WorldWideScience

Sample records for beam image system

  1. Ion beam induced fluorescence imaging in biological systems

    Science.gov (United States)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-04-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique.

  2. A scanned beam THz imaging system for medical applications

    Science.gov (United States)

    Taylor, Zachary D.; Li, Wenzao; Suen, Jon; Tewari, Priyamvada; Bennett, David; Bajwa, Neha; Brown, Elliott; Culjat, Martin; Grundfest, Warren; Singh, Rahul

    2011-10-01

    THz medical imaging has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of suitable applications. One aspect of THz medical imaging research not often adequately addressed is pixel acquisition rate and phenomenology. The majority of active THz imaging systems use translation stages to raster scan a sample beneath a fixed THz beam. While these techniques have produced high resolution images of characterization targets and animal models they do not scale well to human imaging where clinicians are unwilling to place patients on large translation stages. This paper presents a scanned beam THz imaging system that can acquire a 1 cm2 area with 1 mm2 pixels and a per-pixel SNR of 40 dB in less than 5 seconds. The system translates a focused THz beam across a stationary target using a spinning polygonal mirror and HDPE objective lens. The illumination is centered at 525 GHz with ~ 125 GHz of response normalized bandwidth and the component layout is designed to optically co-locate the stationary source and detector ensuring normal incidence across a 50 mm × 50 mm field of view at standoff of 190 mm. Component characterization and images of a test target are presented. These results are some of the first ever reported for a short standoff, high resolution, scanned beam THz imaging system and represent an important step forward for practical integration of THz medical imaging where fast image acquisition times and stationary targets (patients) are requisite.

  3. Neutron imaging system for neutron tomography, radiography, and beam diagnostics

    International Nuclear Information System (INIS)

    A neutron imaging system (NIS) has been recently installed at the University of Texas TRIGA reactor facility. The imaging system establishes new capabilities for beam diagnostics at the Texas Cold Neutron Source (TCNS) for real-time neutron radiography (RTNR) and for neutron computed tomography (NCT) research. The NIS will also be used for other research projects. The system consists of two subsystems as follows: (1) Thomson 9-in. neutron image intensifier (NII) tube sensitive to cold, thermal, and epithermal neutrons, (2) image-processing unit consisting of vidicon camera, two high-resolution monitors, image enhancement and measurement processor, and video printer. The NIS is installed at the cold neutron beam of the TCNS for testing and cold neutron beam diagnostics

  4. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  5. EVALUATION OF THE AUTOMATIC IMAGE REGISTRATION FEATURES OF A KV CONE-BEAM CT IMAGING SYSTEM

    OpenAIRE

    JANVARY, Zsolt Levente; JANSEN, Nicolas; MATHOT, Michel; Lenaerts, Eric; Martinive, Philippe; Coucke, Philippe

    2010-01-01

    As a part of the clinical implementation of a kV cone-beam CT (CBCT) volumetric imaging system for new Elekta Synergy linear accelerators, the automatic image registration (IR) system of the XVI Software was studied. We examined the effect of the variability of matching parameters of the software on the results of the patient position errors.

  6. Overview of Imaging Sensors and Systems used in Beam Instrumentation

    CERN Document Server

    Bravin, E

    2013-01-01

    Image sensors have been in use for many years in the field of beam instrumentation. In particular cameras are widely used to take pictures of particle beams from which important parameters can be deduced. This paper will give an overview of the available image sensor technologies with particular focus to the aspects important for beam instrumentation: radiation hardness, high frame rates, fast shutters and low light intensities. The overview will also cover digital acquisition aspects including frame grabbers and digital cameras.

  7. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    International Nuclear Information System (INIS)

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd2O2S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVisionTM image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p -8), 1.64 (p -13), 2.66 (p -9), respectively. For all imaging doses, soft tissue contrast was more easily

  8. Image processing system for electron linac beam diagnosis

    International Nuclear Information System (INIS)

    For diagnosis of electron linac beams, image signals from a TV camera viewing a ceramic screen monitor were processed and analyzed using a waveform digitizer and a personal computer. The black-and-white TV camera used has a zoom lens with a remote-controllable iris; the automatic gain control circuit was switched off to obtain tolerable linearity of the output video signal against the brightness of the beam spot on the screen. The video signals are taken by the waveform digitizer with a sampling rate of 4 MHz; the digitized picture is transmitted to the personal computer via the GPIB and is analyzed to derive spatial intensity distribution of the beam. The sync signal of the TV camera is externally synchronized with the electron linac beam timing

  9. An electron beam treatment planning system based on CT images

    International Nuclear Information System (INIS)

    This is a report on the computerization of the electron beam treatment planning system at the Cancer Institute Hospital. The computer aided calculation of electron beam dose distributions utilizes table look-up and interpolation of measured central axis depth doses and off-center ratios (OCR). Inhomogeneity correction is applied by the absorption equivalent thickness (AET) method. When OCR is expressed as a function of x-L instead of x/L, OCR is nearly independent of field size and shape, where x is the distance of the point from the central axis and L is half width. (author)

  10. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  11. Electron beam density study using a portable slit imaging system at the Shanghai Electron Beam Ion Trap

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Lu Di; Pu Yun-Qing; Yao Ke; Chen wei-Dong; Xiao Jun; Geng Zhi-xian; Roger Hutton; Zou Ya-Ming

    2011-01-01

    In this work,a portable slit imaging system is developed to study both the electron beam diameter and the profile of the newly developed Shanghai Electron Beam Ion Trap(Shanghai EBIT).Images are detected by a charge coupled device(CCD)sensitive to both X rays and longer wavelength photons(up to visible).Large scale ray tracings were conducted for correcting the image broadening effects caused by the finite slit width and the finite width of the CCD pixels.A numerical de-convolution method was developed to analyse and reconstruct the electron beam density distribution in the EBIT.As an example of the measured beam diameter and current density,the FWHM(full width at half maximum)diameter of the electron beam at 81 keV and 120 mA is found to be 76.2 μm and the density 20.00×103 A·cm-2,under a magnetic field of 3 T,including all corrections.

  12. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  13. Evaluation of radiation dose and image quality for the Varian cone beam computed tomography system

    OpenAIRE

    Kwong, DLW; Cheng, HCY; Wu, VWC; Liu, ESF

    2011-01-01

    Purpose: To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between software Version 1.4.13 and Version 1.4.11 (referred to as "new" and "old" protocols, respectively, in the following text). This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the head-and-neck and pelvic regions. Methods and Materials: A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms...

  14. Neutron optical imaging study of neutron moderator and beam extraction system

    Energy Technology Data Exchange (ETDEWEB)

    Fuezi, J. [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary) and Transilvania University, R-2200 Brasov (Romania)]. E-mail: fuzi@szfki.hu; David, E. [OPEN Optoelectronics, 1121 Budapest (Hungary); Kozlowski, T. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lewis, P. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Messing, G. [OPEN Optoelectronics, 1121 Budapest(Hungary); Mezei, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hahn-Meitner-Institut, 14109 Berlin (Germany); Penttila, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rosta, L. [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Russina, M. [Hahn-Meitner-Institut, 14109 Berlin (Germany); Toeroek, Gy. [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary)

    2006-11-15

    The study of the performance of a cold-hydrogen moderator and a supermirror-based neutron beam extraction system of the flight path 12 at LANSCE has been performed based on energy-resolved neutron optical imaging. We have developed a pinhole camera system with a 2D position-sensitive {sup 3}He multiwire proportional chamber neutron detector with delay line position encoding (0.75 mm pixel size), together with a standalone time-of-flight electronic system with 1.2 {mu}s dead time. We have determined the efficiency, resolution, and counting rate saturation of the detector. In particular, we have considered an impact of these parameters on the quality of the images. The neutron images of the moderator were taken as a function of the neutron wavelength given by the time-of-flight information. The images were recorded as arrays of 256x256x2000 pixels; x and y coordinates, and time of flight. Information obtained from the images includes a distribution of the brightness on the neutron moderator, the efficiency and geometrical accuracy of the beam extraction system, and the reflectivity of the supermirror-coated elements of its optics. Our results demonstrate that the pinhole optical camera-based neutron imaging method combined with time-of-flight information is an extremely efficient tool to characterize neutron sources and neutron beam extraction systems.

  15. In situ X-ray beam imaging using an off-axis magnifying coded aperture camera system

    International Nuclear Information System (INIS)

    This paper presents an imaging model and a reconstruction algorithm for obtaining X-ray beam cross-sectional images from the data recorded by an X-ray beam monitor based on a coded aperture camera that collects radiation scattered from a thin foil placed in the X-ray beam at an oblique angle. An imaging model and an image reconstruction algorithm for a transparent X-ray beam imaging and position measuring instrument are presented. The instrument relies on a coded aperture camera to record magnified images of the footprint of the incident beam on a thin foil placed in the beam at an oblique angle. The imaging model represents the instrument as a linear system whose impulse response takes into account the image blur owing to the finite thickness of the foil, the shape and size of camera’s aperture and detector’s point-spread function. The image reconstruction algorithm first removes the image blur using the modelled impulse response function and then corrects for geometrical distortions caused by the foil tilt. The performance of the image reconstruction algorithm was tested in experiments at synchrotron radiation beamlines. The results show that the proposed imaging system produces images of the X-ray beam cross section with a quality comparable with images obtained using X-ray cameras that are exposed to the direct beam

  16. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    Science.gov (United States)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  17. Comparison of the dose deposited between the OBI system and the Varian TrueBeam Imaging system

    International Nuclear Information System (INIS)

    The use of imaging systems for positioning kilovoltage radiotherapy treatments has experienced a peak in recent years. Techniques such as IMRT, these systems are applied to a large number of sessions to ensure accurate positioning. This makes it increased the interest to know the dose deposited in the patient. Companies involved in developing new designs focus their efforts on reducing the dose due to these positioning systems. The aim of this study is to compare the dose delivered by the OBI image guidance system with the new system image TrueBeam, both of Varian, both planar imaging as CT (CBCT).

