; Urban, Jeffrey J.; Milliron, Delia J.

    2010-11-16

    While electron beam induced fragmentation (EBIF) has been reported to result in the formation of nanocrystals of various compositions, the physical forces driving this phenomenon are still poorly understood. We report EBIF to be a much more general phenomenon than previously appreciated, operative across a wide variety of metals, semiconductors and insulators. In addition, we leverage the temperature dependent bandgap of several semiconductors to quantify -- using in situ cathodoluminescence spectroscopy -- the thermal contribution to EBIF, and find extreme temperature rises upwards of 1000K.

  7. Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Air Force Research Lab., Albuquerque, NM (United States); Walsh, D.S.; Sexton, F.W.; Doyle, B.L.; Aurand, J.F.; Dodd, P.E.; Flores, R.S.; Wing, N. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01

    The entire current transient induced by single 12 MeV Carbon ions was measured at a 5GHz analog bandwidth. A focused ion micro-beam was used to acquire multiple single ion transients at multiple locations of a single CMOS transistor. The current transients reveal clear and discernible contributions of drift and diffusive charge collection. Transients measured for drain and off-drain ion strikes compare well to 3D DAVINCI calculations. Estimates are presented for the drift assisted funneling charge collection depth.

  8. Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition.

    Science.gov (United States)

    Acar, Hakkı; Coenen, Toon; Polman, Albert; Kuipers, Laurens Kobus

    2012-09-25

    We present the bottom-up fabrication of dispersive silica core, gold cladding ground plane optical nanoantennas. The structures are made by a combination of electron-beam induced deposition of silica and sputtering of gold. The antenna lengths range from 300 to 2100 nm with size aspect ratios as large as 20. The angular emission patterns of the nanoantennas are measured with angle-resolved cathodoluminescence spectroscopy and compared with finite-element methods. Good overall correspondence between the the measured and calculated trends is observed. The dispersive nature of these plasmonic monopole antennas makes their radiation profile highly tunable. PMID:22889269

  9. A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics

    Science.gov (United States)

    Runkel, Mike; Hawley-Fedder, Ruth; Widmayer, Clay; Williams, Wade; Weinzapfel, Carolyn; Roberts, Dave

    2005-12-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO2 lasers.

  10. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  11. Temperature elevation profile inside the rat brain induced by a laser beam

    Science.gov (United States)

    Ersen, Ali; Abdo, Ammar; Sahin, Mesut

    2014-01-01

    The thermal effect may be a desired outcome or a concerning side effect in laser-tissue interactions. Research in this area is particularly motivated by recent advances in laser applications in diagnosis and treatment of neurological disorders. Temperature as a side effect also limits the maximum power of optical transfer and harvesting of energy in implantable neural prostheses. The main objective was to investigate the thermal effect of a near-infrared laser beam directly aimed at the brain cortex. A small, custom-made thermal probe was inserted into the rat brain to make direct measurements of temperature elevations induced by a free-air circular laser beam. The time dependence and the spatial distribution of the temperature increases were studied and the maximum allowable optical power was determined to be 2.27 W/cm2 for a corresponding temperature increase of 0.5°C near the cortical surface. The results can be extrapolated for other temperature elevations, where the margin to reach potentially damaging temperatures is more relaxed, by taking advantage of linearity. It is concluded that the thermal effect depends on several factors such as the thermal properties of the neural tissue and of its surrounding structures, the optical properties of the particular neural tissue, and the laser beam size and shape. Because so many parameters play a role, the thermal effect should be investigated for each specific application separately using realistic in vivo models.

  12. Focused-electron-beam-induced-deposited cobalt nanopillars for nanomagnetic logic.

    Science.gov (United States)

    Sharma, N; van Mourik, R A; Yin, Y; Koopmans, B; Parkin, S S P

    2016-04-22

    Nanomagnetic logic (NML) intends to alleviate problems of continued miniaturization of CMOS-based electronics, such as energy dissipation through heat, through advantages such as low power operation and non-volatile magnetic elements. In line with recent breakthroughs in NML with perpendicularly magnetized elements formed from thin films, we have fabricated NML inverter chains from Co nanopillars by focused electron beam induced deposition (FEBID) that exhibit shape-induced perpendicular magnetization. The flexibility of FEBID allows optimization of NML structures. Simulations reveal that the choice of nanopillar dimensions is critical to obtain the correct antiferromagnetically coupled configuration. Experiments carrying the array through a clocking cycle using the Oersted field from an integrated Cu wire show that the array responds to the clocking cycle. PMID:26941232

  13. Reaction mechanisms in collisions induced by 8B beam close to the barrier

    CERN Multimedia

    The aim of the proposed experiment is to investigate on the reaction dynamics of proton-halo induced collisions at energies around the Coulomb barrier where coupling to continuum effects are expected to be important. We propose to measure $^{8}$B+$^{64}$Zn elastic scattering angular distribution together with the measurement, for the first time, of p-$^{7}$Be coincidences coming from transfer and/or break-up of $^{8}$B. The latter will allow a better understanding of the relative contribution of elastic $\\textit{vs}$ non-elastic break-up in reactions induced by extremely weakly-bound nuclei. We believe that with the availability of the post accelerated $^{8}$B beam at REX-ISOLDE we will be able to collect for the first time high quality data for the study of such an important topic.

  14. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis.

    Science.gov (United States)

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  15. Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider

    Indian Academy of Sciences (India)

    A P Singh; P C Bhat; N V Mokhov; S Beri

    2010-05-01

    The intense radiation environment at the Large Hadron Collider, CERN at a design energy of $\\sqrt{s} = 14$ TeV and a luminosity of 1034 cm−2S−1 poses unprecedented challenges for safe operation and performance quality of the silicon tracker detectors in the CMS and ATLAS experiments. The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton–proton collisions at $\\sqrt{s} = 14$ TeV and from machine-induced background such as beam–gas interactions and beam halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detectors.

  16. Electron beam induced synthesis of uranium dioxide nanoparticles: Effect of solvent composition

    Science.gov (United States)

    Rath, M. C.; Keny, S. J.; Naik, D. B.

    2016-09-01

    The effect of various compositions of solvents was investigated on the electron beam induced synthesis of uranium dioxide, UO2 nanoparticles. The synthesis was carried out at different pHs from 2 to 7 in the aqueous solutions containing 10 mM uranyl nitrate and 10% 2-propanol. The formation of UO2 nanoparticles was found to occur only in the pH range from 2.5 to 3.7. Experiments were also carried out in the aqueous solutions containing various other alcohols (10% v/v) such as methanol, ethanol, 1-propanol, 1-butanol or tert-butanol as well as in solutions containing 10 mM sodium formate at pH 3.4. The formation of UO2 nanoparticles in the aqueous solutions was found to occur only in the presence of ethanol, 1-propanol, 2-propanol or 1-butanol. It is therefore confirmed that the electron beam induced synthesis of UO2 nanoparticles strongly depends on the solvent compositions as well as the pH of the medium.

  17. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  18. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    Science.gov (United States)

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-09-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.

  19. Two-Photon Optical Beam-Induced Current Microscopy of Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Godofredo Bautista Jr.

    2004-12-01

    Full Text Available We demonstrate two-photon optical beam-induced current (2P-OBIC microscopy of light-emitting diodes (LEDs. We utilized a Ti:Sapphire femtosecond laser source operating at 800 nm to derive the 2P-OBIC signal from a 605 nm band-gap LED. The spatial confinement of free carrier generation only at the focus and the quadratic dependence of the 2P-OBIC signal on excitation power are the key principles in two-photon excitation. As a consequence, superior image quality evident in the 2P-OBIC images of LEDs are obtained. These features decrease the linear absorption and wide-angle scattering effects plaguing single-photon optical beam-induced current (1P-OBIC technique, thereby increasing the resolution of the imaging system in the axial and lateral directions. Thus, the attainment of good axial discrimination in the LED samples is obtained even without a confocal pinhole. In addition, 2P-OBIC images reveal local variations in free carrier densities which are not evident in the single-photon excitation.

  20. Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces

    CERN Document Server

    Kireeff-Covo, Michel; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Friedman, Alex; Grote, D P; Kwan, Joe W; Lund, Steven M; Molvik, Arthur; Seidl, Peter; Vay, Jean-Luc; Vujic, Jasmina L; Westenskow, Glen

    2005-01-01

    The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

  1. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    Science.gov (United States)

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  2. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures

    KAUST Repository

    Mughal, Asad Jahangir

    2014-01-01

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material\\'s luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon. This journal is

  3. Quantitative Luminescence Imaging System

    International Nuclear Information System (INIS)

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R ampersand D Magazine 1991 R ampersand D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support

  4. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    International Nuclear Information System (INIS)

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO2 in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance

  5. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2008-12-30

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.

  6. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Gil-Hah, E-mail: khkim@chungbuk.ac.kr [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-01-15

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: > Electron beam irradiation inhibited normal development of the leaf miner. > Electron beam irradiation inhibited normal reproduction of the leaf miner. > Electron beam irradiation increased levels of DNA damage. > Electron beam irradiation induced p53 stability.

  7. Luminescence from Porous Silicon

    Directory of Open Access Journals (Sweden)

    A. Gupta

    1998-01-01

    Full Text Available Recent observations of photoluminescene (PL and electroluminescence (EL from poroussilicon (PS have prompted many theoretical and experimental studies. Bulk crystalline Si is anindirect band gap material in which .recombination is dominated by non-radiative processes.Therefore, it cannot be used as light-emitting component in Si circuits. PS is a new material formed byanodisation ofsingle crystal Si wafers in hydro fluoric (liF solution. Luminescence from this materialis being explored for technological applications all over the world. The mechanism of luminescence isstill not well-understood. Several models have been proposed but still the facts about the strong lightemission at room temperature are unknown. This paper presents a review of the fabrication process andstudies on luminescent properties of PS. A hybrid model based on quantum confinement of carriers inthe nanometer size Si crystallites having a large number of surface states is suggested to explain theobserved properties.

  8. Lunar luminescence measurements

    Science.gov (United States)

    Morgan, T. H.

    1983-01-01

    Spectra of lunar sites obtained in June 1983 have been analyzed for residual luminescence using the spectral line depth technique. The results or three sites each at three wavelengths are presented. The sites observed were Mare Crisium, Kepler, and Aristarchus. In each case, the value quoted was based not only on the strong Fraunhofer line in the spectral range covered but also on from 11 to 21 weaker lines within 80 A of the strongest feature. These data do not support previous observations. The values given do not indicate a greatly reddened spectrum, and the luminescence spectrum of the mare site is not significantly different from the two young crater sites. These observations cannot be adequately explained by thermal luminescence, theories of direct excitation are also unable to explain the strength of the flux.

  9. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    International Nuclear Information System (INIS)

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for ''direct-write'' processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple ''beams'' of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials. (orig.)

  10. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    Science.gov (United States)

    Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.

    2014-12-01

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for "direct-write" processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple "beams" of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.

  11. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  12. Electron-cloud instabilities and beam-induced multipacting in the LHC and in the VLHC

    International Nuclear Information System (INIS)

    In the beam pipe of the Large Hadron Collider (LHC), photoemission and secondary emission give rise to a quasi-stationary electron cloud, which is established after a few buncn passages. The response of this electron cloud to a transversely displaced bunch resembles a short-range wakefield and can cause a fast instability. In additoin, beam-induced multipacting of the electrons may lead to an enhanced gas desorption and an associated pressure increase. In this paper the authors report preliminary simulation results of the electron-cloud build-up both in a dipole magnet and in a straight section of the LHC at top energy. The effective wakefield created by the electron cloud translates into an instability rise time of about 40 ms horizontally and 500 ms vertically. This rise time is not much larger than that of the resistive-wall instability at injection energy. Similar simulation studies show that the instability rise time for the proposed Very Large Hadron Collider (VLHC) is about 3--4 s in both trasnverse planes. The smaller growth rate in the VLHC, as compared with the LHC, is primarily due to the much lower bunch population

  13. Functional nickel-based deposits synthesized by focused beam induced processing

    Science.gov (United States)

    Córdoba, R.; Barcones, B.; Roelfsema, E.; Verheijen, M. A.; Mulders, J. J. L.; Trompenaars, P. H. F.; Koopmans, B.

    2016-02-01

    Functional nanostructures fabricated by focused electron/ion beam induced processing (FEBIP/FIBIP) open a promising route for applications in nanoelectronics. Such developments rely on the exploration of new advanced materials. We report here the successful fabrication of nickel-based deposits by FEBIP/FIBIP using bis(methyl cyclopentadienyl)nickel as a precursor. In particular, binary compounds such as nickel oxide (NiO) are synthesized by using an in situ two-step process at room temperature. By this method, as-grown Ni deposits transform into homogeneous NiO deposits using focused electron beam irradiation under O2 flux. This procedure is effective in producing highly pure NiO deposits with resistivity of 2000 Ωcm and a polycrystalline structure with face-centred cubic lattice and grains of 5 nm. We demonstrate that systems based on NiO deposits displaying resistance switching and an exchange-bias effect could be grown by FEBIP using optimized parameters. Our results provide a breakthrough towards using these techniques for the fabrication of functional nanodevices.

  14. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  15. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  16. Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Lavrijsen, R; Schoenaker, F J; Ellis, T H; Barcones, B; Kohlhepp, J T; Swagten, H J M; Koopmans, B [Department of Applied Physics, Center for NanoMaterials and COBRA Research Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Cordoba, R; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50009 Zaragoza (Spain); De Teresa, J M; Magen, C [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Trompenaars, P; Mulders, J J L, E-mail: r.lavrijsen@tue.nl, E-mail: deteresa@unizar.es [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2011-01-14

    We systematically study the effect of oxygen content on the magneto-transport and microstructure of Fe:O:C nanowires deposited by focused-electron-beam-induced (FEBID) deposition. The Fe/O ratio can be varied with an Fe content varying between {approx} 50 and 80 at.% with overall low C content ({approx}16 {+-} 3 at.%) by adding H{sub 2}O during the deposition while keeping the beam parameters constant as measured by energy dispersive x-ray (EDX) spectroscopy. The room-temperature magnetic properties for deposits with an Fe content of 66-71 at.% are investigated using the magneto-optical Kerr effect (MOKE) and electric magneto-transport measurements. The nanostructure of the deposits is investigated through cross-sectional high-resolution transmission electron microscopy (HRTEM) imaging, allowing us to link the observed magneto-resistance and resistivity to the transport mechanism in the deposits. These results demonstrate that functional magnetic nanostructures can be created, paving the way for new magnetic or even spintronics devices.

  17. Ion beam induced effects at 15 K in z-cutLiNbO3

    International Nuclear Information System (INIS)

    The primary effects of the damage formation in z-cut LiNbO3 due to ion irradiation was investigated. Therefor the samples were irradiated stepwise and subsequently measured by means of Rutherford backscattering spectrometry (RBS) at 15 K without changing the temperature of the sample. The irradiation was done with 30 keV H-, 50 keV Li-, 160 keV O- and 350 keV Ar-ions at ion fluences between 5 x 1011 cm-2 and 2 x 1017 cm-2. The RBS measurements were performed with 1.4 MeV He-ions in steps of equal charges providing a series of subspectra. It was observed that the backscattering yield of the damaged region decreases with increasing number of subspectra indicating an annealing of defects as a consequence of the RBS measurement. The energy deposited into electronic processes by the analyzing He beam is mostly responsible for the observed defect annealing. The amount of annealing depends on the defect concentration and the ion species. The undisturbed defect accumulation which will be observed without any effect of measurement was calculated for the different ion species by an analytical formula taking into account the He-beam induced annealing

  18. Evidence against a universal electron-beam-induced virtual temperature in graphene

    Science.gov (United States)

    Börner, Pia; Kaiser, Ute; Lehtinen, Ossi

    2016-04-01

    The continuous electron bombardment of a sample during transmission electron microscopy (TEM) drives atomic-scale transformations. In earlier studies the transformations appeared to proceed as if the sample was held at an elevated temperature, and, indeed, the hypothesis of an electron-beam-induced virtual temperature has gained traction in the scientific community. However, the sample is not significantly heated by the electron beam, meaning the processes are not activated by thermal vibrations. Instead, individual collisions between the electrons and the target atoms, and/or excitations of the electronic system, lead to the observed transformations. It is not a priori clear what virtual temperature can be assigned to the conditions under the electron irradiation, or even if such a temperature can be defined at all. Here, we attempt to measure the virtual temperature, specific to this system, by comparing the relative population of the three different divacancy defect states in single-layer graphene to the Boltzmann distribution using calculated energy levels of the defect states. The experiment is conducted using aberration-corrected high-resolution TEM at an acceleration voltage of 80 kV. Atomistic simulations are used to learn about the energetics of the defects. We find that the measured populations cannot be fitted to the Boltzmann distribution, and consequently no universal virtual temperature can be assigned to the system.

  19. Induced photonuclear interaction by Rhodotron-TT200 10 MeV electron beam

    Indian Academy of Sciences (India)

    Farshid Tabbakh; Mojtaba Mostajab Aldaavati; Mahdieh Hoseyni; Khadijeh Rezaee Ebrahim Saraee

    2012-02-01

    In this paper the photonuclear interaction induced by 10 MeV electron beam generating high-intensity neutrons is studied. Since the results depend on the target material, the calculations are performed for Pb, Ta and W targets which have high , in a simple geometry. MCNPX code has been used to simulate the whole process. Also, the results of photon generation has been compared with the experimental results to evaluate the reliability of the calculation. The results show that the obtained neutron flux can reach up to 1012 n/cm2 /s with average energies of 0.9 MeV, 0.4 MeV and 0.9 MeV for these three elements respectively with the maximum heat deposited as 3000 W/c3,4500 W/c3 and 6000 W/c3.

