WorldWideScience

Sample records for beam induced current

  1. Electron beam induced current in photovoltaics with high recombination

    OpenAIRE

    Haney, Paul M.; Yoon, Heayoung P.; Koirala, Prakash; Collins, Robert W.; Zhitenev, Nikolai B.

    2014-01-01

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Ideally, an EBIC measurement reflects the spatially resolved quantum efficiency of the device. In this work, a model for EBIC measurements is presented which applies when recombination within the depletion region is substantial. This model is motivated by cross-sectional EBIC experiments on CdS-CdTe photovoltaic cells which show th...

  2. Mapping ion beam induced current changes in a commercial MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.D.C.; Thompson, S.; Yang, C. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Jamieson, D.N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2011-10-15

    We demonstrate a novel nuclear microprobe imaging and analysis modality for micrometre-scale field effect transistor devices probed with focused beams of MeV ions. By recording the drain current as a function of time during ion irradiation it is possible to identify current transients induced by the passage of single ions through the sensitive structures of the device. This modality takes advantage of the fact that the ionization produced by the passage of a single ion acts in an equivalent way to a transient change in the gate bias which therefore modulates the drain current as a function of time. This differs from the traditional ion beam induced charge technique where the ionization drifts in an internal electric field and induces a single charge pulse in an electrode applied to the device. Instead a richer variety of phenomena are observed, with different time constants which depend on the proximity of the ion strike to the channel of the device. The signals may be used to examine device function, radiation sensitivity or to count ion impacts within the channel.

  3. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  4. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  5. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    OpenAIRE

    Bo Gao; Yi Hao; Ganfeng Tu; Wenyuan Wu

    2012-01-01

    Four techniques using high-current pulsed electron beam (HCPEB) were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the ma...

  6. Two-Photon Optical Beam-Induced Current Microscopy of Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Godofredo Bautista Jr.

    2004-12-01

    Full Text Available We demonstrate two-photon optical beam-induced current (2P-OBIC microscopy of light-emitting diodes (LEDs. We utilized a Ti:Sapphire femtosecond laser source operating at 800 nm to derive the 2P-OBIC signal from a 605 nm band-gap LED. The spatial confinement of free carrier generation only at the focus and the quadratic dependence of the 2P-OBIC signal on excitation power are the key principles in two-photon excitation. As a consequence, superior image quality evident in the 2P-OBIC images of LEDs are obtained. These features decrease the linear absorption and wide-angle scattering effects plaguing single-photon optical beam-induced current (1P-OBIC technique, thereby increasing the resolution of the imaging system in the axial and lateral directions. Thus, the attainment of good axial discrimination in the LED samples is obtained even without a confocal pinhole. In addition, 2P-OBIC images reveal local variations in free carrier densities which are not evident in the single-photon excitation.

  7. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  8. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    Science.gov (United States)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  9. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  10. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maximenko, S. I., E-mail: sergey.maximenko@nrl.navy.mil; Scheiman, D. A.; Jenkins, P. P.; Walters, R. J. [Naval Research Laboratory, Washington, DC 20375 (United States); Lumb, M. P.; Hoheisel, R. [The George Washington University, Washington, DC 20052 (United States); Gonzalez, M. [Sotera Defense Solutions, Herndon, Virginia 20171 (United States); Messenger, S. R. [University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Tibbits, T. N. D. [QuantaSol Ltd, Kingston-upon-Thames KT1 3GZ (United Kingdom); Imaizumi, M. [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Ohshima, T.; Sato, S. I. [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  11. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  12. Improving photoresponse characterization of dye-sensitized solar cells: application to the laser beam-induced current technique

    International Nuclear Information System (INIS)

    The photocurrent response of dye-sensitized solar cells (DSSCs) to light excitation from focused and non-focused laser beams is investigated. We observe that part of the photocurrent is produced by the activation of the irradiated area, whereas another part is generated by the previously photoexcited area. A mathematical algorithm has been devised to describe the rise and decay processes. The application of this algorithm leads to a significant improvement in the surface photoresponse and quantum yield measurements in DSSCs by means of the laser beam-induced current (LBIC) technique. This algorithm enhances the quality and definition of the LBIC images and opens the way to use this technique to cope with the biphasic features of these photovoltaic devices and extracting key properties for device performance such as internal quantum efficiencies and electron diffusion lengths

  13. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  14. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  15. Laser diagnostic for high current H- beams

    International Nuclear Information System (INIS)

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H- beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4x10-17cm2 at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H- beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H- beam to allow diagnostics on the neutral beam without intercepting the high-current H- beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. copyright 1998 American Institute of Physics

  16. Imaging interfacial electrical transport in graphene-MoS2 heterostructures with electron-beam-induced-currents

    Science.gov (United States)

    White, E. R.; Kerelsky, Alexander; Hubbard, William A.; Dhall, Rohan; Cronin, Stephen B.; Mecklenburg, Matthew; Regan, B. C.

    2015-11-01

    Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS2 heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrent collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.

  17. Surface Nanocrystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2013-01-01

    Full Text Available The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB technique. The structures of the nanocrystallized surface were characterized by X-ray diffraction and electron microscopy. Two nanostructures consisting of fine austenite grains (50–150 nm and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  18. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  19. Detection and characterization of stacking faults by light beam induced current mapping and scanning infrared microscopy in silicon

    Science.gov (United States)

    Vève-Fossati, C.; Martinuzzi, S.

    1998-08-01

    Non destructive techniques like scanning infrared microscopy and light beam induced current mapping are used to reveal the presence of stacking faults in heat treated Czochralski grown silicon wafers. In oxidized or contaminated samples, scanning infrared microscopy reveals that stacking faults grow around oxygen precipitates. This could be due to an aggregation of silicon self-interstitials emitted by the growing precipitates in the (111) plane. Light beam induced current maps show that the dislocations which surround the stacking faults are the main source of recombination centers, especially when they are decorated by a fast diffuser like copper. Des techniques non destructives telles que la microscopie infrarouge à balayage et la cartographie de photocourant induit par un spot lumineux ont été utilisées pour révéler la présence de fautes d'empilement après traitements thermiques, dans des plaquettes de silicium préparées par tirage Czochralski. Dans des échantillons oxydés ou contaminés, la microscopie infrarouge à balayage révèle des fautes d'empilement qui se développent autour des précipités d'oxygène. Cela peut être dû à la formation d'un agglomérat d'auto-interstitiels de silicium émis par la croissance des précipités dans les plans (111). Les cartographies de photocourant montrent que les dislocations qui entourent les fautes d'empilement sont la principale source de centres de recombinaison, et cela tout particulièrement quand ces fautes sont décorées par un diffuseur rapide tel que le cuivre.

  20. Current-induced spin polarization in transition metals and Bi/Ag bilayers observed by spin-polarized positron beam

    Science.gov (United States)

    Zhang, Hongjun; Yamamoto, Shunya; Fukaya, Yuki; Maekawa, Masaki; Li, Hui; Kawasuso, Atsuo; Seki, Takeshi; Saitoh, Eiji; Takanashi, Koki; JAEA Team; Tohoku Team

    2015-03-01

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W films were studied by spin-polarized positron beam (SPPB). The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3 ~ 15% per charge current of 105 A/cm2) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The outermost spin poalrization of Bi/Ag/Al2O3andAg/Bi/Al2O3 (charge currents directly connected to Ag layers) were probed by SPPB. The opposite outermost spin polarization of Bi/Ag/Al2O3andAg/Bi/Al2O3 clarified the charge-to-spin conversion in Bi/Ag bilayers. Nevertheless, the magnitudes of the outermost spin polarization of Bi(0.3 ~5)/Ag(25)/Al2O3 (numbers in parentheses denote thickness in nm) and Ag(25 ~500)/Bi(8)/Al2O3 decrease exponentially with increasing Bi thickness and Ag thickness, respectively. This provides probably the first direct evidence for spin diffusion mechanism. Financial support from JSPS Kakenhi Grant 24310072.

  1. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    International Nuclear Information System (INIS)

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  2. Chosen Aspects Of Investigations Of Solar Cells With The Laser Beam Induced Current Technique

    Directory of Open Access Journals (Sweden)

    Chrobak Łukasz Bartłomiej

    2015-06-01

    Full Text Available This paper presents maps of spatial distributions of the short circuit current Isc(x,y and the open circuit voltage Uoc(x,y of the investigated low cost solar cells. Visible differences in values of these parameters were explained by differences in the serial and shunt resistances determined for different points of solar cells from measurements of I–V characteristics. The spectral dependence of the photo voltage of solar cell is also shown, discussed and interpreted in the model of amorphous and crystal silicon.

  3. Variable Current Transient Beam Loading Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2000-10-25

    The energy spread caused by transients during beam turn-on can be reduced by suitable timing of the beam turn-on[1]. If the beam is injected when the no-load voltage reaches the desired loaded voltage, then the energy spread is about 10%. To eliminate this energy spread, one can amplitude or phase modulate the section input power for one fill time, so that when the beam is turned on, the no-load voltage equals the desired loaded voltage and from then on, the change in no-load voltage tracks the beam induced voltage. It is known that for a constant gradient (CG) structure, and amplitude variation of the form E(t) = a{sub 0} + (1 - a{sub 0}) t{sub p} will reduce the energy spread to zero for a current that is determined by a{sub 0}. When one uses rf modulation for transient beam loading compensation, the beam is injected a fill time after the rf has been turned on, and one is forced to throw away a section's worth of rf energy. In addition, it requires extra components which use up additional rf energy. This note describes transient beam loading compensation with variable current. It will show that it increases the rf energy to beam energy transfer efficiency.

  4. LEDA beam diagnostics instrumentation: Beam current measurement

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz registered electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  5. Temperature behaviour of photoluminescence and electron-beam-induced current recombination behaviour of extended defects in solar grade silicon

    CERN Document Server

    Arguirov, T; Kittler, M; Reif, J

    2002-01-01

    The temperature dependence of D-band and band-to-band (BB) luminescence was measured in EFG samples between 80 K and room temperature for defects/dislocations presenting different amounts of contamination. The contamination density was estimated from the temperature behaviour of the electron-beam-induced current contrast, ranging between about 10 sup 4 and 10 sup 6 impurities cm sup - sup 1 dislocation length. The D1 line became already visible at room temperature but its intensity was found to exhibit a maximum at about 150 K. D2, D3 and D4 start to show up at about 250, 190 and 170 K, respectively, and increase their intensities upon lowering temperature. At room temperature the width of the D1 line is broad and becomes narrower upon lowering the temperature. D2 shows the opposite behaviour. The intensities of D1 and D2 were observed to show strong variations across the sample, whereas this was not observed for the pair D4/D3. In particular, the origin of the lines D1 and D2 is still far from being understo...

  6. Digitally compensated beam current transformer

    CERN Document Server

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645ns "mini" bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have less than 1 ns rise time and droops of 0.1 %/ms. This places a significant design burden on the cur...

  7. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  8. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    International Nuclear Information System (INIS)

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1−x, Co3W9C4, Co3W3C phases and graphite precipitate domains ∼50 nm. The friction coefficient of modified surface decreased to ∼0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10−5 mm3/min to 6.3 × 10−6 mm3/min, showing a significant self-lubricating effect.

  9. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, S.Z., E-mail: ebeam@dlut.edu.cn [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Y. [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Xu, Y. [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000 (China); Gey, N.; Grosdidier, T. [Université de Lorraine, Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Ile du Saulcy, 57045 Metz (France); Université de Lorraine, Laboratoire d’Excellence on Design of Alloy Metals for Low-Mass Structure (DAMAS), Ile du Saulcy, 57045 Metz (France); Dong, C. [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); Université de Lorraine, Laboratoire d’Excellence on Design of Alloy Metals for Low-Mass Structure (DAMAS), Ile du Saulcy, 57045 Metz (France)

    2013-11-15

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC{sub 1−x}, Co{sub 3}W{sub 9}C{sub 4}, Co{sub 3}W{sub 3}C phases and graphite precipitate domains ∼50 nm. The friction coefficient of modified surface decreased to ∼0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10{sup −5} mm{sup 3}/min to 6.3 × 10{sup −6} mm{sup 3}/min, showing a significant self-lubricating effect.

  10. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  11. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  12. Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se{sub 2} thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavalakkatt, J.; Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Nichterwitz, M.; Caballero, R.; Rissom, T.; Unold, T.; Scheer, R.; Schock, H. W. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz. 1, 14109 Berlin (Germany); Haarstrich, J.; Ronning, C. [Institut für Festkörperphysik, Friedrich Schiller Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-01-07

    The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se{sub 2} (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minima with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.

  13. K130 beam current measurement system

    Science.gov (United States)

    Gustafsson, J.; Kotilainen, P.; Hänninen, V.; Liukkonen, E.; Kaski, K.

    1994-03-01

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyväskylä, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC.

  14. K130 beam current measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, J. (Microelectronics Lab., Tampere Univ. of Technology (Finland)); Kotilainen, P. (Microelectronics Lab., Tampere Univ. of Technology (Finland)); Haenninen, V. (Jyvaeskylae Univ. (Finland). Dept. of Physics); Liukkonen, E. (Jyvaeskylae Univ. (Finland). Dept. of Physics); Kaski, K. (Microelectronics Lab., Tampere Univ. of Technology (Finland))

    1994-03-22

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyvaeskylae, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC. (orig.)

  15. Magnetoinduction sensor of beam current with magnetic noise screening

    International Nuclear Information System (INIS)

    A description is given of a magnetoinduction sensor of beam current in a synchrotron, the latter being a booster of the VEhPP-4 electron-positron complex. The sensor operates under conditions of heavy background noise induced by the synchrotron pulsed magnetic fields. The means reducing the noise level in the sensor are considered. The most efficient screen protecting against pulsed fields is one made of conducting materials where the field is reduced at the expense of induced currents passing in a skin-layer. The screen has an azimuthal slit, which results in the beam vortex field penetration to the sensor without reduction. The noise field is reduced due to the conducting walls and deep slit. Application of the means deseribed allowed to measure low (of the order of 100 mcA) synchrotron beam currents

  16. Power threshold for neutral beam current drive

    International Nuclear Information System (INIS)

    For fully noninductive current drive in tokamaks using neutral beams, there is a power and density threshold condition, setting a minimum value for P3/2/n2. If this condition is not met, stationary state cannot occur, and a tokamak discharge will collapse. This is a consequence of the coupling between current and electron temperature, or between current drive efficiency and energy confinement time. 4 figs

  17. Image Currents in Azimuthally Inhomogeneous Metallic Beam Pipes

    CERN Document Server

    Caspers, Friedhelm; Palumbo, L; Ruggiero, F

    2001-01-01

    We consider an ultra-relativistic particle travelling on-axis in an infinitely long cylindrical metallic beam pipe with azimuthally varying conductivity. A semi-analytical solution, obtained by applying approximate boundary conditions, predicts an image current distribution on the pipe walls practically independent of the azimuth, at least in the frequency range relevant for future machines such as the LHC. We discuss numerical simulations and bench measurements which confirm the theoretical predictions. Implications for the beam-induced ohmic losses in the copper coated, welded LHC beam screen are also addressed.

  18. Achromatic beam transport of High Current Injector

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  19. Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Schäfer, N.; Baldaz, N.; Brunken, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Boit, C. [Technische Universität Berlin, Department of Semiconductor Devices, Einsteinufer 19, 10587 Berlin (Germany)

    2015-07-15

    Electron-beam-induced current (EBIC) measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe{sub 2} solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe{sub 2}/Mo stacks exhibiting p-n junctions with different net doping densities in the CuInSe{sub 2} layers, values for the width of the space-charge region, w, were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between w{sup 2} and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

  20. Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions

    Science.gov (United States)

    Abou-Ras, D.; Schäfer, N.; Baldaz, N.; Brunken, S.; Boit, C.

    2015-07-01

    Electron-beam-induced current (EBIC) measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe2 solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe2/Mo stacks exhibiting p-n junctions with different net doping densities in the CuInSe2 layers, values for the width of the space-charge region, w, were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between w2 and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

  1. Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions

    Directory of Open Access Journals (Sweden)

    D. Abou-Ras

    2015-07-01

    Full Text Available Electron-beam-induced current (EBIC measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe2 solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe2/Mo stacks exhibiting p-n junctions with different net doping densities in the CuInSe2 layers, values for the width of the space-charge region, w, were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between w2 and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

  2. Effect of the thermionic emission on the recombination and electron beam induced current contrast at the interface of a metallic precipitate embedded in a semiconductor matrix

    Directory of Open Access Journals (Sweden)

    R.-J. Tarento

    2013-12-01

    Full Text Available The barrier height and the recombination velocity at the interface between a metallic precipitate and a semiconductor matrix are investigated with a new self consistent procedure based both on the analysis of the recombination and emission balance rates for electrons and holes and on the determination of the size-dependent electronic structure of the embedded precipitate. In the present work, the precipitate is modeled within the spherical well potential framework. The main result is the dependence of the recombination features on the electronic structure of the metal precipitate unlike the models based only on the Shockley-Read-Hall theory. The behaviors of the surface charge density on the metallic precipitate and the barrier height versus the precipitate size are similar to our previous studies. Unlike previous works, the recombination velocity reaches a constant non-zero value for sizes smaller than a critical size which is dependent on the defect concentration at the interface. The new dependencies of the recombination parameters are illustrated by the calculation of the electron beam induced current (EBIC contrast at the interface.

  3. Beam induced RF cavity transient voltage

    International Nuclear Information System (INIS)

    We calculate the transient voltage induced in a radio frequency (RF) cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ωr of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω0. The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(jhω0t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting RF cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kind of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  4. The LHC Fast Beam Current change Monitor

    CERN Document Server

    Belohrad, D; Jensen, L; Krupa, M; Topaloudis, A

    2013-01-01

    The modularity of the Large Hadron Collider’s (LHC) machine protection system (MPS) allows for the integration of several beam diagnostic instruments. These instruments have not necessarily been designed to have protection functionality, but MPS can still use them to increase the redundancy and reliability of the machine. The LHC fast beam current change monitor (FBCCM) is an example. It is based on analogue signals from fast beam current transformers (FBCT) used nominally to measure the LHC bunch intensities. The FBCCM calculates the magnitude of the beam signal provided by the FBCT, looks for a change over specific time intervals, and triggers a beam dump interlock if losses exceed an energy-dependent threshold. The first prototype of the FBCCM was installed in the LHC during the 2012-2013 run. The aim of this article is to present the FBCCM system and the results obtained, analyse its current performance and provide an outlook for the final system which is expected to be operational after the long LHC sh...

  5. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  6. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  7. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  8. SNS Ring and RTBT Beam Current Monitor

    Science.gov (United States)

    Blokland, W.; Armstrong, G.; Deibele, C.; Pogge, J.; Gaidash, V.

    2006-11-01

    The SNS Diagnostics Group has implemented Beam Current Monitors (BCM) for the Ring and RTBT (Ring to Target Beam Transferline). In the Ring, the BCM must handle a thousand-fold increase of intensity during the accumulation, and in the RTBT, the BCM must communicate the integrated charge of the beam pulse in real-time for every shot to the target division for correlation with the produced neutrons. This paper describes the development of a four channel solution for the Ring BCM and the use of FPGA for the RTBT BCM to deliver the total charge to the target over a fiber optic network. Both system versions are based on the same commercial digitizer board.

  9. Update on Beam Induced RF Heating in the LHC

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J; Nosych, A; Nougaret, J; Persichelli, S; Piguiet, A; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M; Fassnacht, P; Jakobsen, S; Deile, M

    2013-01-01

    Since June 2011 the rapid increase of the luminosity performance of the LHC has come at the expense of both increased temperature and pressure of specific, near-beam, LHC equipment. In some cases, this beam induced heating has caused delays while equipment cool-down, beam dumps and even degradation of some devices. This contribution gathers the observations of beam induced heating, attributed to longitudinal beam coupling impedance, their current level of understanding and possible actions planned to be implemented during the 1st LHC Long Shutdown (LS1) in 2013-2014.

  10. Current status of the LBNE neutrino beam

    CERN Document Server

    Moore, Craig Damon; Crowley, Cory Francis; Hurh, Patrick; Hylen, James; Lundberg, Byron; Marchionni, Alberto; McGee, Mike; Mokhov, Nikolai V; Papadimitriou, Vaia; Plunkett, Rob; Reitzner, Sarah Diane; Stefanik, Andrew M; Velev, Gueorgui; Williams, Karlton; Zwaska, Robert Miles

    2015-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. The LBNE Neutrino Beam has made significant changes to the initial design through consideration of numerous Value Engineering proposals and the current design is described.

  11. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  12. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  13. History and modern applications of nano-composite materials carrying GA/cm2 current density due to a Bose-Einstein Condensate at room temperature produced by Focused Electron Beam Induced Processing for many extraordinary novel technical applications

    Science.gov (United States)

    Koops, Hans W. P.

    2015-12-01

    The discovery of Focused Electron Beam Induced Processing and early applications of this technology led to the possible use of a novel nanogranular material “Koops-GranMat®” using Pt/C and Au/C material. which carries at room temperature a current density > 50 times the current density which high TC superconductors can carry. The explanation for the characteristics of this novel material is given. This fact allows producing novel products for many applications using Dual Beam system having a gas supply and X.Y.T stream data programming and not using GDSII layout pattern control software. Novel products are possible for energy transportation. -distribution.-switching, photon-detection above 65 meV energy for very efficient energy harvesting, for bright field emission electron sources used for vacuum electronic devices like amplifiers for HF electronics, micro-tubes, 30 GHz to 6 THz switching amplifiers with signal to noise ratio >10(!), THz power sources up to 1 Watt, in combination with miniaturized vacuum pumps, vacuum gauges, IR to THz detectors, EUV- and X-Ray sources. Since focusing electron beam induced deposition works also at low energy, selfcloning multibeam-production machines for field emitter lamps, displays, multi-beam - lithography, - imaging, and - inspection, energy harvesting, and power distribution with switches controlling field-emitter arrays for KA of currents but with < 100 V switching voltage are possible. Finally the replacement of HTC superconductors and its applications by the Koops-GranMat® having Koops-Pairs at room temperature will allow the investigation devices similar to Josephson Junctions and its applications now called QUIDART (Quantum interference devices at Room Temperature). All these possibilities will support a revolution in the optical, electric, power, and electronic technology.

  14. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  15. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gaob@smm.neu.edu.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Hu, Liang [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Li, Shi-wei [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hao, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Yu-dong [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France); Tu, Gan-feng [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Grosdidier, Thierry [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France)

    2015-08-15

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1){sub Al}//(0 0 1){sub Si} with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys.

  16. Study on the nanostructure formation mechanism of hypereutectic Al-17.5Si alloy induced by high current pulsed electron beam

    Science.gov (United States)

    Gao, Bo; Hu, Liang; Li, Shi-wei; Hao, Yi; Zhang, Yu-dong; Tu, Gan-feng; Grosdidier, Thierry

    2015-08-01

    This work investigates the nanostructure forming mechanism of hypereutectic Al-17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1)Al//(0 0 1)Si with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al-Si alloys.

  17. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    International Nuclear Information System (INIS)

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1)Al//(0 0 1)Si with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys

  18. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  19. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li+3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  20. Induced base transistor fabricated by molecular beam epitaxy

    Science.gov (United States)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  1. Current-Induced Membrane Discharge

    OpenAIRE

    Andersen, MB; Soestbergen, van, M Michiel; A Mani; Bruus, H.; Biesheuvel, PM; Bazant, MZ

    2012-01-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by “current-induced membrane discharge” (CIMD), even in the...

  2. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B; Bednarek, M; Bellodi, G; Bracco, C; Bruce, R; Cerutti, F; Chetvertkova, V; Dehning, B; Granieri, P P; Hofle, W; Holzer, E B; Lechner, A; Del Busto, E Nebot; Priebe, A; Redaelli, S; Salvachua, B; Sapinski, M; Schmidt, R; Shetty, N; Skordis, E; Solfaroli, M; Steckert, J; Valuch, D; Verweij, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2015-01-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  3. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.;

    2012-01-01

    neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  4. Application of data mining in beam current forecast

    International Nuclear Information System (INIS)

    Data mining technique is briefly introduced in the paper. The comparability of history beam current curves was analyzed first, then a method to forecast the beam current was put forward based on time sequence comparability study, and used in Hefei light source operational data analysis. The result indicates it's useful. (authors)

  5. Nanopillar growth by focused helium ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping; Salemink, Huub W M; Alkemade, Paul F A [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Veldhoven, Emile van; Maas, Diederik J [TNO Science and Industry, Stieltjesweg 1, 2628 CK Delft (Netherlands); Sanford, Colin A [Carl Zeiss SMT, Inc., One Corporation Way, Peabody, MA 01960 (United States); Smith, Daryl A; Rack, Philip D, E-mail: p.f.a.alkemade@tudelft.nl [Department of Material Science and Engineering, University of Tennessee, Knoxville, TN 37996-2200 (United States)

    2010-11-12

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH{sub 3}){sub 3}Pt(C{sub P}CH{sub 3}) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

  6. Nanopillar growth by focused helium ion-beam-induced deposition

    International Nuclear Information System (INIS)

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3)3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

  7. Fast Beam Current Change Monitor for the LHC

    CERN Document Server

    Kral, Jan

    Stringent demands on the LHC safety and protection systems require improved methods of detecting fast beam losses. The Fast Beam Current Transformer (FBCT) is a measurement instrument, providing information about bunch-to-bunch intensity of the accelerated beam. This thesis describes the development of a new protection system based on the FBCT signal measurements. This system, the Fast Beam Current Change Monitor (FBCCM), measures the FBCT signal in a narrow frequency band and computes time derivation of the beam signal magnitude. This derivation is proportional to the beam losses. When the losses exceed a certain level, the FBCCM requests a beam dump in order to protect the LHC. The LHC protection will be ensured by four FBCCMs which will be installed into the LHC in July 2014. Six FBCCMs have been already constructed and their characteristics were measured with satisfactory results. The FBCCMs were tested by a laboratory simulation of the real LHC environment.

  8. Low Current, Long Beam Pulse with SLED

    International Nuclear Information System (INIS)

    The 3 km long linac at the Stanford Linear Accelerator Center (SLAC) is used for fixed target experiments such as E-155, with energies up to 50 GeV. The SLAC Energy Development (SLED) system increase the maximum no-load energy by a factor of 1.6, but it also causes a varying beam energy curve. To provide a long pulse or bunch train for the experiment the energy profile has to be flat. Besides more sophisticated methods such as varying the phase of two klystrons feeding one structure section as proposed in the NLC design, we describe the method used for E-155 in spring of 1997. The desired low charged beam didn't have any significant beam loading, but by inserting a 1800 phase notch during the SLED pulse, a beam pulse of up to 500 ns was achieved. The energy range without compensation would have been 15%, while with compensation the energy spread was reduced to about 0.15%. The phase notch was achieved by triggering a pair of two additional 180d0 phase switches about half a structure fill-time after the SLED pulse was triggered. Simulations are compared with the experimental result

  9. Electron-beam-induced conduction in polyethylene

    International Nuclear Information System (INIS)

    The electrical conduction in polyethylene induced by the irradiation of the short-pulsed-electron-beam (100 nsec time width) consists of the fast and the slow components. The former is attributed to the carrier transport in the crystalline part and the latter to that in the amorphous part. Logarithmic plot (Scher-Montroll plot) of the slow part of the induced current vs. time gives a knee at time T sub(r), which is thought to be the transit time of the carrier front between electrodes. Simple calculation by the formula μ = L/T sub(r) E gives the apparent slow carrier mobility μ of 5.6 x 10-7 cm2/V.sec and 3.2 x 10-7 cm2/V.sec for the electron and the hole respectively at 343 K under the field E of 1.2 MV/cm for the sample thickness L of 12 μm. These apparent slow carrier mobilities are dependent on both the thickness and the field strength. These behavior are discussed in terms of Scher-Montroll theory on the transport in amorphous substances. The activation energy of the mobility is in good agreement with the apparent trap depth obtained from the TSC measurement. (author)

  10. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Indian Academy of Sciences (India)

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  11. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  12. Low Starting Electron Beam Current in Degenerate Band Edge Oscillators

    CERN Document Server

    Othman, Mohamed A K; Figotin, Alexander; Capolino, Filippo

    2016-01-01

    We propose a new principle of operation in vacuum electron-beam-based oscillators that leads to a low beam current for starting oscillations. The principle is based on super synchronous operation of an electron beam interacting with four degenerate electromagnetic modes in a slow-wave structure (SWS). The four mode super synchronous regime is associated with a very special degeneracy condition in the dispersion diagram of a cold periodic SWS called degenerate band edge (DBE). This regime features a giant group delay in the finitelength SWS and low starting-oscillation beam current. The starting beam current is at least an order of magnitude smaller compared to a conventional backward wave oscillator (BWO) of the same length. As a representative example we consider a SWS conceived by a periodically-loaded metallic waveguide supporting a DBE, and investigate starting-oscillation conditions using Pierce theory generalized to coupled transmission lines (CTL). The proposed super synchronism regime can be straightf...