  18. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    International Nuclear Information System (INIS)

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing

  19. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    Energy Technology Data Exchange (ETDEWEB)

    Ruschin, Mark, E-mail: Mark.Ruschin@sunnybrook.ca [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Komljenovic, Philip T.; Ansell, Steve [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Menard, Cynthia [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Bootsma, Gregory [Department of Medical Biophysics, University of Toronto, Ontario (Canada); Cho, Young-Bin; Chung, Caroline; Jaffray, David [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada)

    2013-01-01

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210 Degree-Sign of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of

  20. Beam position monitoring system based on EPICS and MATLAB image processing technique

    International Nuclear Information System (INIS)

    An optical X-ray beam position monitoring system has been established on Shanghai Synchrotron Radiation Facility (SSRF). The software for control, data acquisition and data processing is based on EPICS. It can capture and process a real time image to give the center position and spatial distribution of synchrotron radiations. The system has been used on SSRF beamlines and the experimental results show that the design specifications have been achieved. (authors)

  1. Soft tissue visualization using a highly efficient megavoltage cone beam CT imaging system

    Science.gov (United States)

    Ghelmansarai, Farhad A.; Bani-Hashemi, Ali; Pouliot, Jean; Calderon, Ed; Hernandez, Paco; Mitschke, Matthias; Aubin, Michelle; Bucci, Kara

    2005-04-01

    Recent developments in two-dimensional x-ray detector technology have made volumetric Cone Beam CT (CBCT) a feasible approach for integration with conventional medical linear accelerators. The requirements of a robust image guidance system for radiation therapy include the challenging combination of soft tissue sensitivity with clinically reasonable doses. The low contrast objects may not be perceptible with MV energies due to the relatively poor signal to noise ratio (SNR) performance. We have developed an imaging system that is optimized for MV and can acquire Megavoltage CBCT images containing soft tissue contrast using a 6MV x-ray beam. This system is capable of resolving relative electron density as low as 1% with clinically acceptable radiation doses. There are many factors such as image noise, x-ray scatter, improper calibration and acquisitions that have a profound effect on the imaging performance of CBCT and in this study attempts were made to optimize these factors in order to maximize the SNR. A QC-3V phantom was used to determine the contrast to noise ratio (CNR) and f50 of a single 2-D projection. The computed f50 was 0.43 lp/mm and the CNR for a radiation dose of 0.02cGy was 43. Clinical Megavoltage CBCT images acquired with this system demonstrate that anatomical structures such as the prostate in a relatively large size patient are visible using radiation doses in range of 6 to 8cGy.

  2. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, A.M.; Ceglio, N.M.

    1991-04-10

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  3. Quality control beam of radiation through imaging system using a flat panel (ILD)

    International Nuclear Information System (INIS)

    The daily quality checks of the accelerator include, among others, checks of the daily calibration, symmetry and uniformity of the radiation beam. Usually verification systems daily are used for this purpose, which employ arrays of detectors of solid-state or ionization chambers. This paper intends to carry out the control of quality through the irradiation of a number of fields in the portal imaging system and its subsequent analysis in software's own creation, as well as the comparison of results with the daily verification system. (Author)

  4. Cone Beam Micro-CT System for Small Animal Imaging and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Shouping Zhu

    2009-01-01

    Full Text Available A prototype cone-beam micro-CT system for small animal imaging has been developed by our group recently, which consists of a microfocus X-ray source, a three-dimensional programmable stage with object holder, and a flat-panel X-ray detector. It has a large field of view (FOV, which can acquire the whole body imaging of a normal-size mouse in a single scan which usually takes about several minutes or tens of minutes. FDK method is adopted for 3D reconstruction with Graphics Processing Unit (GPU acceleration. In order to reconstruct images with high spatial resolution and low artifacts, raw data preprocessing and geometry calibration are implemented before reconstruction. A method which utilizes a wire phantom to estimate the residual horizontal offset of the detector is proposed, and 1D point spread function is used to assess the performance of geometric calibration quantitatively. System spatial resolution, image uniformity and noise, and low contrast resolution have been studied. Mouse images with and without contrast agent are illuminated in this paper. Experimental results show that the system is suitable for small animal imaging and is adequate to provide high-resolution anatomic information for bioluminescence tomography to build a dual modality system.

  5. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    International Nuclear Information System (INIS)

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences

  6. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H; Zeng, W; Xu, P; Wang, Z; Xing, X; Sun, M [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu (China)

    2015-06-15

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.

  7. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    International Nuclear Information System (INIS)

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between TrueBeam

  8. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Yu, Y; Liu, H [Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between TrueBeam

  9. Dose and image quality for a cone-beam C-arm CT system

    International Nuclear Information System (INIS)

    We assess dose and image quality of a state-of-the-art angiographic C-arm system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) for three-dimensional neuro-imaging at various dose levels and tube voltages and an associated measurement method. Unlike conventional CT, the beam length covers the entire phantom, hence, the concept of computed tomography dose index (CTDI) is not the metric of choice, and one can revert to conventional dosimetry methods by directly measuring the dose at various points using a small ion chamber. This method allows us to define and compute a new dose metric that is appropriate for a direct comparison with the familiar CTDIW of conventional CT. A perception study involving the CATPHAN 600 indicates that one can expect to see at least the 9 mm inset with 0.5% nominal contrast at the recommended head-scan dose (60 mGy) when using tube voltages ranging from 70 kVp to 125 kVp. When analyzing the impact of tube voltage on image quality at a fixed dose, we found that lower tube voltages gave improved low contrast detectability for small-diameter objects. The relationships between kVp, image noise, dose, and contrast perception are discussed

  10. A new generation of detectors for scanning x-ray beam imaging systems

    Science.gov (United States)

    Rommel, J. Martin

    2016-01-01

    Scanning x-ray beam imaging systems were first developed by American Science and Engineering, Inc. (AS&E) in the early 1970s [1]. Since then, these systems have found a wide range of applications in security inspection and non-destructive testing. Large-area detectors are most frequently used to collect backscattered radiation but smaller transmission detectors are also employed for selected applications. Until recently, only two basic detector designs have been used: large scintillator blocks with attached photomultiplier tubes (PMTs) or large-volume light-sealed boxes, lined with scintillating screens and port windows for PMTs. In both cases, the detectors have required considerable depth to provide acceptable light collection efficiency. A new design recently developed by AS&E relies on wavelength shifting fibres (WSF) for light collection. For the first time, this approach enables the construction of thin large-area detectors. Stacking layers of WSF ribbons and scintillating screens in varying combinations enables optimization of the detection efficiency for different applications. Taking separate readings from different layers provides an energy-sensitive signal combination. Energy sensitivity can be improved further by adding filtration between the signal channels. Several prototype configurations have been built and characterized for both backscatter and transmission imaging. A WSF-based detector has been commercialized for a transmission x-ray imaging application.

  11. A new generation of detectors for scanning x-ray beam imaging systems

    International Nuclear Information System (INIS)

    Scanning x-ray beam imaging systems were first developed by American Science and Engineering, Inc. (AS and E) in the early 1970s [1]. Since then, these systems have found a wide range of applications in security inspection and non-destructive testing. Large-area detectors are most frequently used to collect backscattered radiation but smaller transmission detectors are also employed for selected applications. Until recently, only two basic detector designs have been used: large scintillator blocks with attached photomultiplier tubes (PMTs) or large-volume light-sealed boxes, lined with scintillating screens and port windows for PMTs. In both cases, the detectors have required considerable depth to provide acceptable light collection efficiency. A new design recently developed by AS and E relies on wavelength shifting fibres (WSF) for light collection. For the first time, this approach enables the construction of thin large-area detectors. Stacking layers of WSF ribbons and scintillating screens in varying combinations enables optimization of the detection efficiency for different applications. Taking separate readings from different layers provides an energy-sensitive signal combination. Energy sensitivity can be improved further by adding filtration between the signal channels. Several prototype configurations have been built and characterized for both backscatter and transmission imaging. A WSF-based detector has been commercialized for a transmission x-ray imaging application

  12. ATF beam image monitor software

    International Nuclear Information System (INIS)

    We report about software for the beam image analysis at ATF. We developed image analysis software with a Linux computer. It acquire image data from a video and an IEEE1394 digital camera of the analog. (author)

  13. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system

    International Nuclear Information System (INIS)

    Purpose: The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. Methods: Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values of the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. Results: The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%–15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. Conclusions: The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio

  14. Volumetric cone-beam CT system based on a 41x41 cm2 flat-panel imager

    Science.gov (United States)

    Jaffray, David A.; Siewerdsen, Jeffrey H.

    2001-06-01

    Cone-beam computed tomography (CBCT) based upon large-area flat-panel imager (FPI) technology is a flexible and adaptable technology that offers large field-of-view (FOV), high spatial resolution, and soft-tissue imaging. The imaging performance of FPI-based cone-beam CT has been evaluated on a computer-controlled bench-top system using an early prototype FPI with a small FOV (20.5 X 20.5 cm2). These investigations demonstrate the potential of this exciting technology. In this report, imaging performance is evaluated using a production grade large-area FPI (41 X 41 cm2) for which the manufacturer has achieved a significant reduction in additive noise. This reduction in additive noise results in a substantial improvement in detective quantum efficiency (DQE) at low exposures. The spatial resolution over the increased FOV of the cone-beam CT system is evaluated by imaging a fine steel wire placed at various locations within the volume of reconstruction. The measured modulation transfer function (MTF) of the system demonstrates spatial frequency pass beyond 1 mm-1 (10% modulation) with a slight degradation at points off the source plane. In addition to investigations of imaging performance, progress has also been made in the integration of this technology with a medical linear accelerator for on-line image-guided radiation therapy. Unlike the bench-top system, this implementation must contend with significant geometric non-idealities caused by gravity-induced flex of the x-ray tube and FPI support assemblies. A method of characterizing and correcting these non-idealities has been developed. Images of an anthropomorphic head phantom qualitatively demonstrate the excellent spatial resolution and large FOV achievable with the cone-beam approach in the clinical implementation.

  15. The geometric calibration of cone-beam imaging and delivery systems in radiation therapy

    CERN Document Server

    Matsinos, E; Kaissl, Wolfgang; Matsinos, Evangelos

    2006-01-01

    We propose a method to achieve the geometric calibration of cone-beam imaging and delivery systems in radiation therapy; our approach applies to devices where an X-ray source and a flat-panel detector, facing each other, move in circular orbits around the irradiated object. In order to extract the parameters of the geometry from the data, we use a light needle phantom which is easy to manufacture. A model with ten free parameters (spatial lengths and distortion angles) has been put forth to describe the geometry and the mechanical imperfections of the units being calibrated; a few additional parameters are introduced to account for residual effects (small effects which lie beyond our model). The values of the model parameters are determined from one complete scan of the needle phantom via a robust optimisation scheme. The application of this method to two sets of five counterclockwise (ccw) and five clockwise (cw) scans yielded consistent and reproducible results. A number of differences have been observed be...