  20. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    Science.gov (United States)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  1. Ultrahigh resolution focused electron beam induced processing: the effect of substrate thickness

    DEFF Research Database (Denmark)

    van Dorp, Willem F; Lazic, Ivan; Beyer, André;

    2011-01-01

    It is often suggested that the growth in focused electron beam induced processing (FEBIP) is caused not only by primary electrons, but also (and even predominantly) by secondary electrons (SEs). If that is true, the growth rate for FEBIP can be changed by modifying the SE yield. Results from our...... Monte Carlo simulations show that the SE yield changes strongly with substrate thickness for thicknesses below the SE escape depth. However, our experimental results show that the growth rate is independent of the substrate thickness. Deposits with an average size of about 3 nm were written on 1 and 9...... nm thick carbon substrates. The apparent contradiction between simulation and experiment is explained by simulating the SE emission from a carbon substrate with platinum deposits on the surface. It appears that the SE emission is dominated by the deposits rather than the carbon substrate, even for...

  2. Study of laser-induced plasma shock waves by the probe beam deflection technique

    Institute of Scientific and Technical Information of China (English)

    Yan Qian; Jian Lu; Xiaowu Ni

    2009-01-01

    Laser probe beam deflection technique is used for the analysis of laser-induced plasma shock waves in air and distilled water.The temporal and spatial variations of the parameters on shock fronts are studied as funotions of focal lens position and laser energy.The influences of the characteristics of media are investigated on the well-designed experimental setup.It is found that the shock wave in distilled water attenuates to an acoustic wave faster than in air under the same laser energy.Good agreement is obtained between our experimental results and those attained with other techniques.This technique is versatile,economic,and simple to implement,being a pronmising diagnostic tool for pulsed laser processing.

  3. Luminescence of photoactivated pristine and Cr-doped MgAl2O4 spinel

    Science.gov (United States)

    Artemyeva, E. S.; Barinov, D. S.; Atitar, F. M.; Murashkina, A. A.; Emeline, A. V.; Serpone, N.

    2015-04-01

    This Letter reports a comparative study of the luminescence from pristine and Cr-doped MgAl2O4 spinel induced by different excitation mechanisms: photoluminescence (PhL), thermoluminescence (ThL) and Photo-Induced Chemisorption Luminescence (the PhICL phenomenon) to understand the mechanism of PhICL emission. Cr-doping alters the major pathway of physical relaxation through a luminescence pathway: quenching of the luminescence associated with intrinsic defects and appearance of the luminescence from Cr3+-states. The similarity between ThL and PhICL spectra suggest the mechanism of the PhICL phenomenon is due to electron transfer from the surface to the emission centers of luminescence; an energy transfer pathway is not precluded.

  4. Luminescence study of spodumene

    International Nuclear Information System (INIS)

    A comparative study is made of the luminescence of five kinds of spodumene from Minas Gerais, Brazil, studied previously by optical absorption spectroscopy. Natural gemstones are used which, in the course of the experiments, were irradiated with X-rays. (L.C.)

  5. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    2001-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  6. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  7. Refractive index changes induced by sheet beams with various intensity distributions in LiNbO3:Fe crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; ZHAO Jianlin; XU Honglai; SUN Yidong; YANG Dexing; WANG Meirong

    2005-01-01

    According to the Kukhtarev equations and a simplified model based on the photovoltaic charge carriers transport mechanism, the distributions of the index changes (DICs) in LiNbO3:Fe crystals induced by sheet beams with various intensity profiles are theoretically analyzed. The numerically simulated results coincide with the analytic expressions deduced from the simplified model. The DICs in a LiNbO3:Fe crystal induced by sheet beams with rectangular, Gaussian and square law profiles are measured by using the interferometric method. By employing the analytic expressions, the experimental data points are well fitted. By utilizing the angular spectrum theory and the ray equation, the uniformities of the intensity profiles of the writing beams along the propagation directions and the influences of the self-defocusing effect of the crystal are numerically simulated, respectively. The results show that the experimental results are reliable. The numerically simulated method and the analytic expressions can be both employed to predict the DICs induced by sheet beams with various light intensity profiles. Furthermore, utilizing writing beams with proper intensity profiles, any desired index distributions could be obtained.

  8. The fine structure of the vortex-beams in the biaxial and biaxially-induced birefringent media caused by the conical diffraction

    CERN Document Server

    Fadeyeva, Tatyana; Anischenko, Pavel; Volyar, Alexander

    2011-01-01

    We consider the paraxial propagation of nondiffracting singular beams inside natural biaxial and biaxially-induced birefringent media in vicinity of one of the optical axes in terms of eigenmode vortex-beams, whose angular momentum does not change upon propagation. We have predicted a series of new optical effects in the natural biaxial crystals such as the stable propagation of vector singular beams bearing the coupled optical vortices with fractional topological charges, the conversion of the zero-order Bessel beam with a uniformly distributed linear polarization into the radially-, azimuthally- and spirally-polarized beams and the conversion of the space-variant linear polarization in the combined beam with coupled vortices. We have revealed that the field structure of the vortex-beams in the biaxially-induced crystals resembles that in the natural biaxial crystals and form the vector structure inherent in the conical diffraction. However, the mode beams in this case do not change the propagation direction...

  9. Quasi-monoenergetic Electron Beams from Laser-plasma Acceleration by Ionization-induced Injection in Low- density Pure Nitrogen

    CERN Document Server

    Tao, Mengze; Li, Song; Mirzaie, Mohammad; Chen, Liming; He, Fei; Cheng, Ya; Zhang, Jie

    2014-01-01

    We report a laser wakefield acceleration of electron beams up to 130 MeV from laser-driven 4-mm long nitrogen gas jet. By using a moderate laser intensity (3.5*10^18 W.cm^(-2) ) and relatively low plasma densities (0.8*10^18 cm^(-3) to 2.7*10^18 cm^(-3)) we have achieved a stable regime for laser propagation and consequently a stable generation of electron beams. We experimentally studied the dependence of the drive laser energy on the laser-plasma channel and electron beam parameters. The quality of the generated electron beams is discussed within the framework of the ionization-induced injection mechanism.

  10. Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle?

    OpenAIRE

    ASLAN, Kadir; Geddes, Chris D.

    2009-01-01

    The ability of luminescent species in the near-field to both induce and couple to surface plasmons has been known for many years, with highly directional emission from films (Surface Plasmon Coupled Luminescence, SPCL) facilitating the development of sensitive near-field assay sensing platforms, to name but just one application. Because of the near-field nature of the effect, only luminescent species (fluorescence, chemiluminescence and phosphorescence) within a few hundred nanometers from th...

  11. Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel

    CERN Document Server

    Batygin, Yuri K; Kurennoy, Sergey; Li, Chao

    2016-01-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  12. Suppression of space charge induced beam halo in nonlinear focusing channel

    Science.gov (United States)

    Batygin, Yuri K.; Scheinker, Alexander; Kurennoy, Sergey; Li, Chao

    2016-04-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  13. Theoretical evaluation of induced radioactivity in food products by electron — or X-ray beam sterilization

    Science.gov (United States)

    Leboutet, H.; Aucouturier, J.

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons ( BX rays), based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γ n) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γ n) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. We conclude that for electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10-11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. There is only a small increase of induced activity as the energy changes from 5 to 10 MeV, for the same total applied dose.

  14. Relaxation time study of the electron-beam induced polymerization of 1,6-hexanediol diacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, J.W. Jr.; Ding, R.S.; Kispert, L.D.

    1989-01-01

    NMR measurements have been used to characterize the electron-beam (EB) induced polymerization of 1,6-hexanediol diacrylate. Hydrogen T/sub 1/, T/sub 1p/, and T/sub 2/ values have been measured as a function of radiation dose. The T/sub 2/ signal consists of a Gaussian component and a longer component consisting of two exponentials. The sum of the Gaussian and the short exponential intensities is strongly correlated with the polymer fraction determined by gel extraction. T/sub 2/ values associated with the exponential component decrease rapidly with increasing dose. The T/sub 1/ relaxation consists of two exponentials for low dose and a single exponential for high dose. The T/sub 1p/ relaxation consists of from two or three exponential components, and the departure from a single exponential decreases with increasing dose. T/sub 1/ and T/sub 1p/ intensities are poorly correlated and gel extraction results. T/sub 1/ and T/sub 1p/ minima occur at intermediate radiation dose, and T/sub 1p/ depends on H/sub 1/ at high dose. Limited spin diffusion plays an important role in the T/sub 1/ and T/sub 1p/ relaxation. Hydroquinone has little effect on the EB-induced polymerization. (author).

  15. Electromagnetically Induced Transparency versus Nonlinear Faraday Effect. Coherent Control of the Light Beam Polarization

    CERN Document Server

    Drampyan, R; Gawlik, W

    2009-01-01

    We report on experimental and theoretical study of the nonlinear Faraday effect under conditions of electromagnetically induced transparency at the 5$S_{1/2} \\to 5P_{3/2} \\to 5D_{5/2}$ two-photon transition in rubidium vapors. These transitions realize the inverted Y model which combines the $\\Lambda$ and ladder systems. Strong nonlinearity allowing for large rotation angles of a probe beam tuned to the $S\\to P$ transition was obtained by creation of quantum superpositions of magnetic sublevels (Zeeman coherences) in the rubidium ground state ($\\Lambda$ scheme). Additionally, electromagnetically induced transparency was accomplished in a ladder scheme by acting with an additional strong coupling laser on the $P\\to D$ transition. Under conditions of a two-photon resonance the rotation was significantly reduced, which is interpreted as a competition between the two processes. The effect was observed in sub-Gauss magnetic fields and could be used for efficient coherent control of generation of the ground-state c...

  16. Study of the beam-induced neutron flux and required shielding for DIANA

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: abest1@nd.edu [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Couder, Manoel [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Famiano, Michael [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Lemut, Alberto [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-11-01

    Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern. The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1 m thick water-shielded door as well as an emergency access/egress maze.

  17. Room Temperature Ion-Beam-Induced Recrystallization and Large Scale Nanopatterning.

    Science.gov (United States)

    Satpati, Biswarup; Ghosh, Tanmay

    2015-02-01

    We have studied ion-induced effects in the near-surface region of two eutectic systems. Gold and Silver nanodots on Silicon (100) substrate were prepared by thermal evaporation under high vacuum condition at room temperature (RT) and irradiated with 1.5 MeV Au2+ ions at flux ~1.25 x 10(11) ions cm-2 s-1 also at RT. These samples were characterized using cross-sectional transmission electron microscopy (XTEM) and associated techniques. We have observed that gold act as catalysis in the recrystallization process of ion-beam-induced amorphous Si at room temperature and also large mass transport up to a distance of about 60 nm into the substrate. Mass transport is much beyond the size (~ 6-20 nm) of these Au nanodots. Ag nanoparticles with diameter 15-45 nm are half-way embedded into the Si substrate and does not stimulate in recrystallization. In case of Au nanoparticles upon ion irradiation, mixed phase formed only when the local composition and transient temperature during irradiation is sufficient to cause mixing in accordance with the Au-Si stable phase diagram. Spectroscopic imaging in the scanning TEM using spatially resolved electron energy loss spectroscopy provides one of the few ways to measure the real-space nanoscale mixing.

  18. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  19. Study of the ion beam induced amorphisation, bond breaking and optical gap change processes in PET

    Science.gov (United States)

    Papaléo, R. M.; de Araújo, M. A.; Livi, R. P.

    1992-03-01

    Ion beam bombardment induced effects on the crystalline and chemical structures, as well as in the thermal, optical, and electrical properties of PET (Mylar) were studied. The induced modifications were followed by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), X-ray diffractometry, differential scanning calorimetry (DSC), and electrical resistance measurements. The melting temperature and the crystalline fraction started to decrease at fluences where the chemical degradation was not significant. The hydrogen and oxygen losses led preferentially to new carbon-carbon bonds within the polymer chains and gradually increased the aliphatic and aromatic conjugation. Simultaneously, a decrease in the optical gap as function of the ion fluencc is observed. For 40Ar 2+-bombarded samples the optical gap saturates around 0.7 eV lor f'luences of the order of 10 15 cm -2, At those fluences the electrical resistivity is relatively high (τ ≫ 10 6 Ω cm) , but for higher fluences it decreases by several orders of magnitude before saturation. The cross sections for the amorphisation, for the optical gap change and for the ester group bond reorganization processes were extracted.

  20. Pulsed cathodoluminescence and γ-luminescence of scintillation crystals

    Science.gov (United States)

    Kozlov, V. A.; Ochkin, V. N.; Pestovskii, N. V.; Petrov, A. A.; Savinov, S. Yu; Zagumennyi, A. I.; Zavertyaev, M. V.

    2015-11-01

    The spectra and decay time of pulsed cathodoluminescence (PCL) of a scintillating crystals excited by the electron beam is compared to the spectra and decay time of the luminescence of the same crystals initiated by γ-rays (GL). It is shown that spectra and decay time of PCL and GL are identical within the experimental errors. The explanation of these results is based on taking into account the physical processes within the crystal media under the irradiation by high-energy particles. The results of this study confirm that the PCL method may be used for the rapid analysis of the luminescent properties of scintillators.

  1. Accelerating airy beams generated by ultrafast laser induced space-variant nanostructures in glass

    OpenAIRE

    Gecevičius, M.; M. Beresna; Kazansky, P. G.

    2012-01-01

    We demonstrate new technique to generate accelerating Airy beam with femtosecond laser imprinted space variant birefringence produced by self-assembled nanostructures in fused silica. The technique enables dual Airy beam generation.

  2. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  3. Measurement of longitudinal phase space in an accelerated H- beam using a laser-induced neutralization method

    International Nuclear Information System (INIS)

    Laser-induced neutralization of H- ions is a process that can be used to measure the longitudinal phase space of accelerated H- beams. The laser-induced neutralization diagnostic approach (LINDA) measures the longitudinal emittance of an H- beam by photoneutralizing different phase slices of beam microbunches and analyzing the energy distribution of the neutral slices. A LINDA system utilizing a pulsed laser and time-of-flight analysis has successfully measured longitudinal emittance of the 5 MeV H- beam exiting the drift-tube linac of the Los Alamos Accelerator Test Stand. Design considerations associated with the LINDA laser-based emittance measuring system are given. The present LINDA system is described and its limitations are discussed. Experimental results are given from an application of the LINDA system to the measurement of longitudinal emittance growth in a drift space and following insertion into the beamline of beam transport elements comprising a single-arm funnel. A new system is proposed which uses a mode-locked laser and spectrometer to improve resolution and shorten measurement time. (orig.)

  4. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Science.gov (United States)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann; Kim, Gil-Hah

    2012-01-01

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.

  5. Fast crystallization of amorphous Gd2Zr2O7 induced by thermally activated electron-beam irradiation

    International Nuclear Information System (INIS)

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd2Zr2O7 synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd2Zr2O7 and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm2). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 1017 electrons/cm2. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism

  6. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sadtler, Bryce; Habenicht, Carsten [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Freitag, Bert [FEI Company, P.O. Box 80066, KA 5600 Eindhoven (Netherlands); Alivisatos, A. Paul [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Kisielowski, Christian, E-mail: CFKisielowski@lbl.gov [National Center for Electron Microcopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Joint Center for Artificial Photosynthesis, Berkeley, CA 94720 (United States)

    2013-11-15

    The atomic structure and interfaces of CdS/Cu{sub 2}S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu{sub 2}S exhibits a low-chalcocite structure in pristine CdS/Cu{sub 2}S nanorods. Under electron beam irradiation the Cu{sub 2}S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu{sup +}–Cd{sup 2+} cation exchange at the CdS/Cu{sub 2}S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper–cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu{sub 2}S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3–10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu{sub 2}S thin film solar cells with an activation energy of 0.96 eV. - Highlights: • Heterostructured nanorods were investigated at atomic resolution showing that they are free of extended defects. • Beam–sample interactions are controlled by current and voltage variations to provide pristine crystal structures. • Beam-induced migration of heterointerfaces are measured time-resolved and compared with Cu diffusion coefficients. • Beam–sample interaction overwrite possible signal improvements that can be expected by sample cooling.

  7. Thermal conductivity of graphene with defects induced by electron beam irradiation

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  8. Reaction dynamics induced by the radioactive ion beam 7Be on medium-mass and heavy targets

    International Nuclear Information System (INIS)

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam 7Be (Sα = 1.586 MeV) on medium-mass (58Ni) and heavy (208Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×105 pps 7Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems

  9. Radiation on luminescent properties of quartz glasses and fiber light pipes

    CERN Document Server

    Abdurakhmanov, B S; Gulamova, R R; Alimov, R; Yuldashev, B S; Ashurov, M K; Rustamov, I R

    2002-01-01

    Paper contains the results of investigation into X-ray luminescence of KI and KU-1 quartz glasses and of various composition and size quartz fiber light pipes (FLP) gamma-irradiated within 10 sup 2 -10 sup 7 Gy dose range. On the basis of analysis of X-ray luminescence spectra of glasses and FLP and comparison of the experimental data one detected in spectra two luminescence bands within 410, 450-470 nm range. One determined dose dependences of X-ray luminescence intensity of every of these bands of luminescence and hypothesized about the nature of the relevant centers. The protective role of OH-groups in the process of radiation-induced generation of luminescence centres under gamma-irradiation of quartz glasses and FLP was confirmed experimentally

  10. Influence of solution parameters on europium(III), α-Al2O3, and humic acid interactions: Macroscopic and time-resolved laser-induced luminescence data

    Science.gov (United States)

    Janot, Noémie; Benedetti, Marc F.; Reiller, Pascal E.