  13. Limiting current of intense electron beams in a decelerating gap

    Science.gov (United States)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  14. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  15. Induced radioactivity of the IHEP proton synchrotron beam extraction equipment

    International Nuclear Information System (INIS)

    The measurement results of induced radioactivity of the beam extraction equipment during 1972-1978 are presented. All the values are given to the moment of the accelerator stop. The experimental data permits to predict further possible variations of the induced radioactivity levels of the equipment. Given are the measures required for reduction of the accelerator equipment irradiation, which are the following: 1) compensation of residual distortion of a closed beam orbit in the course of the induction system operation; 2) limitation of the intensity of drop on the internal targets up to the 11 protons per target level over a cycle; 3) putting into operation the program control system for the duration of a current pulse of a linear accelerator to minimize the beam residues at the 70 GeV energy during physical experiments; 4) construction of the system of beam interception and cutting-off to ensure effective energy suppression of uncontrolled beam residues and localization of their radiation effect; 5) extraction of a high-energy beam out of the accelerator during the experiments (e.g., into the neutrino channel for apparatus adjusting) instead of its dropping on the interceptor-target; 6) beam orbit controlling in the case of multiturn injection into the accelerator

  16. Polymorphic beams and Nature inspired circuits for optical current

    Science.gov (United States)

    Rodrigo, José A.; Alieva, Tatiana

    2016-10-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams.

  17. Production of high-efficiency microsecond heavy-current beams

    International Nuclear Information System (INIS)

    The comparative analysis of various constructions of diodes with magnetic insulation is reported. It is shown that the diode current leakage decrease results in increase of pulse duration of relativistic electron beam and diode efficiency. A ring high quality electron beam of 0.6 MeV energy, current - 3-4 kA, duration - 2.5 μs and ring width 0.8 - 1 mm is obtained

  18. Geomagnetically induced currents in Europe

    Directory of Open Access Journals (Sweden)

    Viljanen Ari

    2014-03-01

    Full Text Available Statistics of geomagnetically induced currents (GIC in the European high-voltage power grids based on 1-min geomagnetic recordings in 1996–2008 and on 1-D models of the ground conductivity have been derived in the EURISGIC project (European Risk from Geomagnetically Induced Currents. The simplified yet realistic power grid model indicates that large GIC can occur anywhere in Europe. However, geomagnetic variations are clearly larger in North Europe, so it is the likely region of significant GIC events. Additionally, there are areas in the North with especially low ground conductivities, which further tend to increase GIC. The largest modelled GIC values at single substations in 1996–2008 are about 400 A in the Nordic Countries, about 100 A in the British Isles, about 80 A in the Baltic Countries, and less than 50 A in Central and South Europe. The largest GIC event in the period studied is the Halloween storm on 29–30 October 2003, and the next largest ones occurred on 15 July 2000 and 9 November 2004.

  19. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  20. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  1. Excitation of a cylindrical cavity by a helical current and an axial electron beam current

    Science.gov (United States)

    Davidovich, M. V.; Bushuev, N. A.

    2013-07-01

    The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.

  2. Beam-induced tensor pressure tokamak equilibria

    International Nuclear Information System (INIS)

    D-shaped tensor pressure tokamak equilibria induced by neutral-beam injection are computed. The beam pressure components are evaluated from the moments of a distribution function that is a solution of the Fokker-Planck equation in which the pitch-angle scattering operator is ignored. The level-psub(perpendicular) contours undergo a significant shift away from the outer edge of the device with respect to the flux surfaces for perpendicular beam injection into broad-pressure-profile equilibria. The psub(parallel) contours undergo a somewhat smaller inward shift with respect to the flux surfaces for both parallel and perpendicular injection into broad-pressure-profile equilibria. For peaked-pressure-profile equilibria, the level pressure contours nearly co-incide with the flux surfaces. (author)

  3. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  4. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  5. Role of the rise rate of beam current in the microwave radiation of vircator

    Science.gov (United States)

    Li, Limin; Cheng, Guoxin; Zhang, Le; Ji, Xiang; Chang, Lei; Xu, Qifu; Liu, Lie; Wen, Jianchun; Li, Chuanlu; Wan, Hong

    2011-04-01

    In this paper, the effect of the rise rate of beam current on the microwave radiation of a virtual cathode oscillator (vircator) is presented. Interestingly, it was observed that the rise rate of the beam current increased as the pulse shot proceeded, which is accompanied by the decrease in microwave power. By comparing the experimental results of two cathode materials (carbon fiber and stainless steel), it was found that the above behavior is independent of the cathode materials. The ion flow, induced by the repetitive action of beam electrons with the anode grid, directly affects the development of beam current. A twice-increased process of ion flow was observed, and there are two factors involved in this process, namely, the reflection of electrons between the cathode and virtual cathode and the effect of one-time bombardment of electron beam. After the irradiation of pulsed electron beam, some microprotrusions toward the cathode appeared on the anode surface, with a quasiperiodic structure. The appearance of ion flow, as the anode plasma forms, increases the beam current and enhances the beam current density. The anode plasma is generated relatively easily as the shot test proceeds, due to the aging of anode grid, which allows the possibility of the decrease in the microwave power. As the pulse shot proceeds, the changes in the rise rate of beam current are closely related to the aging process of anode surface. Therefore, the further enhancement of vircator efficiency needs to lengthen the lifetime of anode, besides the optimization of explosive emission cathodes.

  6. Relativistic-electron-beam-induced fusion

    International Nuclear Information System (INIS)

    The interaction of a focussed relativistic electron beam (REB) with a solid target has been investigated. The beam performance of the REB generator ''REIDEN III'' is 500 kV, 80 kA at a focal spot of 1.5 mm diameter, which gives 2X1012Wcm-2. High-temperature dense plasmas are produced at the focal point on the solid target. It expands radially along the target surface. The measured electron temperature (1-2 keV) and the ion energy (approximately 2 keV) endorse the existence of enhanced REB absorption in a dense plasma. The neutrons observed (approximately 109/shot, 2.45 MeV) in the case of a CD2 target are of thermonuclear origin and compatible with the plasma temperature. On the assumption that the electron beam of radius r is stopped at a length Λ and deposits its energy, the energy balance equation is approximately given by πr2Λn1kT=IVtau. On inserting beam current I, voltage V, pulse time tau and density n1, the energy deposition distance Λ can be estimated. For a fusion temperature of 1 keV, the distance Λ must be two orders of magnitude shorter than the simple classical stopping length, which seems to be due to non-linear coupling. A pellet implosion experiment of a multi-structure target has been performed. (author)

  7. Thermal imaging diagnostics of high-current electron beams.

    Science.gov (United States)

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time. PMID:23126757

  8. High current density sheet-like electron beam generator

    Science.gov (United States)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  9. Optimization of solenoid based low energy beam transport line for high current H+ beams

    Science.gov (United States)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  10. Return Current Electron Beams and Their Generation of "Raman" Scattering

    Science.gov (United States)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  11. Collective monitors for high-current pulse electron beam diagnostics

    International Nuclear Information System (INIS)

    A collector monitor for high-current pulsed electron beams at average power of 100 W and pulse current of 100 A has been developed. The monitor comprises a Faraday cup, profile monitor, sector diaphragm, energy detector. The collector was fixed on a brass radiator transformed into a rod. The rod ensures reliable and electric contact of the collector with the ''earth'' and small RC of this line. Such design permits to stabilize the heat mode of the collector without utilization of external cooling. The monitors have been tested in electron beams at head load up to 100 W during 40 hours. Wear at the expense of evaporation, microexplosions were not observed. Accuracy of current measuring made up 5-10% for absolute and 1-2% for relative measurements

  12. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  13. Current-Induced Membrane Discharge

    NARCIS (Netherlands)

    Baeko Andersen, M.; Soestbergen, M.; Mani, A.; Bruus, H.; Biesheuvel, P.M.; Bazant, M.Z.

    2012-01-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory neglects

  14. A microbeam slit system for high beam currents

    Science.gov (United States)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  15. Light emission from particle beam induced plasma - An overview

    CERN Document Server

    Ulrich, A

    2015-01-01

    Experiments to study the light emission from plasma produced by particle beams are presented. Fundamental aspects in comparison with discharge plasma formation are discussed. It is shown that the formation of excimer molecules is an important process. This paper summarizes various studies of particle beam induced light emission and presents first results of a direct comparison of light emission induced by electron- and ion beam excitation. Both high energy heavy ion beam and low energy electron beam experiments are described and an overview over applications in the form of light sources, lasers, and ionization devices is given.

  16. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  17. Focused electron beam induced deposition: A perspective

    Directory of Open Access Journals (Sweden)

    Michael Huth

    2012-08-01

    Full Text Available Background: Focused electron beam induced deposition (FEBID is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states.Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical

  18. Beam current transformer (BCT) for experiment WA1/2

    CERN Multimedia

    1978-01-01

    In experiment WA1/2, a 400 GeV proton beam from the SPS was directed at a target, downstream of which a hadron line selected, in several narrow momentum bands, a beam of either pi+ and K+ or pi- and K-. These neutrino-parent particles, before entering a 292 m long decay tunnel, passed through a set of 2 BCTs of a design seen here. They measured the hadron intensity (10^10 to 10^11 particles/pulse) with a precision of the order of 1%. There were 2 of them, for enhanced precision and confidence. After the discovery of neutral currents in the Gargamelle-experiment, WA1/2 was the first follow-up, high-precision experiment (Z.Phys.C35, 443-452, 1987 and Z.Phys.C45, 361-379, 1990). See also 7706516X.

  19. A critical literature review of focused electron beam induced deposition

    Science.gov (United States)

    van Dorp, W. F.; Hagen, C. W.

    2008-10-01

    An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally

  20. 强流脉冲电子束作用下20钢的微观结构状态%The Microstructures in 0.20%C Carbon Steel Induced by High-Current Pulsed Electron Beam

    Institute of Scientific and Technical Information of China (English)

    李艳; 蔡杰; 邹阳; 万明珍; 关庆丰

    2011-01-01

    In order to investigate superfast deformation behavior of metal, annealed 0.20%C carbon steel was irradiated with high-current pulsed electron beam (HCPEB). The microstructures of irradiated samples were investigated by using X-ray diffraction (XRD), optical microscopy and transmission electron microscopy (TEM). The experimental results showed that stress of about 1 GPa order was introduced in the irradiated surface layer, which led to severe plastic deformation on the irradiated surface. Both of the complicated configurations of tangle dislocations and dislocation cells were formed within the sublayer. Simultaneously, dislocation loops companied with the dislocations configurations were also produced. In the situation of multi-pulses, characterization by TEM also revealed that the sublayer consisting of some region with the glassy and nanocrystalline structure. It is suggested that the high-level stress and strain rate induced by HCPEB irradiation could cause the shifting of whole atomic planes synchronously. This is the more possible mechanism of the formation of the glassy and nanocrystalline structure.%为了研究金属材料的超快变形行为,利用强流脉冲电子束(HCPEB)装置对20钢进行轰击,采用X射线衍射、光学显微镜及透射电镜等技术分析了受轰击样品的变形组织与结构。实验结果表明,强流脉冲电子束能够在材料表层诱发幅值为1 GPa量级的应力,快速的加热和冷却过程在近表层诱发了强烈的塑性变形,并在材料表层内形成了复杂的位错缠结结构和位错胞结构,同时还伴随位错圈等空位簇缺陷的形成,多次轰击导致局部区域形成纳米和非晶结构。HCPBE轰击诱发的幅值极大的应力和极高的应变速率而导致的整个原子平面的位移可能是非晶结构形成的

  1. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  2. First test of BNL electron beam ion source with high current density electron beam

    International Nuclear Information System (INIS)

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given

  3. How does relativity affect magnetically induced currents?

    Science.gov (United States)

    Berger, R J F; Repisky, M; Komorovsky, S

    2015-09-21

    Magnetically induced probability currents in molecules are studied in relativistic theory. Spin-orbit coupling (SOC) enhances the curvature and gives rise to a previously unobserved current cusp in AuH or small bulge-like distortions in HgH2 at the proton positions. The origin of this curvature is magnetically induced spin-density arising from SOC in the relativistic description. PMID:26243659

  4. Spin-current induced electric field

    OpenAIRE

    Sun, QF; Guo, H; Wang, J

    2003-01-01

    We theoretically investigate properties of the induced electric field of a steady-state spin-current without charge current, using an 'equivalent magnetic charge' method. Several general formula for the induced electric field are derived which play the role of 'Biot-Savart law' and 'Ampere's law.' Conversely, a moving spin is affected by an external electric field and we derive an expression for the interaction torque.

  5. Neoclassical current effects in neutral-beam-heated tokamak discharges

    International Nuclear Information System (INIS)

    There is a long-standing prediction from neoclassical theory that strong contributions to the toroidal current should be driven by friction between trapped and passing particles when βsub(pol) exceeds root (R/a) in a tokamak. A number of neutral-beam heating experiments can now produce such parameters, and it is of interest to calculate the behaviour which should occur in this regime to determine the feasibility of using such a 'bootstrap' current as a steady-state tokamak current source. It is found that the neoclassical current should be large enough to reverse the external loop voltage for typical experimental parameters (ISX-B, in particular) in cases where the total current is fixed and to produce a detectable excess of total current above the pre-programmed (demand) value in cases where the loop voltage is regulated. Other manifestations of such a current should be either: a sharp rise in the central q-value (producing a cessation of internal m=1 and m=2 MHD activity), with an enhancement by two orders of magnitude of ion thermal conductivity (due to the formation of a hollow current density profile and a consequent drop in local values of the poloidal magnetic field in the central plasma region), or an enhanced tendency for disruption (arising from magnetic reconnection in hollow-profile equilibria). Since these gross manifestations are absent in a wide range of experiments on the Impurity Study Experiment (ISX-B), as reported earlier, the conclusion is that the neoclassical current, if present, can have a value no larger than 25% of its theoretically calculated value. Since the neoclassical particle (Ware) pinch is strongly related to the neoclassical current in the theory (Onsager reciprocity), the existence of the particle pinch is thus called into question. (author)

  6. Current drive induced by intermittent trapping

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Israel (Israel)

    1999-02-01

    We propose a mechanism for driving a current in a dispersive plasma based on intermittent trapping of electrons in a ponderomotive well generated by two- counterpropagating electron cyclotron waves. By choosing properly the parameters of the system, this mechanism is expected to induce a high efficiency current drive. (authors)

  7. Relationships between Geomagnetic Induced Currents and Field Aligned Currents

    Science.gov (United States)

    Waters, C. L.; Barnett, R.; Anderson, B. J.; Gjerloev, J. W.; Korth, H.; Barnes, R. J.

    2015-12-01

    Geomagnetic Induced Currents (GICs) appear in the ground due to time varying magnetic fields that occur during periods of enhanced geomagnetic activity. The resultant time varying electric fields at Earth's surface drive very low frequency, currents through electricity supply transformers which reduces transforming capacity. In extreme cases, electricity supply grids can collapse as multiple transformers are affected. GICs have larger magnitudes at auroral latitudes and should be related to the field aligned current (FAC) and auroral ionosphere currents systems. At ground locations under the regions between upward and downward FACs, the GIC related fields show a direct relationship with the time derivative of the FACs. This allows a conversion factor between FAC and GIC magnitudes. Examples of the relationship between FAC and GIC related fields are presented using data derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and SuperMAG.

  8. High-energy tritium beams as current drivers in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  9. An accurate low current measurement circuit for heavy iron beam current monitor

    International Nuclear Information System (INIS)

    Heavy-ion beams at 106 particles per second have been applied to the treatment of deep-seated inoperable tumors in the therapy terminal of the Heavy Ion Research Facility in Lanzhou (HIRFL) which is located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). An accurate low current measurement circuit following a Faraday cup was developed to monitor the beam current at pA range. The circuit consisted of a picoammeter with a bandwidth of 1 kHz and a gated integrator (GI). A low input bias current precision amplifier and new guarding and shielding techniques were used in the picoammeter circuit which allowed as to measure current less than 1 pA with a current gain of 0.22 V/pA and noise less than 10 fA. This paper will also describe a novel compensation approach which reduced the charge injection from switches in the GI to 10−18 C, and a T-switch configuration which was used to eliminate leakage current in the reset switch.

  10. Rapid ion-beam-induced Ostwald ripening in two dimensions

    International Nuclear Information System (INIS)

    Ion-beam-induced grain coarsening in initially amorphous (Zr,Y)Ox layers is observed by atomic force microscopy. The films were bombarded at room temperature. Grain-boundary grooves indicate that the larger grains have a diameter of about 83 nm at 2 min, and 131 nm at 5 min. Up to 5 min, the grain size evolves with time as tβ, with β=0.5±0.2. Based on a new parametrization of ion-induced grain-boundary translation, we derive a theoretical estimate of β=3/7, consistent with our measurement. By 7.5 min, many of the grain-boundary grooves are shallow and indistinct, suggesting that the surviving grains are mutually well aligned. Such rapid grain growth at room temperature is unusual and is enabled by the ion bombardment. Similar grain growth processes are expected during ion-beam-assisted deposition film growth. The status of ion-textured yttria stabilized zirconia films as buffer layers for high-current high-temperature superconducting films is briefly summarized

  11. Soft beams: When capillarity induces axial compression

    Science.gov (United States)

    Neukirch, S.; Antkowiak, A.; Marigo, J.-J.

    2014-01-01

    We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.

  12. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  13. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  14. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Van Veldhoven, E.; Maas, D.; Sadeghian, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope(AFM) probes by He+beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+beam during exposure to a PtC precursor gas. In the fina

  15. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the f

  16. Focused electron beam induced etching of titanium with XeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenaker, F J; Cordoba, R; Fernandez-Pacheco, R; Magen, C; Zuriaga-Monroy, C; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Stephan, O [Laboratoire de Physique des Solides, CNRS UMR 8502, Universite Paris Sud XI, Batiment 510, F-91405 Orsay (France); De Teresa, J M, E-mail: deteresa@unizar.es [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2011-07-01

    Titanium is a relevant technological material due to its extraordinary mechanical and biocompatible properties, its nanopatterning being an increasingly important requirement in many applications. We report the successful nanopatterning of titanium by means of focused electron beam induced etching using XeF{sub 2} as a precursor gas. Etch rates up to 1.25 x 10{sup -3} {mu}m{sup 3} s{sup -1} and minimum pattern sizes of 80 nm were obtained. Different etching parameters such as beam current, beam energy, dwell time and pixel spacing are systematically investigated, the etching process being optimized by decreasing both the beam current and the beam energy. The etching mechanism is investigated by transmission electron microscopy. Potential applications in nanotechnology are discussed.

  17. Reducing the beam current in Linac4 in pulse to pulse mode.

    CERN Document Server

    Lallement, JB; CERN. Geneva. BE Department

    2009-01-01

    In order to deliver different beam intensities to users, we studied the possibility of varying the Linac4 beam current at PS Booster injection in pulse to pulse mode. This report gives the possible configurations of Linac4 Low and Medium Energy Beam Transport lines (LEBT and MEBT) that lead to a consistent current reduction.

  18. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm2. Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 1012 to 2 x 1014 cm-3. Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  19. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  20. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  1. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  2. Experimental Verification of Current Shear Design Equations for HSRC Beams

    Directory of Open Access Journals (Sweden)

    Attaullah Shah

    2012-07-01

    Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.

  3. Electromagnetic currents induced by color fields

    CERN Document Server

    Tanji, Naoto

    2015-01-01

    The quark production in classical color fields is investigated with a focus on the induction of an electromagnetic current by produced quarks. We show that the SU(2) and the SU(3) theories lead significantly different results for the electromagnetic current. In uniform SU(2) color fields, the net electromagnetic current is not generated, while for SU(3) the net current is induced depending on the color direction of background fields. Also the numerical study of the quark production in inhomogeneous color fields is done. Motivated by gauge field configurations provided by the color glass condensate framework, we introduce an ensemble of randomly distributed color electric fluxtubes. The spectrum of photons emitted from the quarks by a classical process is shown.

  4. Filtered neutron beams at the FMRB - review and current status

    International Nuclear Information System (INIS)

    A review is presented of our experience with filtered neutron beams installed in beam tubes of the Research and Measurement Reactor Braunschweig since 1976: Desing of the filters and measurement of the beam parameters are reported and an outline of the research work done with the beams is given. The present status of the irradiation facility, which consists of 5 beams (144 keV, 24.5 keV, 2 keV, 0.2 keV and thermal neutrons), is described in some detail to allow understanding of the physical as well as the technical prerequisites for performing calibrations of neutron measuring instruments. An appendix contains the actual beam parameters. (orig.)

  5. Cryogenic Current Comparator as Low Intensity Beam Current Monitor in the CERN Antiproton Decelerators

    CERN Document Server

    Fernandes, M; Soby, L; Welsch, CP

    2013-01-01

    In the low-energy Antiproton Decelerator (AD) and the future Extra Low ENergy Antiproton (ELENA) rings at CERN, an absolute measurement of the beam intensity is essential to monitor any losses during the deceleration and cooling phases. However, existing DC current transformers can hardly reach the μA level, while at the AD and ELENA currents can be as low as 100 nA. A Cryogenic Current Comparator (CCC) based on a superconducting quantum interference device (SQUID) is currently being designed and shall be installed in the AD and ELENA machines. It should meet the following specifications: A current resolution smaller than 10 nA, a dynamic range covering currents between 100 nA and 1 mA, as well as a bandwidth from DC to 1 kHz. Different design options are being considered, including the use of low or high temperature superconductor materials, different CCC shapes and dimensions, different SQUID characteristics, as well as electromagnetic shielding requirements. In this contribution we present first results f...

  6. Beam-induced backgrounds in detectors at the ILC

    International Nuclear Information System (INIS)

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 1034 cm-2s-1 in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  7. Beam-induced backgrounds in detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Adrian

    2008-11-15

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10{sup 34} cm{sup -2}s{sup -1} in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  8. Controlling hollow relativistic electron beam orbits with an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  9. Generation of a 500-keV electron beam with milliampere current from a photoemission DC gun

    International Nuclear Information System (INIS)

    A high-brightness, high-current electron gun for energy recovery linac light sources and high repetition rate X-ray FEL requires an exit beam energy of ≥ 500 keV to reduce space-charge induced emittance growth in the drift space from the gun exit to the following accelerator entrance. We have developed a DC photoemission gun employing a segmented insulator to mitigate the field emission problem, which is a major obstacle for operation of DC guns at ≥ 500 kV. The first demonstration of generating a 500-keV electron beam with currents up to 1.8 mA is presented. (author)

  10. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  11. Heavy ion linac as a high current proton beam injector

    Science.gov (United States)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  12. Current-induced spin wave Doppler shift

    Science.gov (United States)

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  13. Beam-Induced Damage Mechanisms and their Calculation

    CERN Document Server

    Bertarelli, A

    2016-01-01

    The rapid interaction of highly energetic particle beams with matter induces dynamic responses in the impacted component. If the beam pulse is sufficiently intense, extreme conditions can be reached, such as very high pressures, changes of material density, phase transitions, intense stress waves, material fragmentation and explosions. Even at lower intensities and longer time-scales, significant effects may be induced, such as vibrations, large oscillations, and permanent deformation of the impacted components. These lectures provide an introduction to the mechanisms that govern the thermomechanical phenomena induced by the interaction between particle beams and solids and to the analytical and numerical methods that are available for assessing the response of impacted components. An overview of the design principles of such devices is also provided, along with descriptions of material selection guidelines and the experimental tests that are required to validate materials and components exposed to interactio...

  14. Charge and Current Compensation of Intense Charged Beams in Future Accelerators

    CERN Document Server

    Riege, H

    1998-01-01

    Proposals for future high-energy accelerators are characterized by demands for increasingly intense and energetic beams. The classical operation of high-current accelerators is severely constrained by collective electrodynamic phenomena, such as problems related to space-charge, to high-current flow, to beamstrahlung and pair production. These detrimental electrodynamic effects dominate the dynamic s and the collision interactions of high-intensity beams. With the introduction of soft space-charge and current compensation techniques utilizing low- to medium-energy lepton beams with charge polari ty opposite to that of the beams to be neutralized, all electromagnetic high-intensity limitations may be removed. The application of beam compensation is proposed for various sections of different ty pes of classical accelerator systems, such as for ion sources and the low-energy beam transport sections of ion linacs, for the crossing points of circular and linear colliders and for the final focii of ion beam fusion ...

  15. Charged current neutrino induced coherent pion production

    CERN Document Server

    Alvarez-Ruso, L; Hirenzaki, S; Vacas, M J V

    2007-01-01

    We analyze the neutrino induced charged current coherent pion production at the energies of interest for recent experiments like K2K and MiniBooNE. Medium effects in the production mechanism and the distortion of the pion wave function, obtained solving the Klein Gordon equation with a microscopic optical potential, are included in the calculation. We find a strong reduction of the cross section due to these effects and also substantial modifications of the energy distributions of the final lepton and pion.

  16. Are laser-induced beams spin polarized?

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Markus; Lehrach, Andreas; Raab, Natascha [Institut fuer Kernphysik (IKP), Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Engin, Ilhan; Hessan, Mohammad Aziz [RWTH Aachen (Germany); Institut fuer Kernphysik (IKP), Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Gibbon, Paul; Karmakar, Anupam [Juelich Supercomputing Center (JSC), Forschungszentrum Juelich (Germany); Toncian, Monika; Toncian, Toma; Willi, Oswald [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet, Duesseldorf (Germany)

    2011-07-01

    The physics of laser-plasma interactions has undergone dramatic developments in recent years, both experimentally and in the theoretical understanding of high-brightness light and particle sources. However, it is a yet untouched issue whether the laser-generated particle beams are or can be spin-polarized and, thus, whether laser-based polarized sources are conceivable. A first measurement of the degree of polarization of laser-accelerated protons have recently been carried out at the Duesseldorf Arcturus Laser Facility where proton beams of typically 3 MeV were produced in foil targets. The results have been analysed with the help of particle-in-cell simulations to follow the generation of static magnetic field gradients ({proportional_to}100s of Megagauss per micron) in thin foil targets. As a next step, measurements with unpolarized H{sub 2} (for proton acceleration) and {sup 3}He gas (for {sup 3}He ions) are planned and, finally, pre-polarized {sup 3}He will be used.

  17. Continental scale modelling of geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Sakharov Yaroslav

    2012-09-01

    Full Text Available The EURISGIC project (European Risk from Geomagnetically Induced Currents aims at deriving statistics of geomagnetically induced currents (GIC in the European high-voltage power grids. Such a continent-wide system of more than 1500 substations and transmission lines requires updates of the previous modelling, which has dealt with national grids in fairly small geographic areas. We present here how GIC modelling can be conveniently performed on a spherical surface with minor changes in the previous technique. We derive the exact formulation to calculate geovoltages on the surface of a sphere and show its practical approximation in a fast vectorised form. Using the model of the old Finnish power grid and a much larger prototype model of European high-voltage power grids, we validate the new technique by comparing it to the old one. We also compare model results to measured data in the following cases: geoelectric field at the Nagycenk observatory, Hungary; GIC at a Russian transformer; GIC along the Finnish natural gas pipeline. In all cases, the new method works reasonably well.

  18. Focused electron beam induced deposition of magnetic nanostructures

    Science.gov (United States)

    de Teresa, Jose M.

    2011-03-01

    Nanopatterning strategies of magnetic materials normally rely on standard techniques such as electron-beam lithography using electron-sensitive resists. Focused electron beam induced deposition (FEBID) is currently being investigated as an alternative single-step route to produce functional magnetic nanostructures. Thus, Co-based and Fe-based precursors have been recently investigated for the growth of magnetic nanostructures by FEBID. In the present contribution, I will give an overview of the existing literature on magnetic nanostructures by FEBID and I will focus on the growth of Co nanostructures by FEBID using Co 2 (CO)8 as precursor gas. The Co content in the nanostructures can reach 95%. Magnetotransport experiments indicate that full metallic behaviour is displayed with relatively low residual resistivity and standard anisotropic magnetoresistance (0.8%). The coercive field of nanowires with changing aspect ratio has been determined in nanowires with width down to 150 nm by means of Magneto-optical Kerr Effect and the magnetization reversal has been imaged by means of Magnetic Force Microscopy, Scanning Transmission X-ray Microscopy as well as Lorentz Microscopy experiments. Nano-Hall probes have been grown with remarkable minimum detectable magnetic flux. Noticeably, it has been found that the domain-wall propagation field is lower than the domain-wall nucleation field in L-shaped nanowires, with potential applications in magnetic logic, sensing and storage. The spin polarization of these Co nanodeposits has been determined through Andreev-Reflection experiments in ferromagnetic-superconducting nanocontacts and amounts to 35%. Recent results obtained in Fe-based nanostructures by FEBID using Fe 2 (CO)9 precursor will be also presented. I acknowledge the collaboration in this field with A. Fernandez-Pacheco, R. Cordoba, L. Serrano, S. Sangiao, L.A. Rodriguez, C. Magen, E. Snoeck, L. Morellon, M.R. Ibarra.

  19. Electric Current-induced Failure of 200-nm-thick Gold Interconnects

    Institute of Scientific and Technical Information of China (English)

    Bin ZHANG; Qingyuan YU; Jun TAN; Guangping ZHANG

    2008-01-01

    200-nm-thick Au interconnects on a quartz substrate were tested in-situ inside a dual-beam microscope by applying direct current,alternating current and alternating current with a small direct current component.The failure behavior of the Au interconnects under three kinds of electric currents were characterized in-situ by scanning electron microscopy.It is found that the formation of voids and subsequent growth perpendicular to the interconnect direction is the fatal failure mode for all the Au interconnects under three kinds of electric currents.The failure mechanism of the ultrathin metal lines induced by the electric currents was analyzed.