  16. An algorithm to unveil the inner structure of objects concealed by beam divergence in radiographic image acquisition systems

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, G. L.; Silvani, M. I. [Instituto de Engenharia Nuclear - CNEN, Caixa Postal 68550, CEP 21945-970, Rio de Janeiro (Brazil); Lopes, R. T. [Laboratório de Instrumentação Nuclear - UFRJ, Caixa Postal 68509, CEP 21945-970, Rio de Janeiro (Brazil)

    2014-11-11

    Two main parameters rule the performance of an Image Acquisition System, namely, spatial resolution and contrast. For radiographic systems using cone beam arrangements, the farther the source, the better the resolution, but the contrast would diminish due to the lower statistics. A closer source would yield a higher contrast but it would no longer reproduce the attenuation map of the object, as the incoming beam flux would be reduced by unequal large divergences and attenuation factors. This work proposes a procedure to correct these effects when the object is comprised of a hull - or encased in it - possessing a shape capable to be described in analytical geometry terms. Such a description allows the construction of a matrix containing the attenuation factors undergone by the beam from the source until its final destination at each coordinate on the 2D detector. Each matrix element incorporates the attenuation suffered by the beam after its travel through the hull wall, as well as its reduction due to the square of distance to the source and the angle it hits the detector surface. When the pixel intensities of the original image are corrected by these factors, the image contrast, reduced by the overall attenuation in the exposure phase, are recovered, allowing one to see details otherwise concealed due to the low contrast. In order to verify the soundness of this approach, synthetic images of objects of different shapes, such as plates and tubes, incorporating defects and statistical fluctuation, have been generated, recorded for further comparison and afterwards processed to improve their contrast. The developed algorithm which, generates processes and plots the images has been written in Fortran 90 language. As the resulting final images exhibit the expected improvements, it therefore seemed worthwhile to carry out further tests with actual experimental radiographies.

  17. Comparison of the dose deposited between the OBI system and the Varian TrueBeam Imaging system; Comparacion de la dosis depositada entre el sistem OBI y el truebeam Imaging system de Varian

    Energy Technology Data Exchange (ETDEWEB)

    Pino, F.; Navarro, D.; Sancho, I.; Lizuain, M. C.

    2011-07-01

    The use of imaging systems for positioning kilovoltage radiotherapy treatments has experienced a peak in recent years. Techniques such as IMRT, these systems are applied to a large number of sessions to ensure accurate positioning. This makes it increased the interest to know the dose deposited in the patient. Companies involved in developing new designs focus their efforts on reducing the dose due to these positioning systems. The aim of this study is to compare the dose delivered by the OBI image guidance system with the new system image TrueBeam, both of Varian, both planar imaging as CT (CBCT).

  18. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  19. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  20. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L., E-mail: laurent.pichon@culture.gouv.fr [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Moignard, B.; Lemasson, Q.; Pacheco, C. [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Walter, P. [Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); UPMC Univ Paris 06, CNRS-UMR 8220, Laboratoire d’archéologie moléculaire et structurale, LAMS, F-75005 Paris (France)

    2014-01-01

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique.

  1. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    International Nuclear Information System (INIS)

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique

  2. Development of system using beam's eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system.

    Science.gov (United States)

    Inoue, Mitsuhiro; Shiomi, Hiroya; Iwata, Hiromitsu; Taguchi, Junichi; Okawa, Kohei; Kikuchi, Chie; Inada, Kosaku; Iwabuchi, Michio; Murai, Taro; Koike, Izumi; Tatewaki, Koshi; Ohta, Seiji; Inoue, Tomio

    2015-01-01

    The accuracy of the CyberKnife Synchrony Respiratory Tracking System (SRTS) is considered to be patient-dependent because the SRTS relies on an individual correlation between the internal tumor position (ITP) and the external marker position (EMP), as well as a prediction method to compensate for the delay incurred to adjust the position of the linear accelerator (linac). We aimed to develop a system for obtaining pretreatment statistical measurements of the SRTS tracking error by using beam's eye view (BEV) images, to enable the prediction of the patient-specific accuracy. The respiratory motion data for the ITP and the EMP were derived from cine MR images obtained from 23 patients. The dynamic motion phantom was used to reproduce both the ITP and EMP motions. The CyberKnife was subsequently operated with the SRTS, with a CCD camera mounted on the head of the linac. BEV images from the CCD camera were recorded during the tracking of a ball target by the linac. The tracking error was measured at 15 Hz using in-house software. To assess the precision of the position detection using an MR image, the positions of test tubes (determined from MR images) were compared with their actual positions. To assess the precision of the position detection of the ball, ball positions measured from BEV images were compared with values measured using a Vernier caliper. The SRTS accuracy was evaluated by determining the tracking error that could be identified with a probability of more than 95% (Ep95). The detection precision of the tumor position (determined from cine MR images) was < 0.2 mm. The detection precision of the tracking error when using the BEV images was < 0.2mm. These two detection precisions were derived from our measurement system and were not obtained from the SRTS. The median of Ep95 was found to be 1.5 (range, 1.0-3.5) mm. The difference between the minimum and maximum Ep95 was 2.5mm, indicating that this provides a better means of evaluating patient-specific SRTS

  3. Comparison of vessel contrast measured with a scanning-beam digital x-ray system and an image intensifier/television system

    International Nuclear Information System (INIS)

    Vessel contrast was measured in the fluoroscopic images produced by a scanning-beam digital x-ray (SBDX) system and an image intensifier/television (II/TV) based system. The SBDX system electronically scans a series of pencil x-ray beams across the patient, each of which is directed at a distant small-area detector array. The reduction in detected scatter achieved with this geometry was expected to provide an increase in image contrast. Vessel contrast was evaluated from images of a phantom containing iodinated tubes. The vessels were inserted into an acrylic stack to provide a patient-mimicking scattering medium. Vessel diameter ranged from 0.3 to 3.1 mm. Images were acquired at 100 kVp with the SBDX and II/TV systems and averaged to reduce x-ray noise. The II/TV system was operated in the 6-in. image intensifier mode with an anti-scatter grid. The increase in contrast in the SBDX images, expressed as a ratio of the measured SBDX and II/TV contrasts, ranged from 1.63 to 1.79 for individual vessels. This agreed well with a prediction of the contrast improvement ratio for this experiment, based on measurements of the scatter fraction, object-plane line spread functions, and consideration of the source spectrum and detector absorption properties. The predicted contrast improvement ratio for SBDX relative to II/TV images was 1.62 to 1.77

  4. IEEE 1394 CAMERA IMAGING SYSTEM FOR BROOKHAVENS BOOSTER APPLICATION FACILITY BEAM DIAGNOSTICS

    International Nuclear Information System (INIS)

    Brookhaven's Booster Applications Facility (BAF) will deliver resonant extracted heavy ion beams from the AGS Booster to short-exposure fixed-target experiments located at the end of the BAF beam line. The facility is designed to deliver a wide range of heavy ion species over a range of intensities from 103 to over 108 ions/pulse, and over a range of energies from 0.1 to 3.0 GeV/nucleon. With these constraints we have designed instrumentation packages which can deliver the maximum amount of dynamic range at a reasonable cost. Through the use of high quality optics systems and neutral density light filters we will achieve 4 to 5 orders of magnitude in light collection. By using digital IEEE1394 camera systems we are able to eliminate the frame-grabber stage in processing and directly transfer data at maximum rates of 400 Mb/set. In this note we give a detailed description of the system design and discuss the parameters used to develop the system specifications. We will also discuss the IEEE1394 camera software interface and the high-level user interface

  5. Development of image processing system on embedded EPICS for beam diagnostics

    International Nuclear Information System (INIS)

    A new image processing system was developed based on EPICS and the FA-M3 PLC made by Yokogawa Electric Corporation. The hardware of the system comprises an F3RP61 CPU module running Linux and an F3UM02 frame grabber module. The CPU functions as an IOC to analyze the raw image data acquired and transferred by the frame grabber on the PCI-bus which connects the two modules. A custom record, graphicsRecord, holds the raw image data, the results of analysis and parameters set by the user over the network. GUI panels were created by using EDM in order to display the image and to set relevant control parameters into the fields of the graphicsRecord on the F3RP61-based IOC. It was confirmed that the developed system is able to acquire image data, analyze them appropriately, and send them over the network to a host computer to display the results of analysis. (author)

  6. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    Science.gov (United States)

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object. PMID:25818096

  7. Beam alignment system

    International Nuclear Information System (INIS)

    A patent is claimed for the invention of a beam alignment system. The aim of the invention is the obtention of an accurate monitoring of the beam position and direction. It is of great interest in the nuclear industry. The invention can be applied in an infrared laser beam for welding operations. An auxiliar radiation source is incorporated to the device. The system's configuration allows a simultaneous and separated utilisation of two beams. The description and the design of the proposed system are provided

  8. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy

    International Nuclear Information System (INIS)

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. (orig.)

  9. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a

  10. Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

    CERN Document Server

    Hagenbuck, F; Clawiter, N; Euteneuer, H; Görgen, F; Holl, P; Johann, K; Kiser, K H; Kemmer, J; Kerschner, T; Kettig, O; Koch, H; Kube, G; Lauth, W; Mauhay, H; Schütrumpf, M; Stotter, R; Strüder, L; Walcher, T; Wilms, A; von Zanthier, C; Zemter, M

    2001-01-01

    A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the +or-1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm*10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also the direction of the TR cone. The system has been checked with a phantom consisting of a 2.5- mu m thick molybdenum sample embedded in a 136- or 272- mu m-thick copper bulk foil. A numerical analysis of the energy spectrum for every pixel demonstrates that data as far as +or-0.75 keV away from the K edge of molybdenum at 20 keV still improv...

  11. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G; Marshall, N; Shaheen, E; Bosmans, H [Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium); Pauwels, R; Jacobs, R [Oral Imaging Center, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000 (Belgium); Nuyts, J, E-mail: guozhi.zhang@med.kuleuven.be [Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium)

    2011-09-21

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found <10% for most cases. Intensity profiles of the experimentally acquired and simulated projection images of the water phantom showed comparable fractional increase over the common area as changing from a small to a large field of view, suggesting that the scatter was accurately accounted. Image validation was conducted using two small phantoms and the built-in quality assurance protocol of the system. The reconstructed simulated images showed high resemblance on contrast resolution, noise appearance and artifact pattern in comparison to experimentally acquired images

  12. The clinical feasibility and performance of an orthogonal X-ray imaging system for image-guided radiotherapy in nasopharyngeal cancer patients: Comparison with cone-beam CT.