    2013-12-01

    Speciation of Eu(III) in the presence of purified Aldrich humic acid (PAHA) and/or α-Al2O3 has been studied by time-resolved luminescence spectroscopy as a function of pH, ionic strength and PAHA concentration. The comparisons of macroscopic and spectroscopic data (adsorption, spectra, and decay times analyses) between the ternary system, i.e., Eu(III)/PAHA/α-Al2O3, and the corresponding binary systems are comprehensively presented. As expected, results show almost no influence of ionic strength on Eu(III) adsorption onto α-Al2O3. However, in the binary Eu(III)/PAHA system, it is clearly shown that variations of electrolyte concentration, which modify PAHA conformation, influence the symmetry of the humic-bound Eu(III) at pH ⩾ 7. In the ternary system, adsorption of both Eu(III) and PAHA onto the surface decreases with ionic strength. At I = 0.01 M NaClO4, Eu(III) luminescence decay is much faster than at I = 0.1 M NaClO4. This is most likely due to the lower surface concentration of PAHA at lower ionic strength, leading to a less constrained environment for Eu(III) ions. At high pH, luminescence spectra are different at the two ionic strengths studied. Concerning the influence of PAHA concentration, spectroscopic results show that in the binary Eu(III)/PAHA system complete complexation of 1 μM Eu(III) is reached for 16 mgPAHA l-1 at pH 4, and for lower PAHA concentrations at higher pH. At the same PAHA concentration, asymmetry ratios are comparable between the binary Eu(III)/PAHA system and the ternary system between pH 4 and 7.7. This means that the presence of mineral surface has almost no influence on Eu(III) environment symmetry below pH 8; hence, under these acid to neutral pH conditions, the occurrence of Eu(III)-bridged humic surface complexes is not likely. In the ternary system, at different pH, luminescence decay times of Eu(III) increase with PAHA concentration. They are much higher in the ternary system than in the binary Eu(III)/PAHA system

  11. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  12. Novel Mechano-Luminescent Sensors Based on Piezoelectric/Electroluminescent Composites

    Directory of Open Access Journals (Sweden)

    Yunzhang Fang

    2011-04-01

    Full Text Available A high-sensitivity mechano-luminescent sensor was fabricated on the basis of piezoelectric/electroluminescent composites. The working principle of this mechano-luminescent sensor was elucidated by analyzing the relationship between the piezoelectric-induced charges and the electroluminescent effects. When a stress is applied on the piezoelectric layer, electrical charges will be induced at both the top and bottom sides of the piezoelectric layer. The induced electrical charges will lead to a light output from the electroluminescent layer, thus producing a mechano-luminescence effect. By increasing the vibration strength or frequency applied, the mechano-luminescence output can be obviously enhanced. Mechano-luminescence sensors have potential in smart stress-to-light devices, such as foot-stress-distribution-diagnosis systems and dynamic-load-monitors for bridge hanging cables.

  13. Luminescence properties of Si-containing porous matrix–PbS nanoparticle systems

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. A., E-mail: satarasov@mail.ru; Aleksandrova, O. A.; Lamkin, I. A.; Maksimov, A. I.; Maraeva, E. V.; Mikhailov, I. I.; Moshnikov, V. A. [St. Petersburg State Electrotechnical University “LETI” (Russian Federation); Musikhin, S. F. [St. Petersburg State Polytechnic University (Russian Federation); Nalimova, S. S.; Permyakov, N. V.; Spivak, Yu. M.; Travkin, P. G. [St. Petersburg State Electrotechnical University “LETI” (Russian Federation)

    2015-12-15

    The luminescence properties of systems that contain lead-sulfide nanoparticles deposited onto substrates fabricated from porous silicon, oxidized porous silicon, and porous (tin-oxide)–(silicon-oxide) layers are studied. It is shown that the structure and composition of the matrix induce a strong effect on the luminescence spectra of colloidal quantum dots, defining their emission wavelength.

  14. Spatial chemistry evolution during focused electron beam-induced deposition: origins and workarounds

    International Nuclear Information System (INIS)

    The successful application of functional nanostructures, fabricated via focused electron-beam-induced deposition (FEBID), is known to depend crucially on its chemistry as FEBID tends to strong incorporation of carbon. Hence, it is essential to understand the underlying mechanisms which finally determine the elemental composition after fabrication. In this study we focus on these processes from a fundamental point of view by means of (1) varying electron emission on the deposit surface; and (2) changing replenishment mechanism, both driven by the growing deposit itself. First, we revisit previous results concerning chemical variations in nanopillars (with a quasi-1D footprint) depending on the process parameters. In a second step we expand the investigations to deposits with a 3D footprint which are more relevant in the context of applications. Then, we demonstrate how technical setups and directional gas fluxes influence final chemistries. Finally, we put the findings in a bigger context with respect to functionalities which demonstrates the crucial importance of carefully set up fabrication processes to achieve controllable, predictable and reproducible chemistries for FEBID deposits as a key element for industrially oriented applications. (orig.)

  15. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  16. Evaluation of Health Consequences of Air Pollution Induced by Beam Rolling Mills Factory (Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2014-10-01

    Full Text Available The increases in air pollution over the metropolitan cities are a threat to human health and environment. An attempt has been made to evaluate the health consequences of indoor air pollution induced by Beam Rolling Mills Factory at Ahwaz (Iran. A questionnaire was prepared to obtain information on health of 481 workers, out of which 200 each were selected from exposed and non-exposed category by stratified randomized method. Fisher exact test and chi-square test were used to calculate the values. The study concludes that more than 80% of the workers have high exposure risk to diseases. Analysis of the health impacts reveals that exposed workers are more prone to various diseases as compared to the non-exposed workers. It is also observed that exposure to air pollutants might be the causative factor for various diseases among the smokers but also nonsmoking workers. The analysis also reveals that there is higher relative risk in occupational fatigue and cardio-vascular disease. Further, the study found that percentage of workers having various diseases is much higher in the indoor environment as compared to the outdoor environment

  17. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maximenko, S. I., E-mail: sergey.maximenko@nrl.navy.mil; Scheiman, D. A.; Jenkins, P. P.; Walters, R. J. [Naval Research Laboratory, Washington, DC 20375 (United States); Lumb, M. P.; Hoheisel, R. [The George Washington University, Washington, DC 20052 (United States); Gonzalez, M. [Sotera Defense Solutions, Herndon, Virginia 20171 (United States); Messenger, S. R. [University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Tibbits, T. N. D. [QuantaSol Ltd, Kingston-upon-Thames KT1 3GZ (United Kingdom); Imaizumi, M. [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Ohshima, T.; Sato, S. I. [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  18. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor

    Science.gov (United States)

    Donev, Eugenii U.; Schardein, Gregory; Wright, John C.; Hastings, J. Todd

    2011-07-01

    Focused electron-beam-induced deposition using bulk liquid precursors (LP-EBID) is a new nanofabrication technique developed in the last two years as an alternative to conventional EBID, which utilizes cumbersome gaseous precursors. Furthermore, LP-EBID using dilute aqueous precursors has been demonstrated to yield platinum (Pt) nanostructures with as-deposited metal content that is substantially higher than the purity achieved by EBID with currently available gaseous precursors. This advantage of LP-EBID--along with the ease of use, low cost, and relative innocuousness of the liquid precursors--holds promise for its practical applicability in areas such as rapid device prototyping and lithographic mask repair. One of the feasibility benchmarks for the LP-EBID method is the ability to deposit high-fidelity nanostructures on various substrate materials. In this study, we report the first observations of performing LP-EBID on bare and metal-coated silicon-nitride membranes, and compare the resulting Pt deposits to those obtained by LP-EBID on polyimide membranes in terms of nucleation, morphology, size dependence on electron dose, and purity.

  19. Methods of optimising ion beam induced charge collection of polycrystalline silicon photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Witham, L.C.G.; Jamieson, D.N.; Bardos, R.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics, Microanalytical Research Centre

    1998-06-01

    Ion Beam Induced Charge (IBIC) is a valuable method for the mapping of charge carrier transport and recombination in silicon solar cells. However performing IBIC analysis of polycrystalline silicon solar cells is problematic in a manner unlike previous uses of IBIC on silicon-based electronic devices. Typical solar cells have a surface area of several square centimeters and a p-n junction thickness of only few microns. This means the cell has a large junction capacitance in the many nanoFarads range which leads to a large amount of noise on the preamplifier inputs which typically swamps the transient IBIC signal. The normal method of improving the signal-to-noise (S/N) ratio by biasing the junction is impractical for these cells as the low-quality silicon used leads to a large leakage current across the device. We present several experimental techniques which improve the S/N ratio which when used together should make IBIC analysis of many low crystalline quality devices a viable and reliable procedure. (authors). Extended abstract. 4 refs., 2 figs.

  20. Erbium doping of silicon and silicon carbide using ion beam induced epitaxial crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, P.; Julien, F.H.; Lourtioz, J.M.; Bernas, H.; Clerc, C.; Chaumont, J. [Univ. Paris XI, Orsay (France); Bodnar, S.; Regolini, J.L. [France Telecom CNET-CNS, Meylan (France); Lin, X.W. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Erbium doping of silicon and silicon carbide using implantation followed by ion beam induced epitaxial crystallization (IBIEC) is investigated. The implanted concentration of Er was 1.4 at.% in both cases. In Si(100), Rutherford backscattering/channeling revealed that about 40% of the Er atoms evolved upon rapid thermal annealing from an undetermined position (room temperature) to an interstitial tetrahedral position (650 C) and finally to a substitutional position (950 C). The remaining Er atoms were presumably trapped in the small precipitates visible in high resolution transmission electron microscopy. The photoluminescence at 1.54 {micro}m of Er{sup 3+} is enhanced with annealing and persists up to room temperature after a 950 C 1 min anneal. The high concentration of optically active Er atoms is illustrated by the lack of saturation of the photoluminescence at high pumping excitation intensity. Erbium was also implanted into cubic silicon carbide films prepared by chemical vapor deposition on Si at 900 C. Both solid phase epitaxy (SPE) and IBIEC were performed. After a 950 C anneal, the low temperature photoluminescence at 1.54 {micro}m after IBIEC was five times higher in SiC than in silicon. The difference in photoluminescence linewidth between IBIEC (broad lines) and SPE (sharp lines) is explained in terms of interactions between optically active erbium atoms.

  1. Raman study of localized recrystallization of amorphous silicon induced by laser beam

    KAUST Repository

    Tabet, Nouar A.

    2012-06-01

    The adoption of amorphous silicon based solar cells has been drastically hindered by the low efficiency of these devices, which is mainly due to a low hole mobility. It has been shown that using both crystallized and amorphous silicon layers in solar cells leads to an enhancement of the device performance. In this study the crystallization of a-Si prepared by PECVD under various growth conditions has been investigated. The growth stresses in the films are determined by measuring the curvature change of the silicon substrate before and after film deposition. Localized crystallization is induced by exposing a-Si films to focused 532 nm laser beam of power ranging from 0.08 to 8 mW. The crystallization process is monitored by recording the Raman spectra after various exposures. The results suggest that growth stresses in the films affect the minimum laser power (threshold power). In addition, a detailed analysis of the width and position of the Raman signal indicates that the silicon grains in the crystallized regions are of few nm diameter. © 2012 IEEE.

  2. Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide

    Science.gov (United States)

    Riazanova, A. V.; Costanzi, B. N.; Aristov, A. I.; Rikers, Y. G. M.; Mulders, J. J. L.; Kabashin, A. V.; Dahlberg, E. Dan; Belova, L. M.

    2016-03-01

    Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10-6 in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm-1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.

  3. Electric field strength measurements in a megavolt vacuum diode using laser induced fluorescence of an atomic beam

    International Nuclear Information System (INIS)

    A combined technique of an atomic beam probing and laser-induced fluorescence spectroscopy (LIFABS) is applied for measuring of local electric field in a 1 MV, 100 kJ, 4 μsec electron diode. Laser-produced lithium beam is stepwise excited by two resonant wide-band laser beams. Stark-splitted spontaneous emission from n=4 level is detected with a polychromator. Time dependence of the electric field was inferred from splitting of the 460.3 nm lithium line. The electric field strength F grows during a pulse from 160 to 260 kV/cm in the center of a 6 cm gap. By comparing calculated and experimental F-values, expansion of the emission boundaries of the cathode and anode plasmas was reconstructed

  4. New luminescent materials and filters for Luminescent Solar Concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited sunlig

  5. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  6. Feshbach-resonance-induced atomic filamentation and quantum pair correlation in atom-laser-beam propagation

    OpenAIRE

    Zhang, Weiping; Search, Chris P.; Pu, Han; Meystre, Pierre; Wright, Ewan M.

    2002-01-01

    We study the propagation of an atom laser beam through a spatial region with a magnetic field tuned to a Feshbach resonance. Tuning the magnetic field below the resonance produces an effective focusing Kerr medium that causes a modulational instability of the atomic beam. Under appropriate circumstances, this results in beam breakup and filamentation seeded by quasi-particle fluctuations, and in the generation of correlated atomic pairs.

  7. Study on the bias-dependent effects of proton-induced damage in CdZnTe radiation detectors using ion beam induced charge microscopy.

    Science.gov (United States)

    Gu, Yaxu; Jie, Wanqi; Rong, Caicai; Xu, Lingyan; Xu, Yadong; Lv, Haoyan; Shen, Hao; Du, Guanghua; Guo, Na; Guo, Rongrong; Zha, Gangqiang; Wang, Tao; Xi, Shouzhi

    2016-09-01

    The influence of damage induced by 2MeV protons on CdZnTe radiation detectors is investigated using ion beam induced charge (IBIC) microscopy. Charge collection efficiency (CCE) in irradiated region is found to be degraded above a fluence of 3.3×10(11)p/cm(2) and the energy spectrum is severely deteriorated with increasing fluence. Moreover, CCE maps obtained under the applied biases from 50V to 400V suggests that local radiation damage results in significant degradation of CCE uniformity, especially under low bias, i. e., 50V and 100V. The CCE nonuniformity induced by local radiation damage, however, can be greatly improved by increasing the detector applied bias. This bias-dependent effect of 2MeV proton-induced radiation damage in CdZnTe detectors is attributed to the interaction of electron cloud and radiation-induced displacement defects. PMID:27399802

  8. The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material

    Science.gov (United States)

    Zhang, Jiachi; Yu, Minghui; Qin, Qingsong; Zhou, Hongliang; Zhou, Meijiao; Xu, Xuhui; Wang, Yuhua

    2010-12-01

    The nondoped Mg2SnO4 material with inverse spinel structure was synthesized by solid state reaction. This phosphor showed a broad green emission band covering 470-550 nm under 291 nm excitation, which was due to the recombination of F centers with holes. Stimulated by 980 nm infrared laser, the green photostimulated luminescence was first observed in a nondoped oxide. After ultraviolet irradiation, the green persistent luminescence of Mg2SnO4 could be seen in darkness for about 5 h. The decay curves revealed that the long persistent luminescence was governed by tunneling mechanism and it proved the presence of different trap clusters in Mg2SnO4. These trap clusters (such as [SnMg••-Oi″], [SnMg••-2e'], and [SnMg••-e″]) induced the trap levels with different depths in band gap and corresponded to the three components (at 110, 168, and 213 °C) of the thermoluminescence glow curve of Mg2SnO4. These trap levels with different depths were proved to be not independent. It revealed that the shallow traps (110 °C) and part of the deep traps (168 and 213 °C) were involved in the persistent luminescence. Meanwhile, all the shallow and deep traps were responsible for the photostimulated luminescence. Accordingly, the photoluminescence, persistent, and photostimulated luminescence mechanisms of the nondoped Mg2SnO4 material were first proposed.

  9. On the Beam Induced Quasi-instability Transformation of the Damped Aperiodic Mode in the Intergalactic Medium

    Science.gov (United States)

    Kolberg, U.; Schlickeiser, R.; Yoon, P. H.