  20. Automated pinhole-aperture diagnostic for the current profiling of TWT electron beams

    International Nuclear Information System (INIS)

    The measurement system reported here is intended for use in determining the current density distribution of electron beams from Pierce guns for use in TWTs. The system was designed to automatically scan the cross section of the electron beam and collect the high-resolution data with a Faraday cup probe mounted on a multistage manipulator using the LabVIEW program. A 0.06 mm thick molybdenum plate with a pinhole and a Faraday cup mounted as a probe assembly was employed to sample the electron beam current with 0.5 µm space resolution. The thermal analysis of the probe with pulse beam heating was discussed. A 0.45 µP electron gun with the expected minimum beam radius 0.42 mm was measured and the three-dimensional current density distribution, beam envelope and phase space were presented. (paper)

  1. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.;

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion...

  2. Fabrication of plasmonic nanostructures with electron beam induced deposition

    NARCIS (Netherlands)

    Acar, H.

    2013-01-01

    The work described in this thesis was shaped by the goal---coming up new approaches to fabricate plasmonic materials with electron beam induced deposition (EBID). One-step, bottom-up and direct-write are typical adjectives that are used to indicate the advantageous properties of this technique. Thes

  3. Sub-10 nm focused electron beam induced deposition

    NARCIS (Netherlands)

    Van Dorp, W.F.

    2008-01-01

    Work started with a critical review of literature from the past 70-odd years. The review shows that the physical processes occurring in EBID are generally well understood. By combining models for electron scattering in a solid and electron beam induced heating and knowledge of growth regimes, the ma

  4. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  5. Current management of heparin-induced thrombocytopenia.

    Science.gov (United States)

    Cosmi, Benilde

    2015-12-01

    Heparin-induced thrombocytopenia (HIT) is an immune adverse reaction to heparin (both unfractionated and low-molecular-weight), which is mediated by the formation of IgG antibodies against platelet factor 4-heparin complexes. The IgG/platelet factor 4 immunocomplexes activate platelets with resulting thrombocytopenia, which is not associated with bleeding, but with paradoxical life-threatening thrombotic complications, for coagulation activation. HIT diagnosis requires the assessment of pre-test clinical probability in combination with the measurement of platelet activating antibodies against platelet factor 4-heparin complexes with immunological and functional assays. When HIT is diagnosed, any form of heparin should be stopped and a non-heparin alternative anticoagulant should be started. Argatroban and danaparoid are currently the only drugs licensed for HIT, with different country availability. Bivalirudin is an option in cardiac surgery and procedures in HIT patients.

  6. Current management of heparin-induced thrombocytopenia.

    Science.gov (United States)

    Cosmi, Benilde

    2015-12-01

    Heparin-induced thrombocytopenia (HIT) is an immune adverse reaction to heparin (both unfractionated and low-molecular-weight), which is mediated by the formation of IgG antibodies against platelet factor 4-heparin complexes. The IgG/platelet factor 4 immunocomplexes activate platelets with resulting thrombocytopenia, which is not associated with bleeding, but with paradoxical life-threatening thrombotic complications, for coagulation activation. HIT diagnosis requires the assessment of pre-test clinical probability in combination with the measurement of platelet activating antibodies against platelet factor 4-heparin complexes with immunological and functional assays. When HIT is diagnosed, any form of heparin should be stopped and a non-heparin alternative anticoagulant should be started. Argatroban and danaparoid are currently the only drugs licensed for HIT, with different country availability. Bivalirudin is an option in cardiac surgery and procedures in HIT patients. PMID:26368591

  7. Monte Carlo modeling of ion beam induced secondary electrons.

    Science.gov (United States)

    Huh, U; Cho, W; Joy, D C

    2016-09-01

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10-100keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. PMID:27337603

  8. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  9. Beam induced deposition of platinum using a helium ion microscope

    NARCIS (Netherlands)

    Sanford, C.A.; Stern, L.; Barriss, L.; Farkas, L.; DiManna, M.; Mello, R.; Maas, D.J.; Alkemade, P.F.A.

    2009-01-01

    Helium ion microscopy is now a demonstrated practical technology that possesses the resolution and beam currents necessary to perform nanofabrication tasks, such as circuit edit applications. Due to helium’s electrical properties and sample interaction characteristics relative to gallium, it is like

  10. Beam induced deposition of platinum using a helium ion microscope

    NARCIS (Netherlands)

    Sanford, C.A.; Stern, L.; Barriss, L.; Farkas, L.; DiManna, M.; Mello, R.; Maas, D.J.; Alkemade, P.F.A.

    2009-01-01

    Helium ion microscopy is now a demonstrated practical technology that possesses the resolution and beam currents necessary to perform nanofabrication tasks, such as circuit edit applications. Due to helium's electrical properties and sample interaction characteristics relative to gallium, it is like

  11. Augmentation of beam currents in the JAERI tandem-booster accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    Modifications have been executed in these years of the accelerator system, aiming at higher beam currents. Advanced experiments e.g. search of unknown heavy nuclei and their synthesis, need large current accelerators. The use of stripper foils in tandem accelerators for the electron detachment severely limits the beam current, however. The first modification is to install ECR (electron cyclotron resonance) ion source in a high voltage terminal board, multicharged, rare gas ions being accelerated directly. The second is to eliminate the use of the second foils, but to increase the beam intensity. (M. Tanaka)

  12. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Science.gov (United States)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  13. Drift distance survey in direct plasma injection scheme for high current beam production

    International Nuclear Information System (INIS)

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  14. Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams

    International Nuclear Information System (INIS)

    The total momentum transfer from fast electron beams, like those employed in scanning transmission electron microscopy (STEM), to plasmonic nanoparticles is calculated. The momentum transfer is obtained by integrating the electromagnetic forces acting on the particles over time. Numerical results for single and dimer metallic nanoparticles are presented, for sizes ranging between 2 and 80 nm. We analyze the momentum transfer in the case of metallic dimers where the different relevant parameters such as particle size, interparticle distance, and electron beam impact parameter are modified. It is shown that depending on the specific values of the parameters, the total momentum transfer yields a force that can be either attractive or repulsive. The time-average forces calculated for electron beams commonly employed in STEM are on the order of piconewtons, comparable in magnitude to optical forces and are thus capable of producing movement in the nanoparticles. This effect can be exploited in mechanical control of nanoparticle induced motion.

  15. A Fast Non Intercepting Linac Electron Beam Position and Current Monitor

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Wille, Mads

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating...

  16. Numerical Simulation of Non-Inductive Current Driven Scenario in EAST Using Neutral Beam Injection

    Science.gov (United States)

    Li, Hao; Wu, Bin; Wang, Jinfang; Wang, Ji; Hu, Chundong

    2015-01-01

    For achieving the scientific mission of long pulse and high performance operation, experimental advanced superconducting tokamak (EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system. Besides RF (Radio Frequency) wave heating, neutral beam injection (NBI) is an effective heating and current drive method in fusion research. NBCD (Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak. The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code. At the condition of low plasma current and moderate plasma density, neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.

  17. Electron beam induced surface activation of oxide surfaces for nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Vollnhals, Florian; Seiler, Steffen; Walz, Marie-Madeleine; Steinrueck, Hans-Peter; Marbach, Hubertus [Lehrstuhl fuer Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Woolcot, Tom; Thornton, Geoff [London Centre for Nanotechnology and Department of Chemistry, University College London (United Kingdom)

    2012-07-01

    The controlled fabrication of structures on the nanoscale is a major challenge in science and engineering. Direct-write techniques like Electron Beam Induced Deposition (EBID) were shown to be suitable tools in this context. Recently, Electron Beam Induced Surface Activation (EBISA) has been introduced as a new focused electron beam technique. In EBISA, a surface, e.g. SiO{sub 2}, is irradiated by a focused electron beam, resulting in an activation of the exposed area. The activated area can then react and decompose precursor gases like iron pentacarbonyl, Fe(CO){sub 5}. This leads to a primary deposit, which continues to grow autocatalytically as long as Fe(CO){sub 5} is supplied, resulting in pure (> 90 % at.), crystalline iron nanostructures. We expand the use of this concept by exploring EBISA to produce metallic nanostructures on TiO{sub 2}(110) in UHV; atomistic insight into the process is obtained via Scanning Tunneling Microscopy (STM) and chemical insight via Auger Electron Spectroscopy (AES).

  18. Quantitative Traits of Ion Beam Induced Mutagenesis in Triticum aestivum

    Institute of Scientific and Technical Information of China (English)

    Huan FANG; Zhen JIAO

    2012-01-01

    [Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of progenies derived from the same ion beam induced mutant were investigated. [Result] Morphological polymor- phism existed in some individuals. Plant height, spike length and protein content were significantly influenced by ion beam, and effective tiller number and wet gluten content were moderately influenced. Multiple comparisons of all the indices within groups indicated genomic instability among these groups. Coefficient of variation im- plied the differences within group were very low. [Conclusion] Ion beam irradiation displayed characteristics of multi-directivity and non-directiveness. It aroused multiple variations in the same mutant. Instability among progeny indicates cells had different fate even in the same irradiated tissue. It may take several generations for mutants to stabilize particular phenotypes. The effects of ion beam irradiation may be the in- terrelated direct irradiation damage, indirect irradiation damage and late effect, such as bystander effect and adaptive response.

  19. Limits for Beam Induced Damage: Reckless or too Cautious?

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Peroni, L; Scapin, M

    2011-01-01

    Accidental events implying direct beam impacts on collimators are of the utmost importance as they may lead to serious limitations of the overall LHC Performance. In order to assess damage threshold of components impacted by high energy density beams, entailing changes of phase and extreme pressures, state-of-the-art numerical simulation methods are required. In this paper, a review of the different dynamic response regimes induced by particle beams is given along with an indication of the most suited tools to treat each regime. Particular attention is paid to the most critical case, that of shock waves, for which standard Finite Element codes are totally unfit. A novel category of numerical tools, named Hydrocodes, has been adapted and used to analyse the consequences of an asynchronous beam abort on Phase 1 Tertiary Collimators (TCT). A number of simulations has been carried out with varying beam energy, number of bunches and bunch sizes allowing to identify different damage levels for the TCT up to catastr...

  20. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  1. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    Science.gov (United States)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  2. Electromagnetic and beam dynamics studies of a high current drift tube linac for LEHIPA

    Science.gov (United States)

    Roy, S.; Rao, S. V. L. S.; Pande, R.; Krishnagopal, S.; Singh, P.

    2014-06-01

    We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.

  3. Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode

    CERN Document Server

    Anishchenko, Sergey

    2016-01-01

    The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.

  4. Real-Time Control, Acquisition and Data Treatment for Beam Current Transformers in a Transfer Line

    CERN Document Server

    Carter, C; Gelato, G; Lenardon, F; Ludwig, M; Schnell, J D

    1997-01-01

    Particle beams are transferred from the 1 GeV Booster to the 26 GeV Proton Synchrotron and to an experimental area, ISOLDE. The characteristics of the beams and their destination change on a 1.2 s cycle basis. There are six beam current transformers to measure the beam intensities, i.e. the number of particles passing through the transfer lines. On each pulse of the Booster, a real-time system, called BTTR (Beam Transfer TRansformers), acquires the transformer values, selects the range, executes a calibration, and treats the data. Part of the treatment is the subtraction of the base-value, which includes systematic perturbations, acquired in the absence of beam. The system also handles asynchronous tasks, such as acquisition of base-value, readout of calibration factors and other diagnostic actions. The concept of the BTTR and its design are presented, as well as some practical results.

  5. Space-charge limiting currents for magnetically focused intense relativistic electron beams

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Qing; Mo Yuan-Long

    2007-01-01

    The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The canonical angular momentum, Pθ, defined under the conditions at the source, uniquely determines the possible solutions of these equations.By numerically solving these equations, the space-charge limited current and the externally applied magnetic field are obtained in a solid beam and a hollow beam in two cases of Pθ = 0 (magnetically shielded source) and Pθ = const.(immersed source) separately. It is shown that the hollow beam is more beneficial to the propagation of the intense relativistic beam through a drift tube than the solid beam.

  6. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    Science.gov (United States)

    Spethmann, A.; Trottenberg, T.; Kersten, H.

    2015-01-01

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  7. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel (Germany)

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  8. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  9. Beam-Induced Deposition of Thin Metallic Films.

    Science.gov (United States)

    Funsten, Herbert Oliver, III

    1990-01-01

    Ion and electron beam induced deposition (BID) of thin (1 μm), conductive films is accomplished by dissociating and removing the nonmetallic components of an adsorbed, metal-based, molecular gas. Current research has focused primarily on room temperature (monolayer adsorption) BID using electrons and slow, heavy ions. This study investigates low temperature (50 to 200 K) BID in which the condensation of the precursor gases (SnCl _4 and (CH_3) _4Sn) maximizes the efficiency of the incident radiation which can create and remove nonmetallic fragments located several monolayers below the film surface. The desired properties of the residual metallic films are produced by using as incident radiation either nuclear (35 keV Ar ^+) or electronic (2 keV electrons, 25 keV H^+, or 50 keV H ^+) energy loss mechanisms. Residual films are analyzed ex situ by Scanning Electron Microscopy (SEM), thickness measurements, resistivity measurements, Rutherford Backscattering Spectroscopy (RBS), and infrared spectroscopy. Low temperature BID film growth models, which are derived from both a computer simulation and a mathematical analysis, closely agree. Both the fragmentation and sputtering cross sections for a particular ion and energy are derived for films created from (CH_3) _4Sn. The fragmentation cross section, which corresponds to film growth, is roughly related to the electronic stopping power by the 1.9 power. The loss of carbon in films which were created from (CH_3) _4Sn is strongly dependent on the nuclear stopping power. Film growth rates for low temperature BID have been found to be 10 times those of room temperature BID.

  10. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou;

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  11. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  12. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Pourbaix, J C; Ainsley, C G; Dolney, D; Carabe, A

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ∼9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  13. Production of a high-current microsecond electron beam with a large cross section

    International Nuclear Information System (INIS)

    Obtaining high-current wide-aperture electron beams is an important problem in the development of laser technology for controlled nuclear fusion and for solving ecological and technological problems. The main scheme for producing such beams involves the use of generators with intermediate energy storage devices and burst-emission vacuum diodes. Beam pinching is prevented by using an external magnetic field or sectioning the diode into magnetically insulated diodes with currents lower than the limiting current. The length of the electron-current pulse varies from tens to hundreds of nano-seconds and is limited by the parameters of the intermediate storage device. Here the authors study the formation of a high-current electron beam with a square cross section and a current of the order of the limiting current of the diode in the absence of an external magnetic field as well as a 'fast' storage device in the power supply circuit. These conditions as a whole correspond to a simpler electron-source circuit, but the beam forming becomes more complicated. The reason for this is that there is no external magnetic field and that the role of plasma processes in the diode is enhanced by the greater length of the electron-current pulses

  14. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  15. High beam current shut-off systems in the APS linac and low energy transfer line

    International Nuclear Information System (INIS)

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ''real'' beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS

  16. Semiconductor characterization by scanning ion beam induced charge (IBIC) microscopy

    CERN Document Server

    Vittone, E; Olivero, P; Manfredotti, C; Jaksic, M; Giudice, A Lo; Fizzotti, F; Colombo, E

    2016-01-01

    The acronym IBIC (Ion Beam Induced Charge) was coined in early 1990's to indicate a scanning microscopy technique which uses MeV ion beams as probes to image the basic electronic properties of semiconductor materials and devices. Since then, IBIC has become a widespread analytical technique to characterize materials for electronics or for radiation detection, as testified by more than 200 papers published so far in peer-reviewed journals. Its success stems from the valuable information IBIC can provide on charge transport phenomena occurring in finished devices, not easily obtainable by other analytical techniques. However, IBIC analysis requires a robust theoretical background to correctly interpret experimental data. In order to illustrate the importance of using a rigorous mathematical formalism, we present in this paper a benchmark IBIC experiment aimed to test the validity of the interpretative model based on the Gunn's theorem and to provide an example of the analytical capability of IBIC to characteriz...

  17. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.;

    atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far......The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...

  18. Ion beam induced luminescence on white inorganic pigments for paintings

    International Nuclear Information System (INIS)

    Ion beam induced luminescence (IBIL) has been used for studying the emission features and the radiation hardness of white pigments. In particular, ZnO, gypsum and basic lead sulphate pigments have been analyzed with a 3.0 MeV H+ beam at the AGLAE Louvre laboratory. The same pigments mixed with different binders have been also analyzed on a canvas, in order to evaluate the contribution of the binders both to the IBIL spectra and to the radiation hardness. It turns out that the binder affects both the IBIL spectra and the radiation hardness of pigments when the emission bands are related to point defects, as occurs for ZnO

  19. Ion beam induced luminescence on white inorganic pigments for paintings

    Science.gov (United States)

    Quaranta, A.; Dran, J. C.; Salomon, J.; Tonezzer, M.; Scian, C.; Beck, L.; Carturan, S.; Maggioni, G.; Della Mea, G.

    2008-05-01

    Ion beam induced luminescence (IBIL) has been used for studying the emission features and the radiation hardness of white pigments. In particular, ZnO, gypsum and basic lead sulphate pigments have been analyzed with a 3.0 MeV H+ beam at the AGLAE Louvre laboratory. The same pigments mixed with different binders have been also analyzed on a canvas, in order to evaluate the contribution of the binders both to the IBIL spectra and to the radiation hardness. It turns out that the binder affects both the IBIL spectra and the radiation hardness of pigments when the emission bands are related to point defects, as occurs for ZnO.

  20. Calculations of tangential neutral beam injection current drive efficiency for present moderate flux FRCs

    Science.gov (United States)

    Lifschitz, A. F.; Farengo, R.; Hoffman, A. L.

    2004-09-01

    A Monte Carlo code is employed to study tangential neutral beam injection into moderate flux field reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs). The dimensions of the FRC are similar to those obtained in the Translation, Confinement and Sustainment (TCS) experiment. Two injection geometries are considered. In one case the beam is injected through the ends, at a small angle to the FRC axis while in the other the beam is injected almost perpendicularly, at some point along the separatrix. The current drive efficiency and the deposited power are calculated employing plasma parameters that can be expected in future experiments on TCS. It is shown that, although the RMF degrades beam confinement, relatively high efficiencies can be obtained provided the RMF does not penetrate too deeply into the plasma. Since the torque deposited by the neutral beam can balance the torque deposited by the RMF, the simultaneous use of both methods appears to be a very attractive option.

  1. Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics

    International Nuclear Information System (INIS)

    The entire current transient induced by single 12 MeV Carbon ions was measured at a 5GHz analog bandwidth. A focused ion micro-beam was used to acquire multiple single ion transients at multiple locations of a single CMOS transistor. The current transients reveal clear and discernible contributions of drift and diffusive charge collection. Transients measured for drain and off-drain ion strikes compare well to 3D DAVINCI calculations. Estimates are presented for the drift assisted funneling charge collection depth

  2. Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Air Force Research Lab., Albuquerque, NM (United States); Walsh, D.S.; Sexton, F.W.; Doyle, B.L.; Aurand, J.F.; Dodd, P.E.; Flores, R.S.; Wing, N. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01

    The entire current transient induced by single 12 MeV Carbon ions was measured at a 5GHz analog bandwidth. A focused ion micro-beam was used to acquire multiple single ion transients at multiple locations of a single CMOS transistor. The current transients reveal clear and discernible contributions of drift and diffusive charge collection. Transients measured for drain and off-drain ion strikes compare well to 3D DAVINCI calculations. Estimates are presented for the drift assisted funneling charge collection depth.

  3. PHYSICS OF THE HIGH CURRENT DENSITY ELECTRON BEAM ION SOURCE (EBIS).

    Energy Technology Data Exchange (ETDEWEB)

    Vella, M.C.

    1980-02-01

    Interest in upgrading present heavy particle accelerators has led to study of EBIS as a possible source of high Z ions, e.g,, Ar{sup +18}. The present work has been motivated primarily by the results reported by CRYEBIS, which indicate that a space charge neutralized, external electron gun can achieve current densities of 10{sup 5} A/cm{sup 2}. Scaling relationships are developed as a basis for understanding CRYEBIS operation. The relevance of collective effects to beam equilibrium and stability is pointed out, Single electron impact ionization scaling and beam neutralization scaling indicate that higher beam voltage may be the easiest way of increasing both ionization rate and particle intensity. Consideration of radial ion confinement suggests that beam collapse to high current density may be related to the highest charge state which is energetically accessible.

  4. Microstructure modifications and corrosion behaviors of Cr4Mo4V steel treated by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Research highlights: → Using high energy pulsed electron beam to modify Cr4Mo4V steel surface properties. → Electron beam irradiation induces crater-like defects on the surface of the steel. → After irradiation, retained austenite formed in the remelted layer of the steel. → Electron beam irradiation improves the corrosion resistance of the steel. - Abstract: In this work, Cr4Mo4V steel was irradiated by high energy current pulsed electron beam (HCPEB) with energy density of 6 J/cm2. Morphology and phase composition of the surface layer were analyzed using scanning electron microscopy (SEM) and glancing angle X-ray diffraction (GXRD). The crater-like morphology was observed on surface after HCPEB treatment, and the thickness of melted layer was ∼7 μm. Results from GXRD revealed that HCPEB treatment could suppress martensite transition and the content of retained austenite in the melted layer increased with irradiation number. The corrosion resistance was evaluated by electrochemical polarization tests in neutral 3.5% NaCl solution. Compared with the untreated Cr4Mo4V steel, corrosion potential of the samples treated by HCPEB improved and the corrosion current density decreased. The improved corrosion resistance is attributed to the absence of the carbide, formation of retained austenite and dissolution of alloy elements, particularly of Cr and Mo, into the matrix.

  5. Leakage Current Simulation of Insulating Thin Film Irradiated by a Nonpenetrating Electron Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-Bo; LI Wei-Qin; CAO Meng

    2012-01-01

    We perform numerical simulations of the leakage current characteristics of an insulating thin film of SiO2 negatively charged by a low-energy nonpenetrating focused electron beam. For the formation of leakage current, electrons are demonstrated to turn from diffusion to drift after clearing the minimum potential barrier due to electron-hole separation. In the equilibrium state, the leakage current increases approximately linearly with the increasing primary beam current and energy. It also increases with the increasing film thickness and trap density, and with the decreasing electron mobility, in which the film thickness has a greater influence. Validated by some existing experiments, the simulation results provide a new perspective for the negative charging effects of insulating samples due to the low-energy focused electron beam.%We perform numerical simulations of the leakage current characteristics of an insulating thin film of SiO2 negatively charged by a low-energy nonpenetrating focused electron beam.For the formation of leakage current,electrons are demonstrated to turn from diffusion to drift after clearing the minimum potential barrier due to electron-hole separation.In the equilibrium state,the leakage current increases approximately linearly with the increasing primary beam current and energy.It also increases with the increasing film thickness and trap density,and with the decreasing electron mobility,in which the film thickness has a greater influence.Validated by some existing experiments,the simulation results provide a new perspective for the negative charging effects of insulating samples due to the low-energy focused electron beam.

  6. TRIASSIC: the Time-Resolved Industrial Alpha-Source Scanning Induced Current microscope

    Science.gov (United States)

    Pallone, Arthur

    Time-resolved ion beam induced current (TRIBIC) microscopy yields useful information such as carrier mobility and lifetimes in semiconductors and defect locations in devices; however, traditional TRIBIC uses large, expensive particle accelerators that require specialized training to operate and maintain. The time-resolved industrial alpha-source scanning induced current (TRIASSIC) microscope transforms TRIBIC by replacing the particle accelerator facility with an affordable, tabletop instrument suitable for use in research and education at smaller colleges and universities. I will discuss the development of, successes with, setbacks to and future directions for TRIASSIC.

  7. Focusing of heavy ion beams by a high-current plasma lens

    International Nuclear Information System (INIS)

    Results are presented from studies of the focusing of wide-aperture low-energy (100-400 eV) and moderate-energy (5-25 keV) beams of heavy-metal ions by a high-current electrostatic plasma lens. It is found experimentally that, because of the significant electron losses, the efficient focusing of such beams can be achieved only if the external potentials at the plasma-lens electrodes are maintained constant. Static and dynamic characteristics of the lens are studied under these conditions. It is shown that, as the beam current and the electrode voltage increase, the maximum electrostatic field in the lens tends to a certain limiting value because of the increase in the spatial potential near the lens axis. The role of spherical and moment aberrations in the focusing of wide-aperture low-divergence ion beams is revealed. It is shown that, even when spherical aberrations are minimized, unremovable moment aberrations decrease the maximum compression ratio of a low-energy heavy-ion beam because of the charge separation of multiply charged ions in the focal region. At the same time, as the ion energy increases, the role of the moment aberrations decreases and the focusing of high-current heavy-ion beams by a plasma lens becomes more efficient than the focusing of light-ion (hydrogen) beams. This opens up the possibility of using electrostatic plasma lenses to control ion beams in high-dose ion implanters and high-current accelerators of heavy ions

  8. Stable propagation of a high-current electron beam: experimental observations and computational modeling

    International Nuclear Information System (INIS)

    Experimental studies of self-focused, high-current electron-beam propagation phenomena are compared with the results of computational modeling. The model includes the radial structure of the beam-plasma system, a full electromagnetic field description, primary and secondary gas ionization processes, and a linear theory of the hose-like distortions. Good agreement between the experimental results and the computations strengthens the premise that hose instability is the principal limitation to propagation at high pressure

  9. Industrial perspective on focused electron beam-induced processes

    Energy Technology Data Exchange (ETDEWEB)

    Bret, Tristan; Hofmann, Thorsten; Edinger, Klaus [Betriebsstaette Rossdorf, Carl Zeiss SMS GmbH, Rossdorf (Germany)

    2014-12-15

    After a short overview of the historical developments of the technique of gas-assisted focused electron beam-induced processing (mostly deposition and etching), this paper deals with the applications of this technology to photolithographic mask repair. A commented list of results is shown on different mask types, for different types of defects, and at different node generations. The scope of this article is double: summarize the state of the art in a fast-paced highly specific industrial environment driven by ''Moore's law'' and feedback to academic researchers some technologically relevant directions for further investigations. (orig.)

  10. Volume changes in glass induced by an electron beam

    International Nuclear Information System (INIS)

    Three glasses (float, borosilicate float and Schott D263 glasses) were irradiated by 50 keV electron beams with doses within the range of 0.21–318.5 kC/m2. Volume changes induced by electron bombarding were monitored by means of Atomic Force Microscopy. Incubation doses, related to mobility of alkali ions, were measured. Low doses showed compaction of all glasses while higher doses revealed volume inflation, except for borosilicate float glass. Both surfaces of float glass were irradiated and significant differences between them were found

  11. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  12. Focusing of heavy ion beams by a high-current plasma lens

    International Nuclear Information System (INIS)

    The results of studies on focusing the wide-aperture heavy ion beams by a high-current electrostatic plasma lens within the range of low (100-400 eV) and medium (5-25 keV) energies are presented. It si established, that due to significant electron leakages the effective focusing of such beams is possible only under the condition of rigid fixation of the external potentials on the plasma lens electrodes. The peculiarities of the lens static and dynamic characteristics under such conditions are studied. The role of spherical and moment aberrations by focusing the wide-aperture weakly-diverging ion beams is identified. It is shown, that the role of the moment aberrations decreases with the energy growth, and focusing of the heavy elements high-current beams by the plasma lens becomes considerably more efficient as compared, to the focusing of the hydrogen light ion beams. This opens the possibility for application of electrostatic plasma lenses for controlling the ion beams in the high-dose ion implanters and in the high-current heavy-ion accelerators

  13. High-current pulse sources of broad beams of gas and metal ions for surface treatment

    International Nuclear Information System (INIS)

    This paper reviews the experimental study, development, and improvement of various types of processing ion sources undertaken in association with the joint program performed in recent years by the Institute of Electrophysics and the Institute of High-Current Electronics of the Russian Academy of Sciences. The beam parameters (type and energy of ions, current density, cross-sectional area of the beam, permissible content of impurities, etc.) should meet the requirements of particular ion beam treatment conditions, while the ion source itself should be simple and reliable in operation. Technical and service characteristics of the developed ion sources permit their use for ion-beam modification of materials, preparation of surfaces and ion-assisted deposition of thin films, and in some other applications. The sources under consideration employ high-current glow discharges with a hollow cathode or in crossed electric and magnetic fields, and low-pressure arc discharges and vacuum arc. Cold cathodes enhance reliability of the ion sources when they work at a high residual gas pressure or in the reactive gas media. The repetitive pulse mode of the plasma and beam generation provides optimum conditions for stable operation of the discharge, control of the average beam current over a wide range, and formation of homogeneous large-cross-section beams. The paper describes techniques used to realize high-current discharges at a reduced pressure, methods for producing a stable, dense and homogeneous plasma in a large volume, techniques of formation of large-cross-section homogeneous beams, and also findings on the mass-charge composition of the plasma and beams produced. Some design versions of the sources are given. At voltages from 10 to 100 kV, the pulse duration of 10 to 1000 μs, and the pulse repetition rate of 1 to 500 Hz these sources provide the current density of ∼1-10 mA/cm2 in beams having the cross-sectional area of a few hundreds of square centimeters. The

  14. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    International Nuclear Information System (INIS)

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation

  15. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    Science.gov (United States)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-03-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation.

  16. Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; WANG Huan; ZHANG Hua; LIU Zhanjun; WU Junfeng; LI Baiwen

    2014-01-01

    A two-dimensional hybrid code is developed to model the transport of a high-current electron beam in a dense plasma target.The beam electrons are treated as particles and described by particle-in-cell simulation including collisions with the target plasma particles.The background target plasma is assumed to be a stationary fluid with temperature variations.The return current and the self-generated electric and magnetic fields are obtained by combining Ampère's law without the displacement current,the resistive Ohm's law and Faraday's law.The equations are solved in two-dimensional cylindrical geometry with rotational symmetry on a regular grid,with centered spatial differencing and first-order implicit time differencing.The algorithms implemented in the code are described,and a numerical experiment is performed for an electron beam with Maxwellian distribution ejected into a uniform deuterium-tritium plasma target.