    Science.gov (United States)

    Zhao, Li-Rong; Zhou, Yi-Bing; Li, Guang-Hui; Li, Qi-Ming; Yang, Ding-Qiang; Li, Han-Xu; Wan, Jiu-Qing; Sun, Jian-Guo

    2016-01-01

    The demand for greater accuracy of intensity-modulated radiotherapy (IMRT) has driven the development of more advanced verification systems for image-guided radiotherapy (IGRT). The purpose of this study is to investigate setup discrepancies measured between an orthogonal X-ray guidance system (XGS-10) and cone-beam computed tomography (CBCT) of Varian in the IMRT of patients with nasopharyngeal cancer (NPC). The setup errors measured by XGS-10 and CBCT at the treatment unit with respect to the planning CTs were recorded for 30 patients with NPC. The differences in residual setup errors between XGS-10 system and CBCT were computed and quantitatively analyzed. The time of image acquisition and image registration was recorded. The radiation doses delivered by CBCT and XGS-10 were measured using PTW0.6CC ionization chambers and a water phantom. The differences between setup errors measured by the XGS-10 system and CBCT were generally <1.5 mm for translations, indicating a reasonably good agreement between the two systems for patients with NPC in the translation directions of A-P (P = 0.856), L-R (P = 0.856) and S-I (P = 0.765). Moreover, compared with CBCT, XGS-10 took much shorter image acquisition and registration time (P <0.001) and delivered only a small fraction of extra radiation dose to the patients (P <0.001). These results indicate that XGS-10 offers high localization accuracy similar to CBCT and additional benefits including prompt imaging process, low imaging radiation exposure, real time monitoring, which therefore represents a potential attractive alternative to CBCT for clinical use. PMID:26703446

  13. Investigation into image quality and dose for different patient geometries with multiple cone-beam CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Stephen J., E-mail: sgardne8@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Studenski, Matthew T. [Department of Radiation Oncology, University of Miami - Miller School of Medicine, Miami, Florida 33136 (United States); Giaddui, Tawfik; Galvin, James; Yu, Yan; Xiao, Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Cui, Yunfeng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: To provide quantitative and qualitative image quality metrics and imaging dose for modern Varian On-board Imager (OBI) (ver. 1.5) and Elekta X-ray Volume Imager (XVI) (ver. 4.5R) cone-beam computed tomography (CBCT) systems in a clinical adaptive radiation therapy environment by accounting for varying patient thickness. Methods: Image quality measurements were acquired with Catphan 504 phantom (nominal diameter and with additional 10 cm thickness) for OBI and XVI systems and compared to planning CT (pCT) (GE LightSpeed). Various clinical protocols were analyzed for the OBI and XVI systems and analyzed using image quality metrics, including spatial resolution, low contrast detectability, uniformity, and HU sensitivity. Imaging dose measurements were acquired in Wellhofer Scanditronix i'mRT phantom at nominal phantom diameter and with additional 4 cm phantom diameter using GafChromic XRQA2 film. Calibration curves were generated using previously published in-air Air Kerma calibration method. Results: The OBI system full trajectory scans exhibited very little dependence on phantom thickness for accurate HU calculation, while half-trajectory scans with full-fan filter exhibited dependence of HU calculation on phantom thickness. The contrast-to-noise ratio (CNR) for the OBI scans decreased with additional phantom thickness. The uniformity of Head protocol scan was most significantly affected with additional phantom thickness. The spatial resolution and CNR compared favorably with pCT, while the uniformity of the OBI system was slightly inferior to pCT. The OBI scan protocol dose levels for nominal phantom thickness at the central portion of the phantom were 2.61, 0.72, and 1.88 cGy, and for additional phantom thickness were 1.95, 0.48, and 1.52 cGy, for the Pelvis, Thorax, and Spotlight protocols, respectively. The XVI system scans exhibited dependence on phantom thickness for accurate HU calculation regardless of trajectory. The CNR for the XVI scans

  14. Investigation into image quality and dose for different patient geometries with multiple cone-beam CT systems

    International Nuclear Information System (INIS)

    Purpose: To provide quantitative and qualitative image quality metrics and imaging dose for modern Varian On-board Imager (OBI) (ver. 1.5) and Elekta X-ray Volume Imager (XVI) (ver. 4.5R) cone-beam computed tomography (CBCT) systems in a clinical adaptive radiation therapy environment by accounting for varying patient thickness. Methods: Image quality measurements were acquired with Catphan 504 phantom (nominal diameter and with additional 10 cm thickness) for OBI and XVI systems and compared to planning CT (pCT) (GE LightSpeed). Various clinical protocols were analyzed for the OBI and XVI systems and analyzed using image quality metrics, including spatial resolution, low contrast detectability, uniformity, and HU sensitivity. Imaging dose measurements were acquired in Wellhofer Scanditronix i'mRT phantom at nominal phantom diameter and with additional 4 cm phantom diameter using GafChromic XRQA2 film. Calibration curves were generated using previously published in-air Air Kerma calibration method. Results: The OBI system full trajectory scans exhibited very little dependence on phantom thickness for accurate HU calculation, while half-trajectory scans with full-fan filter exhibited dependence of HU calculation on phantom thickness. The contrast-to-noise ratio (CNR) for the OBI scans decreased with additional phantom thickness. The uniformity of Head protocol scan was most significantly affected with additional phantom thickness. The spatial resolution and CNR compared favorably with pCT, while the uniformity of the OBI system was slightly inferior to pCT. The OBI scan protocol dose levels for nominal phantom thickness at the central portion of the phantom were 2.61, 0.72, and 1.88 cGy, and for additional phantom thickness were 1.95, 0.48, and 1.52 cGy, for the Pelvis, Thorax, and Spotlight protocols, respectively. The XVI system scans exhibited dependence on phantom thickness for accurate HU calculation regardless of trajectory. The CNR for the XVI scans decreased

  15. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    International Nuclear Information System (INIS)

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  16. Multi-beam backscatter image data processing techniques employed to EM 1002 system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.

    backscatter intensities recorded in the raw (*.all) files are corrected during data acquisition for backscatter employing Lambert’s law (Simrad Model) [4]. However, for lower incidence angles (within the 0-25º) it was determined that the gain settings... of seabed during online data acquisition. Thus there will be image distortion, therefore, above correction is made during processing the raw backscatter strengths. • Lambert’s law removal: As discussed in preceding sections [4], the raw data is treated...

  17. Beam Imaging and Luminosity Calibration

    CERN Document Server

    AUTHOR|(CDS)2081126; Klute, Markus; Medlock, Catherine Aiko

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The x-y correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1%.

  18. ITER neutral beam system

    International Nuclear Information System (INIS)

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  19. Electron beam processing system

    International Nuclear Information System (INIS)

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  20. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    Science.gov (United States)

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly. PMID:26368074

  1. High resolution electron imaging system for sub-micron sized metastable atom beams produced by Stern Gerlach interferometry

    Science.gov (United States)

    Milosavljevic, A. R.; Bocvarski, V.; Jureta, J.; Marinkovic, B. P.; Karam, J.-C.; Grucker, J.; Perales, F.; Vassilev, G.; Reinhardt, J.; Robert, J.; Baudon, J.

    2005-10-01

    The method of modulating an atom beam profile by an immaterial magnetic mask generated in a Stern-Gerlach interferometer is recalled. A special magnetic configuration aimed at producing a single central bright interference fringe (atomic spot) was used. The effects of velocity spread, source coherence and source size on the limiting spot size at large values of the magnetic gradient are discussed. The observation of such small sizes requires a high spatial resolution of the position-sensitive detector. A new electron optical device is described, which images the secondary electron source generated by the impact of the atomic beam on a metallic electrode (detection in real time). Magnifications as high as 65 are accessible, leading to a better than 100 nm resolution of the atomic beam profile when a position-sensitive detector of a few µm resolution is used. Geometric and chromatic aberrations are discussed and, according to simulations, they do not significantly deteriorate the resolution.

  2. Reflective echo tomographic imaging using acoustic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  3. Reducing the influence of direct reflection on return signal detection in a 3D imaging lidar system by rotating the polarizing beam splitter.

    Science.gov (United States)

    Wang, Chunhui; Lee, Xiaobao; Cui, Tianxiang; Qu, Yang; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-03-01

    The direction rule of the laser beam traveling through a deflected polarizing beam splitter (PBS) cube is derived. It reveals that, due to the influence of end-face reflection of the PBS at the detector side, the emergent beam coming from the incident beam parallels the direction of the original case without rotation, with only a very small translation interval between them. The formula of the translation interval is also given. Meanwhile, the emergent beam from the return signal at the detector side deflects at an angle twice that of the PBS rotation angle. The correctness has been verified by an experiment. The intensity transmittance of the emergent beam when propagating in the PBS is changes very little if the rotation angle is less than 35 deg. In a 3D imaging lidar system, by rotating the PBS cube by an angle, the direction of the return signal optical axis is separated from that of the origin, which can decrease or eliminate the influence of direct reflection caused by the prism end face on target return signal detection. This has been checked by experiment. PMID:26974613

  4. Imaging an atomic beam using fluorescence

    Institute of Scientific and Technical Information of China (English)

    Ming He(何明); Jin Wang(王谨); Mingsheng Zhan(詹明生)

    2003-01-01

    A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.

  5. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system

    Energy Technology Data Exchange (ETDEWEB)

    Demehri, S. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins Outpatient Center, JHOC 5168, Musculoskeletal Radiology, Baltimore, MD (United States); Muhit, A.; Zbijewski, W.; Stayman, J.W. [Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States); Yorkston, J.; Packard, N.; Senn, R.; Yang, D.; Foos, D. [Carestream Health, Rochester, NY (United States); Thawait, G.K.; Fayad, L.M.; Chhabra, A.; Carrino, J.A. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Siewerdsen, J.H. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States)

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80kVp-108mAs for CBCT; 120kVp- 300mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated ''excellent'' or ''good'' (median scores 5 and 4) for ''bone'' and ''soft tissue'' visualization tasks. Hand CBCT images were rated ''excellent'' or ''adequate'' (median scores 5 and 3) for ''bone'' and ''soft tissue'' visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ∝ 0.26-0.92), and interobserver agreement was fair to moderate (κ ∝ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. (orig.)

  6. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system

    Science.gov (United States)

    Kamezawa, Hidemi; Arimura, Hidetaka; Shirieda, Katsutoshi; Kameda, Noboru; Ohki, Masafumi

    2016-05-01

    We investigated the feasibility of patient dose reduction based on six noise suppression filters for cone-beam computed tomography (CBCT) in an image-guided patient positioning (IGPP) system. A midpoint dose was employed as a patient dose index. First, a reference dose (RD) and low-dose (LD)-CBCT images were acquired with a reference dose and various low doses. Second, an automated rigid registration was performed for three axis translations to estimate patient setup errors between a planning CT image and the LD-CBCT images processed by six noise suppression filters (averaging filter, median filter, Gaussian filter, edge-preserving smoothing filter, bilateral filter, and adaptive partial median filter (AMF)). Third, residual errors representing the patient positioning accuracy were calculated as Euclidean distances between the setup error vectors estimated using the LD-CBCT and RD-CBCT images. Finally, the residual errors as a function of the patient dose index were estimated for LD-CBCT images processed by six noise suppression filters, and then the patient dose indices for the filtered LD-CBCT images were obtained at the same residual error as the RD-CBCT image. This approach was applied to an anthropomorphic phantom and four cancer patients. The patient dose for the LD-CBCT images was reduced to 19% of that for the RD-CBCT image for the phantom by using AMF, while keeping a same residual error of 0.47 mm as the RD-CBCT image by applying the noise suppression filters to the LD-CBCT images. The average patient dose was reduced to 31.1% for prostate cancer patients, and it was reduced to 82.5% for a lung cancer patient by applying the AMF. These preliminary results suggested that the proposed approach based on noise suppression filters could decrease the patient dose in IGPP systems.