    2016-02-01

    Highly relativistic electron-positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  10. ON THE BEAM INDUCED QUASI-INSTABILITY TRANSFORMATION OF THE DAMPED APERIODIC MODE IN THE INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, U.; Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- and Astrophysik, Ruhr-Universität, Bochum (Germany); Yoon, P. H., E-mail: uk@tp4.rub.de, E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [IPST, University of Maryland, College Park, Maryland 20742-2431 (United States)

    2016-02-01

    Highly relativistic electron–positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  11. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  12. Pressure-induced Pr{sup 3+} {sup 3}P{sub 0} luminescence in cubic Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Alok M. [GE Global Research, One Research Circle, Niskayuna 12309, NY (United States); Renero-Lecuna, Carlos [MALTA CONSOLIDER Team – Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Cantabria, Santander 39005 (Spain); Santamaría-Pérez, David [MALTA CONSOLIDER Team – Dpto. Químico Física, Facultad de Ciencias Químicas, Universidad Complutense Madrid, E-28040 Madrid (Spain); Rodríguez, Fernando [MALTA CONSOLIDER Team – DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, Santander 39005 (Spain); Valiente, Rafael, E-mail: valientr@unican.es [MALTA CONSOLIDER Team – Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Cantabria, Santander 39005 (Spain)

    2014-02-15

    An explanation for the puzzling absence of luminescence from the Pr{sup 3+} {sup 3}P{sub J[=0,1,2]} states in C-Ln{sub 2}O{sub 3} (cubic; Ln{sup 3+}=Lu{sup 3+}, Y{sup 3+}, Gd{sup 3+}) family of materials is provided by conducting a study of the emission properties of C-Y{sub 2}O{sub 3}:Pr{sup 3+} under applied hydrostatic pressure. Above 7 GPa, electronic transitions from the Pr{sup 3+} {sup 3}P{sub J[=0,1,2]} states are observed in the emission spectrum of C-Y{sub 2}O{sub 3}:Pr{sup 3+} at room temperature and below. The experimental data reveal that the crystal-field split Pr{sup 3+} 4f{sup 1}5d{sup 1} configuration is located entirely within the host lattice conduction band and that the promotion of the electron to the Pr{sup 3+} 4f{sup 1}5d{sup 1} state produces a self-trapped exciton-like state with the configuration, [Pr{sup 4+}+e{sub CB}], where e{sub CB} indicates an electron in the host lattice conduction band. Upon excitation, the exciton-like state bypasses the upper emitting {sup 3}P{sub J[=0,1,2]} states and directly feeds the lower emitting {sup 1}D{sub 2} state. This explains the absence of optical transitions from the Pr{sup 3+} {sup 3}P{sub J[=0,1,2]} states in the emission spectrum of C-Y{sub 2}O{sub 3}:Pr{sup 3+} at ambient pressure. At high pressures, emission transitions from the Pr{sup 3+} {sup 3}P{sub J[=0,1,2]} states are observed because of the localization of the Pr{sup 3+} 4f{sup 1}5d{sup 1} state to below the host lattice conduction band edge. -- Highlights: • Explanation for the complete absence of luminescence from the Pr{sup 3+} {sup 3}P{sub J} state in cubic Ln{sub 2}O{sub 3} sesquioxides. • By high pressure experiments, we have associated the absence of Pr{sup 3+} {sup 3}P{sub J} emission to the presence of an exciton state • The exciton state bypasses the upper emitting {sup 3}P{sub J} states and directly feeds the lower emitting {sup 1}D{sub 2} state. • Apart from the fundamental interest, this finding is relevantly

  13. Measurement of therapeutic photon beams-induced Cerenkov radiation generated in PMMA- and PS-based plastic optical fibers

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Yoo, Wook Jae; Jang, Kyoung Won

    2016-07-01

    In this study, we characterized Cerenkov radiation generated in polystyrene (PS)- and polymethyl methacrylate (PMMA)-based plastic optical fibers (POFs) to select an adequate optical fiber for producing Cerenkov radiation. To determine the relationship between the absorbed dose and the intensity of Cerenkov radiation, we calculated the energy depositions of photon beams and fluxes of electrons inducing Cerenkov radiation using the Monte Carlo N-Particle eXtended code. Also, intensities of Cerenkov radiation generated in PS- and PMMA-based POFs were measured as functions of dose rate and monitor unit. At last, therapeutic photon beams-induced Cerenkov radiation in PS- and PMMA-based POFs was measured according to depths of solid water phantom.

  14. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  15. Proton induced γ-ray emission yields for external beam analysis of F and Na in aerosol samples

    International Nuclear Information System (INIS)

    Proton induced γ-ray emission (PIGE) is commonly used as a complementary technique of proton induced X-ray emission (PIXE) for the analysis of light elements in aerosol samples. In order to get the best operating conditions of PIGE for F and Na determination in aerosol samples relative to thin reference standards in an external beam setup, the γ-ray yields of the reaction 19F (p, p' γ) 19F (Eγ=110 keV and 197 keV) and 23Na (p, p' γ) 23Na (Eγ=440 keV) were measured for incident protons in the energy range of 1.8-2.9 MeV at the external beam facility of the 1.7 MV tandem accelerator in Beijing Normal University. (authors)

  16. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  17. Time-resolved luminescence of Cr3+ in topaz Al2SiO4(OH,F)2

    International Nuclear Information System (INIS)

    Laser-induced time-resolved luminescence, decay times and optical spectroscopy of natural topaz Al2SiO4(OH,F)2 show the presence of several luminescence centers: single Cr3+ in intermediate crystal field position, Cr-Cr pairs and radiation induced center. The possible connection of the last center with Mn4+ and V2+ is discussed

  18. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  19. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Hon-Meng [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Bee, Soo-Tueen, E-mail: beest@utar.edu.my [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-01-15

    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  20. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N.; Corneillie, Todd M.; Xu, Jide

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  1. Stored Luminescence Computed Tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2013-01-01

    The phosphor nanoparticles made of doped semiconductors, pre-excited by well-collimated X-ray radiation, were recently reported for their light emission upon NIR light stimulation. The characteristics of X-ray energy storage and NIR stimulated emission is highly desirable to design targeting probes and improve molecular and cellular imaging. Here we propose stored luminescence computed tomography (SLCT), perform realistic numerical simulation, and demonstrate a much-improved spatial resolution in a preclinical research context. The future opportunities are also discussed along this direction.

  2. Ion beam induced charge collection (IBICC) from integrated circuit test structures using a 10 MeV carbon microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.N.; Bouanani, M.E.; Duggan, J.L.; McDaniel, F.D. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Doyle, B.L.; Walsh, D.S. [Ion Beam Materials Research Laboratory, Sandia National Laboratories, MS 1056, PO Box 5800, Albuquerque, New Mexico 87185 (United States)] Aton, T.J. [Silicon Technology Development, Texas Instruments Inc., PO Box 650311, MS 3704, Dallas, Texas 75265 (United States)

    1999-06-01

    As feature sizes of Integrated Circuits (ICs) continue to shrink, the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICs. The IBICC measurements, conducted at the Sandia National Laboratories, employed a 10 MeV carbon microbeam with 1{mu}m diameter spot to scan test structures on specifically designed ICs. With the aid of IC layout information, an analysis of the charge collection efficiency from different test areas is presented. {copyright} {ital 1999 American Institute of Physics.}

  3. Micro-vibrating spatial filters-induced beam positioning stability in large laser system

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Jianqiang Zhu; Jia Xu; Quanyuan Shan; Kun Xiao; Xuejie Zhang

    2012-01-01

    A dynamic beam propagation model of micro-vibrating spatial filters in inertial confinement fusion (ICF) facilities is built based on the additional beam in SG-Ⅱ facility.The transfer matrix is then deduced,and the sensitivities of the beam positioning to the pellet in the target area to the vibrations of every spatial filter are analyzed,which indicates that the vibrations of spatial filters in the pre-amplify zone has less effects on beam positioning stability at the target.In addition,the vibrations of spatial filters in the main amplify zone dominates the beam positioning stability of the target,especially the vibration of the spatial filter SF7.

  4. Cavity Alignment Using Beam Induced Higher Order Modes Signals in the TTF Linac

    CERN Document Server

    Ross, Marc; Frisch, Josef; Hacker, Kirsten E; Jones, Roger M; McCormick, Douglas; Napoly, Olivier; Paparella, Rita; Smith, Tonee; Wendt, Manfred

    2005-01-01

    Each nine cell superconducting accelerator cavity in the TESLA Test Facility (TTF) at DESY* has two higher order mode (HOM) couplers that efficiently remove the HOM power.** They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and commissioned a four channel heterodyne receiver and time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present an experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.

  5. High-purity 3D nano-objects grown by focused-electron-beam induced deposition.

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices. PMID:27454835

  6. Measurement of Production Cross Sections of Neodymium induced by Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sungchul; Kim, Kwangsoo; Kim, Guinyun [Kyungpook National Univ., Daegu (Korea, Republic of); Song, Taeyung; Lee, Youngouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Neodymium (Nd) which is the second most abundant rare earth elements is used as a cryocooler and the permanent magnet. In addition, it can be used as a target material for the production of medically important radioisotopes such as {sup 140}Nd and {sup 149}Pm as well as the research of biomedical filed via positron emission tomography. Thus, the characteristics of radionuclides produced from the Nd for application in various fields are necessary to study. In view of this, the production cross sections of the Nd induced by proton beam were determined by the well-known stacked-foil activation method. The {sup 149}Pm radionuclide in this research was measured using the proton energy of 45 MeV at the KIRAMS. Furthermore, the production cross section of {sup 149}Nd produced from the {sup nat}Nd reaction was also measured to understand the contribution for the production of {sup 149}Pm. Longer-lived {sup 149}Pm (53.08 h) is formed by both direct {sup nat}Nd reaction and the decay of {sup 149}Nd. The production cross sections of {sup 149}Pm and {sup 149}Nd from the present work in {sup nat}Nd reaction are compared with those from the literature and those calculated theoretically by TALYS 1.4 code. The production cross sections of {sup 149}Pm and {sup 149}Nd from the {sup nat}Nd reactions within the proton energies of 5.08 ∼ 44.72 MeV were determined from present work. It was found that the produced data show a good agreement with other measured data. However, it can be seen that there are slight differences in the high energy region. Moreover, in order to obtain the independent production cross sections of radionuclides, the contribution by a parent radionuclide needs to be researched.

  7. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ˜50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  8. Study of Genetics and Embryology of Polyembryonic Mutant of Autotetraploid Rice Induced by N+ Beam Implantation

    Science.gov (United States)

    Dai, Ximei; Huang, Qunce; Li, Guoping; Hu, Xiuming; Qin, Guangyong; Yu, Zengliang

    2006-11-01

    In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IR36-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IR36-4X plants. 2) The polyembryonic trait of IR36-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double set of embryo sacs in a single ovary, antipodal cells or endosperm cells. These results suggest that IR36-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.

  9. Ion-beam-induced modifications in the structural and electrical properties of copper oxide selenite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Pallavi, E-mail: prana.phy@gmail.com; Chauhan, R.P.

    2015-04-15

    Highlights: •Nanowires were synthesized via template-assisted electrodeposition method. •Copper oxide selenite nanowires were irradiated with 160 MeV, Ni{sup +12} ion beam. •XRD confirmed no change in phase of irradiated nanowires. •Electrical resistivity of nanowires was found to decrease with the ion fluence. -- Abstract: Irradiation with swift heavy ions (SHIs) with energy in the MeV range is a unique tool for engineering the properties of materials. In this context, the objective of the present work is to study the conduction of charge carriers in pre- and post-ion-irradiated semiconducting nanowires. Copper oxide selenite nanowires were synthesized using a template-assisted electrodeposition technique from an aqueous solution of 0.8 M CuSO{sub 4}·5H{sub 2}O and 8 mM SeO{sub 2}. The synthesized nanowires were observed to have a monoclinic structure with linear I–V characteristics (IVC). The effect of irradiation with 160 MeV Ni{sup +12} ions on the properties of the copper oxide selenite nanowires was investigated for fluences varying from 10{sup 11} to 10{sup 13} ions/cm{sup 2}. XRD spectra confirmed no change in the phase of the swift-heavy-ion-irradiated nanowires, but a modification in the orientation of the planes was observed that depended on the ion fluence. The electrical resistivity of the semiconducting nanowires also varied with the ion fluence. Simultaneous irradiation-induced modifications to the electro-chemical potential gradient and the granular properties of the material may have been the origin of the alteration in the structural and electrical properties of the nanowires.

  10. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core–shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  11. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    International Nuclear Information System (INIS)

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  12. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changyi [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Wu, Yiyong; Lv, Gang [National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin (China); Rubanov, Sergey [Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 (Australia); Jamieson, David N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  13. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Energy Technology Data Exchange (ETDEWEB)

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  14. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Science.gov (United States)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  15. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu; Al-Haik, Mohammad Y.; Hajj, Muhammad R. [Virginia Tech, Norris Hall, Blacksburg, Virginia 24061 (United States)

    2015-07-13

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  16. Luminescence of MBE SimGen strained monolayer superlattices

    International Nuclear Information System (INIS)

    This paper reports on SimGen strained monolayer superlattices (SMS) that have been fabricated by molecular beam epitaxy (MBE) and characterized using photoluminescence (PL). Symmetrically strained structures with different periodicities have been grown on top of a Si1-xGex alloy buffer layer. Luminescence features below (above) the Si(Ge) energy bandgap have been observed and attributed to either dislocations in the buffer layer or to energy band transitions in the SMS

  17. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region. PMID:26589210

  18. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  19. Recent studies of the electron cloud induced beam instability at the Los Alamos PSR

    International Nuclear Information System (INIS)

    Recent beam studies have focused on two aspects of the observed e-p instability at the Los Alamos Proton Storage Ring (PSR). Most recently it has been observed that a stable beam with the standard production bunch width (290 ns injected beam bunch width) will become e-p unstable when the bunch width is shortened to 200 ns or less. This was not the case years earlier when the ring RF operated at the exact 72.000 sub harmonic of the Linac bunch frequency. Experimental characteristics and possible explanations of this recent ''short pulse instability phenomenon'' will be presented. Other beam studies have focused on electron cloud generation, trapping and ejection from quadrupoles and are the focus of another talk. (auth)

  20. Low energy ion beam induced changes in structural and thermal properties of polycarbonate

    Science.gov (United States)

    Reheem, A. M. Abdel; Atta, A.; Maksoud, M. I. A. Abdel

    2016-10-01

    The aim of the present study is extended for obtaining relation between the collision of ion beam with polycarbonate polymer (PC) and the introduced modification of technological applications. Polycarbonate films are irradiated by a 6 keV argon ion beam extracted from locally design cold cathode ion source with different ion fluences. The films are characterized using X-ray Diffraction (XRD), Mechanical tester, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The increase in ion beam irradiation leads to an increase in the tensile strength and reduction in elongation at break for PC. TGA Analysis shows that the thermal decomposition temperature of irradiated polycarbonate changes with ion fluence. The DSC graphs show improvements in thermal stability with increase in the activation energy after ion beam irradiation. Ion penetration depths and distributions of scattered atoms are calculated using SRIM Monte Carlo simulation programs.

  1. Observation of thermally induced movement of a beam deflected by a liquid crystal spatial light modulator

    Science.gov (United States)

    Konwar, Santanu; Boruah, Bosanta R.

    2016-03-01

    Liquid Crystal Spatial Light Modulators (LCSLM) are of great importance in various scientific applications such as adaptive optics, optical microscopy, optical trapping etc., due to their capability to dynamically reconfigure the amplitude, phase and polarization profiles of the incoming beam. Here LCSLMs are basically used to display computer generated holograms which give rise to diffraction orders. Recently we have observed that the fluctuations in both the diffracted and undiffracted beam, which may cause great disturbances in the applications, have a close relationship with the power on-off instants of the LCSLM. Thus there exists some link between the heat dissipation from the LCSLM panel and the beam fluctuations. In this paper we provide a detailed investigation on the cause and nature of the beam fluctuations in the LCSLM.

  2. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    Science.gov (United States)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  3. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  4. Studies of Beam Induced Electron Cloud Resonances in Dipole Magnetic Fields

    OpenAIRE

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-01-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple...

  5. Multiple weak shock waves induced by heavy ion beams in solid matter

    OpenAIRE

    Constantin, Carmen

    2002-01-01

    High energy density in matter is of fundamental interest for various fields of science, including plasma physics, astrophysics, geophysics and applications such as possible future energy sources based on inertial confinement fusion. Intense, relativistic heavy ion beams are ideally suited to produce high energy density in matter. The heavy ion synchrotron SIS-18 at the Gesellschaft fuer Schwerionenforschung (GSI) can supply intense ion beam bunches, of about 5 109 particles for U92+, delivere...

  6. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis

  7. Evaluation of radioprotective efficacy of pyrimidine-5- carboxylate derivative on electron beam induced oxidative stress using Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure to radiation. Several physico-chemical and biological factors collectively contribute to the damage caused by radiation and are, therefore, targets for developing radioprotectors. Chemicals capable of scavenging free radicals, inducing oxygen depletion, ant ioxidants and modulators of immune response have been some of the radioprotectors extensively investigated with limited success. In the present study the radioprotective efficacy of Ethyl 4-(4-(benzyloxy)phenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro pyrimidine-5-carboxylate on electron beam induced oxidative stress was evaluated using Drosophila melanogaster (Oregon K). Initially the molecule was tested for in vitro antioxidant activity and it showed moderate DPPH radical scavenging activity and good hydroxyl radical scavenging activity compared to standard glutathione. Hence, this compound was screened for its radioprotective activity. The compound was supplied to flies in the form of diet. The electron beam irradiated flies were assayed for oxidative stress markers name Thiobarbituric acid reactive substances (TBARS), enzymatic and Non-enzymatic antioxidants. The pyrimidinone showed modulator effect on the oxidative stress markers caused by e-beam radiation. (author)

  8. Evaluation of the specific damage induced by heavy-ion beams on human hematopoiesis

    International Nuclear Information System (INIS)

    To clarify the effects of X-ray or heavy-ion beams on the myeloid differentiation pathways from hematopoietic stem/progenitor cells (HSPCs), the CD34''+ cells derived from human placental/umbilical cord blood were exposed to X-irradiation (0.5 Gy and 1.5 Gy) or monoenergetic carbon-ion beams (linear energy transfer (LET)=50 keV/μm, 0.5 Gy and 1.5 Gy), and then were assayed for their surviving fraction stimulated with five cytokine combination (G-CSF + GM-CSF + IL-3 + SCF + EPO). In addition, the exposed cells were cultured in serum-free medium supplemented with same cytokine for 14 days. The total progenitor cells, colony-forming cells (CFC) including granulocyte-macrophage progenitors, erythroid progenitors and granulocyte-erythroid-macrophage-megakaryocyte progenitors were assessed. All progenitors were far more sensitive to carbon-ion beams than to X-rays. In addition, the number of total mononuclear cells that could be expanded by liquid culture was significantly decreased in carbon-ion beam-irradiated cells compared to X-irradiated cells. However, no significant difference was observed in the cell surface antigens expressed on the generated cells derived from X-irradiated cells and carbon-ion beam-irradiated cells. These results showed that carbon-ion beams inflicted severe damage on their clonogenic potential of myeloid HSPCs; however, no significant influence was observed on the differentiation pathway. (author)

  9. Luminescent and Non-Luminescent Solar Concentrators: Challenges andd Progress

    NARCIS (Netherlands)

    De Boer, D.K.G.