  17. Ion beam induced luminescence analysis of painting pigments

    International Nuclear Information System (INIS)

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields

  18. Ion beam induced luminescence analysis of painting pigments

    Science.gov (United States)

    Quaranta, A.; Salomon, J.; Dran, J. C.; Tonezzer, M.; Della Mea, G.

    2007-01-01

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields.

  19. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Gonon, P.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  20. Current-voltage relation for a field ionizing He beam detector

    International Nuclear Information System (INIS)

    Emerging interest in utilizing the transverse coherence properties of thermal energy atomic and molecular beams motivates the development of ionization detectors with near unit detection efficiency and adequate spatial resolution to resolve interference fringes of submicron dimension. We demonstrate that a field ionization tip coupled to a charged particle detector meets these requirements. We have systematically studied the current-voltage relationship for field ionization of helium using tungsten tips in diffuse gas and in a supersonic helium beam. For all 16 tips used in this study, the dependence of ion current on voltage for tips of fixed radius was found to differ from that for tips held at constant surface electric field. A scaling analysis is presented to explain this difference. Ion current increased on average to the 2.8 power of voltage for a tip at fixed field and approximately fifth power of voltage for fixed radius for a liquid nitrogen cooled tip in room temperature helium gas. For the helium beam, ion current increased as 2.2 power of voltage with constant surface field. The capture region of the tips was found to be up to 0.1 μm2 for diffuse gas and 0.02 μm2 in the beam. Velocity dependence and orientation of tip to beam were also studied

  1. Neutral beam heating and current drive system and its role in ITER-FEAT operation scenarios

    International Nuclear Information System (INIS)

    The NB H and CD system, providing 33 MW in deuterium beams at 1 MeV from two injectors, in addition to 40 MW RF power, contributes to heating a plasma to sub-ignition through the L-H mode transition followed by finite-Q driven-burn (Q≥10), and achievement of a hybrid operation with an extended-duration (∼1000 s) or steady-state operation with Q≤5. To achieve such operations, the NB provides non-inductive current drive by injecting the beams tangentially into the plasma with the capability of on- and off-axis current drive. The present engineering design is under the constraints of the beam envelope, vacuum confinement, neutron shielding, tolerances, and clearances required with the toroidal field coils. The on- and off-axis current drive is to be achieved by tilting the beam axis vertically. Each beam axis of the NB injectors can be tilted independently, providing flexibility in the control of heating and the driven current profile. (author)

  2. Current-induced forces: a simple derivation

    DEFF Research Database (Denmark)

    Todorov, Tchavdar N.; Dundas, Daniel; Lü, Jing-Tao;

    2014-01-01

    We revisit the problem of forces on atoms under current in nanoscale conductors. We derive and discuss the five principal kinds of force under steady-state conditions from a simple standpoint that-with the help of background literature-should be accessible to physics undergraduates. The discussio...

  3. Investigation on a new inducer of pulsed eddy current thermography

    Directory of Open Access Journals (Sweden)

    Min He

    2016-09-01

    Full Text Available In this paper, a new inducer of pulsed eddy current thermography (PECT is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR camera’s view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  4. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y., E-mail: yutaka-fujiwara@aist.go.jp; Sakakita, H.; Nakamiya, A. [Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan); Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan); Hirano, Y.; Kiyama, S. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan)

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  5. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    Science.gov (United States)

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

  6. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    Science.gov (United States)

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage. PMID:27336595

  7. Time-of-flight MeV-SIMS with beam induced secondary electron trigger

    Science.gov (United States)

    Schulte-Borchers, Martina; Döbeli, Max; Müller, Arnold Milenko; George, Matthias; Synal, Hans-Arno

    2016-08-01

    A new Time-of-flight MeV Secondary Ion Mass Spectrometry (MeV-SIMS) setup was developed to be used with a capillary microprobe for molecular imaging with heavy primary ions at MeV energies. Due to the low output current of the ion collimating capillary a Time-of-flight (ToF) measurement method with high duty cycle is necessary. Secondary electrons from the sample surface and transmitted ions were studied as start signals. They enable measurements with a continuous primary beam and unpulsed ToF spectrometer. Tests with various primary ion beams and sample types have shown that a secondary electron signal is obtained from 30% to 40% of incident MeV particles. This provides a ToF start signal with considerably better time resolution than the one obtained from transmitted primary ions detected in a radiation hard gas ionization detector. Beam induced secondary electrons therefore allow for MeV-SIMS measurements with reasonable mass resolution at primary ion beam currents in the low fA range.

  8. Photopolymerization-Induced Two-Beam Coupling and Light-Induced Scattering in Polymethyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; GAO Feng; TANG Bai-Quan; Christian Pruner; ZHANG Xin-Zheng; SHI Yan-Li; XU Jing-Jun; QIAO Hai-Jun; WU Qiang; Romano A. Rupp; LOU Ci-Bo; WANG Zhen-Hua

    2008-01-01

    @@ Light amplification due to two-beam coupling is realized in doped polymethyl methacrylate (PMMA) glasses. A coupling gain as large as 14 cm-1 is obtained. The dynamic behaviour of absorption and light-induced scattering due to the process of photopolymerization are also studied. The results show that the amplification and its dynamic process enable possible applications of PMMA in optical devices.

  9. Radiation damage in single crystal CVD diamond material investigated with a high current Au beam

    International Nuclear Information System (INIS)

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high current heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2-3 x 106/s/mm2) of 1.25 A GeV Au ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  10. Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces

    CERN Document Server

    Kireeff-Covo, Michel; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Friedman, Alex; Grote, D P; Kwan, Joe W; Lund, Steven M; Molvik, Arthur; Seidl, Peter; Vay, Jean-Luc; Vujic, Jasmina L; Westenskow, Glen

    2005-01-01

    The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

  11. Antiresonance induced spin-polarized current generation

    Institute of Scientific and Technical Information of China (English)

    Yin Sun; Min Wen-Jing; Gao Kun; Xie Shi-Jie; Liu De-Sheng

    2011-01-01

    According to the one-dimensional antiresonance effect (Wang X R,Wang Y and Sun Z Z 2003 Phys.Rev.B 65193402),we propose a possible spin-polarized current generation device.Our proposed model consists of one chain and an impurity coupling to the chain.The energy level of the impurity can be occupied by an electron with a specific spin,and the electron with such a spin is blocked because of the antiresonance effect.Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates.On the other hand,the device can also be used to measure the generated spin accumulation.Our model is feasible with today's technology.

  12. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  13. Modulation of auroral electrojet currents using dual HF beams with ELF phase offset

    Science.gov (United States)

    Golkowski, M.; Cohen, M.; Moore, R. C.

    2012-12-01

    The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.

  14. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  15. Supershort electron beam and voluminous heavy-current air discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The conditions of the electron beam and voluminous discharge formation in the air at the atmospheric pressure and subnanosecond pulse tension front are studied. It is shown that the electron beam in the gaseous diode originates at the pulse tension front over time of ∼ 0.5 ns and has duration at the semiheight of ≤0.4 ns. The electron beam with the electrons average energy of 60-80 keV and current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from the electron avalanches, originating in the gap on the account of the gas ionization by fast electrons at achieving the critical field between the expanding plasma cloud front and anode

  16. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  17. Current status and future prospect of electron beam sterilization in Japan

    Science.gov (United States)

    Katsura, Ichiro

    1998-06-01

    It seems that electron beam sterilization is being current topic among all applications in Japan and that this tendency will continue until when major companies interested in the technology complete introducing electron beam. Since the Ministry of Health and Welfare(MOHW) officially issued revised regulation on GMP for medical devices in 1995, EtO has become the method regarded as time and money consuming one. On the contrary, electron beam has become as relatively economical and desirable method to achieve same result by its characteristics such as high productivity, rather easy validation and consequent cost reduction, although less penetration limit the kind of products to be treated. Status and prospect of electron beam sterilization in Japan will be presented in the paper along with accelerator related technologies.

  18. Halo Evolution of Hypereutectic Al-17.5Si Alloy Treated with High-Current Pulsed Electron Beam

    OpenAIRE

    Hu, L.; Gao, B.; Lv, J. K.; Sun, S. C.; Hao, Y.; Tu, G. F.

    2015-01-01

    Halo evolution of an Al-17.5Si alloy surface after treatment with increasing pulse numbers of a high-current pulsed electron beam (HCPEB) was investigated. A halo is a ring microstructure resembling a bull’s eye. SEM results indicate that the nanocrystallization of halo induced by HCPEB treatment leads to gradual diffusion of the Si phase. Multiple pulses numbers cause the Si phase to be significantly refined and uniformly distributed. In addition, nanosilicon particles with a grain size of 3...

  19. Surface Modification of Light Alloys by Low-Energy High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    X. D. Zhang

    2012-01-01

    Full Text Available This paper reviews results obtained by the research groups developing the low-energy high-current pulsed electron beam (LEHCPEB in Dalian (China and Metz (France on the surface treatment of light alloys. The pulsed electron irradiation induces an ultra-fast thermal cycle at the surface combined with the formation of thermal stress and shock waves. As illustrated for Mg alloys and Ti, this results in deep subsurface hardening (over several 100 μm which improves the wear resistance. The analysis of the top surface melted surface of light alloys also often witnesses evaporation and condensation of chemical species. This phenomenon can significantly modify the melt chemistry and was also suggested to lead to the development of specific solidification textures in the rapidly solidified layer. The potential use of the LEHCPEB technique for producing thermomechanical treatments under the so-called heating mode and, thus, modify the surface crystallographic texture, and enhance solid-state diffusion is also demonstrated in the case of the FeAl intermetallic compound.

  20. A detector based on silica fibers for ion beam monitoring in a wide current range

    Science.gov (United States)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  1. Current-induced spin torque resonance of a magnetic insulator

    Science.gov (United States)

    Schreier, Michael; Chiba, Takahiro; Niedermayr, Arthur; Lotze, Johannes; Huebl, Hans; Geprägs, Stephan; Takahashi, Saburo; Bauer, Gerrit E. W.; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-10-01

    We report the observation of current-induced spin torque resonance in yttrium iron garnet/platinum bilayers. An alternating charge current at GHz frequencies in the platinum gives rise to dc spin pumping and spin Hall magnetoresistance rectification voltages, induced by the Oersted fields of the ac current and the spin Hall effect-mediated spin transfer torque. In ultrathin yttrium iron garnet films, we observe spin transfer torque actuated magnetization dynamics which are significantly larger than those generated by the ac Oersted field. Spin transfer torques thus efficiently couple charge currents and magnetization dynamics also in magnetic insulators, enabling charge current-based interfacing of magnetic insulators with microwave devices.

  2. Protection of power transformers against geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2011-01-01

    Full Text Available The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  3. Protection of power transformers against geomagnetically induced currents

    OpenAIRE

    Gurevich Vladimir

    2011-01-01

    The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  4. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Min Yun; Jianping Yin

    2006-01-01

    @@ A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam,formed by an array of square current-carrying wires,is proposed.We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms,and study the dynamic focusing processes of cold atoms passing through the magnetic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method.The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam,even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.

  5. Transverse match of high peak-current beam into the LANSCE DTL using PARMILA

    International Nuclear Information System (INIS)

    A new algorithm that uses a multiparticle PARMILA-based code to match high peak current H+ beam (∼21 mA) into the Los Alamos Neutron Science Center (LANSCE) drift tube linac (DTL) has been developed. Two single cell rf bunchers in the low energy beam transport (LEBT) prepare the initially unbunched beam for DTL capture. The transverse distribution at the entrance to the DTL is set with four quadrupoles in the 1.26 m between the last transverse emittance measuring station and the DTL entrance. Previous matching algorithms used TRACE and TRACE 3-D to determine these quadrupole strengths. PARMILA simulation show this procedure produces non-zero mismatch and additional emittance growth through the DTL for high current beams. Because of strong space-charge forces and a rapidly forming longitudinal bunch, simple envelope calculations do not model the beam evolution in the LEBT well. A PARMILA model of this region was combined with ant iterative search routine to set the LEBT quadrupole strengths to achieve a better transverse match into the DTL. Simulations predict a significant reduction in transverse emittance at the exit of the DTL over the typical TRACE 3-D result

  6. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  7. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)

    Science.gov (United States)

    De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R.

    2016-06-01

    We review the current status of the use of focused electron beam induced deposition (FEBID) for the growth of magnetic nanostructures. This technique relies on the local dissociation of a precursor gas by means of an electron beam. The most promising results have been obtained using the Co2(CO)8 precursor, where the Co content in the grown nanodeposited material can be tailored up to more than 95 at.%. Functional behaviour of these Co nanodeposits has been observed in applications such as arrays of magnetic dots for information storage and catalytic growth, magnetic tips for scanning probe microscopes, nano-Hall sensors for bead detection, nano-actuated magnetomechanical systems and nanowires for domain-wall manipulation. The review also covers interesting results observed in Fe-based and alloyed nanodeposits. Advantages and disadvantages of FEBID for the growth of magnetic nanostructures are discussed in the article as well as possible future directions in this field.

  8. CLUSTER observations of electron outflowing beams carrying downward currents above the polar cap by northward IMF

    Directory of Open Access Journals (Sweden)

    A. Teste

    2007-05-01

    Full Text Available Above the polar cap, at about 5–9 Earth radii (RE altitude, the PEACE experiment onboard CLUSTER detected, for the first time, electron beams outflowing from the ionosphere with large and variable energy fluxes, well collimated along the magnetic field lines. All these events occurred during periods of northward or weak interplanetary magnetic field (IMF.

    These outflowing beams were generally detected below 100 eV and typically between 40 and 70 eV, just above the photoelectron level. Their energy gain can be explained by the presence of a field-aligned potential drop below the spacecraft, as in the auroral zone. The careful analysis of the beams distribution function indicates that they were not only accelerated but also heated. The parallel heating is estimated to about 2 to 20 eV and it globally tends to increase with the acceleration energy. Moreover, WHISPER observed broadband electrostatic emissions around a few kHz correlated with the outflowing electron beams, which suggests beam-plasma interactions capable of triggering plasma instabilities.

    In presence of simultaneous very weak ion fluxes, the outflowing electron beams are the main carriers of downward field-aligned currents estimated to about 10 nA/m2. These electron beams are actually not isolated but surrounded by wider structures of ion outflows. All along its polar cap crossings, Cluster observed successive electron and ion outflows. This implies that the polar ionosphere represents a significant source of cold plasma for the magnetosphere during northward or weak IMF conditions. The successive ion and electron outflows finally result in a filamented current system of opposite polarities which connects the polar ionosphere to distant regions of the magnetosphere.

  9. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    International Nuclear Information System (INIS)

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10−3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source

  10. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    Science.gov (United States)

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.

    2008-01-01

    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  11. Development of the bunch-by-bunch beam current acquisition system at SSRF

    Institute of Scientific and Technical Information of China (English)

    HUANG Siting; LENG Yongbin; YAN Yingbing

    2009-01-01

    In this paper, we report the development of a bunch-by-bunch beam current acquisition system. Through a waveform-reconstruction algorithm, the system realizes high equivalent sampling rate with a relatively low inherent rate. Based on the EPICS environment, information communication with other systems can be achieved. Preliminary test results in commissioning the SSRF storage ring show that the system can reconstruct the beam waveform of single bunch, providing a convenient and reliable method for the top-up operation in the future.

  12. Emittance measurements of high current heavy ion beams using a single shot pepperpot system

    International Nuclear Information System (INIS)

    The new 1.4 MeV/u high current injector for the Unilac successfully commissioned in 1999 is now accelerating heavy ions close to the calculated intensities. For example an 40Ar1+ beam with 8 emA allows to fill the GSI synchrotron to its inherent intensity limit. For emittance measurements of such intense beams a single shot pepperpot system has been developed. An overview of the hard- and software including mathematical algorithms is given. Results of emittance measurements at different intensities and energies are presented. The influence of stripping and related space charge effects on the emittance could be investigated

  13. Current control of the electron beam formed in the magnetron gun with a secondary-emission cathode

    International Nuclear Information System (INIS)

    Data are reported on electron beam generation and beam current control in two types of secondary-emission cathode magnetron guns. The influence of the magnetic field value and field distribution on the formation of the beam and its parameters has been investigated in the electron energy range between 20 and 150 keV. The influence of local magnetic field variations on the cathode and the electron beam characteristics has been studied. The possibility to control the electron beam current in various ways has been demonstrated

  14. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  15. Initiation of furazanotetrazinedioxide and mixes on its basis by high-current electron beam

    International Nuclear Information System (INIS)

    The results of study of physicochemical processes developing in the samples of furazanotetrazinedioxide (FTDO) and its mixes with dinitrodiazapentane (DNP) upon irradiation by the high-current electron beam with the energy density varied in the range of 0.05-60 J/cm2 are presented. Pre-explosion processes taking place in materials under examination at below threshold modes of excitation are studied. Electron beam threshold energy densities leading to explosive decomposition of FTDO and FTDO/DNP mixes are determined. Noticeable effect of the electron beam energy density on kinetic characteristics of explosive decomposition process of FTDO is discovered. Spectra of the products of FTDO explosive decomposition are measured at explosion initiation in the atmosphere

  16. Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

    CERN Document Server

    Nieves, J; Vacas, M J V

    2006-01-01

    By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.

  17. Current-Induced Forces and Hot Spots in Biased Nanojunctions

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Wang, Jian-Sheng;

    2015-01-01

    We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant...

  18. Comparison of Parmela and MAFIA Simulations of Beam Dynamics in High Current Photoinjector

    CERN Document Server

    Kurennoy, Sergey S

    2004-01-01

    A high-current RF photoinjector producing low-emittance electron beam is an important technology for high-power CW FEL. LANL-AES team designed a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector with magnetic emittance compensation. With the electric field gradients of 7, 7, and 5 MV/m in the three subsequent cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Beam dynamics in the photoinjector has been modeled in details. In addition to the usual approach, with fields calculated by Superfish-Poisson and beam simulations performed by Parmela, we also used MAFIA group of codes, both to calculate cavity fields and to model beam dynamics with its particle-in-cell module TS. The second way naturally includes wake-field effects into consideration. The simulation results and comparison between two approaches will be presented.

  19. Surface modification of Al-20Si alloy by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.cn [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Hao, S.Z.; Dong, C. [Key Laboratory of the Ministry of Education of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Dailan 116024 (China)

    2011-02-15

    Hypereutectic Al-20Si (Si 20 wt.%, Al balance)alloy surface was treated with high current pulsed electron beam (HCPEB) under different pulse numbers. The results indicate that HCPEB irradiation induces the formation of metastable structures on the treated surface. The coarse primary Si particle melts, producing a 'halo' microstructure with primary Si as the center on the melted surface. A supersaturated solid solution of Al is formed in the melted layer caused by Si atoms dissolving into the Al matrix. Cross-section structure analysis shows that a 4 {mu}m remelted layer is formed underneath the top surface of the HCEPB-treated sample. Compared with the matrix, the Al and Si elements in the remelted layer are distributed uniformly. In addition, the grains of the Al-20Si alloy surface are refined after HCPEB treatment, as shown by TEM observation. Nano-silicon particles are dispersed on the surface of remelted layer. Polygonal subgrains, approximately 50-100 nm in size, are formed in the Al matrix. The hardness test results show that the microhardness of the {alpha}(Al) and eutectic structure is increased with increasing pulse number. The hardness of the 'halo' microstructure presents a gradient change after 15 pulse treatment due to the diffusion of Si atoms. Furthermore, hardness tests of the cross-section at different depths show that the microhardness of the remelted layer is higher than that of the matrix. Therefore, HCPEB technology is a good surface modification method for enhancing the surface hardness of hypereutectic Al-20Si alloy.

  20. Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C. (ed.)

    1979-01-01

    The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base. (GHT)

  1. Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979

    International Nuclear Information System (INIS)

    The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base

  2. Current-induced phonon renormalization in molecular junctions

    Science.gov (United States)

    Bai, Meilin; Cucinotta, Clotilde S.; Jiang, Zhuoling; Wang, Hao; Wang, Yongfeng; Rungger, Ivan; Sanvito, Stefano; Hou, Shimin

    2016-07-01

    We explain how the electrical current flow in a molecular junction can modify the vibrational spectrum of the molecule by renormalizing its normal modes of oscillations. This is demonstrated with first-principles self-consistent transport theory, where the current-induced forces are evaluated from the expectation value of the ionic momentum operator. We explore here the case of H2 sandwiched between two Au electrodes and show that the current produces stiffening of the transverse translational and rotational modes and softening of the stretching modes along the current direction. Such behavior is understood in terms of charge redistribution, potential drop, and elasticity changes as a function of the current.

  3. Current-induced dynamics in carbon atomic contacts

    Directory of Open Access Journals (Sweden)

    Jing-Tao Lü

    2011-12-01

    Full Text Available Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC and Berry-phase derived forces (BP with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects.Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating.Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system.

  4. Damage and structural defects in the surface lager of pure molybdenum induced by high-current pulsed electron beam%强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷

    Institute of Scientific and Technical Information of China (English)

    季乐; 杨盛志; 蔡杰; 李艳; 王晓彤; 张在强; 侯秀丽; 关庆丰

    2013-01-01

    利用强流脉冲电子束(HCPEB)装置对纯钼表面进行辐照处理,并利用X射线衍射仪,扫描电子显微镜(SEM)、透射电子显微镜(TEM)详细分析了辐照表面的微观结构和损伤效应.1次HCPEB辐照后,纯钼表层积聚了极大的残余应力,多次辐照后表面未融化区域出现大量绝热剪切带,且局部区域发生开裂.微观结构分析显示,辐照后材料表面形成发散状的位错组态和大量空位簇缺陷;绝热剪切带内部是尺寸为1µm左右等轴状的再结晶晶粒.剪切带造成的材料表面局部软化以及间隙原子偏聚于晶界是材料发生开裂的主要原因.另外,表面熔化区域可形成尺寸为20 nm左右的纳米晶.%High-current pulsed electron beam (HCPEB) technique was applied to induce the surface irradiation of pure molybdenum. Mi-crostructures and damaging effect of the irradiated surface were investigated in detail by X-ray diffraction, scanning electron mi-croscopy (SEM) and transmission electron microscopy (TEM). After 1 pulse of HCPEB irradiation, a high level of residual stress is amassed in the irradiated surface layer, while after several pulses of irradiation, a large number of adiabatic shear bands are formed on the unmelted regions of the surface, and local cracking occurs in these regions. Microstructure observations show that scattered dislocations and large amounts of vacancy clusters are formed on the irradiated surface. The adiabatic shear bands are composed of fine recrystallized grains with an average size about 1 µm. The partial softening of the irradiated surface induced by adiabatic shear bands, and the segregation of interstitial atoms in grain boundaries are primarily responsible for the surface cracking of the material. Further, nanocrystallines (20 nm) are also formed in some melted regions of the surface.

  5. Reduction of beam current noise in the FNAL magnetron ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, D. S., E-mail: bollinger@fnal.gov; Karns, P. R., E-mail: karns@fnal.gov; Tan, C. Y., E-mail: cytan@fnal.gov [Fermi National Accelerator Laboratory, Proton Source Department, P.O. Box 500, Batavia, Illinois (United States)

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  6. The effect of laser beam size on laser-induced damage performance

    Institute of Scientific and Technical Information of China (English)

    Han Wei; Wang Fang; Zhou Li-Dan; Feng Bin; Jia Huai-Ting; Li Ke-Yu; Xiang Yong; Zheng Wan-Guo

    2012-01-01

    The influence of laser beam size on laser-induced damage performance,especially damage probability and the laser-induced damage threshold (LIDT),is investigated.It is found that damage probability is dependent on beam size when various damage precursors with different potential behaviors are involved.This causes the damage probability and the LIDT to be different between cases under a large-aperture beam and a small-aperture beam.Moreover,the fluence fluctuation of the large-aperture laser beam brings out hot spots,which move randomly across the beam from shot to shot.Thus this leads the most probable maximum fluence after many shots at any location on the optical component to be several times the average beam fluence.These two effects result in the difference in the damage performance of the optical component between the cases under a large-aperture and small-aperture laser.

  7. Beam optics of a 10-cm diameter high current heavy ion diode

    International Nuclear Information System (INIS)

    Typically a large diameter surface ionization source is used to produce > 0.5 A K+ current with emittance < 1 π-mm-mrad for heavy ion fusion experiments. So far we have observed aberrations that are slightly different from those predicted by computer simulations. We have now set up an experiment to study in detail the beam optics of such a large diameter ion diode and to benchmark the simulation code

  8. Charged current disappearance measurements in the NuMI off-axis beam

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  9. Plasmon induced electric current in a molecular junction

    Science.gov (United States)

    Pal, Partha; Jiang, Nan; Sonntag, Matthew; Chiang, Naihao; Foley, Edward; van Duyne, Richard; Seideman, Tamar

    2015-03-01

    We report light-triggered, plasmon-enhanced charge transport in a tip-molecule-surface molecular junction. Experimentally, enhancement of tunneling current is recorded when a chopped laser beam illuminates the junction. The enhancement is quenched when the sample is devoid of molecules and its amplitude increases steeply when the focus of the beam moves closer to the space between the tip and the mono layered sample. Finite difference time domain calculations indicate that maximum electromagnetic field enhancements due to plasmonic activity, occurs in the space between the tip and the sample which is also the region where the tunneling current perturbation peaks. The perturbation in the transport characteristics at the tip-sample junction is theoretically estimated utilizing a recent formulation for describing the transient electronic distribution due to plasmon decoherences. We find the enhancement in the electronic current to be directly proportional to the plasmon excitations only in the presence of a molecular linker which is in excellent agreement with the experimental results. Further analysis reveals that the nascent distribution allows injection of electrons through additional molecular resonances which were previously inaccessible, thus leading to an increased current.

  10. Open-loop correction for an eddy current dominated beam-switching magnet

    Science.gov (United States)

    Koseki, K.; Nakayama, H.; Tawada, M.

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10-4 to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10-3. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10-4, which is an acceptable value, was achieved.

  11. Open-loop correction for an eddy current dominated beam-switching magnet

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, K., E-mail: kunio.koseki@kek.jp; Nakayama, H.; Tawada, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-04-15

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.

  12. An eddy current-induced magnetic plucking for piezoelectric energy harvesting

    Science.gov (United States)

    Do, Nam Ho; Baek, Yoon Su

    2016-04-01

    Frequency up-conversion is a very efficient method of energy harvesting in order to overcome low, non-periodic, or altered ambient vibration. In order to perform frequency up-conversion and transference of mechanical energy without contact, an eddy current-induced magnetic drag force is used. In this paper, we present a novel configuration of eddy current-induced magnetic plucking for piezoelectric energy harvesting. Our method consists of two permanent magnets, a piezoelectric beam, and a copper disk piece. We design our harvesting method to achieve loading, sudden release, and free vibration using the actuation of the piezoelectric beam through the magnetic mutual coupling between the magnet and copper disk piece. We present the principle of magnetic drag force-generation, characterize the energy harvesting performance of our harvesting method, and demonstrate our harvesting method’s capability of frequency up-conversion and transference of mechanical energy without contact under low, non-periodic, or altered ambient vibration. To that end, we describe the calculation of magnetic drag force with various geometric dimensions and material properties, model of the piezoelectric cantilever beam, comparison between estimation response and measured experiment response, and the measured voltage and power responses.

  13. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  14. Coherent Effects of High Current Beam in Project-X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  15. The use of a Perovskite crystal as a detector for proton beam current

    Energy Technology Data Exchange (ETDEWEB)

    Cruvinel, P.E.; Mascarenhas, S.; Miranda, J.; Flocchini, R.G. (Crocker Nuclear Lab., Univ. of California, Davis, CA (US))

    1992-02-01

    Using a Perovskite crystal, a thermal detector has been designed for measurements of proton beam currents. For a given energy, the detector has a linear response with current intensity and an inverse response with chopping frequency. In this paper measurements up to 50 nA (4.5 MeV H{sup +}) were carried out using a cyclotron, and a calibration curve is presented. The detector may be used over a wide range of energies, has a low cost, and is simple to construct. In addition, it can be used inside or outside vacuum, and it does not require an external bias field.

  16. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    International Nuclear Information System (INIS)

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes

  17. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    International Nuclear Information System (INIS)

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (≤ 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters

  18. Determination of reversed plasma current profile from the experiments of magnetic compression of a microsecond relativistic electron beam

    International Nuclear Information System (INIS)

    Measuring technique for distribution of reversed plasma current in relativistic electron beam crosssection which is based on velocity measurement of azimutj rotation of the beam spreading within the external magnetic field is realized experimentally. Measurements of reversed current profile are carried out during the experiments on magnetic compression of powerful microsecond relativistic electron beam (1 MV, 75 kA, 4μs, 100kj, 5 kA/cm2). Data on the level of beam charged neutralization at gas lowpressure in drift chamber are obtained

  19. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  20. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  1. High-power, electron beam-induced switching in diamond

    International Nuclear Information System (INIS)

    The authors are developing a high-voltage, high-average-power, electron beam-controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron beam-controlled, thin film diamond could switch, with high efficiency, well over 100 kW average power at MHz frequencies greater than 5kV. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. The authors' electron beam penetration-depth measurements agree with their Monte Carlo calculations. They have not observed electron beam damage in diamond for beam energies up to 150 keV. This report describes their experimental and calculational results and research objectives

  2. Survey of Induced Voltage and Current Phenomena in GIS Substation

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Hassan Hosseini

    2014-03-01

    Full Text Available Induced capacitive voltage and current in high voltage GIS substation is one of the most significant phenomena that may have made some problems in this substation operation. At this study the various equipment of 420 KV Karoon4 substations such as powerhouses, input and output lines, bus-bar and bus-duct have simulated by applying EMTP-RV software. Then with the different condition of single-phase and three-phase faults on the lines in critical conditions, capacitive induction voltage and current by parallel capacitor with circuit breaker is surveyed. The results show the value of this induced current and voltage and that this critical conditions the breakers and dis-connector switches must be able to interrupt this value of current.