  7. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system.

    Science.gov (United States)

    Kamezawa, Hidemi; Arimura, Hidetaka; Shirieda, Katsutoshi; Kameda, Noboru; Ohki, Masafumi

    2016-05-01

    We investigated the feasibility of patient dose reduction based on six noise suppression filters for cone-beam computed tomography (CBCT) in an image-guided patient positioning (IGPP) system. A midpoint dose was employed as a patient dose index. First, a reference dose (RD) and low-dose (LD)-CBCT images were acquired with a reference dose and various low doses. Second, an automated rigid registration was performed for three axis translations to estimate patient setup errors between a planning CT image and the LD-CBCT images processed by six noise suppression filters (averaging filter, median filter, Gaussian filter, edge-preserving smoothing filter, bilateral filter, and adaptive partial median filter (AMF)). Third, residual errors representing the patient positioning accuracy were calculated as Euclidean distances between the setup error vectors estimated using the LD-CBCT and RD-CBCT images. Finally, the residual errors as a function of the patient dose index were estimated for LD-CBCT images processed by six noise suppression filters, and then the patient dose indices for the filtered LD-CBCT images were obtained at the same residual error as the RD-CBCT image. This approach was applied to an anthropomorphic phantom and four cancer patients. The patient dose for the LD-CBCT images was reduced to 19% of that for the RD-CBCT image for the phantom by using AMF, while keeping a same residual error of 0.47 mm as the RD-CBCT image by applying the noise suppression filters to the LD-CBCT images. The average patient dose was reduced to 31.1% for prostate cancer patients, and it was reduced to 82.5% for a lung cancer patient by applying the AMF. These preliminary results suggested that the proposed approach based on noise suppression filters could decrease the patient dose in IGPP systems. PMID:27065312

  8. Image Processing In Laser-Beam-Steering Subsystem

    Science.gov (United States)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  9. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    International Nuclear Information System (INIS)

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  10. CVD diamond screens for photon beam imaging at PETRA III

    Science.gov (United States)

    Degenhardt, M.; Aprigliano, G.; Schulte-Schrepping, H.; Hahn, U.; Grabosch, H.-J.; Wörner, E.

    2013-03-01

    PETRA III, the most brilliant storage-ring-based synchrotron radiation source in the world, started its operation in 2009. It features 14 undulator beamlines and will be extended by further 10 beamlines in the PETRA III extension project. During the startup phase of the 14 PETRA III beamlines, fluorescence monitors based on CVD diamond screens have proven to be a very powerful tool for the monitoring of the attenuated undulator beams and for the commissioning of the optical components, e.g. slit systems and monochromators. They served as the essential instrument for the initial setup of the positron beam orbit to align the undulator photon beam along the beamline. The application of CVD diamond screens for the beam imaging at PETRA III beamlines is presented. Images taken during the beam adjustment and the beamline commissioning are shown.

  11. Beam alignment system for laser welding system

    International Nuclear Information System (INIS)

    The patent describes a beam alignment system for laser welding work pieces, such as fuel rod grids for nuclear fuel assemblies. The apparatus for performing various laser-machining comprises a beam alignment system including alignment target means, as well as means for emitting, directing and focusing the laser beam. (U.K.)

  12. An imaging informatics-based system to support animal studies for treating pain in spinal cord injury utilizing proton-beam radiotherapy

    Science.gov (United States)

    Verma, Sneha K.; Liu, Brent J.; Gridley, Daila S.; Mao, Xiao W.; Kotha, Nikhil

    2015-03-01

    In previous years we demonstrated an imaging informatics system designed to support multi-institutional research focused on the utilization of proton radiation for treating spinal cord injury (SCI)-related pain. This year we will demonstrate an update on the system with new modules added to perform image processing on evaluation data using immunhistochemistry methods to observe effects of proton therapy. The overarching goal of the research is to determine the effectiveness of using the proton beam for treating SCI-related neuropathic pain as an alternative to invasive surgical lesioning. The research is a joint collaboration between three major institutes, University of Southern California (data collection/integration and image analysis), Spinal Cord Institute VA Healthcare System, Long Beach (patient subject recruitment), and Loma Linda University and Medical Center (human and preclinical animal studies). The system that we are presenting is one of its kind which is capable of integrating a large range of data types, including text data, imaging data, DICOM objects from proton therapy treatment and pathological data. For multi-institutional studies, keeping data secure and integrated is very crucial. Different kinds of data within the study workflow are generated at different stages and different groups of people who process and analyze them in order to see hidden patterns within healthcare data from a broader perspective. The uniqueness of our system relies on the fact that it is platform independent and web-based which makes it very useful in such a large-scale study.

  13. Ellipse-line-ellipse source trajectory and its R-line coverage for long-object cone-beam imaging with a C-arm system

    Science.gov (United States)

    Yu, Z.; Noo, F.; Lauritsch, G.; Dennerlein, F.; Hornegger, J.

    2012-03-01

    Over the last decade, significant progress has been made in terms of treatment of diseases using minimallyinvasive procedures. This progress was facilitated through multiple refinements of the imaging capabilities of C-arm systems in the interventional room, and more sophisticated procedures may become feasible by further refining the performance of these systems. Our primary focus is to eliminate two strong limitations of the current circular cone-beam imaging approach: cone-beam artifacts and limited extent of the volume covered in the direction of the patient bed. To solve this problem, we seek a source trajectory that (i) is complete in terms of Tuy's condition, (ii) can be periodically-repeated without discontinuities to allow long-object imaging, (iii) is practical, and (iv) offers full R-line coverage (an R-line is a line that connects any two source positions). A trajectory that satisfies all of our constraint is the Arc-Extended-Line-Arc(AELA) trajectory. Unfortunately, this trajectory does not allow smooth, continuous scanning at reasonable dose. In this work, we propose a new data acquisition geometry: the Ellipse-Line-Ellipse (ELE) trajectory. This geometry satisfies all of our constraints along with the attractive feature that smooth, continuous scanning at reasonable dose is enabled.

  14. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    Science.gov (United States)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self

  15. Antares beam-alignment-system performance

    International Nuclear Information System (INIS)

    The beam alignment system for the 24-beam-sector Antares CO2 fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO2 alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence

  16. Proton beam writing for producing holographic images

    International Nuclear Information System (INIS)

    This work reports on the writing of computer generated hologram diffraction patterns using focused 2 MeV proton beam irradiation. These patterns were designed using a ray tracing algorithm and written directly into a thick polymethylmethacrylate layer. When the developed holographic pattern was illuminated with a 650 nm laser it produced a good reconstructed image. This work provides means of forming high-resolution, high aspect ratio holographic images in polymers for applications in data storage using switchable holography.

  17. A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size.

    Directory of Open Access Journals (Sweden)

    Shinichi Shimizu

    Full Text Available PURPOSE: A proton beam therapy (PBT system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT were compared with free-breathing spot-scanning proton beam therapy (FBPT in a simulation. MATERIALS AND METHODS: In-house simulation tools and treatment planning system VQA (Hitachi, Ltd., Japan were used for estimating the dose distribution and treatment time. Simulations were performed for 48 motion parameters (including 8 respiratory patterns and 6 initial breathing timings on CT data from two patients, A and B, with hepatocellular carcinoma and with clinical target volumes 14.6 cc and 63.1 cc. The respiratory patterns were derived from the actual trajectory of internal fiducial markers taken in X-ray real-time tumor-tracking radiotherapy (RTRT. RESULTS: With FBPT, 9/48 motion parameters achieved the criteria of successful delivery for patient A and 0/48 for B. With RGPT 48/48 and 42/48 achieved the criteria. Compared with FBPT, the mean liver dose was smaller with RGPT with statistical significance (p<0.001; it decreased from 27% to 13% and 28% to 23% of the prescribed doses for patients A and B, respectively. The relative lengthening of treatment time to administer 3 Gy (RBE was estimated to be 1.22 (RGPT/FBPT: 138 s/113 s and 1.72 (207 s/120 s for patients A and B, respectively. CONCLUSIONS: This simulation study demonstrated that the RGPT was able to improve the dose distribution markedly for moving tumors without very large treatment time extension. The proton beam therapy system dedicated to spot-scanning with a gating function for real-time imaging increases accuracy with moving tumors and reduces the physical size, and subsequently the cost of the equipment as well as of the building housing the

  18. Initial patient imaging with an optimised radiotherapy beam for portal imaging

    International Nuclear Information System (INIS)

    Background and purpose: To investigate the feasibility and the advantages of a portal-imaging mode on a medical accelerator, consisting of a thin low-Z bremsstrahlung target and a thin Gd2O2S/film detector, for patient imaging. Patients and methods: The international code of practice for high-energy photon dosimetry was used to calibrate dosimetry instruments for the imaging beam produced by 4.75 MeV electrons hitting a 6 mm thick aluminium target. Images of the head and neck of a humanoid phantom were taken with a mammography film system and the dose in the phantom was measured with TLDs calibrated for this beam. The first head and neck patient images are compared with conventional images (taken with the treatment beam on a film radiotherapy verification detector). Visibility of structures for six patients was evaluated. Results: Images of the head and neck of a humanoid phantom, taken with both imaging systems showed that the contrast increased dramatically for the new system while the dose required to form an image was less than 10-2 Gy. The patient images taken with the new and the conventional systems showed that air-tissue interfaces were better defined in the new system image. Anatomical structures, visible on both films, are clearer with the new system. Additionally, bony structures, such as vertebrae, were clearly visible only with the new system. The system under evaluation was significantly better for all features in lateral images and most features in anterior images. Conclusions: This pilot study of the new portal imaging system showed the image quality is significantly improved

  19. Preliminary images from an adaptive imaging system.

    Science.gov (United States)

    Griffiths, J A; Metaxas, M G; Pani, S; Schulerud, H; Esbrand, C; Royle, G J; Price, B; Rokvic, T; Longo, R; Asimidis, A; Bletsas, E; Cavouras, D; Fant, A; Gasiorek, P; Georgiou, H; Hall, G; Jones, J; Leaver, J; Li, G; Machin, D; Manthos, N; Matheson, J; Noy, M; Ostby, J M; Psomadellis, F; van der Stelt, P F; Theodoridis, S; Triantis, F; Turchetta, R; Venanzi, C; Speller, R D