    2012-01-01

    Luminescent concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We present new phosphors and filters that facilitate this. Another type of lightguide-based concentrators, diffraction-based, is discussed as well.

  10. Temperature lags of luminescence measurements in a commercial luminescence reader

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Kiyak, Nafiye G. [ISIK University, Faculty of Science and Arts, Physics Department, Sile, 34980 Istanbul (Turkey); Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, Beşevler, 06100 Ankara (Turkey)

    2015-09-15

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  11. Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN

    Institute of Scientific and Technical Information of China (English)

    HOU Qi-Feng; WANG Xiao-Liang; XIAO Hong-Ling; WANG Cui-Mei; YANG Cui-Bai; YIN Hai-Bo; LI Jin-Min; WANG Zhan-Guo

    2011-01-01

    Yellow and blue luminescence in undoped GaN layers with different resistivities are studied by cathodoluminescence. Intense yellow and blue luminescence bands are observed in semi-insulating GaN, while in n-GaN the yellow luminescence and blue luminescence bands are very weak. The stronger yellow and blue luminescences in semi-insulating GaN are correlated to the higher edge-type dislocation density. The scanning cathodoluminescence image reveals strong defect-related luminescence at the grain boundaries where the dislocations accumulate.It is found that the relative intensity of the blue luminescence band to the yellow luminescence band increases with the cathodoluminescence beam energies and is larger in n-GaN with a lower density of edge-type dislocations. An approximately 3.35eV shoulder next to the near-band-edge peak is observed in n-GaN but not in semi-insulating GaN. A redshift of the near-band-edge peak with cathodoluminescence beam energy is observed in both samples and is explained by internal absorption.

  12. Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN

    Science.gov (United States)

    Hou, Qi-Feng; Wang, Xiao-Liang; Xiao, Hong-Ling; Wang, Cui-Mei; Yang, Cui-Bai; Yin, Hai-Bo; Li, Jin-Min; Wang, Zhan-Guo

    2011-03-01

    Yellow and blue luminescence in undoped GaN layers with different resistivities are studied by cathodoluminescence. Intense yellow and blue luminescence bands are observed in semi-insulating GaN, while in n-GaN the yellow luminescence and blue luminescence bands are very weak. The stronger yellow and blue luminescences in semi-insulating GaN are correlated to the higher edge-type dislocation density. The scanning cathodoluminescence image reveals strong defect-related luminescence at the grain boundaries where the dislocations accumulate. It is found that the relative intensity of the blue luminescence band to the yellow luminescence band increases with the cathodoluminescence beam energies and is larger in n-GaN with a lower density of edge-type dislocations. An approximately 3.35 eV shoulder next to the near-band-edge peak is observed in n-GaN but not in semi-insulating GaN. A redshift of the near-band-edge peak with cathodoluminescence beam energy is observed in both samples and is explained by internal absorption.

  13. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  14. Improving photoresponse characterization of dye-sensitized solar cells: application to the laser beam-induced current technique

    International Nuclear Information System (INIS)

    The photocurrent response of dye-sensitized solar cells (DSSCs) to light excitation from focused and non-focused laser beams is investigated. We observe that part of the photocurrent is produced by the activation of the irradiated area, whereas another part is generated by the previously photoexcited area. A mathematical algorithm has been devised to describe the rise and decay processes. The application of this algorithm leads to a significant improvement in the surface photoresponse and quantum yield measurements in DSSCs by means of the laser beam-induced current (LBIC) technique. This algorithm enhances the quality and definition of the LBIC images and opens the way to use this technique to cope with the biphasic features of these photovoltaic devices and extracting key properties for device performance such as internal quantum efficiencies and electron diffusion lengths

  15. Electron-Beam-Induced Antiphase Boundary Reconstructions in a ZrO2-LSMO Pillar-Matrix System.

    Science.gov (United States)

    Zhou, Dan; Sigle, Wilfried; Kelsch, Marion; Habermeier, Hanns-Ulrich; van Aken, Peter A

    2016-09-14

    The availability of aberration correctors for the probe-forming lenses makes simultaneous modification and characterization of materials down to atomic scale inside a transmission electron microscopy (TEM) realizable. In this work, we report on the electron-beam-induced reconstructions of three types of antiphase boundaries (APBs) in a probe-aberration-corrected TEM. With the utilization of high-angle annular dark-field scanning transmission electron microscopy (STEM), annular bright-field STEM, and electron energy-loss spectroscopy, the motion of both heavy element Mn and light element O atomic columns under moderate electron beam irradiation are revealed at atomic resolution. Besides, Mn segregated in the APBs was observed to have reduced valence states which can be directly correlated with oxygen loss. Charge states of the APBs are finally discussed on the basis of these experimental results. This study provides support for the design of radiation-engineering solid-oxide fuel cell materials.

  16. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    Science.gov (United States)

    Marcak, Adrian; Corbella, Carles; de los Arcos, Teresa; von Keudell, Achim

    2015-10-01

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  17. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marcak, Adrian; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von [Research Group Reactive Plasmas, Ruhr-University Bochum, 44801 Bochum (Germany); Arcos, Teresa de los [Technical and Macromolecular Chemistry, Paderborn University, 33098 Paderborn (Germany)

    2015-10-15

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  18. Polymerization induced by electron-beam irradiation of octadecyl methacrylate in the form of a multilayer or monolayer

    International Nuclear Information System (INIS)

    In continuation of the previous series of studies, polymerization of octadecyl methacrylate (ODMA) induced by electron beams has been investigated in a form of its multilayer or monolayer in an attempt to prepare a stable thin polymer film having a regular layer structure. ODMA multilayers were prepared by the Langmuir-Blodgett technique and irradiated with electron beams from a Van de Graaff accelerator. Multiple reflection infrared spectroscopy and x-ray diffractometry revealed that the ODMA multilayer was polymerized to give a thin polymer film having a regular layered structure when irradiated in nitrogen atmosphere, but no indication of polymerization was observed when irradiated in air. A preliminary study on the ODMA monolayer at a nitrogen--water interface indicated that the monolayer was polymerized

  19. Reaction dynamics induced by the radioactive ion beam {sup 7}Be on medium-mass and heavy targets

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it; Stefanini, C.; Strano, E.; Torresi, D.; Lay, J. A.; Molini, P.; Soramel, F. [Dipartimento di Fisica e Astronomia, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A.; Parascandolo, C.; Pierroutsakou, D.; Di Meo, P. [INFN-Sezione di Napoli, via Cintia, I-80126, Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, via Celoria 16, I-20133, Napoli (Italy); La Commara, M.; Sandoli, M.; Silvestri, R. [INFN-Sezione di Napoli, via Cintia, I-80126, Napoli (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, via Cintia, I-80126, Napoli (Italy); Manea, C.; Nicoletto, M. [INFN-Sezione di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Acosta, L. [Departamento de Fìsica Aplicada, Universidad de Huelva, Campus de El Carmen, E-21071 Huelva (Spain); INFN-Sezione di Catania, via Santa Sofia 64, I-95123, Catania (Italy); Fernandez-Garcia, J. P. [INFN-Sezione di Catania, via Santa Sofia 64, I-95123, Catania (Italy); Glodariu, T. [National Institute for Physics and Nuclear Engineering (NIPNE), 30 Reactorului St., 077125 Magurele (Romania); and others

    2015-10-15

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam {sup 7}Be (S{sub α} = 1.586 MeV) on medium-mass ({sup 58}Ni) and heavy ({sup 208}Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×10{sup 5} pps {sup 7}Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  20. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    International Nuclear Information System (INIS)

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  1. Confocal luminescence microscopy study of defect-domain wall interaction in lithium niobate and its application to light-induced domain engineering

    Science.gov (United States)

    Sandmann, Christian

    Understanding the mutual interaction of extrinsic and intrinsic defects with the ferroelectric domain walls of LiNbO3 is the key to achieve domain patterns on the sub-micron scale. For that reason the influence of domain inversion on the Er3+ defect was investigated in a detailed study, in which energetic shifts and changes in the intensity ratio of individual Er3+ sites were found. The results led to an improved model describing the Er3+ defect in LiNbO3 and to the introduction of a concept of an atomistic probe. This atomistic probe allows the determination of the orientation of the ferroelectric axis by means of optical spectroscopy and allows three-dimensional imaging of domain structures with high spatial resolution without topographic artifacts. For this purpose a confocal luminescence microscope was developed, adapted to allow investigation at low temperature and applied electric fields. Based on the concept of an atomistic probe, the interaction of Er and Ti dopants was investigated, and significant spectral broadening and line shifting were found. Calibrating these changes to the [Ti4+]-concentration allows imaging of [Ti4+]-profiles, as found in integrated optical devices. The [Ti4+]-concentration profile can be imaged without artifacts caused by topology, intensity fluctuations, or variations in the [Er3+]-concentration profile. A novel approach was introduced for directly writing ferroelectric domain patterns into LiNbO3 substrates using the confocal microscope to focus visible light from an argon ion laser to a diffraction limited spot. It was shown that space charge fields, created by light with a wavelength of 488nm, can reduce the external applied field needed for domain inversion by up to 30%. So far, structures with a period down to 8mum have been demonstrated. In-situ experiments during domain inversion demonstrated the possibility to monitor the domain inversion process in-situ with a temporal resolution of up to t = 7ms. It could be

  2. Polymorphic copper iodide clusters: insights into the mechanochromic luminescence properties.

    Science.gov (United States)

    Benito, Quentin; Le Goff, Xavier F; Maron, Sébastien; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Taulelle, Francis; Kahlal, Samia; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2014-08-13

    An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds. PMID:25076411

  3. Luminescence spectra and kinetics of disordered solid solutions

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.;

    1999-01-01

    We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized...... in the wells of random potential induced by disorder. Classification of optically active tail states of the main exciton band into two groups is proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended states belonging to the percolation cluster, whereas...... only a relatively small group of ''radiative" states forms the steady-state luminescence band. The continuum percolation theory is applied to distinguish the ''radiative'' localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states. It is found...

  4. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  5. Crack-induced debonding failure in fiber reinforced plastics (FRP) strengthened concrete beams: Experimental and theoretical analysis

    Science.gov (United States)

    Pan, Jinlong

    External bonding of FRP plates to the tension substrate of RC beams has been accepted as an efficient and effective technique for flexural strengthening. In this thesis, different problems related to crack-induced debonding of the FRP plate in the flexural strengthened concrete beams have been investigated. FRP strengthened RC beam may fail by FRP debonding from the bottom of a major flexural crack in the span. This kind of failure is studied with the direct shear test in the present research work. Our experimental investigation focuses on the effect of concrete composition on the bond behavior between FRP and concrete. Based on the test results, the bond capacity of the specimen is found to be governed by the concrete surface tensile strength, aggregate size and aggregate content. Then, the neural network is employed to derive an empirical expression for the interfacial fracture energy in terms of concrete surface tensile strength and aggregate content. Using the empirical equation, simulated bond capacity is in good agreement with experimental results. In the FRP strengthened RC beams, debonding of the FRP plate often occurs under the presence of multiple cracks along the span. In the present thesis, experimental and theoretical investigations are performed to study the effect of multiple secondary cracks on the debonding behavior and ultimate load capacity. A new analytical model for FRP debonding under multiple cracks has been developed. The effect of the multiple secondary cracks on the shear softening in the debonded zone is explicitly considered in the model. Using the new model, the simulated values of ultimate load when debonding occurs are in good agreement with measured values. In the FRP strengthened RC beams, concrete cover separation or plate end debonding can be avoided by applying tapers at the FRP plate end. In this situation, it is easier for FRP debonding to be induced by a major flexural crack close to the support. To study the effect of the

  6. Luminescent Bolometer and Neutrino Physics

    OpenAIRE

    Gonzalez-Mestres, Luis

    1997-01-01

    The luminescent bolometer, proposed in 1988, is now seriously considered for several applications in nuclear and particle physics: dark matter searches, double beta decays, low energy neutrino physics, heavy ion physics... It is also a very promising device for basic condensed-matter physics and chemistry experiments, and may lead to astrophysical applications. The luminescent bolometer is based on the simultaneous detection of light and phonons, allowing for particle identification and for a...

  7. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Science.gov (United States)

    Ng, Hon-Meng; Bee, Soo-Tueen; Ratnam, C. T.; Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting; Rahmat, A. R.

    2014-01-01

    The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3-5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25-250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  8. Phase-transition oscillations induced by a strongly focused laser beam

    Science.gov (United States)

    Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio

    2015-11-01

    We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.

  9. Enhanced laser-driven electron beam acceleration due to ionization-induced injection

    CERN Document Server

    Li, Song; Mirzaie, Mohammed; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    We report an overall enhancement of a laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3 % nitrogen gas in 99.7 % helium gas. Upon the interaction of 30 TW, 30 fs laser pulses with a gas jet of the above gas mixture, > 300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5*10^18 cm^{-3}. Compared with the electron self-injection in pure helium gas jet, the ionization injection has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1 %, making them suitable for driving ultra-compact free-electron lasers

  10. Electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate)

    International Nuclear Information System (INIS)

    Biodegradable poly(butylene adipate-co-terephthalate) (PBAT) was crosslinked by electron beam irradiation and their properties were investigated in this research. PBAT films prepared by a solution casting method were crosslinked by electron beam under various absorbed doses ranging 20-200 kGy and their properties were characterized by using a crosslinking degree measurement, a thermogravimetric analyzer (TGA), universal testing machine (UTM), dynamic mechanical analyzer (DMA), and thermal mechanical analyzer (TMA). The results of the crosslinking degree measurement revealed that the PBAT could be crosslinked by electron beam irradiation and its crosslinking degree was dependant on the absorbed dose. In addition, the results of the UTM, DMA, TMA, and TGA analyses revealed that the thermal and mechanical properties of the crosslinked PBS was much improved in comparison to those of the control PBAT.

  11. Recent studies of the electron cloud induced beam instability at the Los Alamos PSR

    International Nuclear Information System (INIS)

    Recent beam studies have demonstrated that a stable beam with the standard production bunch width of 290 ns and near the e-p instability threshold will become unstable when the bunch width is shortened significantly. This was not the case years earlier when the ring rf operated at the 72.000 integer subharmonic of the Linac bunch frequency. The present operating frequency is set at the 72.070 non-integer subharmonic and appears to be responsible for the recently observed 'short pulse instability phenomenon'. Experimental characteristics of the short pulse instability are presented along with comparisons to the instability under 72.000 subharmonic operating conditions.

  12. Studies of Beam Induced Electron Cloud Resonances in Dipole Magnetic Fields

    CERN Document Server

    Calvey, J R; Makita, J; Venturini, M

    2016-01-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring (CESR). These measurements are supported by both analytical models and computer simulations.

  13. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank;

    2014-01-01

    Industrial x-ray computed tomography (CT) systems are being increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable, as of yet. The measurement accuracy is influenced by many factors, such as the workpiece properties, x-ray voltage, filter, beam......, the authors propose a case-dependent calibration artefact for beam hardening correction and edge offset determination. In the final part of the paper, the investigations are expanded with experiments of a new set-up that includes non-cylindrical features; the effectiveness of the proposed calibration artefact...

  14. Several observables sensitive to the symmetry energy in heavy-ion collisions induced by high energy radioactive beams

    Institute of Scientific and Technical Information of China (English)

    Yong Gao-Chan; Li Bao-An; Zuo Wei

    2005-01-01

    Using an isospin- and momentum-dependent hadronic transport model, effects of the symmetry energy on several observables in heavy-ion collisions induced by radioactive beams at intermediate energies are studied. It is found that rapidity distribution of the isospin asymmetry of nucleon emissions, transverse momentum distribution of the ratio of free neutrons to protons at mid-rapidity, kinetic energy distribution of the ratio of π-/π+ as well as evolution of the isospin fractionation are all sensitive to the symmetry energy.

  15. Estimation of luminescence lifetime in frequency domain

    Institute of Scientific and Technical Information of China (English)

    Zhang Fu-Jun; Xu Zheng; Zhao Su-Ling; Lou Zhi-Dong; Yang Sheng-Yi; Xu Xu-Rong

    2006-01-01

    Absorption is the origin of luminescence. But it must be noticed that the lifetime of luminescence might reversely influence the rate of absorption. In this paper, it is reported that the luminescence intensity of copper and manganese changes with the driving frequency at constant voltage. The variation of luminescent intensity depends only on the lifetime of luminescence but not on the type of quenching or other factors. Generally the rate of absorption is dominantly determined by the material property and the lifetime of luminescence centres, the absorption of shorter lifetime centre will be larger than that of the longer lifetime centre at the same excited condition.

  16. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank;

    2013-01-01

    Industrial X-ray CT systems are increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable yet. The measurement accuracy is influenced by many factors, such as workpiece properties, X-ray settings, beam hardening and calibration methods [1-4]. Sin...