  3. Switching processes in TGS crystals irradiated by high-current electron beam

    CERN Document Server

    Efimov, V V; Klevtsova, E A; Tyutyunnikov, S I

    2002-01-01

    The relaxation processes study of the dielectric permittivity epsilon during commutation of the external electric field in triglycine sulphate (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS) single crystal plates before and after irradiation by a high-current pulsed electron beam with different doses at various temperatures is presented. The parameters of the electron beam produced by the accelerator facility as a source were: energy E = 250 keV, current density I = 1000 A/cm sup 2 , fluence F = 15 J/cm sup 2 , pulse duration tau = 300 ns, beam density 5 centre dot sup 1 5 electrons/cm sup 2 per pulse. It was shown that the dependences of epsilon (t) are described by the Kohlrausch law: epsilon (t) approx exp (-t/tau) supalpha, where alpha is the average relaxation time of the all volume samples, 0 < alpha <1. Besides, it was found that switching processes in the irradiated crystals were much more intensive than those in the non-irradiated ones. The relaxation times decrease with rising...

  4. Development of a universal serial bus interface circuit for ion beam current integrators.

    Science.gov (United States)

    Suresh, K; Panigrahi, B K; Nair, K G M

    2007-08-01

    A universal serial bus (USB) interface circuit has been developed to enable easy interfacing of commercial as well as custom-built ion beam current integrators to personal computer (PC) based automated experimental setups. Built using the popular PIC16F877A reduced instruction set computer and a USB-universal asynchronous receiver-transmitter/first in, first out controller, DLP2232, this USB interface circuit virtually emulates the ion beam current integrators on a host PC and uses USB 2.0 protocol to implement high speed bidirectional data transfer. Using this interface, many tedious and labor intensive ion beam irradiation and characterization experiments can be redesigned into PC based automated ones with advantages of improved accuracy, rapidity, and ease of use and control. This interface circuit was successfully used in carrying out online in situ resistivity measurement of 70 keV O(+) ion irradiated tin thin films using four probe method. In situ electrical resistance measurement showed the formation of SnO(2) phase during ion implantation.

  5. Interaction-Induced Enhancement and Oscillations of the Persistent Current

    OpenAIRE

    Stafford, C. A.; Wang, D. F.

    1997-01-01

    The persistent current $I$ in integrable models of multichannel rings with both short- and long-ranged interactions is investigated. $I$ is found to oscillate in sign and increase in magnitude with increasing interaction strength due to interaction-induced correlations in the currents contributed by different channels. For sufficiently strong interactions, the contributions of all channels are found to add constructively, leading to a giant enhancement of $I$. Numerical results confirm that t...

  6. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Thomas M., E-mail: baumannt@nscl.msu.edu; Lapierre, Alain, E-mail: lapierre@nscl.msu.edu; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan, 48824 (United States)

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  7. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    Science.gov (United States)

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  8. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sadtler, Bryce; Habenicht, Carsten [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Freitag, Bert [FEI Company, P.O. Box 80066, KA 5600 Eindhoven (Netherlands); Alivisatos, A. Paul [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Kisielowski, Christian, E-mail: CFKisielowski@lbl.gov [National Center for Electron Microcopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Joint Center for Artificial Photosynthesis, Berkeley, CA 94720 (United States)

    2013-11-15

    The atomic structure and interfaces of CdS/Cu{sub 2}S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu{sub 2}S exhibits a low-chalcocite structure in pristine CdS/Cu{sub 2}S nanorods. Under electron beam irradiation the Cu{sub 2}S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu{sup +}–Cd{sup 2+} cation exchange at the CdS/Cu{sub 2}S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper–cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu{sub 2}S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3–10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu{sub 2}S thin film solar cells with an activation energy of 0.96 eV. - Highlights: • Heterostructured nanorods were investigated at atomic resolution showing that they are free of extended defects. • Beam–sample interactions are controlled by current and voltage variations to provide pristine crystal structures. • Beam-induced migration of heterointerfaces are measured time-resolved and compared with Cu diffusion coefficients. • Beam–sample interaction overwrite possible signal improvements that can be expected by sample cooling.

  9. Wavelet bicoherence analysis as a method for investigating coherent structures in an electron beam with a supercritical current

    CERN Document Server

    Koronovskii, A A

    2002-01-01

    Paper presents the results of numerical simulation of the effect of ion background heterogeneity on complex spatial-time dynamics of electron beam with a virtual cathode in planar geometry. Possibility to increase generation frequency with no variation of beam current is demonstrated. By means of wavelet bicoherence and visualization of electron trajectories in spatial-time diagram one analyzes spatial-time structures shaping in a beam that determine a complex chaotic dynamics of the investigated heterogeneous electron-plasma system

  10. Photoinduced current and emission induced by current in a nanowire transistor: Temperature dependence

    Indian Academy of Sciences (India)

    Darehdor Mahvash Arabi; Shahtahmassebi Nasser

    2016-03-01

    In this paper, we present a theoretical study on a light emitting and current carrying nanosystem, in the nonzero temperature regime. The system under consideration is a semiconducting nanowire sandwiched between two semi-infinite metallic electrodes. The study was performed using the Keldysh nonequilibrium Green’s function method. We systematically investigate the photoinduced current and the light emission induced by this electronic current in the presence of gate voltage. The temperature dependence of these processes are also investigated in the temperature range of 3–300 K. Our study shows that, the photoinduced current is due to the transfer of electrons from highest occupied molecular orbital (HOMO) to the lowest unoccupied molecularorbital (LUMO). Thus, the separation of electron from the electron–hole pair creates a free electron which is responsible for the observed photoinduced current. The same conclusion is also arrived at for the reverse process of light emission under the influence of the electronic current.

  11. Comments on dyadic Green's functions and induced currents

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1996-01-01

    The article formulates the wave equation in regions with induced currents in the case of scattering by a perfect conductor. By using this formulation the ordinary solution using the dyadic Green's function for the problem is discussed. The region of validity of this solution is pointed out. A cla....... A claimed need for conventions is alleviated by referring to Gauss's law...

  12. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Lu, Jing Tao; Hedegard, Per;

    2016-01-01

    We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples fro...

  13. Scattering induced current in a tight-binding band

    CERN Document Server

    Bruneau, Laurent; Pillet, Claude-Alain

    2010-01-01

    In the single band tight-binding approximation, we consider the transport properties of an electron in a homogeneous static electric field. We show that repeated interactions of the electron with two-level systems in thermal equilibrium suppress the Bloch oscillations and induce a steady current, the statistical properties of which we study.

  14. Current-induced dynamics in carbon atomic contacts

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads;

    2011-01-01

    voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...

  15. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  16. Gate currents and space charge in silicon dioxide under exposure to an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Akulov, A.F.; Gurtov, V.A.; Nazarov, A.I.; Ogurtsov, O.F.

    1987-03-01

    The authors obtain information on the physical processes occurring in subgate dielectrics during radiation and field effects. The electron beam used on the MIS was strictly localized. The results show that the magnitude and kinetics of bulk charge accumulation do not depend on the type of ionizing radiation (electron or x-ray), or its energy and power in the range in question, but rather are determined only by the absorbed dose. The gate current during electron irradiation with small magnitude of accumulated charge is caused by nonequilibrium carriers generated by the irradiation in the SiO/sub 2/. Relaxation of the current as the charge accumulates is caused by decrease in the average field in the silicon dioxide bulk. At large magnitudes of the bulk charge, there appears an injection component of the electron current of thermalized carriers from the silicon through the Si-SiO/sub 2/ boundary by the Fowler-Nordheim mechanism

  17. Relation between beam driven seed-current and rotation in steady state FRC

    International Nuclear Information System (INIS)

    We consider an field steady state reversed configuration whose current is maintained by a steady state beam. Without quadrupole fields, back current can be inhibited by the Ohkawa effect if Z/sub b/ < Z/sub eff/, where Z/sub b/ and Z/sub eff/ are the beam charge number and effective charge number of background ions. However, the resulting rotation of the plasma often leads to instability. For systems, with a large bootstrap effect, the rotation can be moderate, but it is then difficult to contain fusion products. An additional problem is that the Ohkawa effect due to alpha particles tends to dissemble the equilibrium. It has previously been shown that the presence of a quadrupole field inhibit back current. Here we show that a steady state flux can be maintained with moderate input power in both reactors and present day experiments with the resulting rotation slow enough to fulfill stability conditions. However, experimental means must be devised to supply a continual source of particles and additional energy. 17 refs., 3 figs

  18. Beam Effects from an Increase of LINAC Current from 40 ma to 49 Milliamperes

    Energy Technology Data Exchange (ETDEWEB)

    Ray Tomlin

    2002-06-05

    On March 25, 2002 the FNAL Linac had been running at a decreased 40 ma of beam current for some time. Both the 400 MeV Linac and the 8GeV Booster had been tuned to optimum running during that time. Optimum running for the Booster was at 4.1e12 per pulse. Losses at injection and at transition were limiting intensity at the time. By March 26, 2002 the Linac beam current had been increased to 49 ma. The optimum Booster intensity immediately jumped to 4.5e12 per pulse and increased in the next few days to 4.8e12 and 5e12 per pulse. Booster was not retuned until early April when a low-loss 5.0e12 was obtained for stacking operations. Linac current had sagged to 47 ma by then. Measurements were made on the 25th at 40 ma and the 26th and 27th at 49 ma. This is a report and discussion of those measurements.

  19. Positron annihilation and thermally stimulated current of electron beam irradiated polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Shigetaka; Shinyama, Katsuyoshi; Baba, Makoto [Hachinohe Inst. of Tech., Hachinohe, Aomori (Japan); Suzuki, Takenori

    1997-03-01

    Positron lifetime measurements were applied to electron beam irradiated poly(ether-ether-ketone). The lifetime, {tau}{sub 3}, of the ortho-positronium of unirradiated and 5 MGy irradiated specimen became rapidly longer above about 150degC. {tau}{sub 3} of 50 MGy and 100 MGy irradiated specimen was shorter than that of unirradiated one. Thermally stimulated current (TSC) decreased with increasing the dose before voltage application. In the case of voltage application, a TSC peak appeared and the peak value decreased with increased the dose. The correlation between the results of positron annihilation and TSC was investigated. (author)

  20. A high-current four-beam xenon ion source for heavy-ion fusion

    International Nuclear Information System (INIS)

    The growing interest in inertial confinement fusion using heavy ions has elicited from the Los Alamos Scientific Laboratory a proposal to use a multi-channel radiofrequency quadrupole (RFQ) structure for the initial stage of the heavy-ion accelerator. The RFQ would have 4 channels in each module and each channel would accelerate 25 mA of Xe+1. Based on experiments with xenon beam production with a high current duoPlGatron source at Chalk River Nuclear Laboratories, a 245 keV 4-beam xenon injector has been designed for this 4-channel RFQ. The injector is of modular design with 4 small independent plasma sources mounted in a 10 cm square array on a common combined extraction and acceleration column. The electrodes have 4 separate sets of apertures and each channel produces a 29 mA beam for injection into its corresponding RFQ channel. This paper presents a conceptual design for the injector, code calculations for the column electrode design and results of a preliminary test carried out to verify the feasibility of the concept. (author)

  1. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  2. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    Science.gov (United States)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  3. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Energy Technology Data Exchange (ETDEWEB)

    Sellar, Brian [Univ. of Edinburgh, Scotland (United Kingdom); Harding, Samuel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  4. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  5. Modelling of helical current filaments induced by LHW on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael; Denner, Peter; Liang, Yunfeng [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Zeng, Long [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gong, Xianzu; Gan, Kaifu; Wang, Liang; Liu, Fukun; Qian, Jinping; Shen, Biao; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gauthier, Eric [Association EURATOM-CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Collaboration: the EAST Team

    2013-07-01

    Helical radiation belts have been observed in the scrape-off layer (SOL) of the plasma during the application of lower hybrid wave (LHW) heating at the superconducting tokamak EAST. Modelled SOL field lines, starting in-front of the LHW antennas, show agreement in position and pitch angle to the experimental observed radiation belts. A splitting of the strike-line can be observed on the outer divertor plates during the application of LHW heating. Agreement in the comparison of the Mirnov coil signals and a modelled electric current flow along these SOL field lines was found. A lower hybrid current drive can induce such an electric current flow near the plasma edge. This electric current flow causes a change of the plasma topology which could result in the splitting of the strike-line as known from the application of resonant magnetic perturbation fields. Comparisons of modelled footprint structures and experimental observed heat load patterns in the divertor region are discussed.

  6. Nonconservative current-induced forces: A physical interpretation

    Directory of Open Access Journals (Sweden)

    Tchavdar N. Todorov

    2011-10-01

    Full Text Available We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron–phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.

  7. Nonconservative current-induced forces: A physical interpretation.

    Science.gov (United States)

    Todorov, Tchavdar N; Dundas, Daniel; Paxton, Anthony T; Horsfield, Andrew P

    2011-01-01

    We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron-phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.

  8. STUDY OF THE BEAM INDUCED RADIATION IN THE CMS DETECTOR AT THE LARGE HADRON COLLIDER

    CERN Document Server

    Singh, Amandeep P; Mokhov, Nikolai; Beri, Suman Bala

    2009-01-01

    point, are most vulnerable to beam-induced radiation. We have recently carried out extensive monte carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton-proton collisions at $\\sqrt s $=14 TeV and from machine induced background such as beam-gas interactions and beam-halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detec...

  9. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  10. Current Transformers for GSI's KeV/u to GeV/u Ion Beams an Overview

    CERN Document Server

    Reeg, H

    2001-01-01

    At GSI's accelerator facilities ion beam intensities usually are observed and measured with various types of current transformers (CT), matched to the special requirements at their location in the machines. In the universal linear accelerator (UNILAC), and the high charge state injector (HLI) as well, active transformers with 2nd-order feedback are used, while passive pulse CTs and two DC-CTs based on the magnetic modulator principle are implemented in the heavy ion synchrotron (SIS) and the experimental storage ring (ESR). In the high energy beam transfer lines (HEBT) the particle bunch extraction/reinjection is monitored with resonant charge-integrating types. Since more than 10 years number and significance of beam current transformers for operating GSI's accelerators have grown constantly. Due to increased beam intensities following the last UNILAC upgrade, transmission monitoring and beam loss supervision with CTs have become the main tools for machine protection and radiation security purposes. All CTs ...

  11. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    CERN Document Server

    Lemery, Francois

    2015-01-01

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  12. Experimental study on the generation and transmission of the high-current repetitive electron beam

    International Nuclear Information System (INIS)

    When vacuum electron diode is repetitively operated, it presents some peculiar characteristics. Because of its small screening radius and short delay time, graphite is chosen as the cathode material. In experiments, the following results were attained: (1) when the annular cathode is thinned or the repetitive rate is increased, because of thermal effect of current and quickening expanding speed of plasma, the consistency of pulses in a burst is worsened; (2) with the strength of guiding magnetic field increased, the plasma is more restricted and expand slower, and the total current, as well as the electron-emitting area is reduced and the impedance of diode is increased. At last, when the strength of guiding magnetic field is 1.5 T and the cathode is 1 mm thick, a uniform electron beam of 827 kV, 8.22 kA, 100 Hz is obtained. (authors)

  13. 10 Orders of Magnitude Current Measurement Digitisers for the CERN Beam Loss Systems

    CERN Document Server

    Vigano, W; Dehning, B; Kwiatkowski, M; Venturini, G G; Zamantzas, C

    2014-01-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31nA in an integration window of 2μs. Increasing the integration window, the dynamic range covers 2•1010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  14. 10 orders of magnitude current measurement digitisers for the CERN beam loss systems

    Science.gov (United States)

    Viganò, W.; Alsdorf, M.; Dehning, B.; Kwiatkowski, M.; Venturini, G. G.; Zamantzas, C.

    2014-02-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31 nA in an integration window of 2 μs. Increasing the integration window, the dynamic range covers 21010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  15. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    CERN Document Server

    jima, Y Naka; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8~GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  16. Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Michio, E-mail: okada@chem.sci.osaka-u.ac.j, E-mail: mokada@cw.osaka-u.ac.j [Renovation Center of Instruments for Science Education and Technology, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 and 1-2 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2010-07-07

    I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams suggest that the translational energy of the incident molecules plays a significant role. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths, and to develop new methods for the fabrication of thin films. Oriented molecular beams also demonstrate the possibility for controlling surface chemical reactions by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of achieving material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for creating new materials on surfaces with well-controlled chemical reactions. (topical review)

  17. Surface modification of Al-Pb alloy by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    LU You; LI Shi-long; AN Jian; LIU Yong-bing

    2006-01-01

    Al-Pb alloy was modified by high current pulsed electron beam and the microstructure, hardness and tribological characteristics were characterized by scanning electron microscopy, electronic microanalysis probe microanalysis, Knoop hardness indentation and pin-on-disc type wear testing machine. The results show that the microstructure and hardness can be greatly improved, and the modification layer consists of a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone and a transition zone followed by the substrate. The tribological properties of high current pulsed electron beam irradiated Al-Pb alloy are correspondingly improved largely. Optical observation and scanning electron microscopy analysis reveal that the low wear rate and lowest level in coefficient of friction at high load level for irradiated Al-Pb alloy are due to the formation of a lubricious tribolayer covering the worn surface, which is a mixture of Al2O3, Pb3O4 and silicate. The wear mode varies from oxidative wear at low load to film spalling at high load and, finally, adhesive wear.

  18. Electric current induced modification of germanium nanowire NEM switch contact

    Science.gov (United States)

    Meija, R.; Kosmaca, J.; Jasulaneca, L.; Petersons, K.; Biswas, S.; Holmes, J. D.; Erts, D.

    2015-05-01

    We present an investigation of contact properties of a germanium (Ge) nanowire based nanoelectromechanical (NEM) switch in its ON state. The contact stiffness in the ON state was evaluated by detecting the nanowire’s resonance frequency. It was found that the resonance frequency increases when electric current flows through the nanowire/counter electrode contact area. The reason for modification in the contact area is referred to as electric-current-induced processes in the native oxide layer covering the nanowires. The presented resonance shift method is a simple way to indicate strengthening of the nanowire/counter electrode contact area without disassembling the contact.

  19. Current-induced spin-wave Doppler shift.

    Science.gov (United States)

    Vlaminck, Vincent; Bailleul, Matthieu

    2008-10-17

    Spin transfer appears to be a promising tool for improving spintronics devices. Experiments that quantitatively access the magnitude of the spin transfer are required for a fundamental understanding of this phenomenon. By inductively measuring spin waves propagating along a permalloy strip subjected to a large electrical current, we observed a current-induced spin wave Doppler shift that we relate to the adiabatic spin transfer torque. Because spin waves provide a well-defined system for performing spin transfer, we anticipate that they could be used as an accurate probe of spin-polarized transport in various itinerant ferromagnets. PMID:18927387

  20. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per;

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule...... and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature...

  1. Current transport in ZnO/Si heterostructure grown by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Teng Xiao-Yun; Wu Yan-Hua; Yu Wei; Gao Wei; Fu Guang-Sheng

    2012-01-01

    The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a good rectifying behavior.The electrical properties of the heterojunction were investigated by means of temperature dependence current density-voltage measurements.The mechanism of the current transport was proposed based on the band structure of the heterojunction.When the applied bias V is lower than 0.15 V,the current follows the Ohmic behavior.When 0.15 V < V < 0.6 V,the transport property is dominated by diffusion or recombination in the junction space charge region,while at higher voltages (V > 0.6 V),the space charge limited effect becomes the main transport mechanism.The current-voltage characteristic under illumination was also investigated.The photovoltage and the short circuit current density of the heterojunction aproached 270 mV and 2.10 mA/cm2,respectively.

  2. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  3. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  4. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  5. Ion beam induced luminescence from diamond using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Jamieson, D. N.; Prawer, S.; Allen, M.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Analysis of the luminescence induced by a MeV ion beam offers the potential to provide useful information about the chemical properties of atoms in crystals to complement the information provided by more traditional Ion Beam Analysis (IBA) such as Rutherford Backscattering Spectrometry (RBS), ion channeling and Particle Induced X-ray Emission (PIXE). Furthermore, the large penetration depth of the MeV ion beam offers several advantages over the relatively shallow penetration of keV electrons typically employed in cathodoluminescence. An Ion Beam Induced Luminescence (IBIL) detection system was developed for the Melbourne microprobe that allows the spatial mapping of the luminescence signal along with the signals from RBS and PIXE. Homoepitaxial diamond growth has been studied and remarkable shifts in the characteristic blue luminescence of diamond towards the green were observed in the overgrowth. This has been tentatively identified as being due to transition metal inclusions in the epitaxial layers. 8 refs., 2 refs.

  6. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  7. Turbulence-induced persistence in laser beam wandering

    CERN Document Server

    Zunino, Luciano; Funes, Gustavo; Pérez, Darío G

    2015-01-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  8. Turbulence-induced persistence in laser beam wandering.

    Science.gov (United States)

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere. PMID:26125388

  9. Current-induced forces: a new mechanism to induce negative differential resistance and current-switching effect in molecular junctions

    Science.gov (United States)

    Gu, Lei; Fu, Hua-Hua

    2015-12-01

    Current-induced forces can excite molecules, polymers and other low-dimensional materials, which in turn leads to an effective gate voltage through Holstein interaction. Here, by taking a short asymmetric DNA junction as an example, and using the Langevin approach, we find that when suppression of charge transport by the effective gate voltage surpasses the current increase from an elevated voltage bias, the current-voltage (I-V) curves display strong negative differential resistance (NDR) and perfect current-switching characteristics. The asymmetric DNA chain differs in mechanical stability under inverse voltages and the I-V curve is asymmetric about inverse biases, which can be used to understand recent transport experiments on DNA chains, and meanwhile provides a new strategy to realize NDR in molecular junctions and other low-dimensional quantum systems.

  10. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    International Nuclear Information System (INIS)

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  11. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    International Nuclear Information System (INIS)

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  12. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lambiase, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sheehy, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pietz, J. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Ackeret, M. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Yeckel, C. [Stangenes Industries, Palo Alto, CA (United States); Miller, R. [Stangenes Industries, Palo Alto, CA (United States); Dobrin, E. [Stangenes Industries, Palo Alto, CA (United States); Thompson, K. [Stangenes Industries, Palo Alto, CA (United States)

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  13. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  14. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  15. Beam induced electron cloud resonances in dipole magnetic fields

    Science.gov (United States)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  16. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  17. Assessment of the tsunami-induced current hazard

    Science.gov (United States)

    Lynett, Patrick J.; Borrero, Jose; Son, Sangyoung; Wilson, Rick; Miller, Kevin

    2014-03-01

    The occurrence of tsunami damage is not limited to events causing coastal inundation. Even without flooding, maritime assets are vulnerable to significant damage from strong currents and associated drag forces. While such impacts have been observed in the past, they have not been well studied in any context. Nearshore tsunami currents are governed by nonlinear and turbulent physics and often have large spatial and temporal variability making high-fidelity modeling particularly challenging. Furthermore, measured data for the validation of numerical simulations is limited, with few quality data sets appearing after recent tsunami events. In this paper, we present a systematic approach for the interpretation of measured tsunami-induced current impacts as well as a validation approach for simulation tools. The methods and results provided here lay the foundation for much needed efforts to assess tsunami hazards in ports and harbors.

  18. Magnon emission and radiation induced by spin-polarized current

    Science.gov (United States)

    Zholud, Andrei; Freeman, Ryan; Cao, Rongxing; Urazhdin, Sergei

    The spin-torque effect due to spin injection into ferromagnets can affect their effective dynamical damping, and modify the magnon populations. The latter leads to the onset of nonlinear damping that can prevent spontaneous current-induced magnetization oscillations. It has been argued that these nonlinear processes can be eliminate by the radiation of magnons excited by local spin injection in extended magnetic films. To test these effects, studied of the effects of spin injection on the magnon populations in nanoscale spin valves and magnetic point contacts. Measurements of the giant magnetoresistance show a significant resistance component that is antisymmetric in current, and linearly dependent on temperature T. This component is significantly larger for the nanopatterned ferromagnets than for point contacts. We interpret our observations in terms of stimulated generation of magnons by the spin current, and their radiation in point contacts. Supported by NSF ECCS-1305586, ECCS-1509794.

  19. Transparency induced by two photon interference in a beam splitter

    Institute of Scientific and Technical Information of China (English)

    Wang Kai-Ge; Yang Guo-Jian

    2004-01-01

    We propose a special two-photon state which is completely transparent in a 50/50 beam splitter. This effect is caused by the destructive two-photon interference and shows the signature of photon entanglement. We find that the symmetry of the two-photon spectrum plays the key role for the properties of two-photon interference.

  20. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    CERN Document Server

    Tahir, Naeem Ahmad; Schmidt, Rudiger; Shutov, A; Wollmann, Daniel; Piriz, A

    2016-01-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80–100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850  km/h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC...

  1. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  2. Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts

    Institute of Scientific and Technical Information of China (English)

    CHEN Sheng-Bing; WEN Ji-Hong; WANG Gang; HAN Xiao-Yun; WEN Xi-Sen

    2011-01-01

    @@ Periodic arrays of shunted piezoelectric patches are employed to control the propagation of elastic waves in phononic beams.Each piezo-patch is connected to a single resistance-inductance-capacitance shunting circuit.Therefore,the resonances of the shunting circuits will produce locally resonant gaps in the phononic beam.However,the existence of locally resonant gaps induced by resonant shunts has not been clearly proved by experiment so far.In this work,the locally resonant gap in a piezo-shunted phononic beam is investigated theoretically and verified by experiment.The results prove that resonances of shunting circuits can produce locally resonant gaps in phononic beams.%Periodic arrays of shunted piezoelectric patches are employed to control the propagation of elastic waves in phononic beams. Each piezo-patch is connected to a single resistance-inductance-capacitance shunting circuit. Therefore, the resonances of the shunting circuits will produce locally resonant gaps in the phononic beam. However, the existence of locally resonant gaps induced by resonant shunts has not been clearly proved by experiment so far. In this work, the locally resonant gap in a piezo-shunted phononic beam is investigated theoretically and verified by experiment. The results prove that resonances of shunting circuits can produce locally resonant gaps in phononic beams.

  3. Acetone and the precursor ligand acetylacetone : distinctly different electron beam induced decomposition?

    NARCIS (Netherlands)

    Warneke, Jonas; Van Dorp, Willem F.; Rudolf, Petra; Stano, Michal; Papp, Peter; Matejcik, Stefan; Borrmann, Tobias; Swiderek, Petra

    2015-01-01

    In focused electron beam induced deposition (FEBID) acetylacetone plays a role as a ligand in metal acetylacetonate complexes. As part of a larger effort to understand the chemical processes in FEBID, the electron-induced reactions of acetylacetone were studied both in condensed layers and in the ga

  4. Electrostatic Matching of a High Current Proton Beam to a RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Hamm, R. W. [R and M Technical Enterprises, 4725 Arlene Pl., Pleasanton CA 94566 (United States); Pearce-Percy, H. [CPAC, 6336B Patterson Pass Road, Livermore, CA 94550 (United States)

    2011-12-13

    In order to demonstrate the operation of a prototype DWA (dielectric wall accelerator), it was necessary to modify the LEBT of a commercially procured proton RFQ (Radio Frequency Quadrupole) injector linac. The relatively high output current (35 mA) of the duoplasmatron ion source at the low injection energy of 35 keV to the RFQ presented a matching problem in the beam transport due to the high space charge, the fixed transport length, and the small beam size required at the RFQ. In addition, only the use of electrostatic lenses was considered in order to minimize the size of the system. The standard AccSys design using one decel-accel einzel lens proved to be insufficient, so three new solutions were proposed, each using a pair of decelerating einzel lenses. The tool used to optimize these designs was a newly developed feature of the program IGUN. The RFQ acceptance ellipse is plotted on top of the phase space data of the transport calculation together with an ellipse with the same Twiss parameters which just encloses all the trajectories. The quality of matching is then given as the ratio of the areas of these two ellipses, making optimization easy. This paper will present the results of this optimization and the performance of the actual equipment built and tested.

  5. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  6. Zeeman polarimetry measurement for edge current density determination using Li-beam probe on JT-60U

    International Nuclear Information System (INIS)

    Zeeman polarimetry system using Li-beam probe has been developed for the edge current density measurement in the JT-60U tokamak, which measures the polarization angle α (related to the pitch angle of the magnetic field) by means of photoelastic modulators, etalons, and phase sensitive detection using digital lock-in amplifiers with the accuracy in the α of Δα∼0.1 deg. The diagnostic has 20-channel viewing chords covering the plasma peripheral region of normalized minor radius r/a∼0.8-1 with a spatial resolution of up to ∼1 cm. Li-beam injection with beam current of up to ∼5 mA has been achieved. A new tuning method of the wavelength for the etalon has been demonstrated, scanning the beam acceleration voltage and keeping a beam current constant during a single shot. The peak wavelength of the etalon is adjusted in the direction to both blue- and redshifts by changing the angle of incidence and increasing the temperature, respectively. Time evolution of the edge current density profile has been determined for the current ramp experiment in the Ohmically heated discharges. In addition, the edge current density profile with the local peak of jped∼0.15-0.25 MA/m2 at r/a∼0.9 has been identified in the H-mode plasma, which is correlated with large pressure gradient in the pedestal region.