    2008-06-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephalography. In our system, the exposure in each image region is optimised and the beam intensity is a function of tissue thickness and attenuation, and also of local physical and statistical parameters in the image. Using a linear array of detectors, the system will perform on-line analysis of the image during the scan, followed by optimisation of the X-ray intensity to obtain the maximum diagnostic information from the region of interest while minimising exposure of diagnostically less important regions. This paper presents preliminary images obtained with a small area CMOS detector developed for this application. Wedge systems were used to modulate the beam intensity during breast and dental imaging using suitable X-ray spectra. The sensitive imaging area of the sensor is 512 x 32 pixels 32 x 32 microm(2) in size. The sensors' X-ray sensitivity was increased by coupling to a structured CsI(Tl) scintillator. In order to develop the I-ImaS prototype, the on-line data analysis and data acquisition control are based on custom-developed electronics using multiple FPGAs. Images of both breast tissues and jaw samples were acquired and different exposure optimisation algorithms applied. Results are very promising since the average dose has been reduced to around 60% of the dose delivered by conventional imaging systems without decrease in the visibility of details. PMID:18291697

  20. SU-E-P-54: Evaluation of the Accuracy and Precision of IGPS-O X-Ray Image-Guided Positioning System by Comparison with On-Board Imager Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study is to assess the positioning accuracy and precision of IGPS-O system which is a novel radiographic kilo-voltage x-ray image-guided positioning system developed for clinical IGRT applications. Methods: IGPS-O x-ray image-guided positioning system consists of two oblique sets of radiographic kilo-voltage x-ray projecting and imaging devices which were equiped on the ground and ceiling of treatment room. This system can determine the positioning error in the form of three translations and three rotations according to the registration of two X-ray images acquired online and the planning CT image. An anthropomorphic head phantom and an anthropomorphic thorax phantom were used for this study. The phantom was set up on the treatment table with correct position and various “planned” setup errors. Both IGPS-O x-ray image-guided positioning system and the commercial On-board Imager Cone-beam Computed Tomography (OBI CBCT) were used to obtain the setup errors of the phantom. Difference of the Result between the two image-guided positioning systems were computed and analyzed. Results: The setup errors measured by IGPS-O x-ray image-guided positioning system and the OBI CBCT system showed a general agreement, the means and standard errors of the discrepancies between the two systems in the left-right, anterior-posterior, superior-inferior directions were −0.13±0.09mm, 0.03±0.25mm, 0.04±0.31mm, respectively. The maximum difference was only 0.51mm in all the directions and the angular discrepancy was 0.3±0.5° between the two systems. Conclusion: The spatial and angular discrepancies between IGPS-O system and OBI CBCT for setup error correction was minimal. There is a general agreement between the two positioning system. IGPS-O x-ray image-guided positioning system can achieve as good accuracy as CBCT and can be used in the clinical IGRT applications

  1. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  2. Beam steering system

    Science.gov (United States)

    Bowhill, S. A.; Merewether, K. O.

    1986-01-01

    A simple technique for steering the beam of a multimodule phased array MST (mesosphere, stratosphere, troposphere) radar antenna is described. It is desirable to be able to point the antenna in multiple directions, so as to derive all components of the horizontal velocity. This was done on an experimental basis by adding parallel wire line to the feed and achieving a southward tilt of the antenna. It is proved possible to steer the beam through most of the available range without adversely affecting the VSWR seen from the transmitter. Calibrating the antenna direction can be accomplished by observing radio sources, though there are an inadequate number to cover all directions. For various assumed values of the aspect sensitivity in dB/deg, and the calculated antenna pattern, it is possible to calculate the effective pointing angle of the antenna, defined as that angle which would give an identical location for the centroid of the power spectrum if aspect sensitivity were absent. Using averaged apparent steering directions, eastward and northward winds were calculated for special radar runs simultaneous with 14 balloon launches at Peoria and results are presented.

  3. Image space beam hardening corrections. Considerations for quantitative myocardial imaging

    International Nuclear Information System (INIS)

    The case of quantitative myocardial imaging presents unique challenges with respective to beam hardening artifacts. There is a desire to make quantitative assessments of the attenuation in the myocardium in order to assess pathology such as non-perfused regions. The area of interest in this case is directly adjacent to a region of high contrast (i.e. the opacified left ventricle). There are other iodinated objects such as the great vessels in close proximity. Additionally, there are bones within the scanning field of view such as the spine, which is adjacent to the heart. There have been a variety of techniques proposed over the years to correct for beam hardening. These techniques include iterative techniques which require full knowledge of the spectrum. A more pragmatic approach can be achieved strictly with image data by segmenting the image into multiple materials and correcting for non-linearity by adding correction images of higher order contributions from different materials. Recently, an automated empirical procedure for determining the weights of the higher order contributions and cross terms was proposed by Kyriakou et al. In this method the corrected image is achieved by combining the individual basis images such that the final image has the maximum flatness. The image with maximum flatness is achieved by minimizing the total variation of the combined image. In the presented work by Kyriakou et al. the image was segmented into water and bone using a soft thresholding procedure. In this work we have implemented an extended version of the correction scheme which includes separate components for water, iodine and bone. The performance of the method has been assessed in phantom data where quantitative metrics are improved by including iodine as a third material. Additionally, the technique has been demonstrated using clinical projection data. These results demonstrate a reduction of the beam hardening artifacts typically present between the aorta and the

  4. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  5. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    Science.gov (United States)

    Yu, Zhicong; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim; Noo, Frédéric

    2016-02-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology.

  6. The SSC beam scraper system

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, M.A.; Mokhov, N.V.; Yazynin (Superconducting Super Collider Lab., Dallas, TX (United States) Institut Fiziki Vysokikh Ehnergij, Protvino (USSR))

    1991-06-01

    In this paper we present the results of a full-scale study of a beam scraping system that is designed to guarantee reliable operation of the SSC throughout the whole cycle and for minimum background for experiments at the interaction regions. The machine aperture limits and beam loss formation are analyzed. Simulation programs and a calculational model are described. The physics of beam scraping is explored, and measures to increase significantly the system efficiency are determined. A tolerable scraping rate, taking into account scraper material integrity, quench limits in downstream superconducting magnets, radiation shielding requirements, and minimal beam halo levels at the IPs are also determined. Finally, a complete multi-component scraper system in the SSC East Cluster is proposed. Throughout the paper we define a scraper as a primary absorber consisting of precise movable jaws that have a flat inner edge along the circulation beam and which may be forced to touch the beam halo in horizontal or vertical planes. Secondary absorbers -- collimators -- are destined to intercept outscattered protons and other particles produced in scraper material. All these are surrounded with a radiation shielding. 15 refs., 50 figs., 13 tabs.

  7. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  8. Linear array measurements of enhanced dynamic wedge and treatment planning system (TPS) calculation for 15 MV photon beam and comparison with electronic portal imaging device (EPID) measurements

    International Nuclear Information System (INIS)

    Enhanced dynamic wedges (EDW) are known to increase drastically the radiation therapy treatment efficiency. This paper has the aim to compare linear array measurements of EDW with the calculations of treatment planning system (TPS) and the electronic portal imaging device (EPID) for 15 MV photon energy. The range of different field sizes and wedge angles (for 15 MV photon beam) were measured by the linear chamber array CA 24 in Blue water phantom. The measurement conditions were applied to the calculations of the commercial treatment planning system XIO CMS v.4.2.0 using convolution algorithm. EPID measurements were done on EPID-focus distance of 100 cm, and beam parameters being the same as for CA24 measurements. Both depth doses and profiles were measured. EDW linear array measurements of profiles to XIO CMS TPS calculation differ around 0.5%. Profiles in non-wedged direction and open field profiles practically do not differ. Percentage depth doses (PDDs) for all EDW measurements show the difference of not more than 0.2%, while the open field PDD is almost the same as EDW PDD. Wedge factors for 60 deg wedge angle were also examined, and the difference is up to 4%. EPID to linear array differs up to 5%. The implementation of EDW in radiation therapy treatments provides clinicians with an effective tool for the conformal radiotherapy treatment planning. If modelling of EDW beam in TPS is done correctly, a very good agreement between measurements and calculation is obtained, but EPID cannot be used for reference measurements

  9. Antiproton source beam position system

    International Nuclear Information System (INIS)

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x109 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x107 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  10. Beam hardening correction algorithm in microtomography images

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T., E-mail: esales@con.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Assis, Joaquim T. de, E-mail: joaquim@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Engenharia Mecanica

    2009-07-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  11. Beam hardening correction algorithm in microtomography images

    International Nuclear Information System (INIS)

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  12. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  13. Performance Evaluation of a Differential Phase-contrast Cone-beam (DPC-CBCT) System for Soft Tissue Imaging

    OpenAIRE

    YU, Yang; Ning, Ruola; Cai, Weixing

    2011-01-01

    Differential phase-contrast (DPC) technique is promising as the next breakthrough in the field of X-ray CT imaging. Utilizing the long ignored X-ray phase information, Differential phase-contrast (DPC) technique has the potential of providing us with projection images with higher contrast in a CT scan without increasing the X-ray dose. While traditional absorption-based X-ray imaging is not very efficient at differentiating soft tissues, differential phase-contrast (DPC) is promising as a new...

  14. A simple multipurpose double-beam optical image analyzer

    CERN Document Server

    Popowicz, Adam

    2016-01-01

    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing ca be carried out. The optical system is straightforward and easy implementable as it consists of only three lens and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam-splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located in different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  15. Design and construction of a flat-panel-based cone-beam computed tomography (FPD-CBCT) imaging system through the adaptation of a commercially available CT system: recent data

    Science.gov (United States)

    Conover, David L.; Ning, Ruola

    2004-05-01

    The purpose of this presentation is to show how a commercially available spiral CT has been modified for use as the electro-mechanical scanner hardware for a prototype flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system. FPD-CBCT has the benefits of isotropic high resolution, low contrast sensitivity and 3D visualization. In contrast to spiral CT, which acquires a series of narrow slices, FPD-CBCT acquires a full volume of data (limited by the cone angle and the FPD active area) in one scan. Our goal was to use a GE HighSpeed Advantage (HSA) CT system as the basis for an FPD-CBVCT imaging prototype for performing phantom, animal and patient imaging studies. Specific electromechanical and radiographic subsystems controlled include: gantry rotation and tilt, patient table positioning, rotor control, mA control, the high frequency generator (kVp, exposure time, repetition rate) and image data acquisition. Also, a 2D full field FPD replaced the 1D detector, as well as the existing slit collimator was retrofitted to a full field collimator to allow x-ray exposure over the entire active area of the FPD. In addition, x-ray projection data was acquired at 30 fps. Power and communication signals to control modules on the rotating part of the gantry were transmitted through integrated slip rings on the gantry. A stationary host computer controlled mechanical motion of the gantry and sent trigger signals to on-board electronic interface modules to control data acquisition and radiographic functions. Acquired image data was grabbed to the system memory of an on-board industrial computer, saved to hard disk and downloaded through a network connection to the stationary computer for 3D reconstruction. Through the synchronized control of the pulsed x-ray exposures, data acquisition, and gantry rotation the system achieved a circle cone beam image acquisition protocol. With integrated control of the gantry tilt and of the position and translation speed

  16. Design of a Steerable Two-beam System for Simultaneous On- and Off-axis Imaging with GUFI

    Science.gov (United States)

    Chambers, V. J.; Butler, R. F.; Goncharov, A. V.