  17. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    NARCIS (Netherlands)

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders

  18. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    International Nuclear Information System (INIS)

    Industrial x-ray computed tomography (CT) systems are being increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable, as of yet. The measurement accuracy is influenced by many factors, such as the workpiece properties, x-ray voltage, filter, beam hardening, scattering and calibration methods (Kruth et al 2011 CIRP Ann. Manuf. Technol. 60 821–42, Bartscher et al 2007 CIRP Ann. Manuf. Technol. 56 495–8, De Chiffre et al 2005 CIRP Ann. Manuf. Technol. 54 479–82, Schmitt and Niggemann 2010 Meas. Sci. Technol. 21 054008). Since most of these factors are mutually correlated, it remains challenging to interpret measurement results and to identify the distinct error sources. Since simulations allow isolating the different affecting factors, they form a useful complement to experimental investigations. Dewulf et al (2012 CIRP Ann. Manuf. Technol. 61 495–8) investigated the influence of beam hardening correction parameters on the diameter of a calibrated steel pin in different experimental set-ups. It was clearly shown that an inappropriate beam hardening correction can result in significant dimensional errors. This paper confirms these results using simulations of a pin surrounded by a stepped cylinder: a clear discontinuity in the measured diameter of the inner pin is observed where it enters the surrounding material. The results are expanded with an investigation of the beam hardening effect on the measurement results for both inner and outer diameters of the surrounding stepped cylinder. Accuracy as well as the effect on the uncertainty determination is discussed. The results are compared with simulations using monochromatic beams in order to have a benchmark which excludes beam hardening effects and x-ray scattering. Furthermore, based on the above results, the authors propose a case-dependent calibration artefact for beam hardening correction and edge offset determination. In the final part of the paper

  19. Emittance growth and instability induced by space charge effect during final beam bunching in HIF accelerator system

    Science.gov (United States)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2006-06-01

    Beam dynamics and emittance growth are investigated by using particle-in-cell simulations during a final beam bunching for a driver system of inertial fusion driven by intense heavy ion beams. Space-charge-dominated beams are transported by a transverse confinement lattice with longitudinal compression, and the emittance increases along the longitudinal beam bunching. Dipole oscillations are excited due to the initial displacement of the beam center. The displacement causes the additional emittance growth during the final beam bunching.

  20. Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Yun, Seung-Hwan; Lee, Seon-Woo; Koo, Hyun-Na; Kim, Gil-Hah

    2014-03-01

    The armyworm, Spodoptera litura (F.) is a polyphagous and important agricultural pest worldwide. In this study, we examined the effect of electron beam irradiation on developmental stages, reproduction, and DNA damage of S. litura. Eggs (0-24 h old), larvae (3rd instar), pupae (3 days old after pupation), and adults (24 h after emergence) were irradiated with electron beam irradiation of six levels between 30 and 250 Gy. When eggs were irradiated with 100 Gy, egg hatching was completely inhibited. When the larvae were irradiated, the larval period was significantly delayed, depending on the doses applied. At 150 Gy, the fecundity of adults that developed from irradiated pupae was entirely inhibited. However, electron beam irradiation did not induce the instantaneous death of S. litura adults. Reciprocal crosses between irradiated and unirradiated moths demonstrated that females were more radiosensitive than males. We also conducted the comet assay immediately after irradiation and over the following 5 days period. Severe DNA fragmentation in S. litura cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. However, at more than 100 Gy, DNA damage was not fully recovered.

  1. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100)

    Science.gov (United States)

    Schirmer, M.; Walz, M.-M.; Vollnhals, F.; Lukasczyk, T.; Sandmann, A.; Chen, C.; Steinrück, H.-P.; Marbach, H.

    2011-02-01

    We have investigated the lithographic generation of TiOx nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  2. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, M; Walz, M-M; Vollnhals, F; Lukasczyk, T; Sandmann, A; Steinrueck, H-P; Marbach, H [Lehrstuhl fuer Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg, Egerlandstrasse 3, D-91058 Erlangen (Germany); Chen, C, E-mail: marbach@chemie.uni-erlangen.de [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States)

    2011-02-25

    We have investigated the lithographic generation of TiO{sub x} nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  3. Study on energetic ion beam irradiation induced magnetism and lattice structure by using synchrotron X-ray

    International Nuclear Information System (INIS)

    FeRh alloy has peculiar magnetic properties such that at temperatures slightly above room temperature, it performs first-order transition to the ferromagnetic property of high-temperature phase from the antiferromagnetic property of constant-temperature phase without changing its crystal structure. The measurements based on extended X-ray absorption fine structure (EXAFS), X-ray magnetic circular dichroism (XMCD), in particular photoelectron emission microscope (PEEM), which use synchrotron radiation, clarified that the two-dimensional micro-magnetic pattern of micrometer scale with various induced shapes and magnetization sizes were formed on the FeRh surface with good control. This study is one of the quantum beam fusion researches to modify and control the properties of substances with ion beams, and evaluate the properties with synchrotron radiation. In the future, the authors will clarify the ion beam irradiation effects of metallic materials other than FeRh alloys and ceramic materials based on synchrotron radiation measurement, and thus elucidate the basic processes that will lead to the development of material processing technology. (A.O.)

  4. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  5. Turning on the Light: Lessons from Luminescence

    Science.gov (United States)

    O'Hara, Patricia B.; Engelson, Carol; St. Peter, Wayne

    2005-01-01

    Some of the processes by which light is emitted without a simultaneous change in temperature are discussed and is classified as luminescence or cold light. Luminescent processes include triboluminescence, fluorescence, phosphorescence, chemiluminescence, and bioluminescence.

  6. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    Science.gov (United States)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  7. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  8. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    OpenAIRE

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders that are required for introducing the shear, but also diffracts significantly into higher orders. Consequently, in the few millimeters of free space propagation between the QWLSI WFS grating and it...

  9. DYNAMICS OF IONIZATION-ENHANCED SPECTRAL EXPANSION IN WATER INDUCED BY AN INTENSE FEMTOSECOND LASER BEAM

    Institute of Scientific and Technical Information of China (English)

    WANG SHU-FENG; QIN YUAN-DONG; YANG HONG; WANG DAN-LING; ZHU CHANG-JUN; GONG QI-HUANG

    2001-01-01

    The dynamic process of white-continuum generation in water was investigated by the pump-probe technique with a femtosecond intense laser at 805nm. The spectrum width of the probe beam was broadened at the blue side and varied with different delay times. This blueshift was attributed to the ionization-enhanced optical nonlinearity, in which both the multi-photon ionization and avalanche ionization had an effect.

  10. Inducing Vortices in a Bose-Einstein Condensate Using Holographically Produced Light Beams

    OpenAIRE

    Brachmann, Johannes; Bakr, Waseem; Gillen, Jonathon; Peng, Amy; Greiner, Markus

    2011-01-01

    In this paper we demonstrate a technique that can create out-of-equilibrium vortex configurations with almost arbitrary charge and geometry in a Bose-Einstein condensate. We coherently transfer orbital angular momentum from a holographically generated light beam to a Rubidium 87 condensate using a two-photon stimulated Raman process. Using matter wave interferometry, we verify the phase pattern imprinted onto the atomic wave function for a single vortex and a vortex-antivortex pair. In additi...

  11. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1980-04-28

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV.

  12. Temperature rise induced by a rotating/dithering laser beam on a finite solid

    OpenAIRE

    Tan, Tsuwei

    2010-01-01

    Approved for public release; distribution is unlimited High energy laser weapons have been evolving progressively in recent years. These weapons deliver high-intensity beams to a target and can instantly destroy or burn it. They may cause potential threats to Navy ships, computer networks, guided missiles, and satellites in orbit. In order to reduce our military's vulnerability to high energy laser weapons, one possible countermeasure is to rotate or rock the object itself when it is hi...

  13. Relaxation of Blazar Induced Pair Beams in Cosmic Voids: Measurement of Magnetic Field in Voids and Thermal History of the IGM

    CERN Document Server

    Miniati, Francesco

    2012-01-01

    The stability properties of a low density ultra relativistic pair beam produced in the intergalactic medium by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could affect considerably the thermal history of the intergalactic medium and structure formation. We use a Monte Carlo method to quantify the shower properties, in particular the bulk Lorentz factor and the angular spread of the beam, as a function of distance from the blazar. We find that the fastest growing modes, like any perturbation mode with even a very modest component perpendicular to the beam direction, requires a kinetic treatment. Combined with the effect of non-linear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found typically longer than a Hubble time. Finally, density inhomogeneities associated with cosmic structure induce severe loss of ...

  14. Zakharov simulations of beam-induced turbulence in the auroral ionosphere

    Science.gov (United States)

    Akbari, H.; Guio, P.; Hirsch, M. A.; Semeter, J. L.

    2016-05-01

    Recent detections of strong incoherent scatter radar echoes from the auroral F region, which have been explained as the signature of naturally produced Langmuir turbulence, have motivated us to revisit the topic of beam-generated Langmuir turbulence via simulation. Results from one-dimensional Zakharov simulations are used to study the interaction of ionospheric electron beams with the background plasma at the F region peak. A broad range of beam parameters extending by more than 2 orders of magnitude in average energy and electron number density is considered. A range of wave interaction processes, from a single parametric decay, to a cascade of parametric decays, to formation of stationary density cavities in the condensate region, and to direct collapse at the initial stages of turbulence, is observed as we increase the input energy to the system. The effect of suprathermal electrons, produced by collisional interactions of auroral electrons with the neutral atmosphere, on the dynamics of Langmuir turbulence is also investigated. It is seen that the enhanced Landau damping introduced by the suprathermal electrons significantly weakens the turbulence and truncates the cascade of parametric decays.

  15. Results from the first beam-induced reconstructed tracks in the LHCb vertex locator

    CERN Document Server

    Rodrigues, E

    2010-01-01

    LHCb is a dedicated experiment at the LHC to study CP violation and rare $b$ decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of $B$-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n$^+$-on-n 300 $\\mu$m thick half disc sensors with $R$ and $\\Phi$ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO$_2$ cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relativ...

  16. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    International Nuclear Information System (INIS)

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied

  17. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N.T.

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  18. Luminescence study of homeopathic remedies

    Science.gov (United States)

    Lobyshev, Valentin I.; Tomkevitch, Marie

    2001-06-01

    It was shown in our recent papers that distilled water possesses intrinsic luminescence at wavelength of about 400 nm with excitation wavelength 300 nm, which is very sensitive to small amount of dissolved substances. This phenomena was chosen to study homeopathic remedies. Pronounced difference in the intensity of luminescence between several commercial preparations with the same potency and one preparation with various potencies was obtained. Long scale evolution of the spectra was registered and final result was dependent on preparation and its potency. Systematic study of homeopathic preparations of halit (natural sodium chloride) from 1 to 30 decimal dilution was done. A stepwise dilution with mechanical agitation between the dilution steps, the so-called potentisation, was produced specially by homeopathic company Weleda. Luminescence intensity against concentration (potency) of halit is non monotonous function with several maxima, the main maximum is located at 13-14-th dilution. Evolution of the spectra was registered during several months. The analogous potentisation treatment of water without additional substances results also in changes of the luminescence spectra, depending on the number of potentisation. The obtained differences of luminescence spectra at ultra high dilutions and potentisation show that the collective properties of water are really changed in homeopathic preparations.

  19. Method of measuring luminescence of a material

    Science.gov (United States)

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  20. Nitric oxide in the control of luminescence from lantern shark (Etmopterus spinax) photophores.

    Science.gov (United States)

    Claes, Julien M; Krönström, Jenny; Holmgren, Susanne; Mallefet, Jérôme

    2010-09-01

    Photophores (photogenic organs) of the lantern shark Etmopterus spinax are under hormonal control, with prolactin (PRL) and melatonin (MT) triggering the light emission. Differential sensitivity to these hormones in adult individuals suggests, however, that the luminescence of this shark is controlled by an additional mechanism. In this study, different techniques were used to investigate a potential modulator of E. spinax luminescence - nitric oxide (NO). NO synthase (NOS)-like immunoreactivity (IR) was found in the photocytes (photogenic cells) of the photophores. In addition, acetylated tubulin IR also supported the presence of nerves running through the photogenic tissue and innervating different structural elements of the photophores: photocytes, pigmented cells from the iris-like structure and lens cells. Pharmacological experiments confirmed a modulatory action of NO on the hormonally induced luminescence: NO donors sodium nitroprusside (SNP) and hydroxylamine decreased the time to reach the maximum amplitude (TL(max)) of MT-induced luminescence while these substances decreased the maximum amplitude of PRL-induced luminescence (and also the TL(max) in the case of SNP). The small impact of the NOS inhibitor l-NAME on hormonally induced luminescence suggests that NO is only produced on demand. The cGMP analogue 8BrcGMP mimicked the effects of NO donors suggesting that the effects of NO are mediated by cGMP.

  1. Self absorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Krumer, Z.

    2014-01-01

    Luminescent solar concentrators are photovoltaic devices made of thin transparent material, in which luminescent particles are dispersed. The incident light enters the device through its large facets and is subsequently absorbed by the luminescent particles, which re-emit it whilst changing its dire

  2. Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: A Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures.

    Science.gov (United States)

    Spencer, Julie A; Wu, Yung-Chien; McElwee-White, Lisa; Fairbrother, D Howard

    2016-07-27

    Using mechanistic data from surface science studies on electron-induced reactions of organometallic precursors, cis-Pt(CO)2Cl2 (1) was designed specifically for use in focused electron beam induced deposition (FEBID) of Pt nanostructures. Electron induced decomposition of adsorbed 1 under ultrahigh vacuum (UHV) conditions proceeds through initial CO loss as determined by in situ X-ray photoelectron spectroscopy and mass spectrometry. Although the Pt-Cl bonds remain intact during the initial decomposition step, larger electron doses induce removal of the residual chloride through an electron-stimulated desorption process. FEBID structures created from cis-Pt(CO)2Cl2 under steady state deposition conditions in an Auger spectrometer were determined to be PtCl2, free of carbon and oxygen. Coupled with the electron stimulated removal of chlorine demonstrated in the UHV experiments, the Auger deposition data establish a route to FEBID of pure Pt. Results from this study demonstrate that structure-activity relationships can be used to design new precursors specifically for FEBID.

  3. Error-Induced Beam Degradation in Fermilab's Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-Young Phil [Univ. of Rochester, NY (United States)

    2008-01-01

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are

  4. Error-Induced Beam Degradation in Fermilab's Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Phil S.; /Rochester U.

    2007-08-01

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are

  5. Micro-modulated luminescence tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Chao; Wang, Ge

    2013-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to light scattering. X-ray microscopy can resolve spatial details of few microns deeply inside a sample but the contrast resolution is still inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and the subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we suggest a micro-modulated luminescence tomography (MLT) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonst...

  6. A luminescent nanocrystal stress gauge

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  7. THERMAL SHOCK INDUCED BY A 24 GEV PROTON BEAM IN THE TEST WINDOWS OF THE MUON COLLIDER EXPERIMENT E951 - TEST RESULTS AND THEORETICAL PREDICTIONS.

    Energy Technology Data Exchange (ETDEWEB)

    SIMOS,N.; KIRK,H.; FINFROCK,C.; PRIGL,R.; BROWN,K.; KAHN,S.; LUDEWIG,H.; MCDONALDK.; CATES,M.; TSAI,J.; BESHEARS,D.; RIEMER,B.

    2001-11-11

    The need for intense muon beams for muon colliders and neutrino factories has lead to a concept of a high performance target station in which a 1-4 MW proton beam of 6-24 GeV impinges on a target inside a high field solenoid channel. While novel technical issues exist regarding the survivability of the target itself, the need to pass the tightly focused proton beam through beam windows poses additional concerns. In this paper, issues associated with the interaction of a proton beam with window structures designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 x 10{sup 12} per pulse and a pulse length of approximately 100 ns is expected to be tightly focused (to 0.5 mm rms one sigma radius) on an experimental target. Such beam will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed assessment of the thermal/shock response of beam windows is attempted with a goal of identifying the best window material candidate. Further, experimental strain results and comparison with the predicted values are presented and discussed.

  8. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina;

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...

  9. Propagation of photons induced by a proton beam in a quartz bar

    International Nuclear Information System (INIS)

    For the BABAR experiment, an amplitude and timing analysis of photons produced by a proton beam in a quartz bar has been performed. The photoelectron yield is obtained for different angles and positions. It is found that the linear speed of propagation of the Cherenkov photons through the bar is well described y internal reflections. The timing analysis reveals also the existence of an unexpected parasite light component, not described by the simulation. However, all the results can be reproduced by adding an isotropic scintillation of about 4 photons/cm in the quartz bar on the trajectory of the primary proton, in 50 % of the cases. (author)

  10. Propagation of photons induced by a proton beam in a quartz bar

    International Nuclear Information System (INIS)

    For the BABAR experiment, an amplitude and timing analysis produced by a proton beam in a quartz bar has been performed. The photoelectron yield is obtained for different angles and positions. It is found that the linear speed of propagation of the Cherenkov photons through the bar is well described by internal reflections. The timing analysis reveals also the existence of an unexpected parasite light component, not described by the simulation. However, all the results can be reproduced by adding an isotopic scintillation of about 4 photons/cm in the quartz bar on the trajectory of the primary proton, in 50 % of the cases. (authors)

  11. Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas

    Institute of Scientific and Technical Information of China (English)

    Cang Yu; Yu Wei; Wu Hui-Chun; Xu Han; Tian You-Wei

    2007-01-01

    In underdense plasmas, the transverse ponderomotive force of an intense laser beam with Gaussian transverse profile expels electrons radially, and it can lead to an electron cavitation. An improved cavitation model with charge conservation constraint is applied to the determination of the width of the electron cavity. The envelope equation for laser spot size derived by using source-dependent expansion method is extended to including the electron cavity. The condition for self-guiding is given and illuminated by an effective potential for the laser spot size. The effects of the laser power, plasma density and energy dissipation on the self-guiding condition are discussed.