  7. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A' aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  8. Effect of longitudinal applied magnetic field on the self-pinched critical current in intense electron beam diode

    Institute of Scientific and Technical Information of China (English)

    Liu Guo-Zhi; Huang Wen-Hua; Shao Hao; Xiao Ren-Zhen

    2006-01-01

    The effect of applied longitudinal magnetic field on the self-pinched critical current in the intense electron beam diode is discussed. The self-pinched critical current is derived and its validity is tested by numerical simulations. The results shows that an applied longitudinal magnetic field tends to increase the self-pinched critical current. Without the effect of anode plasma, the maximal diode current approximately equals the self-pinched critical current with the longitudinal magnetic field applied; when self-pinched occurs, the diode current approaches the self-pinched critical current.

  9. Current status of dental caries diagnosis using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Seok; Ahn, Jin Soo; Kwon, Ho Beom; Lee, Seung Pyo [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2011-06-15

    The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). An online PubMed search was performed to identify studies on caries research using CBCT. Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future.

  10. High current ion beam generation by nonlinear ponderomotive force of high intensity UV laser

    International Nuclear Information System (INIS)

    Using the anomaly at plasma interaction of petawatt-picosecond laser pulses with very high contrast ratio to generate plane geometry highly directed plasma blocks for laser fusion, the details of the block generation were studied. The aim was to produce plasma blocks with dielectrically generated highest possible initial thicknesses. One of the goals in laser-plasma interaction studies is to convert as much laser energy as possible into energetic particles. Most laser ion accelerations have only been done using infrared lasers. In this work, dependency of the laser energy absorption to laser wave-Length for a given laser intensity is investigated numerically. High intensity UV laser absorption by Raleigh plasma density is examined. High current ion beams generated by nonlinear ponderomotive force of intense UV laser with Hydrodynamics computation based on a genuine two-fluid code are presented. (author)

  11. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    Science.gov (United States)

    Czelusniak, C.; Palla, L.; Massi, M.; Carraresi, L.; Giuntini, L.; Re, A.; Lo Giudice, A.; Pratesi, G.; Mazzinghi, A.; Ruberto, C.; Castelli, L.; Fedi, M. E.; Liccioli, L.; Gueli, A.; Mandò, P. A.; Taccetti, F.

    2016-03-01

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  12. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  13. Stability of a current carrying single nanowire of tungsten (W) deposited by focused ion beam

    Science.gov (United States)

    Mandal, Pabitra; Das, Bipul; Raychaudhuri, A. K.

    2016-02-01

    We report an investigation on the stability of single W nanowire (NW) under direct current stressing. The NW of width ≈ 80 nm and thickness ≈ 100 nm was deposited on a SiO2/Si substrate by Focused Ion Beam (FIB) of Ga ions using W(CO)6 as a precursor. Such nanowires, used as interconnects in nanoelectronics, contain C and Ga in addition to W. The stability studies, done for the first time in such FIB deposited NWs, show that under current stressing these NWs behave very differently from that observed in conventional metal NWs or interconnects. The failure of such FIB deposited NW occurs at a relatively low current density (˜1011 A/m2) which is an order or more less than that seen in conventional metal NWs. The failure accompanies with formation of voids and hillocks, suggesting ionic migration as the cause of failure. However, the polarities of void and hillock formations are opposite to those observed in conventional metal interconnects. This observation along with preferential agglomeration of Ga ions in hillocks suggests that the ionic migration in such NWs is dominated by direct force as opposed to the migration driven by electron wind force in conventional metal interconnects.

  14. The current status of cone beam computed tomography imaging in orthodontics.

    Science.gov (United States)

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations.

  15. In situ observation of electron-beam-induced dewetting of CdSe thin film embedded in SiO2

    DEFF Research Database (Denmark)

    Fabrim, Zacarias Eduardo; Kjelstrup-Hansen, Jakob; Fichtner, Paulo F. P.

    In this work we show the dewetting process of the CdSe thin films induced by electron beam irradiation. A multilayer heterostructure of SiO2/CdSe/SiO2 was made by a magnetron sputtering process. A plan-view (PV) sample was irradiated with 200 kV electrons in the TEM with two current densities: 0...

  16. Survey of Induced Voltage and Current Phenomena in GIS Substation

    OpenAIRE

    Seyed Mohammad Hassan Hosseini; Hamed Imani; Ghasem Nourirad

    2014-01-01

    Induced capacitive voltage and current in high voltage GIS substation is one of the most significant phenomena that may have made some problems in this substation operation. At this study the various equipment of 420 KV Karoon4 substations such as powerhouses, input and output lines, bus-bar and bus-duct have simulated by applying EMTP-RV software. Then with the different condition of single-phase and three-phase faults on the lines in critical conditions, capacitive induction voltage and cur...

  17. Beam Matching Study of High Current Proton Accelerator%强流质子加速器束流匹配研究

    Institute of Scientific and Technical Information of China (English)

    刘晓英; 李宏昭; 马晓燕; 傅世年

    2009-01-01

    A high current proton accelerator requires very low beam losses in order to minimize the induced radioactivity to an acceptable level. Beam matching between the different accelerator sections is one of the key points to reduce the beam losses and emittance growth. A matching design study has been performed for the beam lines between the different types of normalconducting accelerating structures. In this paper, we will present the beamline design by TRACE3D code and multiparticle simulations of the beam behavior in different matching conditions. The results show that the beam halo and emittance growth have been well controlled with the matched design of the beam lines in both transversal and longitudinal directions.%为了使感生放射性降低到可以接受的水平,强流质子加速器必须减少束流损失.不同加速段间的束流匹配是减少束流损失和发射度增长的关键之一.研究了一台常温加速结构不同段间的束流传输线的匹配设计问题.采用TRACE3-D软件以及其他多粒子模拟软件,研究了在不同匹配状态下的束流特性.结果表明,设计所采用的横向和纵向匹配手段,能够有效地控制束晕产生和束流发射度的增长.

  18. Fermionic Schwinger effect and induced current in de Sitter space

    Science.gov (United States)

    Hayashinaka, Takahiro; Fujita, Tomohiro; Yokoyama, Jun'ichi

    2016-07-01

    We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 de Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.

  19. Fermionic Schwinger effect and induced current in de Sitter space

    CERN Document Server

    Hayashinaka, Takahiro; Yokoyama, Jun'ichi

    2016-01-01

    We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 de Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.

  20. Formation of Nulls in Vector Beam Patterns of Monopulse Arrays of Rectangular Waveguides by Correcting Currents in Some Array Elements

    Science.gov (United States)

    Manuilov, B. D.; Bashly, P. N.; Klimukhin, D. V.

    2003-12-01

    In this paper, we consider a method for null synthesis in the vector sum and difference beam patterns of a monopulse array of rectangular waveguides. The synthesis of nulls is reached due to variation of complex currents in some elements. The proposed method eliminates shifts of the primary maximum and the nulls of the sum and difference beam patterns, respectively, of a monopulse array. Numerical studies confirming the efficiency of the proposed method are described.

  1. Radiation hardness of polysiloxane scintillators analyzed by ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A., E-mail: quaranta@ing.unitn.i [University of Trento, Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali - DIMTI, Via Mesiano 77, I-38050 Povo, Trento (Italy); INFN, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Universita di Padova, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Marchi, T.; Antonaci, A. [INFN, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Scian, C. [Universita di Padova, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Kravchuk, V.L. [Universita di Bologna, Dipartimento di Fisica, Viale Carlo Berti Pichat 6, I-40127 Bologna (Italy); Degerlier, M.; Gramegna, F. [INFN, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Maggioni, G. [Universita di Padova, Laboratori Nazionali di Legnaro, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy)

    2010-10-01

    The radiation hardness of polysiloxane based scintillators has been measured by ion beam induced luminescence (IBIL). The light intensity as a function of the irradiation fluence with an He{sup +} beam at 1.8 MeV (1.0 {mu}A/cm{sup 2}) has been measured on undoped polymers synthesized with different amounts of phenyl units and on polysiloxanes doped with two different dye molecules (BBOT and Lumogen Violet) sensitizing the scintillation yield.

  2. Current-induced skyrmion dynamics in constricted geometries.

    Science.gov (United States)

    Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto

    2013-10-01

    Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers. PMID:24013132

  3. Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators

    CERN Document Server

    Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

    2009-01-01

    In the beam pipe of high-energy proton or positron accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential “magnetron effect” has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

  4. Control of optically induced currents in semiconductor crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Kapil Kumar

    2010-06-01

    The generation and control of optically induced currents has the potential to become an important building block for optical computers. Here, shift and rectification currents are investigated that emerge from a divergence of the optical susceptibility. It is known that these currents react to the shape of the impinging laser pulse, and especially to the shape of the pulse envelope. The main goal is the systematic manipulation of the pulse envelope with an optical pulse shaper that is integrated into a standard THz emission setup. The initial approach, the chirping of the laser pulse only has a weak influence on the envelope and the currents. Instead, a second approach is suggested that uses the combined envelope of a phase-stable pulse-pair as a parameter. In a laser pulse, the position of the maxima of the electrical field and the pulse envelope are shifted relative to each other. This shift is known as the Carrier-Envelope Phase (CEP). It is a new degree of freedom that is usually only accessible in specially stabilized systems. It is shown, that in a phase-stable pulse-pair, at least the relative CEP is usable as a new degree of freedom. It has a great influence on the shape of the pulse envelope and thus on the current density. It is shown that this approach enables the coherent control of the current density. The experiments are corroborated by a theoretical model of the system. The potential of this approach is demonstrated in an application. A framework is presented that uses an iterative genetic algorithm to create arbitrarily shaped THz traces. The algorithm controls the optical pulse shaper, and varies the phase of the impinging laser pulses until the desired target trace is found. (orig.)

  5. Extrinsic Influence of Environment-Induced Degradation on Load Carrying Capacity of Steel Beams

    Science.gov (United States)

    Gowda, Sunil; Patnaik, A.; Payer, J.; Srivatsan, T. S.

    2015-11-01

    In this paper, the results of a study aimed at evaluating the strength of wide-flanged beams subjected to corrosion-induced damage, modeled using a standard finite element program (ABAQUS) is presented and discussed. Typical beams in consideration were subjected to different cases of corrosion-induced damage, such as non-uniform and varying degree of material loss that simulates pitting corrosion. Many variables, such as (a) shape of pitting damage, (b) location of pits along the length of the beam, (c) number of pits, and (d) depth of pits, were considered to facilitate a better understanding of the load carrying capacity of steel I-beams having damage quite similar to pitting damage to the web. The results are compared with an "as-new" beam for purpose of evaluation of the reduction in strength due to environment-induced deterioration. A "corrosion strength reduction factor (CSRF)" is introduced to help identify the reduction in load carrying capacity as a consequence of both height and depth of the damage due to corrosion. The results are presented in charts for purpose of practical beam design.

  6. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  7. Photo-induced dipole relaxation current in natural Amethyst

    Directory of Open Access Journals (Sweden)

    Fabricio Trombini Russo

    2012-06-01

    Full Text Available Thermally stimulated depolarization current (TSDC measurements were carried out for SiO2 in the amethyst form, aiming to investigate the relationship of observed current with relaxation phenomena related to quartz impurities. In addition to TSDC conventional dark procedure, photo-induced TSDC was also carried out, where the exciting light came from an Ar+ laser, tuned either at 488 nm or at 541 nm. X-ray diffraction and optical absorption measurements were used as complement for the interpretation of TSDC data. Optical absorption data, mainly in the range 400-700 nm, allow identifying the characteristic bands of amethyst as well as to relate them with TSDC and photo-induced TSDC data, leading to a relationship between absorption bands and light irradiation with selected wavelengths. These results allow determining how the formation of a TSDC band in the range 220-260 K, is affected by the light absorption, modifying the formation and the dipole orientation distribution in the samples. Results also help the verification of defects formed by Fe3+ or Fe4+ ions in the amethyst structure, as well as suggest that these defects, besides the participation in the amethyst structure as color centers, also play a role in the formation of TSDC bands, contributing for the observed effect of monochromatic light irradiation on these bands.

  8. On compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Wang, G.

    2014-05-09

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  9. Experimental research of different plasma cathodes for generation of high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Shafir, G.; Kreif, M.; Gleizer, J. Z.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Gunin, A. V.; Kutenkov, O. P.; Rostov, V. V. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Pegel, I. V. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Tomsk Polytechnic University, Tomsk 634034 (Russian Federation)

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods and carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.

  10. Experimental research of different plasma cathodes for generation of high-current electron beams

    International Nuclear Information System (INIS)

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods and carbon-epoxy capillaries operating with an average current density up to 1 kA/cm2 showed insignificant erosion along 106 pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform

  11. Production of high current proton beams using complex H-rich molecules at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany)

    2016-02-15

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  12. Production of high current proton beams using complex H-rich molecules at GSI

    Science.gov (United States)

    Adonin, A.; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A.

    2016-02-01

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH3+,C2H4+,C3H7+) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  13. Ragweed-induced allergic rhinoconjunctivitis: current and emerging treatment options

    Directory of Open Access Journals (Sweden)

    Ihler F

    2015-02-01

    Full Text Available Friedrich Ihler, Martin CanisDepartment of Otorhinolaryngology, University Medical Center Göttingen, Göttingen, GermanyAbstract: Ragweed (Ambrosia spp. is an annually flowering plant whose pollen bears high allergenic potential. Ragweed-induced allergic rhinoconjunctivitis has long been seen as a major immunologic condition in Northern America with high exposure and sensitization rates in the general population. The invasive occurrence of ragweed (A. artemisiifolia poses an increasing challenge to public health in Europe and Asia as well. Possible explanations for its worldwide spread are climate change and urbanization, as well as pollen transport over long distances by globalized traffic and winds. Due to the increasing disease burden worldwide, and to the lack of a current and comprehensive overview, this study aims to review the current and emerging treatment options for ragweed-induced rhinoconjunctivitis. Sound clinical evidence is present for the symptomatic treatment of ragweed-induced allergic rhinoconjunctivitis with oral third-generation H1-antihistamines and leukotriene antagonists. The topical application of glucocorticoids has also been efficient in randomized controlled clinical trials. Combined approaches employing multiple agents are common. The mainstay of causal treatment to date, especially in Northern America, is subcutaneous immunotherapy with the focus on the major allergen, Amb a 1. Beyond this, growing evidence from several geographical regions documents the benefit of sublingual immunotherapy. Future treatment options promise more specific symptomatic treatment and fewer side effects during causal therapy. Novel antihistamines for symptomatic treatment are aimed at the histamine H3-receptor. New adjuvants with toll-like receptor 4 activity or the application of the monoclonal anti-immunoglobulin E antibody, omalizumab, are supposed to enhance conventional immunotherapy. An approach targeting toll-like receptor 9 by

  14. Ragweed-induced allergic rhinoconjunctivitis: current and emerging treatment options.

    Science.gov (United States)

    Ihler, Friedrich; Canis, Martin

    2015-01-01

    Ragweed (Ambrosia spp.) is an annually flowering plant whose pollen bears high allergenic potential. Ragweed-induced allergic rhinoconjunctivitis has long been seen as a major immunologic condition in Northern America with high exposure and sensitization rates in the general population. The invasive occurrence of ragweed (A. artemisiifolia) poses an increasing challenge to public health in Europe and Asia as well. Possible explanations for its worldwide spread are climate change and urbanization, as well as pollen transport over long distances by globalized traffic and winds. Due to the increasing disease burden worldwide, and to the lack of a current and comprehensive overview, this study aims to review the current and emerging treatment options for ragweed-induced rhinoconjunctivitis. Sound clinical evidence is present for the symptomatic treatment of ragweed-induced allergic rhinoconjunctivitis with oral third-generation H1-antihistamines and leukotriene antagonists. The topical application of glucocorticoids has also been efficient in randomized controlled clinical trials. Combined approaches employing multiple agents are common. The mainstay of causal treatment to date, especially in Northern America, is subcutaneous immunotherapy with the focus on the major allergen, Amb a 1. Beyond this, growing evidence from several geographical regions documents the benefit of sublingual immunotherapy. Future treatment options promise more specific symptomatic treatment and fewer side effects during causal therapy. Novel antihistamines for symptomatic treatment are aimed at the histamine H3-receptor. New adjuvants with toll-like receptor 4 activity or the application of the monoclonal anti-immunoglobulin E antibody, omalizumab, are supposed to enhance conventional immunotherapy. An approach targeting toll-like receptor 9 by synthetic cytosine phosphate-guanosine oligodeoxynucleotides promises a new treatment paradigm that aims to modulate the immune response, but it has

  15. Structure and properties of combined protective coatings with use high-current electron beam irradiation

    International Nuclear Information System (INIS)

    Full text: Improvement of superficial materials and products is the important task. The high-efficiency vacuum - arc sources created recently open more ample opportunities for change of properties of a surface of metal materials. Now there is a number of known technologies on drawing coverings for updating a surface of working parts of metals. Today the protecting coatings, which were deposited on tools applied in electrochemical and chemical devices, acquired a great interest. It is known that some kinds of treatment, such as, for example, ion implantation, ion-assisted deposition of thin films, electron beam irradiation, CVD, PVD, etc. cannot result directly in desired effect. Therefore to resolve some application problems, one has to use combined methods of treatment, which allow one to resolve complicated serious problems of material science and industrial fields, for example, in space, automobile, aviation, ship building, etc. So, the goal of this work was to study the structure, element composition and properties of hybrid coatings on TiNi/Cr/Al2O3 and TiN/Al2O3 base, which were deposited on AISI 321 stainless steel before and after electron beam irradiation. A special attention was paid to studies of diffusion and mass-transfer processes. We applied XRD, RBS, AES, SEM with micro-analysis as well as corrosion in sulfur acid, adhesion and hardness tests. It had been demonstrated that these coatings were able to perform different functions as protecting coatings. Tests of TiN/Al2O3 and TiN/Cr/Al2O3 coatings, which were deposited on AISI 321 steel, after high-current electron beam irradiation demonstrated significant increase in corrosion resistance in H2SO4 solution under 4000C temperature. Hardness and adhesion of these coatings to substrate increased, and significant decrease in friction wear of coating surfaces was found. In such a way, in this report it was demonstrated that hybrid coatings on TiN/Cr/Al2O3 and TiN/Al2O3 base after HCEB irradiation under

  16. Quantum Interference of Multiple Beams Induced by Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter

    2011-01-01

    We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging.......We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging....

  17. The transverse shift of a high order paraxial vortex-beam induced by a homogeneous anisotropic medium

    CERN Document Server

    Fadeyeva, T A; Volyar, A V

    2008-01-01

    We consider the propagation of a tilted high order paraxial vortex-beam through a homogeneous anisotropic medium of a uniaxial crystal. We found that the initially circularly polarized beam bearing the l-order optical vortex splits into ordinary and extraordinary beams with a complex vortex structure. After a series of dislocation reactions the vortices gather together at the axis of the partial beam with the initial circular polarization shaping the l-order optical vortex. However, only l-1 vortices gather together on the axis of the partial beam with the orthogonal circular polarization. One optical vortex is shifted along the direction perpendicular to the inclination plane of the beam. Such a vortex displacement induces the transverse shift of the partial beam. In fact, we deal with the beam quadrefringence in a uniaxial, homogeneous anisotropic medium. The first two beams is a result of the splitting of the initial tilted beam into the ordinary and extraordinary once.

  18. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  19. Transition from Beam-Target to Thermonuclear Fusion in High-Current Deuterium Z -Pinch Simulations

    Science.gov (United States)

    Offermann, Dustin T.; Welch, Dale R.; Rose, Dave V.; Thoma, Carsten; Clark, Robert E.; Mostrom, Chris B.; Schmidt, Andrea E. W.; Link, Anthony J.

    2016-05-01

    Fusion yields from dense, Z -pinch plasmas are known to scale with the drive current, which is favorable for many potential applications. Decades of experimental studies, however, show an unexplained drop in yield for currents above a few mega-ampere (MA). In this work, simulations of DD Z -Pinch plasmas have been performed in 1D and 2D for a constant pinch time and initial radius using the code Lsp, and observations of a shift in scaling are presented. The results show that yields below 3 MA are enhanced relative to pure thermonuclear scaling by beamlike particles accelerated in the Rayleigh-Taylor induced electric fields, while yields above 3 MA are reduced because of energy lost by the instability and the inability of the beamlike ions to enter the pinch region.

  20. Halo Evolution of Hypereutectic Al-17.5Si Alloy Treated with High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    L. Hu

    2015-01-01

    Full Text Available Halo evolution of an Al-17.5Si alloy surface after treatment with increasing pulse numbers of a high-current pulsed electron beam (HCPEB was investigated. A halo is a ring microstructure resembling a bull’s eye. SEM results indicate that the nanocrystallization of halo induced by HCPEB treatment leads to gradual diffusion of the Si phase. Multiple pulses numbers cause the Si phase to be significantly refined and uniformly distributed. In addition, nanosilicon particles with a grain size of 30~100 nm were formed after HCPEB treatment, as shown by TEM observation. XRD results indicate that Si diffraction peaks broadened after HCPEB treatment. The microhardness tests demonstrate that the microhardness at the midpoint from the halo edge to center decreased sharply from 9770.7 MPa at 5 pulses to 2664.14 MPa at 25 pulses. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 6.5, exhibiting optimal wear resistance.

  1. Current-induced motion in a skyrmion lattice

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J. C., E-mail: elejcm@nus.edu.sg; Jalil, M. B. A. [Computational Nanoelectronics and Nano-device Laboratory, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2015-05-07

    For a skyrmion lattice phase of chiral magnets, we compare predictions of the Landau-Lifshitz-Gilbert (LLG) and Thiele equations for the current-induced drift velocity for a given constant spin velocity. Instead of integrating the equations over a unit cell, we only perform an angle average, while retaining information on the radial dependence of velocity within the skyrmion. Since the skyrmion-lattice dynamics draws from magnetostatic, chiral, and exchange forces, we find that different scales are involved for the m = −1 and m = −2 skyrmions, a fact that might be useful in “tuning” scales of the drift velocity. We note that the Thiele equation yields less information than the LLG equation and explain why the translation mode has not yet been observed.

  2. Current-induced enhancement of DNA bubble creation

    Science.gov (United States)

    Gu, Lei; Fu, Hua-Hua

    2016-05-01

    Current-induced heating of short double-stranded DNA chains is studied within a two-probe transport setup by using the Langevin approach. The electrons are modeled by a tight-binding Hamiltonian. The DNA atomic motion is described by the Peyrard–Bishop–Dauxois atomic potential, coupled with electrons through the Holstein interaction. The solvent environment is accounted for as a classical heat bath. Voltage biases of 0.1∼ 0.5 {{V}} can effectively break the base pairs and lead to the melting transition, which can be detected from the resulting significant reduction of the conductance. When the bias increases, the opening of base pairs near the leads with higher chemical potential is suppressed and bubble (localized separation of the double strand) formation becomes asymmetric. Our results suggest that the voltage bias can excite the base pairs, hence increases the chemical activity of DNA.

  3. Similarities between proton and neutron induced dark current distribution in CMOS image sensors

    International Nuclear Information System (INIS)

    Several CMOS image sensors were exposed to neutron or proton beams (displacement damage dose range from 4 TeV/g to 1825 TeV/g) and their radiation-induced dark current distributions are compared. It appears that for a given displacement damage dose, the hot pixel tail distributions are very similar, if normalized properly. This behavior is observed on all the tested CIS designs (4 designs, 2 technologies) and all the tested particles (protons from 50 MeV to 500 MeV and neutrons from 14 MeV to 22 MeV). Thanks to this result, all the dark current distribution presented in this paper can be fitted by a simple model with a unique set of two factors (not varying from one experimental condition to another). The proposed normalization method of the dark current histogram can be used to compare any dark current distribution to the distributions observed in this work. This paper suggests that this model could be applied to other devices and/or irradiation conditions.

  4. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals

    Science.gov (United States)

    Sarkar, Rohit; Rentenberger, Christian; Rajagopalan, Jagannathan

    2015-11-01

    A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80-400 nanometers) and grain sizes (50-220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts.

  5. Low level RF systems for synchrotrons part II: High Intensity. Compensation of the beam induced effects

    CERN Document Server

    Baudrenghien, P

    2005-01-01

    The high intensity regime is reached when the voltage induced by the beam in the RF cavities is of an amplitude comparable to the desired accelerating voltage. In steady state this beam loading can be compensated by providing extra RF power. Transient beam loading occurs at injection or in the presence of a beam intensity that is not uniform around the ring. The transients are periodic at the revolution frequency. Without correction transient beam loading can be very harmful: The stable phase and bucket area will not be equal for all bunches. Strong beam loading often goes in pair with longitudinal instabilities because the RF cavities are a large contributor to the total ring impedance. The low level systems that reduce the effect of the transient beam loading will also increase the threshold intensity of the longitudinal instability caused by the cavity impedance at the fundamental RF frequency. Four classic methods are presented here: Feedforward, RF feedback, long delay feedback and bunch by bunch feedbac...

  6. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    Science.gov (United States)

    Hao, Y.; Gao, B.; Tu, G. F.; Li, S. W.; Dong, C.; Zhang, Z. G.

    2011-07-01

    A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special "halo" microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the "halo" microstructure is distributed continuously from the center to the edge of the "halo". Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 μm (5 pulses) to 5.6 μm (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  7. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Science.gov (United States)

    Yang, Shen; Cai, Jie; Lv, Peng; Zhang, Conglin; Huang, Wei; Guan, Qingfeng

    2015-09-01

    The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO3 solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  8. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  9. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  10. Assessment of Nearshore Hazard due to Tsunami-Induced Currents

    Science.gov (United States)

    Lynett, P. J.; Ayca, A.; Borrero, J. C.; Eskijian, M.; Miller, K.; Wilson, R. I.

    2014-12-01

    The California Tsunami Program in cooperation with NOAA and FEMA has begun implementing a plan to increase tsunami hazard preparedness and mitigation in maritime communities (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education program will help save lives and reduce exposure of damage to boats and harbor infrastructure. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. The initial goals of the study are to (1) evaluate the effectiveness and sensitivity of existing numerical models for assessing maritime tsunami hazards, (2) find a relationship between current speeds and expected damage levels, (3) evaluate California ports and harbors in terms of tsunami induced hazards by identifying regions that are prone to higher current speeds and damage and to identify regions of relatively lower impact that may be used for evacuation of maritime assets, and (4) determine 'safe depths' for evacuation of vessels from ports and harbors during a tsunami event. We will present details of a new initiative to evaluate the future likelihood of failure for different structural components of a harbor, leading to the identification of high priority areas for mitigation. This presentation will focus on the results from California ports and harbors across the State, and will include feedback we have received from discussions with local harbor masters and port authorities. To help promote accurate and consistent products, the authors are also working through the National Tsunami Hazard Mitigation Program to organize a tsunami current model benchmark workshop.

  11. Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective

    NARCIS (Netherlands)

    Botman, A.; Mulders, J.J.L.; Hagen, C.W.

    2009-01-01

    The creation of functional nanostructures by electron-beam-induced deposition (EBID) is becoming more widespread. The benefits of the technology include fast ‘point-and-shoot’ creation of three-dimensional nanostructures at predefined locations directly within a scanning electron microscope. One sig

  12. Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair

    NARCIS (Netherlands)

    Gonzalez, Carlos M.; Timilsina, Rajendra; Li, Guoliang; Duscher, Gerd; Rack, Philip D.; Slingenbergh, Winand; van Dorp, Willem F.; De Hosson, Jeff T. M.; Klein, Kate L.; Wu, Huimeng M.; Stern, Lewis A.

    2014-01-01

    The gas field ion microscope was used to investigate helium and neon ion beam induced etching of nickel as a candidate technique for extreme ultraviolet (EUV) lithography mask editing. No discernable nickel etching was observed for room temperature helium exposures at 16 and 30 keV in the dose range

  13. Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition

    NARCIS (Netherlands)

    Botman, A.; Hesselberth, M.; Mulders, J.J.L.

    2008-01-01

    Focused electron-beam-induced deposition (EBID) allows the rapid fabrication of three-dimensional nanodevices and metallic wiring of nanostructures, and is a promising technique for many applications in nanoresearch. The authors present two topics on platinum-containing nanostructures created by EBI

  14. Electron beam induced oxidation of Ni3Al surfaces : electron flux effects

    NARCIS (Netherlands)

    Koch, S.A.; Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam irradiation of polycrystalline boron doped Ni3Al (at 300 K and under ultrahigh vacuum conditions) induces fast oxidation. The rate and depth of oxidation initially increase with increasing electron flux as indicated by results from Auger electron spectroscopy. Curves of oxygen developm

  15. Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition

    NARCIS (Netherlands)

    Chen, P.

    2010-01-01

    The direct writing technology known as ion-beam-induced deposition (IBID) has been attracting attention mainly because of its high degree of flexibility of locally prototyping three-dimensional (3D) nanostructures. These high-resolution nanostructures have various research applications. However, no

  16. Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam

    NARCIS (Netherlands)

    Mollema, A. K.; Wansbeek, L. W.; Willmann, L.; Jungmann, K.; Timmermans, R. G. E.; Hoekstra, R.