    2008-02-01

    The GUFI (Galway Ultra Fast Imager) has been primarily developed for high throughput differential photometry, in order to study variability in challenging circumstances, such as near bright sources or within crowded fields. The instrument features a low light level charged coupled device (L3-CCD) that enhances detector speed and sensitivity but only covers small fields of view. This presents limitations on possible science targets when suitable differential photometry comparison stars are not in the immediate vicinity of the target. Conventional solutions for imaging larger portions of sky without sacrificing SNR include telescope focal reduction methods and large arrays of CCDs. Our alternative solution entails a two-path, `outrigger' optical design to image target and comparison stars separately. This new approach allows detection of variable targets that formerly were not reachable with smaller-field detectors. The mechanical design was originally generated with AutoCAD® drafting software before being compiled in, and vetted with an OSLO® optical design package. Through filters B, V and I, the limiting design aberration was chromatic focal shift that appeared most severe in the B-filter's bandpass range. However, the degree of image blurring caused by this aberration and others did not exceed the scale of that already produced by atmospheric turbulence. For each bandpass, the model's imaging performance met and exceeded expectations set by all design constraints.

  17. ATF neutral beam injection system

    International Nuclear Information System (INIS)

    The Advanced Toroidal Facility is a stellarator torsatron being built at Oak Ridge National Laboratory to investigate improved plasma confinement schemes. Plasmas heating will be carried out predominantly by means of neutral beam injection. This paper describes the basic parameters of the injection system. Numerical calculations were done to optimize the aiming of the injectors. The results of these calculations and their implications on the neutral power to the machine are elaborated. The effects of improving the beam optics and altering the focal length on the power transmitted to the plasma are discussed

  18. An imaging informatics-based system utilizing DICOM objects for treating pain in spinal cord injury patients utilizing proton beam radiotherapy

    Science.gov (United States)

    Verma, Sneha K.; Liu, Brent J.; Chun, Sophia; Gridley, Daila S.

    2014-03-01

    Many US combat personnel have sustained nervous tissue trauma during service, which often causes Neuropathic pain as a side effect and is difficult to manage. However in select patients, synapse lesioning can provide significant pain control. Our goal is to determine the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning. The project is a joint collaboration of USC, Spinal Cord Institute VA Healthcare System, Long Beach, and Loma Linda University. This is first system of its kind that supports integration and standardization of imaging informatics data in DICOM format; clinical evaluation forms outcomes data and treatment planning data from the Treatment planning station (TPS) utilized to administer the proton therapy in DICOM-RT format. It also supports evaluation of SCI subjects for recruitment into the clinical study, which includes the development, and integration of digital forms and tools for automatic evaluation and classification of SCI pain. Last year, we presented the concept for the patient recruitment module based on the principle of Bayesian decision theory. This year we are presenting the fully developed patient recruitment module and its integration to other modules. In addition, the DICOM module for integrating DICOM and DICOM-RT-ION data is also developed and integrated. This allows researchers to upload animal/patient study data into the system. The patient recruitment module has been tested using 25 retrospective patient data and DICOM data module is tested using 5 sets of animal data.

  19. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  20. Transverse profile imager for ultrabright electron beams

    Science.gov (United States)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  1. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  2. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    Science.gov (United States)

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  3. Projection imaging of photon beams using Čerenkov-excited fluorescence

    OpenAIRE

    Glaser, Adam K.; Davis, Scott C.; Voigt, William H.A.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-01-01

    Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in...

  4. An electrostatic beam rocking system on the Surrey nuclear microprobe

    International Nuclear Information System (INIS)

    The use of two sets of magnetic dipoles, producing opposite fields, to rock a focused MeV ion beam over the surface of a crystalline sample is now well established in several nuclear microprobe laboratories. Such a 'beam rocking' system allows ion channeling analysis from micron-size regions of the sample to be measured, with a beam displacement over the sample surface as small as a few microns, and no requirements for an automated goniometer. While magnetic beam rocking systems are ideal for many applications, they are limited in the speed at which the beam can be rocked in angle owing to hysteresis effects. This may also cause problems of non-reproducibility of the beam displacement on a micron scale. Also, heavier ions are more difficult to rock through a given angle using a magnetic beam rocking system, whereas an electrostatic beam rocking system gives a rocking angle which is independent of the ion mass. This paper describes the construction and uses of a fast electrostatic beam rocking system, which uses two sets of high voltage plates driven in opposition at high frequencies. Ion optics simulations are used to model the performance of the system. The optics of this beam rocking system, in which both sets of deflection plates are located before the quadruplet lens formation are discussed. The uses of this system to rapidly image the location of crystal planes and axes, and to carry out rapid channeling analysis are presented

  5. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  6. KTeV beam systems design report

    International Nuclear Information System (INIS)

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented

  7. Commissioning of a proton gantry equipped with dual x-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Ghebremedhin, Abiel; Patyal, Baldev, E-mail: bpatyal@llu.eduss [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2015-06-15

    Purpose: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. Methods: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy and couch wander from the gantry isocenter were measured for couch loadings of 50–300 lb with couch rotations from 0° to ±90°. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 × 30 × 30 cm{sup 3} Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. Results: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0° to ±90°. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on

  8. Commissioning of a proton gantry equipped with dual x-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system

    International Nuclear Information System (INIS)

    Purpose: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. Methods: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy and couch wander from the gantry isocenter were measured for couch loadings of 50–300 lb with couch rotations from 0° to ±90°. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 × 30 × 30 cm3 Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. Results: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0° to ±90°. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on the

  9. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five ...

  10. High power neutral beam systems

    International Nuclear Information System (INIS)

    Spurred by the requirement to supply megawatts of power to heat magnetically confined plasmas to temperatures of interest for fusion research, a new class of low energy, high power accelerators termed neutral beam injectors has been developed. Industry has played an important role in building upon technology advances at the national laboratories to engineer neutral beam injectors to meet the needs of specific users. A brief retrospective of the field is presented, with emphasis upon one particular application, that of DIII-D, a large tokamak at General Atomics. In this instance, the role of industry has been especially extensive because the user/system integrator is itself an industrial concern. 4 refs., 7 figs., 2 tabs

  11. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  12. Evaluation of imaging performance of major image guidance systems

    OpenAIRE

    Chan, MF; Yang, J.; Song, Y.; Burman, C.; Chan, P; Li, S.

    2011-01-01

    Purpose: The imaging characteristics of two popular kV cone-beam CT (CBCT) and two MVCT systems utilised in image-guided radiation therapy (IGRT) were evaluated. Materials and methods: The study was performed on Varian Clinac iX, Elekta Synergy S, Siemens Oncor, and Tomotherapy. A CT phantom (Catphan-504, Phantom Laboratory, Salem, NY) was scanned for measurements of image quality including image noise, uniformity, density accuracy, spatial resolution, contrast linearity, and contrast resolut...

  13. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  14. LHC beam instrumentation detectors and acquisition systems

    International Nuclear Information System (INIS)

    An overview of some of the detectors and acquisition systems being developed for measuring and controlling beam parameters in the LHC. The two largest systems concern the measurement of beam position, with over 1000 monitors, and beam loss, with over 3000 monitors. For the beam position system a novel wide band time normaliser has been developed to allow bunch-by-bunch 40MHz acquisitions with a dynamic range greater than 30dB and an overall linearity of better than 1%. Also mentioned will be the acquisition system for the fast beam current transformers and the development of CdTe detectors for luminosity monitoring. [author

  15. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas

    International Nuclear Information System (INIS)

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. -- Highlights: ► ETEM images with point resolution of 0.12 nm in 4 mbar of nitrogen gas. ► Clear Si lattice imaging with 16 mbar of nitrogen gas. ► ETEM image resolution in gas can be much improved by decreasing total beam current. ► Beam current density (beam convergence) has no effect on the image resolution.

  16. A STUDY OF HIGH FRAME RATE ULTRASONIC IMAGING WITH LIMITED DIFFRACTION BEAMS

    Institute of Scientific and Technical Information of China (English)

    刘立庄; 卞正中; 姚斌

    2003-01-01

    Objective To investigate a new class of solutions to the isotropic/homogeneous scalar wave equation, which termed limited diffraction beams and realize ultrasonic 3D imaging. Methods Limited diffraction beams were derived. We performed the study of 3D pulse-echo imaging with limited diffraction array beam. To obtain high frame rate images, a single plane wave pulse (broadband) was transmitted with the arrays. Echoes received with the same arrays were processed with Fourier method to construct 3D images. Results Compared with traditional pulse-echo imaging, this method has a larger depth of field, high frame rate, and high signal-to-noise ratio. Conclusion The new method has prospect of high frame rate 3D imaging. In addition, the imaging system based this method is easily implemented and has high quality image.

  17. The Aberdeen Impedance Imaging System.

    Science.gov (United States)

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979

  18. Three-beam spectral-domain optical coherence tomography for retinal imaging

    Science.gov (United States)

    Suehira, Nobuhito; Ooto, Sotaro; Hangai, Masanori; Matsumoto, Kazuhiro; Tomatsu, Nobuhiro; Yuasa, Takashi; Yamada, Kazuro; Yoshimura, Nagahisa

    2012-10-01

    A three-beam spectral domain optical coherence tomography system (OCT) whose center wavelength is 840 nm was developed. The three beams focus on fundus 3.1 mm apart from each other and are detected by a single line sensor. The distance between the beams is fixed and the beams scan a total area of 10×10 mm2 while keeping this separation during three-dimensional (3-D) measurement. The line rate of the sensor is 70 kHz, therefore the total speed is equivalent to 210k A-scans per second in this system. A 1000(x)×500(z)×250(y) voxel volumetric 3D OCT data set can be acquired within 2 s. Images of a model eye, a healthy human eye and a diseased eye taken by this system are shown and evaluated. The image quality of one B-Scan is as good as an image from a single-beam OCT. Adjustment among the beams is solved by additional signal processing using a model eye. A multi-beam OCT has the potential not only for high speed imaging but also functional imaging although problems such as compensation among the beams and motion artifacts must be solved.