  12. Luminescence in potential fluoride glass lasers

    International Nuclear Information System (INIS)

    Fluoride glasses of the zirconium barium lanthanide type (invented Rennes, 1975) and lead gallium zinc (or manganese) type (invented Le Mans, 1979) show luminescence of lanthanide J-Levels situated at least 2000 cm-1 above the closest lower level (this limit is a few times larger in most other materials). Not only is the non-radiative de-excitation as weaK as in crystalline LaF3 (studied by Weber) but energy transfer between neodymium and ytterbium(III), or from manganese(II), and to some extent from chromium(III), to luminescent J-levels of neodymium(III), erbium(III) and thullium(III) is highly efficient even at low concentrations. One advantage for laser applications is that the lowest quartet state of manganese(II) has a life-time 10 to 15 milliseconds (like in many phosphate glasses and crystalline compounds) allowing energy transfer, extending by huge factors the average life-time of the emitting J-levels. Though the tera-watt lasers (Livermore, California, 1978) inducing deuterium-tritium fusion are silicate glass containing neodymium(III), fluoride glasses should be preferable for many purposes. The evaluation of laser parameters from small-scale experimentation is feasible

  13. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  14. An analysis of the shape of a luminescence band induced by free electron-to-carbon atom transitions in semi-insulating undoped GaAs crystals

    CERN Document Server

    Glinchuk, K D; Prokhorovich, A V; Strilchuk, O N

    2001-01-01

    The shape of a photoluminescence (band observed due to recombination of free electrons on carbon atoms) in semi-insulating undoped GaAs crystals is analyzed at different temperatures (T=4.8 to 77 K). It is shown that at low temperatures the shape essentially differs from the theoretical one while at high temperatures is very close to it for radiative transitions of free electrons to isolated shallow acceptors. The observed difference of the experimental and theoretical shapes of the photoluminescence band is connected with the broadening of carbon-induced acceptor levels, resulting from the influence of electric fields of randomly distributed ionized acceptors and donors on isolated carbon atoms. Coincidence of the shapes is connected with a considerable in the energy of free carriers

  15. Recent advances using electron beam analysis to detect cuticular changes induced by air pollution

    International Nuclear Information System (INIS)

    Invisible or ''hidden injury'', terms from the earliest air quality literature, expressed the diagnostician's frustration in identifying abiotic disease symptoms. Direct visualization was not technically possible until the advent of electron beam analysis (EBA) hardware and software. Electron beam analysis, a combination of scanning electron microscopy (SEM) energy dispersive X-ray analysis (EDXA), and computer-controlled image processing (CCIP) is useful for detecting changes in the cuticle and adjacent cells due to common phytotoxicants. Artifacts, caused by improper specimen preparation, inherent in the high vacuum of SEM and use of hydrated plant samples, fill the literature. Unique methodologies are necessary to interpret the minute changes to plant surfaces caused by a variety of environmental stresses such as sulfur dioxide, ozone, acidic deposition, pesticide residues, NACl, etc. EBA was used to show: the progression of surface alterations that occur to stomata of hybrid poplar (Populus spp.) following exposure to SO2 and O3; between SO2-sensitive and SO2-tolerant clones of eastern white pine (Pinus strobus L.). CCIP was especially useful in determining that acidified rain or mist and O3 do not physically erode existing epicuticular wax of red spruce (Picea rubens Sarg.) as previous literature stated. EBA was used to correlate field and laboratory data showing similar injury to epistomatal wax of red spruce. Improved field emission microscopy and EDXA that offer increased resolution with little sample preparation can provide opportunities to observe cuticular modifications not previously available. (orig.)

  16. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Science.gov (United States)

    Evora, M. C.; Araujo, J. R.; Ferreira, E. H. M.; Strohmeier, B. R.; Silva, L. G. A.; Achete, C. A.

    2015-04-01

    Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO4·7H2O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  17. Spatial control of cell attachment, proliferation, and differentiation using ion-beam induced thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshiyuki, E-mail: tttanaka@riken.jp; Suzuki, Yoshiaki

    2014-08-15

    Highlights: • Cellular films can be obtained ion-beam irradiation and cell culture. • Film shapes were controlled by patterned irradiation. • Cellular films were firmly attached each other. • Tubular constructions were fabricated by wide-patterned irradiation. • Nerve growth direction was controlled by varying the pattern widths. - Abstract: In this study, cellular films were fabricated by ion-beam irradiation into poly-L-lactic acid sheets and cell culture. The cellular film shapes can be controlled by pattern masks. We performed spatial cell patterning using three types of cells: fibroblasts, endothelial cells, and nerve-like cells. First, multi-layered cellular construct was fabricated by stacking fibroblast cellular films. When three cellular films were stacked and incubated, these films firmly attached to each other. Second, tubular constructs were fabricated by endothelial cell culture on linearly patterned surfaces with wide widths of 80, 120, 160, and 200 μm. The patterned cellular films were rounded into vessel-like structure. The diameters of the constructs depend upon the pattern widths. Finally, we controlled cell attachment and nerve growth of nerve-like cells by using linearly patterned surfaces with narrow widths of 10, 30, and 50 μm. Nerve growth direction was controlled by varying the pattern widths. In the case of 10 μm, the attached cells and nerve growth were straight on the patterned thin films. These cell patterning techniques are expected to have applications in tissue engineering, cell transplantation, and in vitro tissue modeling.

  18. Multicolored luminescent CdS nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The observation of efficient blue, green, orange and red luminescence from CdS nanocrystals made by using a reverse micelle method was reported. The blue luminescence about 480 nm is attributed to the radiative recombination of electron-hole pairs.The red luminescence around 650 nm is due to the radiative recombination of the exciton trapped in the nanocrystal surface defect states. The combination of different portion of band-edge emission and surface trap state emission results in green and orange luminescence for the nanocrystals. The CdS nanocrystals with efficient multicolored luminescence may find potential application in full color displays and biolabelings.

  19. Heavy Ion Beams Induce Survivin Expression in Human Hepatoma SMMC-7721 Cells More Effectively than X-rays

    Institute of Scientific and Technical Information of China (English)

    Li GONG; Xiaodong JIN; Qiang LI; Jiangtao LIU; Lizhe AN

    2007-01-01

    High linear energy transfer (LET) heavy ion radiation is more effective in inducing biological damage than low-LET X-rays or γ-rays. Heavy ion beam provides good dose localization (Bragg peak) in critical cancer tissue and gives higher relative biological effectiveness in cell killing across the dose peak, so high-LET heavy ion beam is superior to low-LET radiation in cancer treatment. Survivin, as a member of the inhibitor of apoptosis protein family, might help cancerous cells to overcome the G2/M apoptotic checkpoint and favor the aberrant progression of transformed cells through mitosis. Survivin expression in the human hepatoma SMMC-7721 cell line after exposure to low-LET X-ray and high-LET carbon ion irradiation was investigated in this study. Compared with X-ray irradiation, the carbon ion beam clearly caused G2/M arrest and promoted the expression of the survivin gene in a dose-dependent manner. Clonogenic survival assay showed that SMMC-7721 cells were more radiosensitive to the high-LET carbon ions than to the X-rays, and the radiosensitivity was promoted after treatment with specific survivin short interfering RNA. Differential survivin expression at both transcriptional and translational levels was found for SMMC-7721 cells following low- and high-LET irradiation. The overexpression of survivin in SMMC-7721 cells is probably an important reason why the cancerous cells have radioresistance to strong stimulus such as dense ionizing high-LET radiation. However, the direct killing effect on cancerous cells by high-LET radiation might be more significant than the apoptosis inhibition through the overexpression of survivin following heavy ion irradiation.

  20. Luminescence from Ce in sol-gel SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Nagpure, I.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    The sol-gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce{sup 4+} ions capture electrons to form excited Ce{sup 3+} ions from which the luminescence originates.

  1. Towards a single step process to create high purity gold structures by electron beam induced deposition at room temperature

    Science.gov (United States)

    Mansilla, C.; Mehendale, S.; Mulders, J. J. L.; Trompenaars, P. H. F.

    2016-10-01

    Highly pure metallic structures can be deposited by electron beam induced deposition and they have many important applications in different fields. The organo-metallic precursor is decomposed and deposited under the electron beam, and typically it is purified with post-irradiation in presence of O2. However, this approach limits the purification to the surface of the deposit. Therefore, ‘in situ’ purification during deposition using simultaneous flows of both O2 and precursor in parallel with two gas injector needles has been tested and verified. To simplify the practical arrangements, a special concentric nozzle has been designed allowing deposition and purification performed together in a single step. With this new device metallic structures with high purity can be obtained more easily, while there is no limit on the height of the structures within a practical time frame. In this work, we summarize the first results obtained for ‘in situ’ Au purification using this concentric nozzle, which is described in more detail, including flow simulations. The operational parameter space is explored in order to optimize the shape as well as the purity of the deposits, which are evaluated through scanning electron microscope and energy dispersive x-ray spectroscopy measurements, respectively. The observed variations are interpreted in relation to other variables, such as the deposition yield. The resistivity of purified lines is also measured, and the influence of additional post treatments as a last purification step is studied.

  2. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  3. Studies on in vivo radioprotective efficacy of triazole-3-thione derivative against electron beam induced oxidative stress on Drosophila Melanogaster

    International Nuclear Information System (INIS)

    1,2,4-triazole derived molecules have received much attention in the field of medicinal chemistry due to their versatile biological properties including antibacterial, antifungal, anticonvulsant, anti-inflammatory, anticancer, and antiproliferative properties. They are also used as starting materials for the synthesis of biologically active N-bridged heterocycles. Triazole derivatives with sulfhydryl group are known for radioprotective activity. In the present study we have evaluated the radioprotective efficacy of 4-amino-5-(4-chlorobenzyl)-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione against electron beam induced oxidative stress on Drosophila melanogaster. The compound was synthesized by green approach using solvent free fusion of thiocarbohydrazide and p-Chloro phenyl acetic acid and was characterized on the basis of analytical and spectral data . The synthesized molecule showed good DPPH radical scavenging activity. Hence this compound was screened for radioprotective activity. The electron beam irradiated flies were assayed for oxidative stress markers namely, Thiobarbituric acid reactive substances (TBARS), Hydroperoxide (HP), enzymatic antioxidants namely Superoxide dismutase (SOD), Catalase (CAT), Glutathione-S-transferase and Non enzymatic antioxidants such as Glutathione (GSH). The results showed that the molecule has potent radioprotective activity. (author)

  4. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    International Nuclear Information System (INIS)

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping

  5. Cavity-induced phase stability to decelerate a fast molecular beam via feedback-controlled time-varying optical pumps

    CERN Document Server

    Lan, Zhihao

    2014-01-01

    We have identified a novel phase stability mechanism from the intracavity field-induced self-organization of a fast-moving molecular beam into travelling molecular packets in the bad cavity regime, which is then used to decelerate the molecular packets by feedback-controlled time-varying laser pumps to the cavity. We first applied the linear stability analysis to derive an expression for this self-organization in the adiabatic limit and show that the self-organization of the beam leads to the formation of travelling molecular packets, which in turn function as a dynamic Bragg grating, thus modulating periodically the intracavity field by superradiant scattering of the pump photons. The modulation encodes the position information of the molecular packets into the output of the intracavity field instantaneously. We then applied time-varying laser pumps that are automatically switched by the output of the intracavity field to slow down the molecular packets via a feedback mechanism and found that most of the mol...

  6. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M. [ENEA, C.R. Frascati, UTAPRAD, Technical Unit for Development and Applications of Radiations, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ambrosini, F. [University Sapienza-Roma I, Piazzale Aldo Moro 5, 00185 Rome (Italy); Nichelatti, E. [ENEA, C.R. Casaccia, UTTMAT, Technical Unit for Materials Technologies, Via Anguillarese 301, 00123 S. Maria di Galeria (Rome) (Italy)

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  7. Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Porrati, F; Sachser, R; Huth, M [Physikalisches Institut, Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main (Germany); Strauss, M [Max-Planck-Institut fuer Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main (Germany); Andrusenko, I; Gorelik, T; Kolb, U [Institut fuer Physikalische Chemie, Johannes Gutenberg-Universitaet Mainz, Welderweg 11, D-55099 Mainz (Germany); Bayarjargal, L; Winkler, B [Institut fuer Geowissenschaften, Abt. Kristallographie, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany)

    2010-09-17

    We have prepared 2D arrays of nanodots embedded in an insulating matrix by means of focused-electron-beam-induced deposition using the W(CO){sub 6} precursor. By varying the deposition parameters, i.e. the electron beam current and energy and the raster constant, we obtain an artificial granular material with tunable electrical properties. The analysis of the temperature dependence of the conductivity and of the current-voltage characteristic suggests that the transport mechanism is governed by electron tunneling between artificial grains. In order to understand the nature of the granularity and thus the microstructural origin of the electronic transport behavior, we perform TEM and micro-Raman investigations. Independent of the deposition parameters, TEM measurements show that the dots are constituted of amorphous tungsten carbide clusters embedded in an amorphous carbonaceous matrix. Micro-Raman spectra show two peaks, around 690 and 860 cm{sup -1} associated with the W-C stretching modes. Higher frequency peaks give information on the composition of the matrix. In particular, we measure a peak at about 1290 cm{sup -1}, which is associated with sp{sup 3} carbon bonds. Furthermore we detect the so-called D and G peaks, at about 1350 and 1560 cm{sup -1}, associated with the vibration modes of the sp{sup 2} carbon bonds. The analysis of the position of the peaks and of their relative intensity suggests that the composition of the matrix is between nanocrystalline graphite and amorphous carbon.

  8. The effect of viscosity, applied frequency and driven pressure on the laser induced bubble luminescence in water-sulfuric acid mixtures

    Science.gov (United States)

    Sadighi-Bonabi, Rasoul; Alijan Farzad Lahiji, Faezeh; Razeghi, Fatemeh

    2016-06-01

    Production and oscillation of sonoluminescence bubbles by laser pulse in the presence of acoustic field in water and different concentrations of sulfuric acid are investigated. In the presence of acoustic field, the laser causes variable speed of sound, surface tension and density; and the host liquid acts as a compressible one and strongly affects the bubble's dynamics equations. The effect of various concentrations of sulfuric acid as a host liquid on the oscillation of bubble radius, bubble wall velocity and bubble interior temperature is studied. Furthermore, the effect of applied frequency on LI-SCBL in the presence of the acoustic field is investigated and an optimum sound wave frequency for the bubble oscillation and bubble interior temperature in pure water and SA is introduced. Based on the modification of RP equation, by applying the optimum frequency, the results indicate that the maximum bubble radius for LI-SCBL in the presence of the acoustic field is increased up to 7 ×10-4 m as this article presents, which is more than 40% improvement. This amount results in interior temperature of more than three times, from almost 5000 K in the previous works to almost 16 000 K in the present report. This is very similar to the experimental measurements for bubble radius induced by laser. Furthermore, the effects of driving pressure amplitudes on the bubble radius, the bubble interior temperature and the bubble wall velocity in different host liquids and in optimum frequency are investigated.

  9. 2p1v states populated in 135Te from 9Be induced reactions with a 132Sn beam

    Energy Technology Data Exchange (ETDEWEB)

    Allmond, James M [ORNL; Stuchbery, Andrew E [ORNL; Brown, Alex [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University; Beene, James R [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gross, Carl J [ORNL; Liang, J Felix [ORNL; Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Radford, David C [ORNL; Varner Jr, Robert L [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Batchelder, J. C. [Oak Ridge Associated Universities (ORAU); Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Howard, Meredith E [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Manning, Brett M [ORNL; Mueller, Paul Edward [ORNL; Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; Peters, William A [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [University of Tennessee, Knoxville (UTK); Shapira, Dan [ORNL; Smith, Michael Scott [ORNL; Stone, N. J. [University of Tennessee, Knoxville (UTK); Stracener, Daniel W [ORNL; Yu, Chang-Hong [ORNL

    2014-01-01

    Gamma-ray transitions in $^{134}$\\textrm{Te}, $^{135}$\\textrm{Te}, and $^{136}$\\textrm{Te} were measured from $^{9}$\\textrm{Be} induced reactions with a radioactive $^{132}$\\textrm{Sn} beam at a sub-Coulomb barrier energy of $3$~MeV per nucleon using particle-$\\gamma$ coincidence spectroscopy. The transitions were selected by gating on alpha-like particles in a \\textrm{CsI} detector following a combination of ($^{9}$\\textrm{Be},$\\alpha 1n$), ($^{9}$\\textrm{Be},$\\alpha 2n$), and ($^{9}$\\textrm{Be},$\\alpha 3n$) reactions. Distorted wave Born approximation calculations suggest little to no contribution from the ($^{9}$\\textrm{Be},$^{7}$\\textrm{He}), ($^{9}$\\textrm{Be},$^{6}$\\textrm{He}), and ($^{9}$\\textrm{Be},$^{5}$\\textrm{He}) direct reactions. Gamma-ray transitions from previously known $2^+\\otimes \

  10. Focused-electron-beam-induced deposition of freestanding three-dimensional nanostructures of pure coalesced copper crystals

    International Nuclear Information System (INIS)

    We report on direct writing of three-dimensional freestanding nanostructures of Cu by use of a focused electron beam (FEB) and the metalorganic precursor hfac-Cu-TMVS. Freestanding horizontal rods were deposited over about 10 μm length and consist of small 2-5 nm Cu nanocrystals dispersed in an amorphous matrix containing carbon, fluorine, silicon, and oxygen. The freestanding horizontal rods were used as support for further vertical deposits resulting in tips of coalesced facetted Cu nanocrystals of up to 100 nm in size. The almost constant deposition rate of 5-6 nm/s is in contrast to vertical tips on bulk supports, which show a deposition rate decreasing from 23 to 10 nm/s. The above results suggest a thermal decomposition process induced by electron energy absorption

  11. Imaging interfacial electrical transport in graphene-MoS2 heterostructures with electron-beam-induced-currents

    Science.gov (United States)

    White, E. R.; Kerelsky, Alexander; Hubbard, William A.; Dhall, Rohan; Cronin, Stephen B.; Mecklenburg, Matthew; Regan, B. C.