    2008-01-01

    We demonstrate a spectroscopy method that can be applied in an atomic beam, light-pressure-induced spectroscopy (LiPS). A simple pump and probe experiment yields a dispersivelike spectroscopy signal that can be utilized for laser frequency stabilization. The underlying principles are discussed and c

  17. Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052

    Institute of Scientific and Technical Information of China (English)

    Li Yongqiang; Zhao Xihua; Zhao He; Cao Haipeng; Zhao Huanling

    2008-01-01

    The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding(LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0.8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.

  18. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams

    Science.gov (United States)

    Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander

    2008-02-01

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.

  19. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hramov, Alexander [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)], E-mail: aeh@nonlin.sgu.ru; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)

    2008-02-04

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.

  20. Approximations in fusion and breakup reactions induced by radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, W.H.Z.; Carlin Filho, N.; Hussein, M.S. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Canto, L.F.; Donangelo, R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Lubian, J. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica; Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Romanelli, A. [Facultad de Ingenieria, Montevideo (Uruguay). Inst. de Fisica

    2000-07-01

    Some commonly used approximations for complete fusion and breakup transmission coefficients in collisions of weakly bound projectiles at near barrier energies are assessed. We show that they strongly depend on the adopted classical trajectory and can be significantly improved with proper treatment of the incident and emergent currents in the WKB approximation. (author)

  1. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    OpenAIRE

    Kurimoto, Y; Alcaraz-Aunion, J. L.; Brice, S J; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; C. Giganti; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current cohere...

  2. An improved pulse-line accelerator-driven, intense current-density, and high-brightness pseudospark electron beam

    International Nuclear Information System (INIS)

    A high-voltage (200 kV), high current-density, low-emittance (23 π·mm mrd), high-brightness (8 x 1010 A/(mrd)2) electron beam was generated in a pseudospark chamber filled with 15 Pa nitrogen and driven by a modified pulse line accelerator. The beam ejected with ≤1-mm diameter, 2.2-kA beam current, 400-ns pulse length, and about 20 cm propagation distance. Exposure of 10 shots on the same film produced a hole of 1.6-mm diameter at 7 cm downstream of the anode, and showed its good reproducibility. After 60 shots, it was observed that almost no destructive damage traces were left on the surfaces of the various electrodes and insulators of the pseudospark discharge chamber. It was experimentally found that the quality of the pseudospark electron beam remains very high, even at high voltages (of several hundred kilovolts), similar to low voltages, and is much better than the quality of the cold-cathode electron beams

  3. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  4. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor

    Science.gov (United States)

    Donev, Eugenii U.; Schardein, Gregory; Wright, John C.; Hastings, J. Todd

    2011-07-01

    Focused electron-beam-induced deposition using bulk liquid precursors (LP-EBID) is a new nanofabrication technique developed in the last two years as an alternative to conventional EBID, which utilizes cumbersome gaseous precursors. Furthermore, LP-EBID using dilute aqueous precursors has been demonstrated to yield platinum (Pt) nanostructures with as-deposited metal content that is substantially higher than the purity achieved by EBID with currently available gaseous precursors. This advantage of LP-EBID--along with the ease of use, low cost, and relative innocuousness of the liquid precursors--holds promise for its practical applicability in areas such as rapid device prototyping and lithographic mask repair. One of the feasibility benchmarks for the LP-EBID method is the ability to deposit high-fidelity nanostructures on various substrate materials. In this study, we report the first observations of performing LP-EBID on bare and metal-coated silicon-nitride membranes, and compare the resulting Pt deposits to those obtained by LP-EBID on polyimide membranes in terms of nucleation, morphology, size dependence on electron dose, and purity.

  5. Methods of optimising ion beam induced charge collection of polycrystalline silicon photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Witham, L.C.G.; Jamieson, D.N.; Bardos, R.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics, Microanalytical Research Centre

    1998-06-01

    Ion Beam Induced Charge (IBIC) is a valuable method for the mapping of charge carrier transport and recombination in silicon solar cells. However performing IBIC analysis of polycrystalline silicon solar cells is problematic in a manner unlike previous uses of IBIC on silicon-based electronic devices. Typical solar cells have a surface area of several square centimeters and a p-n junction thickness of only few microns. This means the cell has a large junction capacitance in the many nanoFarads range which leads to a large amount of noise on the preamplifier inputs which typically swamps the transient IBIC signal. The normal method of improving the signal-to-noise (S/N) ratio by biasing the junction is impractical for these cells as the low-quality silicon used leads to a large leakage current across the device. We present several experimental techniques which improve the S/N ratio which when used together should make IBIC analysis of many low crystalline quality devices a viable and reliable procedure. (authors). Extended abstract. 4 refs., 2 figs.

  6. Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [Univ. of New Mexico, Albuquerque, NM (United States); Lau, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Heinemann, Klaus [Univ. of New Mexico, Albuquerque, NM (United States); Bizzozero, David [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-03-12

    Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused

  7. High-current CW beam profile monitors using transition radiation at CEBAF

    Science.gov (United States)

    Piot, P.; Denard, J.-C.; Adderley, P.; Capek, K.; Feldl, E.

    1997-01-01

    One way of measuring the profile of CEBAF's low-emittance, high-power beam is to use the optical transition radiation (OTR) emitted from a thin foil surface when the electron beam passes through it. We present the design of a monitor using the forward OTR emitted from a 0.25-μm carbon foil. We believe that the monitor will resolve three main issues: i) whether the maximum temperature of the foil stays below the melting point, ii) whether the beam loss remains below 0.5%, in order not to trigger the machine protection system, and iii) whether the monitor resolution (unlike that of synchrotron radiation monitors) is better than the product λγ. It seems that the most serious limitation for CEBAF is the beam loss due to beam scattering. We present results from Keil's theory and simulations from the computer code GEANT as well as measurements with aluminum foils with a 45-MeV electron beam. We also present a measurement of a 3.2-GeV beam profile that is much smaller than λγ, supporting Rule and Fiorito's calculations of the OTR resolution limit due to diffraction.

  8. Ion beam induced luminescence of germano-silicate optical fiber preform

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyunkyu; Kim, Jongyeol; Lee, Namho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Youngwoong; Han, Wontaek [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Markovic, Nikola; Jaksic, Milko [Ruder Boskovic Institute, Zagred (Croatia)

    2014-05-15

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives.

  9. Ion beam induced luminescence of germano-silicate optical fiber preform

    International Nuclear Information System (INIS)

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives

  10. Evaluation of source term induced by beam loss in the superconducting linear accelerator at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kim, Su Na; Nam, Shin Woo; Chung, Yon Sei [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2014-11-15

    As a new world-class heavy ion accelerator, RAON is able to accelerate heavy ions from proton to uranium with the energy up to -400 MeV/u and produce rare isotopes. These high purity, high intensity, and high energy beams generate the various secondary radiation which will impact on the shielding aspects of the main linear accelerator tunnels. In the main tunnel the secondary neutrons are produced by uniform beam-loss or accident criteria. In this paper evaluations of several source terms induced by beam-loss will be discussed along with the physics model of the Monte Carlo simulation codes. The beam-loss criteria were tested for the evaluation of source term for the main beam line tunnel of the RAON accelerator. It was found that the amount of the secondary neutrons depends on the incident angle of projectile on the beam pipe and the mass and energy of projectile. The influence of selected physics models and libraries of MCNPX and PHITS has been examined. The secondary neutrons were produced most in the CEM and LAQGSM model.

  11. High-current relativistic electron beam shaping in a coaxial diode with magnetic insulation

    International Nuclear Information System (INIS)

    Solution of the problem of relativistic electron beam (REB) for the system with a constant transverse cross-section and thin-wall tubular cathode in an arbitrary magnetic field is presented. The total equation system determining REB parameters as a function of external longitudinal magnetic field is obtained on the base on the laws of conservation of impulse flow and momentum of electron impulse and fields (electrical and magnetic) under the assumption of the electron beam. Calculation results carried out with provision for a diamagnetism and screening of the beam impulse magnetic field by metal are in a good agreement with experimental data

  12. Basis for low beam loss in the high-current APT linac

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D. [Los Alamos National Lab., NM (United States); Crandall, K.R. [TECHSOURCE, Santa Fe, NM (United States)

    1998-12-31

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value.

  13. Clinical utility of dental cone-beam computed tomography: current perspectives

    Directory of Open Access Journals (Sweden)

    Jaju PP

    2014-04-01

    Full Text Available Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis.Keywords: dental implants, cone-beam computed tomography, panoramic radiography, computed tomography

  14. Radiation damage in single crystal CVD diamond material investigated with a high current relativistic 197Au beam

    International Nuclear Information System (INIS)

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high intensity heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2–3×106/s/mm2) of 1.25A GeV 197Au69+ ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such a beam are reported

  15. Some properties of atomic beam produced by laser induced ablation of Li target

    International Nuclear Information System (INIS)

    Pulsed atomic beams produced in vacuum by laser induced ablation from a lithium target are analyzed by laser induced fluorescence (LIF). The 1-mixing processes induced in the n = 9, 10 Li Rydberg states by collisions with CO2 molecules illustrate the application of the method. Resolution is limited by the 1 mm diameter of the probe laser beam. Combining LIF and absorption measurements gives nLi as a function of time at various distances from the target surface. The investigation of the Li-C02 1-mixing process in a heat pipe oven proved impossible due to the high reactivity of Li with C02. This problem was solved by renewing the Li atoms at each laser shot. Values obtained for n = 9, n = 10 are k = 17 x 10-8 and 15 x 10-8 cc/sec, respectively

  16. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Dong, C. [Key Laboratory of the Ministry of Education of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Zhang, Z.G. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China)

    2011-07-01

    Highlights: > Firstly, Raman spectra are used to research the variation of Si structure before and after HCPEB treatment for the first time. > Secondly, a fine structure, namely the precipitation of nanocrystalline Si particles, is formed in the surface layer of the HCPEB-treated sample. > Thirdly, the relative wear resistance of an Al-15Si alloy surface is effectively enhanced by a factor of 9 after 15 pulse treatment. - Abstract: A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special 'halo' microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the 'halo' microstructure is distributed continuously from the center to the edge of the 'halo'. Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 {mu}m (5 pulses) to 5.6 {mu}m (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  17. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Giacomin, M. [Physics Department, Università di Padova, via F. Marzolo 8, 35131 Padova (Italy); Bonomo, F.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  18. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    Science.gov (United States)

    Agostinetti, P.; Giacomin, M.; Serianni, G.; Veltri, P.; Bonomo, F.; Schiesko, L.

    2016-02-01

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  19. Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams.

    Science.gov (United States)

    Fargette, Aurélie; Neukirch, Sébastien; Antkowiak, Arnaud

    2014-04-01

    We report on the capillarity-induced snapping of elastic beams. We show that a millimeter-sized water drop gently deposited on a thin buckled polymer strip may trigger an elastocapillary snap-through instability. We investigate experimentally and theoretically the statics and dynamics of this phenomenon and we further demonstrate that snapping can act against gravity, or be induced by soap bubbles on centimeter-sized thin metal strips. We argue that this phenomenon is suitable to miniaturization and design a condensation-induced spin-off version of the experiment involving a hydrophilic strip placed in a steam flow. PMID:24745456

  20. Theoretical evaluation of induced radioactivity in food products by electron or X-ray beam sterilization

    International Nuclear Information System (INIS)

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons, based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γn) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γn) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. For electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10 to 11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. (author)

  1. Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface

    Science.gov (United States)

    Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.

    2016-07-01

    We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.

  2. Setup for Fission and Evaporation Cross-Section Measurements in Reactions Induced by Secondary Beams

    CERN Document Server

    Hassan, A A; Kalpakchieva, R; Skobelev, N K; Penionzhkevich, Yu E; Dlouhý, Z; Radnev, S; Poroshin, N V

    2002-01-01

    A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of alpha-particle and fission fragment energy spectra. By measuring the alpha-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30 % of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion?fission reactions and of reactions leading to evaporation residue production.

  3. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    Science.gov (United States)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  4. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Induced pluripotent stem(iPS) cells are derived from somatic cells by ectopic expression of few transcription factors.Like embryonic stem(ES) cells,iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body.iPS cells hold great promise for regenerative medicine,because iPS cells circumvent not only immunological rejection but also ethical issues.Since the first report on the derivation of iPS cells in 2006,many laboratories all over the world started research on iPS cells and have made significant progress.This paper reviews recent progress in iPS cell research,including the methods to generate iPS cells,the molecular mechanism of reprogramming in the formation of iPS cells,and the potential applications of iPS cells in cell replacement therapy.Current problems that need to be addressed and the prospects for iPS research are also discussed.

  5. Spin Seebeck measurements of current-induced switching in YIG

    Science.gov (United States)

    Bartell, Jason; Jermain, Colin; Aradhya, Sriharsha; Wang, Hailong; Buhrman, Robert; Yang, Fengyuan; Ralph, Daniel; Fuchs, Gregory

    Quantifying spin torques generated at the interface between a normal metal (NM) and a ferromagnetic insulator (FI) is an important step in understanding the spin hall effect without charge transport. Measuring magnetization in NM/FI devices is challenging, however, because both magnetoresistive and magneto-optical signals are tiny in thin-film bilayers. We show that a promising alternative measurement approach is the use of picosecond thermal gradients to study spin torques in Pt/Yttrium Iron Garnet (YIG) bilayers. Recently, we demonstrated the application of heat to stroboscopically transduce a local magnetic moment into an electrical signal via the time resolved anomalous Nernst effect (TRANE) in ferromagnetic metals. Using a similar geometry the spin Seebeck effect of YIG combined with the inverse spin Hall effect of Pt enables measurement of local magnetization. Here we describe our study using this technique to study current-induced switching in Pt/YIG with sub-10 nm thick YIG films We acknowledge support from AFOSR.

  6. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    CHEN LingYi; Liu Lin

    2009-01-01

    Induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of few transcription factors. Like embryonic stem (ES) cells, iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body. iPS cells hold great promise for regenerative medicine,because iPS ceils circumvent not only immunological rejection but also ethical issues. Since the first report on the derivation of iPS cells in 2006, many laboratories all over the world started research on iPS cells and have made significant progress. This paper reviews recent progress in iPS cell research,Including the methods to generate iPS cells, the molecular mechanism of reprogramming in the formation of iPS ceils, and the potential applications of iPS cells in cell replacement therapy. Current problems that need to be addressed and the prospects for iPS research are also discussed.

  7. Geomagnetically induced currents in Uruguay: Sensitivity to modelling parameters

    Science.gov (United States)

    Caraballo, R.

    2016-11-01

    According to the traditional wisdom, geomagnetically induced currents (GIC) should occur rarely at mid-to-low latitudes, but in the last decades a growing number of reports have addressed their effects on high-voltage (HV) power grids at mid-to-low latitudes. The growing trend to interconnect national power grids to meet regional integration objectives, may lead to an increase in the size of the present energy transmission networks to form a sort of super-grid at continental scale. Such a broad and heterogeneous super-grid can be exposed to the effects of large GIC if appropriate mitigation actions are not taken into consideration. In the present study, we present GIC estimates for the Uruguayan HV power grid during severe magnetic storm conditions. The GIC intensities are strongly dependent on the rate of variation of the geomagnetic field, conductivity of the ground, power grid resistances and configuration. Calculated GIC are analysed as functions of these parameters. The results show a reasonable agreement with measured data in Brazil and Argentina, thus confirming the reliability of the model. The expansion of the grid leads to a strong increase in GIC intensities in almost all substations. The power grid response to changes in ground conductivity and resistances shows similar results in a minor extent. This leads us to consider GIC as a non-negligible phenomenon in South America. Consequently, GIC must be taken into account in mid-to-low latitude power grids as well.

  8. Proton irradiation induced defects in GaN: Rutherford backscattering and thermally stimulated current studies

    Science.gov (United States)

    Nakamura, T.; Nishikata, N.; Kamioka, K.; Kuriyama, K.; Kushida, K.

    2016-03-01

    The proton irradiation induced defects in GaN are studied by combining elastic recoil detection analysis (ERDA), thermally stimulated current (TSC), and Rutherford backscattering spectroscopy (RBS) measurements. The proton irradiation (peak concentration: 1.0 × 1015 cm-2) into GaN films with a thickness of 3 μm is performed using a 500 keV implanter. The proton concentration by a TRIM simulation is maximum at 3600 nm in depth, which means that the proton beam almost passes through the GaN film. The carrier concentration decreases three orders of magnitude to 1015 cm-3 by the proton irradiation, suggesting the existence of the proton irradiation-induced defects. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration at ∼220 nm is ∼8.3 × 1013 cm-2 and ∼1.0 × 1014 cm-2 for un-irradiated and as-irradiated samples, respectively, suggesting that electrical properties are almost not affected by hydrogen. TSC measurements show a broad spectrum at around 110 K which can be divided into three traps, P1 (ionization energy 173 meV), P2 (251 meV), and P3 (330 meV). The peak intensity of P1 is much larger than that of P2 and P3. These traps are related to the N vacancy and/or complex involving N vacancy (P1), neutral Ga vacancy (VGa) (P2), and complex involving VGa (P3). The Ga displacement concentration evaluated by RBS measurements is 1.75 × 1019 cm-3 corresponding to 1/1000 of the Ga concentration in GaN. The observed Ga displacement may be origins of P2 and P3 traps.

  9. The edge transient-current technique (E-TCT) with high energy hadron beam

    Science.gov (United States)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko

    2016-09-01

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  10. Clinical utility of dental cone-beam computed tomography: current perspectives

    OpenAIRE

    Jaju PP; Jaju SP

    2014-01-01

    Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology an...

  11. Over-limiting currents and deionization "shocks" in current-induced polarization: local-equilibrium analysis.

    Science.gov (United States)

    Yaroshchuk, Andriy

    2012-11-15

    The problem is considered theoretically of dynamics of current-induced concentration polarization of interfaces between ideally perm-selective and non-ideally perm-selective ("leaky") ion-exchange media in binary electrolyte solutions under galvanostatic conditions and at negligible volume flow. In contrast to the previous studies, the analysis is systematically carried out in terms of local thermodynamic equilibrium in the approximation of local electric neutrality in virtual solution. For macroscopically homogeneous media, this enables one to obtain model-independent results in quadratures for the stationary state as well as an approximate scaling-form solution for the transient response to the step-wise increase in electric-current density. These results are formulated in terms of such phenomenological properties of the "leaky" medium as ion transport numbers, diffusion permeability to salt and specific chemical capacity. An easy-to-solve numerically 1D PDE is also formulated in the same terms. A systematic parametric study is carried out within the scope of fine-pore model of "leaky" medium in terms of such properties as volumetric concentration of fixed electric charges and diffusivities of ions of symmetrical electrolyte. While previous studies paid principal attention to the shape and propagation rate of the so-called deionization "shocks", we also consider in detail the time evolution of voltage drop and interface salt concentration. Our analysis confirms the previously predicted pattern of propagating deionization "shocks" within the "leaky" medium but also reveals several novel features. In particular, we demonstrate that the deionization-shock pattern is really pronounced only at intermediate ratios of fixed-charge concentration to the initial salt concentration and at quite high steady-state voltages where the model used in this and previous studies is applicable only at relatively early stages of concentration-polarization process. PMID:22947188

  12. Development of microwave ion source and low energy beam transport system for high current cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, V.S., E-mail: pandit@vecc.gov.in; Sing Babu, P.; Goswami, A.; Srivastava, S.; Misra, A.; Chatterjee, Mou; Nabhiraj, P.Y.; Yadav, R.C.; Bhattacharya, S.; Roy, S.; Nandi, C.; Pal, G.; Thakur, S.K.

    2013-12-15

    A 2.45 GHz microwave ion source and a low energy beam transport system have been developed to study the high intensity proton beam injection into a 10 MeV, 5 mA compact cyclotron. We have extracted proton beam more than 10 mA at 80 kV as measured by the DCCT after the extraction and a well collimated beam of 7 mA (through 1 cm × 1 cm slit) at the faraday cup 1.5 m away from the source. The transport of protons from the ion source in the presence of H{sub 2}{sup +}, H{sub 3}{sup +} species has been studied using PIC simulations through our transport line which consists of two solenoids. We have also installed a small dipole magnet with similar field as that of the cyclotron along with vacuum chamber, spiral inflector and few diagnostic elements at the end of the beam line. In the preliminary testing of inflection, we achieved 1 mA beam on the faraday cup at the exit of inflector with ∼60% transmission efficiency.

  13. Measurement of neutral current neutral pion production on Carbon in a Few-GeV Neutrino Beam

    OpenAIRE

    Kurimoto, Y

    2009-01-01

    The SciBooNE Collaboration has measured neutral current neutral pion production by the muon neutrino beam at a polystyrene target (C8H8). We obtained (7.7+- 0.5(stat.)+0.4-0.5 (sys.)) x 10^-2 as cross section ratio of the neutral current neutral pion production to total charged current cross section at the mean neutrino energy of 1.16 GeV. This result is consistent with the Monte Carlo prediction based on the Rein-Sehgal model

  14. Acceleration of 1 MeV H- Ion Beams at ITER NB-relevant High Current Density

    International Nuclear Information System (INIS)

    Full text: ITER neutral beam (NB) system requires deuterium negative ion beams of 1 MeV, 40 A at the current density of 200 A/m2 from a single large negative ion source and an accelerator. This paper summarizes progress in R and D with a reduced size accelerator, so-called 'the MeV accelerator' at Japan Atomic Energy Agency (JAEA). In the last Fusion Energy Conference, we reported achievement of 1 MV voltage holding in vacuum for more than one hour. Physics of beamlet deflections due to their own space charges and magnetic field was also reported utilizing a sophisticated three dimensional beam trajectory analyses. The improved voltage holding and a trajectory compensation technique have been applied to the MeV accelerator. Many discharge burn marks have been observed inside the accelerator after long pulse operation reported in the last conference. It was turned out that such discharge marks were observed at positions facing to high local electric field, such as edges, corners, and steps between grid and its support. In the present MeV accelerator, such positions have been modified, for example, by increasing radii of corners around grid supports, and increasing gap length between grids to lower the local electric concentrations to about 3 - 4 kV/mm. For compensation of magnetic deflection, aperture offset was applied at the bottom of the EXG. Magnetic field is formed by small permanent magnets embedded in EXG between aperture lines. Since the polarities are arranged so as to be alternative in each line between apertures, aperture offset of 0.8 mm was defined in the direction against the magnetic deflection. To counteract the beamlet deflection by space charge repulsion, a field shaping plate, a metal plate to deform electric field, were installed around the aperture area for deflection of outermost beamlet inward. Position and thickness of the plate was designed by the analyses. It should be highlighted that reduction of beam direct interception at grids has

  15. Fibre-Coupling Zig-Zag Beam Deflection Technology for Investigation of Attenuation Process of Laser-Induced Shock Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; BIAN Bao-Min; LI Zhen-Hua

    2005-01-01

    @@ A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors,a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.

  16. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  17. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    CERN Document Server

    Kurimoto, Y; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakajima, Y; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Wilking, M J; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.

  18. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  19. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yuri, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 2/3 Akademicheskiy Ave. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050 (Russian Federation); Tolkachev, Oleg, E-mail: ole.ts@mail.ru; Petyukevich, Maria, E-mail: petukevich@tpu.ru; Polisadova, Valentina, E-mail: polis@tpu.ru [National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050 (Russian Federation); Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 2/3 Akademicheskiy Ave. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  20. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Science.gov (United States)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  1. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    International Nuclear Information System (INIS)

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance

  2. Contribution of nitric oxide radicals in bystander and adaptive responses induced by heavy ion-beams

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate whether radioadaptive responses were induced after irradiation with accelerated ion beams through nitric oxide-mediated bystander response in cultured cells in vitro and in some organs of mice in vivo. Human non-small cell lung carcinoma cells transfected with wild-type p53 (H1299/wtp53 cells) were used. The cells were irradiated with accelerated neon (400 MeV/u, 31 keV/μm) or iron (500 MeV/u, 200 keV/μm) ion beams. Then, the cells were allowed forming colonies, were cultured for 48 h to obtained samples for Western blot analysis, or were cultured for several weeks to fix mutations in the locus of hprt gene. ICR male mice (Jcl:ICR) were used. The mice were irradiated on 2 days with accelerated carbon ion beams (290 MeV/u, 13 keV/μm) or argon ion beams (500 MeV/u, 90 keV/μm). The intestine and testis were excised 2 days after the last irradiation. These excised tissues were fixed, embedded in paraffin and made of thin-sections on slide glasses. Then the TdT-mediated dUTP-biotin nick end-labeling (TUNEL)- and activated caspase-3-positive cells in the thin-sections of tissues were detected by the immunohistochemical method. A significant reduction of mutation rate of the hprt gene was observed when the cells were challengingly irradiated after the priming irradiation with accelerate neon or iron ion beams. This reduction was partially suppressed by NO radical scavenger, carboxy-PTIO. The bystander-induced apoptotic and activated caspase-3-positive cells were obviously observed in unirradiated intestine and testis when mice were irradiated with carbon or argon ion beams across the upper body. These observations were partially suppressed by carboxy-PTIO into the peritoneal cavity. (author)

  3. Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

    CERN Document Server

    Iadarola, Giovanni; Rumolo, Giovanni

    2016-01-01

    The expected heat load induced on the beam screens has been evaluated for all the twin-bore magnets in the Insertion Regions (IRs) of the HL-LHC. The contribution from the impedance of the beam screen has been evaluated taking into account the presence of a longitudinal weld in the beam screen and the impact of the temperature and of the magnetic field on the resistivity of the surface. The contribution coming from electron cloud effects has been evaluated for different values of the Secondary Electron Yield of the surface based PyECLOUD build-up simulations.

  4. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter

    2014-01-01

    Summary The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures. PMID:25161851

  5. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO.

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter; Marbach, Hubertus

    2014-01-01

    The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  6. Electron-beam induced deposition and autocatalytic decomposition of Co(CO3NO

    Directory of Open Access Journals (Sweden)

    Florian Vollnhals

    2014-07-01

    Full Text Available The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID and electron beam-induced surface activation (EBISA is studied for two precursors: iron pentacarbonyl, Fe(CO5, and cobalt tricarbonyl nitrosyl, Co(CO3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM and scanning transmission X-ray microscopy (STXM, including near edge X-ray absorption fine structure (NEXAFS spectroscopy. It has previously been shown that Fe(CO5 decomposes autocatalytically on Fe seed layers (EBID and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO3NO and compare it to results obtained from Fe(CO5. Co(CO3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  7. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    Science.gov (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  8. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    Science.gov (United States)

    Navin, A.; Tripathi, V.; Blumenfeld, Y.; Nanal, V.; Simenel, C.; Casandjian, J. M.; de France, G.; Raabe, R.; Bazin, D.; Chatterjee, A.; Dasgupta, M.; Kailas, S.; Lemmon, R. C.; Mahata, K.; Pillay, R. G.; Pollacco, E. C.; Ramachandran, K.; Rejmund, M.; Shrivastava, A.; Sida, J. L.; Tryggestad, E.

    2004-10-01

    Reactions induced by radioactive 6,8 He beams from the SPIRAL facility were studied on 63,65 Cu and 188,190,192 Os targets and compared to reactions with the stable 4He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam γ rays for the 6He + 63,65 Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic γ rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei 6He at 19.5 and 30 MeV and 8He at 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for 6,8 He +Cu systems. Cross sections for fusion and direct reactions with 4,6 He beams on heavier targets of 188,192 Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam γ -ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.

  9. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Abigail T., E-mail: abigail.berman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (United States); James, Sara St.; Rengan, Ramesh [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA 98195 (United States)

    2015-07-02

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  10. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  11. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  12. Time structure of the particle beam source and current sheath filamentation in the plasma focus

    International Nuclear Information System (INIS)

    In previous work the authors have described a method for determining the energy spectrum N(E) of the ion beam emitted from a localized (point) source in the plasma focus pinch. In systematic applications the time structure of the beam source (dN/dt) is assumed to be the same as that of the x-ray localized source recorded from scintillation detector signal with a ≅ 2-5 ns time resolution [the spectrum is derived from the ion time of flight ΔtΓE/sup -1/2/; Δt from the conditions x(t)xMax N/Max x = N(t + Δt) on x-ray signal (x) and particle signal N]. The energy spectrum with a high resolution (ΔE ≤ 0.0 l E) from an alternative method - i.e. from magnetic analyzer data - is essentially the same as that from time of flight. This confirms that the time structure of the ion beam source in the high energy region (E > 0.3 MeV) fits the x-ray (and electron beam) source structure. At any specific time tau (i.e., within a sufficiently small time interval δt during the emission time ≅ 5-50 ns of the beam) the beam is emitted with an amplitude N(E) which is sharply peaked at a specific value of the energy E = E(tau). A correlation of the filamentary structure of the x-ray source with a filamentary structure of the ion source can also be established on a space scale of ≤ 10μm

  13. The switch interface and the interlock protection of the magnet power system of the beam current transport line

    International Nuclear Information System (INIS)

    The synchrotron radiation facility, constructed by the Hefei National Synchrotron Radiation Laboratory, University of Science and Technology of China, had passed the normal check by the state. The facility will be open to the users inside and outside the country. In this paper, the switch interface and the interlock protection of the magnet power system of the beam current transport line, one of the main components of this facility, are described

  14. Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    OpenAIRE

    O'Dwyer, Colm; Lavayen, Vladimir; Clavijo-Cedeno, C.; Sotomayor Torres, Clivia M.

    2008-01-01

    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself...

  15. ION-BEAM INDUCED GENERATION OF CU ADATOMS ON CU(100)

    NARCIS (Netherlands)

    BREEMAN, M; BOERMA, DO

    1992-01-01

    Low-energy ion scattering was used to study on-beam induced adatom generation during irradiation of a Cu(100) surface with 6 keV Ne ions at a sample temperature of 60 K. It was found that the number of adatoms produced per incoming ion decreases from an average of 3.5 to a saturation level of 1.8 af

  16. Direct simulation of ion beam induced stressing and amorphization of silicon

    OpenAIRE

    Beardmore, Keith M.; Gronbech-Jensen, Niels

    1999-01-01

    Using molecular dynamics (MD) simulation, we investigate the mechanical response of silicon to high dose ion-irradiation. We employ a realistic and efficient model to directly simulate ion beam induced amorphization. Structural properties of the amorphized sample are compared with experimental data and results of other simulation studies. We find the behavior of the irradiated material is related to the rate at which it can relax. Depending upon the ability to deform, we observe either the ge...

  17. Advanced ion beam analysis of materials using ion-induced fast electron

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi; Tanabe, Atsushi; Ishihara, Toyoyuki [Tsukuba Univ., Ibaraki (Japan)] [and others

    1997-03-01

    Recent progress in the study of high-energy shadowing effect using ion-induced electron spectroscopy is reported with emphasis on a possibility of determination of local electronic structure in solids, which has been a difficult problem to approach with other experimental techniques. We demonstrate real-space determination of covalent-bond electron distribution in Si crystal. The analysis technique may provide a new field of ion beam analysis of solids. (author)

  18. Enhanced laser-driven electron beam acceleration due to ionization-induced injection

    CERN Document Server

    Li, Song; Mirzaie, Mohammed; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    We report an overall enhancement of a laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3 % nitrogen gas in 99.7 % helium gas. Upon the interaction of 30 TW, 30 fs laser pulses with a gas jet of the above gas mixture, > 300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5*10^18 cm^{-3}. Compared with the electron self-injection in pure helium gas jet, the ionization injection has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1 %, making them suitable for driving ultra-compact free-electron lasers

  19. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  20. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  1. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  2. Seismically induced landslides: current research by the US Geological Survey.

    Science.gov (United States)

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.

    1986-01-01

    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  3. Contribution of nitric oxide radicals in bystander and adaptive responses induced by heavy ion-beams

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate whether radioadaptive responses were induced after irradiation with accelerated ion beams through nitric oxide-mediated bystander response in cultured cells in vitro and in some organs of mice in vivo. Human non-small cell lung carcinoma cells transfected with wild-type p53 (H1299/wtp53 cells) were used. The cells were irradiated with accelerated carbon ion beams (290 MeV/u, 31 keV/μm or 135 MeV/u, 31 keV/μm). Then, the cells were allowed forming colonies. ICR male mice (Jcl: ICR) were used. The mice were irradiated on 2 days with accelerated carbon ion beams (290 MeV/u, 13 keV/μm or 135 MeV/u, 25 keV/μm) or argon ion beams (500 MeV/u, 90 keV/μm). The small intestine and testis were excised 2 days after the last irradiation. These excised tissues were fixed, embedded in paraffin and made of thin-sections on slide glasses. Then the TUNEL- and activated caspase-3-positive cells in the thin-sections of tissues were detected by the immunohistochemical method. A significant elevated surviving fractions of cells was observed when the cells were challengingly irradiated after the priming irradiation with accelerate carbon ion beams. This enhancement was partially suppressed by Nitric oxide (NO) radical scavenger, carboxy-PTIO (c-PTIO). The bystander-induced apoptotic and activated caspase-3-positive cells were obviously observed in the unirradiated small intestine and testis when mice were irradiated with carbon or argon ion beams across the upper body. In addition, a significant reduction of apoptotic cells in the intestine and testis, when mice were challengingly irradiated after the priming irradiation with accelerate carbon or argon ion beams. These observations were partially suppressed by c-PTIO into the peritoneal cavity. Furthermore, it is suggested that the apoptosis may be induced in the tissue stem cells of small intestine and testis. (author)

  4. Operating results for the beam profile monitor system currently in use at Bevalac Facility

    International Nuclear Information System (INIS)

    Three stations of a soon to be completed multi-station, multi-wire beam monitoring system have been installed in the Bevalac transfer line. The following article will provide a cursory analysis of the electronic circuitry, discuss new design additions and summarize the operating results obtained over the last year

  5. Calculation of eddy-currents induced in a compact synchrotron superconducting magnet structure during a current ramp

    International Nuclear Information System (INIS)

    Under DARPA sponsorship, a compact Superconducting X-Ray Light Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. The SXLS machine employs two 180 degree curved 4 tesla superconducting dipole magnets. These magnets are required to produce a dipole field for bending the beam but at the same time they must produce finite amounts of higher multipoles which are required for conditioning the beam. In fact, uniformity of the field to less than 1 part in 10,000 must be maintained under all operating conditions. When a superconducting magnet is ramped from zero to full field, the changing magnetic field produces eddy-currents in the magnet structure which in turn can produce undesirable multipoles. This paper discusses a simple method for estimating these eddy-currents and their effect on the field harmonics. The paper presents the analysis basis and its application to the SXLS magnet support structure and to the beam chamber components

  6. Calculation of eddy-currents induced in a compact synchrotron superconducting magnet structure during a current ramp

    International Nuclear Information System (INIS)

    Under DARPA sponsorship, a compact Superconducting X-Ray Light Source (SXSL) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. The SXLS machine employs two 180 degrees curved 4 telsa superconducting dipole magnets. These magnets are required to produce a dipole field for bending the beam but at the same time they must produce finite amounts of higher multipoles which are required for conditioning the beam. In fact uniformity of the field to less than 1 part in 10,000 must be maintained under all operating conditions. When a superconducting magnet is ramped from zero to full field, the changing magnetic field produces eddy-currents in the magnet structure which in turn can produce undesirable multipoles. This paper discusses a simple method for estimating these eddy-currents and their effect on the field harmonics. The paper present the analysis basis and its application to the SXLS magnet support structure and to the beam chamber components. 5 figs., 1 tab

  7. High-purity 3D nano-objects grown by focused-electron-beam induced deposition.

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices. PMID:27454835

  8. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ˜50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  9. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core–shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  10. Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Porrati, F; Sachser, R; Huth, M [Physikalisches Institut, Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main (Germany); Strauss, M [Max-Planck-Institut fuer Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main (Germany); Andrusenko, I; Gorelik, T; Kolb, U [Institut fuer Physikalische Chemie, Johannes Gutenberg-Universitaet Mainz, Welderweg 11, D-55099 Mainz (Germany); Bayarjargal, L; Winkler, B [Institut fuer Geowissenschaften, Abt. Kristallographie, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany)

    2010-09-17

    We have prepared 2D arrays of nanodots embedded in an insulating matrix by means of focused-electron-beam-induced deposition using the W(CO){sub 6} precursor. By varying the deposition parameters, i.e. the electron beam current and energy and the raster constant, we obtain an artificial granular material with tunable electrical properties. The analysis of the temperature dependence of the conductivity and of the current-voltage characteristic suggests that the transport mechanism is governed by electron tunneling between artificial grains. In order to understand the nature of the granularity and thus the microstructural origin of the electronic transport behavior, we perform TEM and micro-Raman investigations. Independent of the deposition parameters, TEM measurements show that the dots are constituted of amorphous tungsten carbide clusters embedded in an amorphous carbonaceous matrix. Micro-Raman spectra show two peaks, around 690 and 860 cm{sup -1} associated with the W-C stretching modes. Higher frequency peaks give information on the composition of the matrix. In particular, we measure a peak at about 1290 cm{sup -1}, which is associated with sp{sup 3} carbon bonds. Furthermore we detect the so-called D and G peaks, at about 1350 and 1560 cm{sup -1}, associated with the vibration modes of the sp{sup 2} carbon bonds. The analysis of the position of the peaks and of their relative intensity suggests that the composition of the matrix is between nanocrystalline graphite and amorphous carbon.

  11. Experimental observation of direct current voltage-induced phase synchronization

    Indian Academy of Sciences (India)

    Haihong Li; Weiqing Liu; Qiongling Dai; Jinghua Xiao

    2006-09-01

    The dynamics of two uncoupled distinct Chua circuits driven by a common direct current voltage is explored experimentally. It was found that, with increasing current intensity, the dominant frequencies of these two Chua circuits will first vary at different speeds, approach an identical value for a certain current intensity and then separate. Techniques such as synchronization index and phase difference distribution were employed to analyze the phase coherence between these two Chua circuits.

  12. The effects of an uncapped nanocrystal on a simulated induced current collected by a nano-contact

    Energy Technology Data Exchange (ETDEWEB)

    Doan, Quang-Tri [Advance Institute for Science and Technology, Hanoi University of Science and Technology, Hanoi (Viet Nam); El Hdiy, Abdelillah, E-mail: abdelillah.elhdiy@univ-reims.fr [Laboratoire de Recherche en Nanosciences (EA4682), UFR SEN, Université de Reims, Champagne-Ardenne, BP 1039, 51687 Reims cedex 2 (France)

    2015-03-21

    The effects of the charge capture process by an isolated and uncapped nanocrystal on the electron beam induced current are studied by the use of the Monte Carlo simulation. In the calculation, the current is created by an electron beam irradiation and is collected by a hemispherical nano-contact. The nanocrystal is considered as a recombination center, and the surface recombination velocity at the free surface is assumed to be equal to zero. The diffusion length is taken out from the fitting of simulated collection efficiency profiles, and studied as a function of the electron beam energy. The diffusion length rapidly decreases at very low energy (≤∼5 keV), increases to reach a maximum at middle energies (∼13 keV), and then decreases to reach saturation for high energy (≥∼25 keV). The effect of the isolated nanocrystal at the surface is highlighted at high energy, when the diffusion length becomes energy independent. This situation leads to determination of effective surface recombination velocities the values of which underline the trapping process in the nanocrystal.

  13. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); DasGupta, K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Beam Technology Development Group, BARC, Mumbai 400085 (India)

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  14. Current status of ATLAS and proposed expansion to an exotic beam facility

    Science.gov (United States)

    Zinkann, G. P.; Billquist, P.; Bogaty, J.; Clifft, B.; Munson, F.; Nakagawa, K.; Nolen, J.; Pardo, R.; Shepard, K. W.; Specht, J.; Sutherland, A.; Tieman, B.; Tilbrook, I.

    1996-02-01

    The Argonne Tandem Linear Accelerator System (ATLAS) has been operating on a 24 hour, seven days a week schedule since the beginning of Fiscal Year 1994. Twenty-six different ion species ran during this period in 71 separate experiments. During the past year, there have been many projects undertaken to improve operation efficiency and upgrade various accelerator systems. There is also a new ECR ion source construction project underway. This paper covers, linac operation and new tuning techniques, the second generation ECR source construction project, the refrigerator system upgrade, an upgrade to the control system. Also described is a future expansion of ATLAS as an Exotic Beam Facility. (ATLAS is a world class heavy ion accelerator with an estimated value of approximately $80 million.) A concept that would utilize ATLAS as the foundation for a facility to generate and accelerate radioactive beams is briefly discussed.

  15. Development of 2D particle-in-cell code to simulate high current, low energy beam in a beam transport system

    Indian Academy of Sciences (India)

    S C L Srivastava; S V L S Rao; P Singh

    2007-10-01

    A code for 2D space-charge dominated beam dynamics study in beam transport lines is developed. The code is used for particle-in-cell (PIC) simulation of -uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam. Numerical techniques as well as the results of beam dynamics studies are presented in the paper.

  16. Proton beam therapy and localised prostate cancer: current status and controversies

    OpenAIRE

    Efstathiou, J. A.; Gray, P. J.; Zietman, A L

    2013-01-01

    Proton therapy is a promising, but costly, treatment for prostate cancer. Theoretical physical advantages exist; yet to date, it has been shown only to be comparably safe and effective when compared with the alternatives and not necessarily superior. If clinically meaningful benefits do exist for patients, more rigorous study will be needed to detect them and society will require this to justify the investment of time and money. New technical advances in proton beam delivery coupled with shor...

  17. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    International Nuclear Information System (INIS)

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  18. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changyi [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Wu, Yiyong; Lv, Gang [National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin (China); Rubanov, Sergey [Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 (Australia); Jamieson, David N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  19. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1980-04-28

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV.

  20. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  1. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  2. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  3. Sensitivity Jump of Micro Accelerometer Induced by Micro-fabrication Defects of Micro Folded Beams

    Science.gov (United States)

    Zhou, Wu; Chen, Lili; Yu, Huijun; Peng, Bei; Chen, Yu

    2016-08-01

    The abnormal phenomenon occurring in sensor calibration is an obstacle to product development but a useful guideline to product improvement. The sensitivity jump of micro accelerometers in the calibrating process is recognized as an important abnormal behavior and investigated in this paper. The characteristics of jumping output in the centrifuge test are theoretically and experimentally analyzed and their underlying mechanism is found to be related to the varied stiffness of supporting beam induced by the convex defect on it. The convex defect is normally formed by the lithography deviation and/or etching error and can result in a jumping stiffness of folded microbeams and further influence the sensitivity when a part of the bending beams is stopped from moving by two surfaces contacting. The jumping level depends on the location of convex and has nothing to do with the contacting properties of beam and defects. Then the location of defect is predicted by theoretical model and simulation and verified by the observation of micro structures under microscopy. The results indicate that the tested micro accelerometer has its defect on the beam with a distance of about 290μm from the border of proof mass block.

  4. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    CERN Document Server

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  5. Plasmonic Gold Helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    CERN Document Server

    Haverkamp, Caspar; Jäckle, Sara; Manzoni, Anna; Christiansen, Silke

    2016-01-01

    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most no...

  6. Current-induced reversal in magnetic nanopillars passivated by silicon

    OpenAIRE

    Urazhdin, Sergei; Tabor, Phillip

    2008-01-01

    We demonstrate that magnetic multilayer nanopillars can be efficiently protected from oxidation by coating with silicon. Both the protected and the oxidized nanopillars exhibit an increase of reversal current at cryogenic temperatures. However the magnetic excitation onset current increases only in the oxidized samples. We show that oxidized nanopillars exhibit anomalous switching statistics at low temperature, providing a simple test for the quality of magnetic nanodevices.

  7. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H.; /Colorado U.

    2010-04-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CC{pi}{sup 0}) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics ({approx} 1,000,000 interactions) low-energy (E{sub {nu}} {element_of} 0.5-2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CC{pi}{sup 0} events is presented. The {pi}{sup 0} and {mu}{sup -} are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CC{pi}{sup 0} cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q{sup 2}. The results are combined to yield a flux-averaged total cross-section of <{sigma}>{sub {Phi}} = (9.2 {+-} 0.3{sub stat.} {+-} 1.5{sub syst}.) x 10{sup -39} cm{sup 2}/CH{sub 2} at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  8. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H. [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  9. Study of muon-induced neutron production using accelerator muon beam at CERN

    International Nuclear Information System (INIS)

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production

  10. DC current-induced curing and ageing phenomena in cement-based materials

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper investigates DC current-induced “curing” and ageing phenomena in cement-based materials. Two current densities were used in a DC current regime i.e. mortar cubes were subjected to DC current flow of 1 A/m2 and 100 mA/m2; tap water and calcium hydroxide were external environment. Condition

  11. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guido, Elisa; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-01-01

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstra...

  12. Radiation-Induced Centers in Lead Silicate Glasses Irradiated by Stationary and Pulsed Electron Beams

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Konev, S. F.; Cholakh, S. O.

    2015-08-01

    Radiation-induced centers formed in heavy flint glasses irradiated by electron beams are investigated by the methods of optical and EPR spectroscopy. It is revealed that stable and short-living optical absorption centers of close natures are formed under irradiation by fast electrons. A correlation is established between the stable optical absorption bands and the EPR signals interpreted as signals of the (Pb2+)/h+ hole centers. The shortliving color centers are formed due to short-term distortion of the O-Pb bonds, and the stable centers are formed due to the spatial separation, thermalization, and subsequent stabilization of excited electrons and holes in tails of the localized states. Irradiation by electron beams leads to a change in the spectral characteristics of the fundamental absorption edge and, in particular, of the Urbach energy that determines the degree of structural disorder.

  13. Swift Heavy Ion Beam-induced Recrystallisation of Buried Silicon Nitride Layer (Review Paper

    Directory of Open Access Journals (Sweden)

    T. Som

    2009-07-01

    Full Text Available Studies on MeV heavy ion beam-induced epitaxial crystallisation of a buried silicon nitride layer are reported. Transmission electron micrographs and selected area diffraction patterns have been used to study the recrystallisation of an ion beam-synthesised layer. Complete recrystallisation of the silicon nitride layer having good quality interfaces with the top- and the substrate-Si has been obsorved. Recrystallisation is achieved at significantly lower temperatures of 100 and 200OC for oxygen and silver ions, respectively. The fact that recrystallisation is achieved at the lowest temperature for the oxygen ions is discussed on the basis of energy loss processes.Defence Science Journal, 2009, 59(4, pp.351-355, DOI:http://dx.doi.org/10.14429/dsj.59.1533

  14. Polarization and collision-induced coherence in the beam-foil light source

    Science.gov (United States)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  15. Analysis of art objects by means of ion beam induced luminescence

    Science.gov (United States)

    Quaranta, A.; Dran, J. C.; Salomon, J.; Pivin, J. C.; Vomiero, A.; Tonezzer, M.; Maggioni, G.; Carturan, S.; Della Mea, G.

    2006-05-01

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study.

  16. Analysis of art objects by means of ion beam induced luminescence

    International Nuclear Information System (INIS)

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study

  17. Current status of medium and low energy electron beam accelerators and their applications

    International Nuclear Information System (INIS)

    Electron Beam (EB) use has been increasing in popularity as a crosslinking process over the past several years. Examples of EB use are heat resistance improvement of electric wires, high quality foamed polyethylene (PE) and polypropylene (PP), Automotive Tire manufacturing and heat-shrinkable film. EB process is used in the Tire manufacturing as a pre-vulcanization of rubber sheet before forming process. EB improves the green strength of rubber sheet and it makes it possible to maintain the shape or size of the original until completion of final vulcanization. It is said that this effect is useful for reducing the consumption of rubber material. The application of Low energy electron beam accelerators (low energy EB) is mainly used to cure resins or coatings and it has been gradually spreading to the industrial field such as pressure sensitive adhesives, release paper, transfer film, etc. Low energy EB curing is often compared with Ultra-Violet (UV) curing, but commercialized application indicate there is an advantage for the EB process. A typical advantage is that no initiators are required to start curing, which UV requires. EB curing may be used to supplement disadvantages of UV such as weatherability, color limitation, etc. In addition to these, EB process is spreading by using its original advantages, of high cross-link density, small heat influence on the substrate and no solvent requirement. EB can also be used to remove So2 and Nox from coal flue gas and for sterilizing medical devices. EB has a great advantage which includes simultaneous removal of So2 and Nox and the by-product can be used as a fertilizer. The sterilization by Electron Beam is expected to be an alternative to gas sterilization which has some safety issues likely to be discussed in the future projects. (J.P.N.)

  18. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  19. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    Science.gov (United States)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  20. Ion-beam induced structure modifications in amorphous germanium; Ionenstrahlinduzierte Strukturmodifikationen in amorphem Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Tobias

    2012-05-03

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy {epsilon}{sub n} deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 {mu}m thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of {epsilon}{sub e}{sup HRF}=(10.5{+-}1.0) kev nm{sup -1} was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation {epsilon}{sub e}{sup S{sub a}}=(12{+-}2) keV nm{sup -1} for the first

  1. Electrical characterization of electron beam induced damage on sub-10 nm n-channel MOS transistors using nano-probing technique

    Science.gov (United States)

    Kang, Jonghyuk; Lee, Sungho; Choi, Byoungdeog

    2016-11-01

    Electron beam induced damage on sub-10 nm n-channel MOS transistors was evaluated using an atomic force microscopy-based nano-probing technique. After electron beam irradiation, all the device parameters shifted including threshold voltage (V th), saturation current, sub-threshold slope and transistor leakage current. A negative shift in V th occurred at low electron beam acceleration voltage (V acc) because of the increase in oxide trapped holes generated by excited plasmons. At high V acc, however, a positive V th shift was observed because of an increased contribution of interface trap generation caused by the deeper electron penetration depth. In addition, interface trap generation not only degraded the sub-threshold slope due to the additional capacitance from the generated interface traps, but also increased transistor leakage current due to changes in junction characteristics. Our studies show that it is critical to avoid electron beam exposure before electrical characterization on sub-10 nm devices even in the range of less than 1.0 kV of V acc using nano-probe systems.

  2. Polarizability Tensor Calculation: Induced Local Charge and Current Distributions

    OpenAIRE

    Yazdi, Mohammad; Albooyeh, Mohammad; Komjani, Nader; Simovski, Constantin

    2015-01-01

    We develop a semi-analytical approach to calculate the polarizability tensors of an arbitrary individual scatterer. The approach is based on the calculation of induced electric and/or magnetic dipole moments on the scatterer. By taking the advantages of the present approach, we calculate the individual polarizability tensors of an isolated scatterer in a homogeneous isotropic medium. Moreover, we obtain the polarizability tensors of scatterers located between two different isotropic media. Fu...

  3. Temperature induced decay of persistent currents in superfluid ultracold gas

    CERN Document Server

    Kumar, Avinash; Jendrzejewski, Fred; Campbell, Gretchen K

    2016-01-01

    We study how temperature affects the lifetime of a quantized, persistent current state in a toroidal Bose-Einstein condensate (BEC). When the temperature is increased, we find a decrease in the persistent current lifetime. Comparing our measured decay rates to simple models of thermal activation and quantum tunneling, we do not find agreement. The measured critical velocity is also found to depend strongly on temperature, approaching the zero temperature mean-field solution as the temperature is decreased. This indicates that an appropriate definition of critical velocity must incorporate the role of thermal fluctuations, something not explicitly contained in traditional theories.

  4. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently the authors used a MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (rb < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. The authors' success with the MITL technology led them to investigate the application to higher energy accelerator designs. They have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30-50-ns FWHM output pulse

  5. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (rρ < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs

  6. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip;

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related to the ...

  7. Community Benchmarking of Tsunami-Induced Nearshore Current Models

    Science.gov (United States)

    Lynett, P. J.; Wilson, R. I.; Gately, K.

    2015-12-01

    To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program (NTHMP) Strategic Plan includes a requirement to develop and run a benchmarking workshop to evaluate the numerical tsunami modeling of currents. For this workshop, five different benchmarking datasets were organized. These datasets were selected based on characteristics such as geometric complexity, currents that are shear/separation driven (and thus are de-coupled from the incident wave forcing), tidal coupling, and interaction with the built environment. While tsunami simulation models have generally been well validated against wave height and runup, comparisons with speed data are much less common. As model results are increasingly being used to estimate or indicate damage to coastal infrastructure, understanding the accuracy and precision of speed predictions becomes of important. As a result of this 2-day workshop held in early 2015, modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts. In this presentation, the model results - from 14 different modelers - will be presented and summarized, with a focus on statistical and ensemble properties of the current predictions.

  8. Vircator with premodulation of electron beam on the basis of heavy-current pulse-periodic accelerator

    CERN Document Server

    Kitsanov, S A; Korovin, S D; Kurkan, I K; Pegel, I V; Polevin, S D

    2002-01-01

    One carried out theoretical, numerical and experimental investigations into vircator with premodulation of wavelength decimeter region electron beam. One analyzed possible mechanisms of generation excitation in systems with a virtual cathode. On the basis of numerical experiment results one developed experimental model of two-section vircator without external magnetic field. In experiments with heavy-current pulse-periodic electron accelerator within wavelength decimeter region one produced supermode generation with up to 1 GW power and approx 25 ns duration at approx 5% efficiency of generation. By varying parameters of resonator one managed to ensure continuous retuning of vircator generation frequency within approx 15% band at half level of power

  9. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  10. Vircator with premodulation of electron beam on the basis of heavy-current pulse-periodic accelerator

    International Nuclear Information System (INIS)

    One carried out theoretical, numerical and experimental investigations into vircator with premodulation of wavelength decimeter region electron beam. One analyzed possible mechanisms of generation excitation in systems with a virtual cathode. On the basis of numerical experiment results one developed experimental model of two-section vircator without external magnetic field. In experiments with heavy-current pulse-periodic electron accelerator within wavelength decimeter region one produced supermode generation with up to 1 GW power and ∼ 25 ns duration at ∼ 5% efficiency of generation. By varying parameters of resonator one managed to ensure continuous retuning of vircator generation frequency within ∼ 15% band at half level of power

  11. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams

    International Nuclear Information System (INIS)

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  12. Numerical Simulation on Expansion Process of Ablation Plasma Induced by Intense Pulsed Ion Beam

    Institute of Scientific and Technical Information of China (English)

    TAN Chang; LIU Yue; WANG Xiao-Gang; MA Teng-Cai

    2006-01-01

    We present a one-dimensional time-dependent numerical model for the expansion process of ablation plasmainduced by intense pulsed ion beam(IPIB).The evolutions of density,velocity,temperature,and pressure of theablation plasma of the aluminium target are obtained.The numerical results are well in agreement with therelative experimental data.It is shown that the expansion process of ablation plasma induced by IPIB includesstrongly nonlinear effects and that shock waves appear during the propagation of the ablation plasma.

  13. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    International Nuclear Information System (INIS)

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  14. Spectroscopic Evidence for Exceptional Thermal Contribution to Electron-Beam Induced Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Marissa A.; Haynor, Ben; Aloni, Shaul; Ogletree, D. Frank; Wong, H.-S. Philip; Urban, Jeffrey J.; Milliron, Delia J.

    2010-11-16

    While electron beam induced fragmentation (EBIF) has been reported to result in the formation of nanocrystals of various compositions, the physical forces driving this phenomenon are still poorly understood. We report EBIF to be a much more general phenomenon than previously appreciated, operative across a wide variety of metals, semiconductors and insulators. In addition, we leverage the temperature dependent bandgap of several semiconductors to quantify -- using in situ cathodoluminescence spectroscopy -- the thermal contribution to EBIF, and find extreme temperature rises upwards of 1000K.

  15. Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition.

    Science.gov (United States)

    Acar, Hakkı; Coenen, Toon; Polman, Albert; Kuipers, Laurens Kobus

    2012-09-25

    We present the bottom-up fabrication of dispersive silica core, gold cladding ground plane optical nanoantennas. The structures are made by a combination of electron-beam induced deposition of silica and sputtering of gold. The antenna lengths range from 300 to 2100 nm with size aspect ratios as large as 20. The angular emission patterns of the nanoantennas are measured with angle-resolved cathodoluminescence spectroscopy and compared with finite-element methods. Good overall correspondence between the the measured and calculated trends is observed. The dispersive nature of these plasmonic monopole antennas makes their radiation profile highly tunable. PMID:22889269

  16. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  17. Topology-induced critical current enhancement in Josephson networks

    International Nuclear Information System (INIS)

    We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays

  18. Localization of the phantom force induced by the tunneling current

    Science.gov (United States)

    Wutscher, Thorsten; Weymouth, Alfred J.; Giessibl, Franz J.

    2012-05-01

    The phantom force is an apparently repulsive force, which can dominate the atomic contrast of an AFM image when a tunneling current is present. We described this effect with a simple resistive model, in which the tunneling current causes a voltage drop at the sample area underneath the probe tip. Because tunneling is a highly local process, the areal current density is quite high, which leads to an appreciable local voltage drop that in turn changes the electrostatic attraction between tip and sample. However, Si(111)-7×7 has a metallic surface state and it might be proposed that electrons should instead propagate along the surface state, as through a thin metal film on a semiconducting surface, before propagating into the bulk. In this paper, we first measure the phantom force on a sample that displays a metallic surface state [here, Si(111)-7×7] using tips with various radii. If the metallic surface state would lead to a constant electrostatic potential on the surface, we would expect a direct dependence of the phantom force with tip radius. In a second set of experiments, we study H/Si(100), a surface that does not have a metallic surface state. We conclude that a metallic surface state does not suppress the phantom force, but that the local resistance Rs has a strong effect on the magnitude of the phantom force.

  19. A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics

    Science.gov (United States)

    Runkel, Mike; Hawley-Fedder, Ruth; Widmayer, Clay; Williams, Wade; Weinzapfel, Carolyn; Roberts, Dave

    2005-12-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO2 lasers.

  20. Temperature elevation profile inside the rat brain induced by a laser beam

    Science.gov (United States)

    Ersen, Ali; Abdo, Ammar; Sahin, Mesut

    2014-01-01

    The thermal effect may be a desired outcome or a concerning side effect in laser-tissue interactions. Research in this area is particularly motivated by recent advances in laser applications in diagnosis and treatment of neurological disorders. Temperature as a side effect also limits the maximum power of optical transfer and harvesting of energy in implantable neural prostheses. The main objective was to investigate the thermal effect of a near-infrared laser beam directly aimed at the brain cortex. A small, custom-made thermal probe was inserted into the rat brain to make direct measurements of temperature elevations induced by a free-air circular laser beam. The time dependence and the spatial distribution of the temperature increases were studied and the maximum allowable optical power was determined to be 2.27 W/cm2 for a corresponding temperature increase of 0.5°C near the cortical surface. The results can be extrapolated for other temperature elevations, where the margin to reach potentially damaging temperatures is more relaxed, by taking advantage of linearity. It is concluded that the thermal effect depends on several factors such as the thermal properties of the neural tissue and of its surrounding structures, the optical properties of the particular neural tissue, and the laser beam size and shape. Because so many parameters play a role, the thermal effect should be investigated for each specific application separately using realistic in vivo models.