    2015-11-01

    Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS2 heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrent collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.

  12. Plasmonic Gold Helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    CERN Document Server

    Haverkamp, Caspar; Jäckle, Sara; Manzoni, Anna; Christiansen, Silke

    2016-01-01

    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most no...

  13. Surface Nanocrystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2013-01-01

    Full Text Available The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB technique. The structures of the nanocrystallized surface were characterized by X-ray diffraction and electron microscopy. Two nanostructures consisting of fine austenite grains (50–150 nm and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  14. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  15. Trace element analysis of material scalp hair by external beam proton-induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    An external beam proton-induced X-ray emission (PIXE) system has been constructed for trace element analysis of biological and environmental samples. Optimization of sample preparation and experimental PIXE set-up produced a rapid, accurate, sensitive, and reliable PIXE analysis procedure. The analytical procedure was evaluated using scalp hair of pregnant women at 16-19 weeks of gestation. The samples were irradiated with 3.5 MeV protons from the Rutgers Nuclear Physics Department's 8 MV Tandem Fn Van de Graaff accelerator. The concentrations of the elements calcium to cadmium in hair are reported for 50 subjects. The analytical procedure is suitable for non-invasive clinical analysis for evaluation of nutritional states and for environmental exposure to toxic metals. (author)

  16. Detection and characterization of stacking faults by light beam induced current mapping and scanning infrared microscopy in silicon

    Science.gov (United States)

    Vève-Fossati, C.; Martinuzzi, S.

    1998-08-01

    Non destructive techniques like scanning infrared microscopy and light beam induced current mapping are used to reveal the presence of stacking faults in heat treated Czochralski grown silicon wafers. In oxidized or contaminated samples, scanning infrared microscopy reveals that stacking faults grow around oxygen precipitates. This could be due to an aggregation of silicon self-interstitials emitted by the growing precipitates in the (111) plane. Light beam induced current maps show that the dislocations which surround the stacking faults are the main source of recombination centers, especially when they are decorated by a fast diffuser like copper. Des techniques non destructives telles que la microscopie infrarouge à balayage et la cartographie de photocourant induit par un spot lumineux ont été utilisées pour révéler la présence de fautes d'empilement après traitements thermiques, dans des plaquettes de silicium préparées par tirage Czochralski. Dans des échantillons oxydés ou contaminés, la microscopie infrarouge à balayage révèle des fautes d'empilement qui se développent autour des précipités d'oxygène. Cela peut être dû à la formation d'un agglomérat d'auto-interstitiels de silicium émis par la croissance des précipités dans les plans (111). Les cartographies de photocourant montrent que les dislocations qui entourent les fautes d'empilement sont la principale source de centres de recombinaison, et cela tout particulièrement quand ces fautes sont décorées par un diffuseur rapide tel que le cuivre.

  17. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  18. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams

    CERN Document Server

    Gong, Z; Shou, Y R; Qiao, B; Chen, C E; Xu, F R; He, X T; Yan, X Q

    2016-01-01

    The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell simulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate to realize a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.

  19. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    CERN Document Server

    Woźniak, Paweł; Brönstrup, Gerald; Banyer, Peter; Christiansen, Silke; Leuchs, Gerd

    2015-01-01

    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.

  20. Electron beam-induced formation of crystalline nanoparticle chains from amorphous cadmium hydroxide nanofibers.

    Science.gov (United States)

    Stoychev, Georgi V; Okhrimenko, Denis V; Appelhans, Dietmar; Voit, Brigitte

    2016-01-01

    Quantum dots (QDs) and especially quantum dot arrays have been attracting tremendous attention due to their potential applications in various high-tech devices, including QD lasers, solar cells, single photon emitters, QD memories, etc. Here, a dendrimer-based approach for the controlled synthesis of ultra-thin amorphous cadmium hydroxide nanofibers was developed. The fragmentation of the obtained nanofibers in crystalline nanoparticle chains under the irradiation with electron beam was observed in both ambient and cryo-conditions. Based on the experimental results, a model for the formation of amorphous nanofibers, as well as their transformation in crystalline nanoparticle chains is proposed. We foresee that these properties of the nanofibers, combined with the possibility to convert cadmium hydroxide into CdX (X=O, S, Se, Te), could result in a new method for the preparation of 2D and 3D QDs-arrays with numerous potential applications in high performance devices. PMID:26397918

  1. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  2. Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state

    CERN Document Server

    Lappan, U; Lunkwitz, K

    2000-01-01

    Polytetrafluoroethylene (PTFE) was exposed to electron beam radiation at elevated temperature above the melting point under nitrogen atmosphere and in vacuum for comparison. Fourier-transform infrared (FTIR) spectroscopy was used to study the changes in the chemical structure. The irradiation under nitrogen atmosphere leads to the same structures as described recently for PTFE irradiated in vacuum. Trifluoromethyl branches and double bond structures were detected. The concentrations of terminal and internal double bonds are higher after irradiation under nitrogen than in vacuum. Annealing experiments have shown that the thermal oxidative stability of the radiation-modified PTFE is reduced compared to unirradiated PTFE. The reason are the formation of unstable structures such as double bonds.

  3. Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri

    2014-08-01

    Full Text Available The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a “green” water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA. Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

  4. Controlling plasmon-enhanced luminescence

    NARCIS (Netherlands)

    Mertens, H.

    2007-01-01

    Plasmons are collective oscillations of the free electrons in a metal or an ionized gas. Plasmons dominate the optical properties of noble-metal nanoparticles, which enables a variety of applications. This thesis focuses on plasmon-enhanced luminescence of silicon quantum dots (Si QDs) and optically

  5. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.;

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm) ...

  6. Analyses on Radiation Effects in Solid Amino Acids Induced by Low Energy Fe~+ Ion Beams

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Radiation effects in Solid samples of L(+)-cysteine and L(+)-cysteine hydroehloride monohydrate induced by 110 keV Fe~+ion implantation were characterized with FTIR, ESR,HPLC and ESI-FTMS.It was validated that solid samples of the irradiated amino acids were damaged to a certain extent,and some new groups or molecular products formed.

  7. Zeeman Electromagnetically Induced Transparency with crossed pump and probe beams: Small angle dependence

    Science.gov (United States)

    Campbell, Kaleb; Madkhaly, Samaya; de Medeiros, Dillon; Bali, Samir; Macklin Quantum Information Sciences Collaboration

    2016-05-01

    Progress toward undergraduate oriented experiments on image storage in room-temperature atomic vapor using Electromagnetically Induced Transparency is described. Using a scanning longitudinal magnetic field technique we diagnose and suppress stray magnetic fields and polarization impurity. We consider the pump-probe angular dependence of the EIT signal but at much smaller angles of less than a milliradian.

  8. Experimental setup and first measurement of DNA damage induced along and around an antiproton beam

    DEFF Research Database (Denmark)

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.;

    2010-01-01

    Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer...

  9. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing

    International Nuclear Information System (INIS)

    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g(2) of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.

  10. New Opportunities for Lanthanide Luminescence

    Institute of Scientific and Technical Information of China (English)

    Jean-Claude G. Bünzli; Steve Comby; Anne-Sophie Chauvin; Caroline D. B. Vandevyver

    2007-01-01

    Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has been kept alive until today when many high-technology applications of lanthanide-containing materials such as energy-saving lighting devices, displays, optical fibers and amplifiers, lasers, responsive luminescent stains for biomedical analyses and in cellulo sensing and imaging, heavily rely on the brilliant and pure-color emission of lanthanide ions. In this review we first outlined the basics of lanthanide luminescence with emphasis on f-f transitions, the sensitization mechanisms, and the assessment of the luminescence efficiency of lanthanide-containing emissive molecular edifices. Emphasis was then put on two fast developing aspects of lanthanide luminescence: materials for telecommunications and light emitting diodes, and biomedical imaging and sensing. Recent advances in NIR-emitting materials for plastic amplifiers and waveguides were described, together with the main solutions brought by researchers to minimize non-radiative deactivation of excited states. The demonstration in 1999 that erbium tris(8-hydroxyquinolinate) displayed a bright green emission suitable for organic light emitting diodes (OLEDs) was followed by realizing that in OLEDs, 25% of the excitation energy leads to singlet states and 75% to triplet states. Since lanthanide ions are good triplet quenchers, they now also play a key role in the development of these lighting devices. Luminescence analyses of biological molecules are among the most sensitive analytical techniques known. The long lifetime of the lanthanide excited states allows time-resolved spectroscopy to be used, suppressing the sample autofluorescence and reaching very low detection limits. Not only visible lanthanide sensors are now ubiquitously provided in medical diagnosis and in cell imaging, but the

  11. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization.

    Science.gov (United States)

    Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P

    2016-06-01

    Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation. PMID:26649556

  12. SU-E-T-211: Induced Release of Nanocarrier Encapsulated Chemotherapeutic Drugs Using Proton Radiotherapy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Polf, J; Jackson, I [University of Maryland School of Medicine, Baltimore, MD (United States); Ranjan, A; Fernando, R [Oklahoma State University, Stillwater, OK (United States); Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States)

    2014-06-01

    Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for S and S IMRT based in the algorithm proposed by Kung et.al. Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS and S and S IMRT modality. A 6MV photon beam produced by a Primus linear accelerator equipped with an Optifocus MLC was used. TPS dose calculation algorithms were pencil beam and Monte Carlo. 230 IMRT treatments plans were selected for the study. The software was written under MALTLAB environment. Treatment plans were imported by the software using RTP format. Field fluences were reconstructed adding all segments.The algorithm implemented in the software calculates the dose at a reference point as the sum of primary and scatter dose. The primary dose is obtained by masking the fluence map with a circle of radius 1cm. The scatter dose is obtained through a shaped ring mask around the previous circle with a thickness of 0.5cm; the rings are increased one after another with constant thickness until cover the entire map of influence. The dosimetric parameters Sc, Sp and TPR vary depending on radio, the transmission effect of the MLC, inverse square law and dose profile are used for the calculation. Results: The average difference between measured and independent calculated dose was 0.4% ± 2.2% [−6.8%, 6.4%]. For 91% of the studied plans the difference was less than 3%. The difference between the measured and TPS dose with pencilbeam algorithm was 2.6% ± 1.41% [−2.0%, 5.6%] and Monte Carlo algorithm was 0.4% ± 1.5% [−4.9%, 3.7%]. The differences obtained are comparable to that obtained with the ionization chamber and TPS. Conclusion: The developed software is suitable for use in S and S IMRT dose calculation. This application is open and can be downloading under request.

  13. Electron beam induced modifications in conductivity and dielectric property of polymer electrolyte film

    International Nuclear Information System (INIS)

    This paper describes the effect of 8 MeV of electron beam (EB) energy irradiation on the electrical conductivity and dielectric properties of sodium fluoride NaF-doped polyethylene oxide (PEO) film. The structural and chemical characterizations were employed using X-ray diffractometry (XRD) and Fourier Transform Infrared (FTIR) techniques respectively before and after irradiation. The morphology study carried out using Scanning Electronic Microscopy (SEM) analysis. The DC electrical conductivity showed increases with dose and temperature and was consistent with Arrhenius behavior. The maximum conductivity of 1.1 × 10−5 S/cm and minimum activation energy of 0.25 eV were obtained at 25 kGy, 338 K; further increases in the dose resulted in a reduction in conductivity. The real (ε′) and imaginary (ε″) part of the dielectric constant suddenly decreased in a low frequency region (40–640 Hz), subsequently independent at higher frequency. The AC conductivity showed increases with frequency and temperature for all films. The dielectric constant and AC conductivity increased at the 25 kGy dose due to chain scission. Further increases in dose such as 50 and 75 kGy, resulted in a decrease in dielectric constant and AC conductivity due to cross-linking. The electric modulus approach was used to calculate the dielectric relaxation time (τ), which decreased at 25 kGy and then increased at 50 and 75 kGy doses. The modulus data were fitted using a non-exponential Kohlrausch–Williams–Watts (KWW) function ϕ (t), and the results indicate the existence of a non-Debye relaxation. - Highlights: • Film is exposed to 8 MeV Electron Beam with the doses of 25, 50, and 75 kGy. • Morphology changes of the film conformed from Scanning Electronic Microscopy (SEM). • AC conductivity shows increases with frequency as well as electron fluence. • The dielectric constant was satisfying the universal law of dielectric constant. • The dielectric relaxation time (τ) decreases

  14. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  15. GABA inhibition of luminescence from lantern shark (Etmopterus spinax) photophores.

    Science.gov (United States)

    Claes, Julien M; Krönström, Jenny; Holmgren, Susanne; Mallefet, Jérôme

    2011-03-01

    Photogenic organs (photophores) of the velvet belly lantern shark (Etmopterus spinax) are under hormonal control, since melatonin (MT) and prolactin (PRL) trigger luminescence while α-melanocyte-stimulating hormone (α-MSH) prevents this light to be emitted. A recent study supported, however, the presence of numerous nerve fibres in the photogenic tissue of this shark. Immunohistochemical and pharmacological results collected in this work support these nerve fibres to be inhibitory GABAergic nerves since (i) GABA immunoreactivity was detected inside the photogenic tissue, where previous labelling detected the nerve fibre structures and (ii) GABA was able to inhibit MT and PRL-induced luminescence, which was on the other hand increased by the GABA(A) antagonist bicuculline (BICU). In addition, we also demonstrated that BICU can induce light per se by provoking pigment retraction in the pigmented cells composing the iris-like structure of the photophore, attaining, however, only about 10% of hormonally induced luminescence intensity at 10(-3)mol L(-1). This strongly supports that a GABA inhibitory tonus controls photophore "aperture" in the photogenic tissue of E. spinax but also that MT and PRL have more than one target cell type in the photophores.

  16. In situ observation of electron-beam-induced dewetting of CdSe thin film embedded in SiO2

    DEFF Research Database (Denmark)

    Fabrim, Zacarias Eduardo; Kjelstrup-Hansen, Jakob; Fichtner, Paulo F. P.

    In this work we show the dewetting process of the CdSe thin films induced by electron beam irradiation. A multilayer heterostructure of SiO2/CdSe/SiO2 was made by a magnetron sputtering process. A plan-view (PV) sample was irradiated with 200 kV electrons in the TEM with two current densities: 0...

  17. Determination of Kinetic Parameters and Metal Ions in Urea-Urease System Based on the Biochemical Reaction Heat Induced Laser Beam Deflection

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (Km) of urease and apparent inhibition constant (Ki) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.

  18. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation.

    Science.gov (United States)

    Engholm, M; Norin, L; Aberg, D

    2007-11-15

    A broad visible luminescence band and characteristic IR luminescence of Yb(3+) ions are observed under UV excitation in ytterbium-doped aluminosilicate glass. Samples made under both oxidizing and reducing conditions are analyzed. A strong charge-transfer absorption band in the UV range is observed for glass samples containing ytterbium. Additional absorption bands are observed for the sample made under reducing conditions, which are associated with f-d transitions of divalent ytterbium. The visible luminescence band is attributed to 5d-4f emission from Yb(2+) ions, and the IR luminescence is concluded to originate from a relaxed charge-transfer transition. The findings are important to explain induced optical losses (photodarkening) in high-power fiber lasers. PMID:18026305

  19. Luminescence properties of crystals of lead iodides with manganese addition

    International Nuclear Information System (INIS)

    The luminescence properties of the Pbl2 and Pbl2 : 0.5 mol MnCl2 crystals by excitation through the X-ray beams and N2-laser light are studied within the temperature range of 85-295 K. Bands with the maxima about 495 and 512 nm were observed in the Pbl2 photoluminescence spectra at 85 K. The roentgenoluminescence spectra at this temperature are represented by the bands of 515 and 715 nm. Introduction of the manganese addition into the Pbl2 leads to decrease in the intensity of the short-wave bands and increase in the intensity of the long-wave band and displacement of its maximum up to 700 nm. Increase in the crystals temperature from 85 up to 295 K results in the luminescence quenching. At the room temperature the Pbl2 : Mn roentgenoluminescence yield with the maximum of 660 nm is approximately by three times higher than the Pbl2 roentgenoluminescence yield with the maximum of 555 nm. The nature of the luminescence bands and mechanisms of the radiation processes in the studied crystals are discussed

  20. Effect of focused ion beam deposition induced contamination on the transport properties of nano devices

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) deposition produces unwanted particle contamination beyond the deposition point. This is due to the FIB having a Gaussian distribution. This work investigates the spatial extent of this contamination and its influence on the electrical properties of nano-electronic devices. A correlation study is performed on carbon-nanotube (CNT) devices manufactured using FIB deposition. The devices are observed using transmission electron microscopy (TEM) and these images are correlated with device electrical characteristics. To discover how far Pt-nanoparticle contamination occurs along a CNT after FIB electrical contact deposition careful TEM inspections are performed. The results show FIB deposition efficiently improves electrical contact; however, the practice is accompanied by serious particle contamination near deposition points. These contaminants include metal particles and amorphous elements originating from precursor gases and residual water molecules in the vacuum chamber. Pt-contamination extends for approximately 2 μm from the point of FIB contact deposition. These contaminants cause current fluctuations and alter the transport characteristics of devices. It is recommended that nano-device fabrication occurs at a distance greater than 2 μm from the FIB deposition of an electrical contact. (paper)