  19. Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix

  20. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  1. Analysis of E-Beam Microlithography and SEM Imaging Distortions

    OpenAIRE

    Guery, Adrien; Latourte, Félix; Hild, François; Roux, Stéphane

    2014-01-01

    Surface patterning by e-beam lithography and SEM imaging distortions are studied via digital image correlation. The surface of a stainless steel specimen is marked with a numerically-generated random pattern by microlithography. The global distortions from the reference pattern are first quantified by digital image correlation between the virtual reference pattern and the actual SEM image both in secondary and backscattered electron imaging modes. A second order polynomial basis reveals suffi...

  2. Beam shaping in high-power laser systems with using refractive beam shapers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  3. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit of the...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  4. A large distributed digital camera system for accelerator beam diagnostics

    Science.gov (United States)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  5. A large distributed digital camera system for accelerator beam diagnostics

    International Nuclear Information System (INIS)

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system

  6. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    International Nuclear Information System (INIS)

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of (le) 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R and D program will be presented.

  7. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    International Nuclear Information System (INIS)

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1–6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements

  8. Rf-synchronized imaging for particle and photon beam characterizations

    International Nuclear Information System (INIS)

    The usefulness of imaging electro-optics for rf-driven accelerators can be enhanced by synchronizing the instruments to the system fundamental frequency or an appropriate subharmonic. This step allows one to obtain micropulse bunch length and phase during a series of linac bunches or storage ring passes. Several examples now exist of the use of synchroscan and dual-sweep streak cameras and/or image dissector tubes to access micropulse scale phenomena (10 to 30 ps) during linac and storage ring operations in the US, Japan, and Europe. As space permits, selections will be presented from the list of phase stability phenomena on photoelectric injectors, micropulse length during a macropulse, micropulse elongation effects, transverse Wakefield effects within a micropulse, and submicropulse phenomena on a stored beam. Potential applications to the subsystems of the Advanced Photon Source (APS) will be briefly addressed

  9. Quality control beam of radiation through imaging system using a flat panel (ILD); Control de calidad de haz de radiacion mediante un sistema de imagen de panel plano (EPID)

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Serrano, J. A.; Gomez Barrado, A.; Sanchez-Reyes, A.

    2013-07-01

    The daily quality checks of the accelerator include, among others, checks of the daily calibration, symmetry and uniformity of the radiation beam. Usually verification systems daily are used for this purpose, which employ arrays of detectors of solid-state or ionization chambers. This paper intends to carry out the control of quality through the irradiation of a number of fields in the portal imaging system and its subsequent analysis in software's own creation, as well as the comparison of results with the daily verification system. (Author)

  10. Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments

    Science.gov (United States)

    Bivolaru, Daniel; Herring, G. C.

    2007-01-01

    An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.

  11. A micromechanical beam-steering device for terahertz systems

    OpenAIRE

    Drysdale, T.D.; Cumming, D.R.S.

    2004-01-01

    Beam-steering techniques are required to fully exploit terahertz imaging systems. We propose and model a device employing artificial dielectric techniques to provide a variable phase-control medium. The device consists of two interlocking artificial dielectric surfaces that are initially aligned parallel to each other. By mechanically introducing a relative tilt between the plates, a transmitted wave is subjected to a graded phase delay and thus the beam is steered away from the normal. Conti...

  12. Real time neutron image processing system in NRF

    International Nuclear Information System (INIS)

    The neutron radiography facility was installed at the neutron radiography beam tube of the HANARO research reactor. The NRF is used for the nondestructive test to inspect and evaluate the material defect and homogeneity by detecting the transmitted neutron image in the nuclear as well as non-nuclear industry. To analyze the dynamical neutron image effectively and efficiently, the real-time image processing system was developed in background subtraction, normalization, geometry correction and beam uniformity, contrast control, filtering. The image quality test and dimension measurements were performed for the neutron beam purity and sensitivity indication. The NRF beam condition represents the highest beam quality for neutron radiography.

  13. Imaging Techniques for Relativistic Beams: Issues and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, Alex H.; Wendt, Manfred; /Fermilab

    2012-02-01

    Characterizations of transverse profiles for low-power beams in the accelerators of the proposed linear colliders (ILC and CLIC) using imaging techniques are being evaluated. Assessments of the issues and limitations for imaging relativistic beams with intercepting scintillator or optical transition radiation screens are presented based on low-energy tests at the Fermilab A0 photoinjector and are planned for the Advanced Superconducting Test Accelerator at Fermilab. We have described several of the issues and limitations one encounters with the imaging of relativistic electron beams. We have reported our initial tests at the A0PI facility and our plans to extend these studies to the GeV scale at the ASTA facility. We also have plans to test these concepts with 23-GeV beams at the FACET facility at SLAC in the coming year. It appears the future remains bright for imaging techniques in ILC-relevant parameter space.

  14. Two Dimensional Array Imaging with Beam Steered Data

    OpenAIRE

    Patole, Sujeet; Torlak, Murat

    2013-01-01

    This paper discusses different approaches used for millimeter wave imaging of two-dimensional objects. Imaging of a two dimensional object requires reflected wave data to be collected across two distinct dimensions. In this paper, we propose a reconstruction method that uses narrowband waveforms along with two dimensional beam steering. The beam is steered in azimuthal and elevation direction, which forms the two distinct dimensions required for the reconstruction. The Reconstruction techniqu...

  15. An automatic beam steering system for the NSLS X-17T beam line using closed orbit feedback

    International Nuclear Information System (INIS)

    Initial observations of motion of the undulator radiation in the NSLS X-17T beam line clearly indicated that the beam had to be stabilized in both directions to be usable for the planned soft X-ray imaging experiments. The low frequency spectra of beam motion contained peaks in the range from dc to 60 Hz and at higher frequencies. A beam steering system employing closed orbit feedback has been designed and installed to stabilize the beam in both planes. In each plane of motion, beam position is measured with a beam position detector and a correction signal is fed back to a local four magnet orbit bump to dynamically control the angle of the radiation at the source. This paper describes the design and performance of the beam steering system

  16. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    Science.gov (United States)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  17. Imaging dose assessment for IGRT in particle beam therapy

    International Nuclear Information System (INIS)

    Introduction: Image-guided advanced photon and particle beam treatments are promising options for improving lung treatments. Extensive use of imaging increases the overall patient dose. The aim of this study was to determine the imaging dose for different IGRT solutions used in photon and particle beam therapy. Material and methods: Measurements were performed in an Alderson phantom with TLDs. Clinically applied protocols for orthogonal planar kV imaging, stereoscopic imaging, CT scout views, fluoroscopy, CT, 4D-CT and CBCT were investigated at five ion beam centers and one conventional radiotherapy department. The overall imaging dose was determined for a patient undergoing a lung tumor irradiation with institute specific protocols. Results: OAR doses depended on imaging modality and OAR position. Dose values were in the order of 1 mGy for planar and stereoscopic imaging and 10–50 mGy for volumetric imaging, except for one CBCT device leading to lower doses. The highest dose per exam (up to 150 mGy to the skin) was recorded for a 3-min fluoroscopy. Discussion: Modalities like planar kV or stereoscopic imaging result in very low doses (∼1 mGy) to the patient. Imaging a moving target during irradiation, low-dose protocols and protocol optimization can reduce the imaging dose to the patient substantially

  18. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    Energy Technology Data Exchange (ETDEWEB)

    Kamezawa, H [Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka (Japan); Fujimoto General Hospital, Miyakonojo, Miyazaki (Japan); Arimura, H; Ohki, M [Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka (Japan); Shirieda, K; Kameda, N [Fujimoto General Hospital, Miyakonojo, Miyazaki (Japan)

    2014-06-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.

  19. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    International Nuclear Information System (INIS)

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems

  20. Neutral beam data systems at ORNL

    International Nuclear Information System (INIS)

    A control system for neutral injection beam lines has been designed, implemented, and used with much success. Despite the problems with very high power levels this system is very successful in relieving the operators burdens of slow conditioning, data recording, and mode switching. The use of computer control with multiple beam lines now appears very promising

  1. Simulation studies for ion beam extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, M.M.; Zakhary, S.G. [Atomic Energy, Cairo (Egypt). Nuclear Research Center. Accelerators and Ion Sources Dept.], e-mail: moustafa82003@yahoo.com

    2009-06-15

    The characteristics of the ion beam extracted from an ion sources were investigated using computer code SIMION 3 D Version 7.0. It has been used to evaluate the extraction system in order to produce an ion beam with high current and low beam emittance. The results show that the shape of the extraction electrode plays an important role in ion beam formation. Comparison has been made between two extraction systems, Pierce extraction electrode and spherical extraction electrode. The results show that the spherical extraction system yields ion extraction beam with lower emittance and radius than that the Pierce system. The simulation can provide the basis for optimizing the extraction system and the acceleration gap for ion source. (author)

  2. Scanning system for charged and neutral particle beams

    International Nuclear Information System (INIS)

    The present invention aims at providing a simple and reliable method and a reliable device for irradiating a confined volume of matter, preferably at great depth, with a beam of high energy charged or neutral particles. The basic feature of the invention is that the particle beam coming from a radiation source of charged particles is scanned electrically in two orthogonal directions, and that the beam scanned in one plane is deflected in space. For most practical purposes it is important that the radiation source is of small extension. Such a radiation source is realized by means of a beam optical system that includes two scanning magnets each of which admits scanning of the particle beam in one of two orthogonal planes. The beam scanned in one of the planes leaves the associated scanning magnet from an effective scanning centre. The optical system also includes a deflection magnet disposed between the scanning magnets for deflecting the path of the beam in space. By utilizing the optical properties of the deflection magnet in such a way that the deflection magnet produces an image of the effective scanning centre of the first scanning magnet which coincides with the effective scanning centre of the second scanning magnet, the beam scanned in two orthogonal planes will radiate isotropically from the scanning centre of the second scanning magnet. By using the deflection magnet a compact scanning system with a small distance between the scanning centres of the scanning magnets is obtained

  3. Time-resolved tomographic images of a relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0/sup 0/, 61/sup 0/, and 117/sup 0/. The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse.

  4. Low energy beam transport system developments

    International Nuclear Information System (INIS)

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H− beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H− beams, but such gas densities cause unacceptably high H− beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H− beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed

  5. Low energy beam transport system developments

    Science.gov (United States)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  6. Gamma beam system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Ur, Calin Alexandru, E-mail: calin.ur@eli-np.ro [Extreme Light Infrastructure, IFIN-HH, Magurele-Bucharest (Romania)

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  7. Image Processing System

    Science.gov (United States)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  8. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and...

  9. Progress of beam diagnosis system for EAST neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. J., E-mail: yjxu@ipp.ac.cn; Hu, C. D.; Yu, L.; Liang, L. Z.; Zhang, W. T.; Chen, Y.; Li, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (NBI) were built and operational in 2014. The paper presents the development of beam diagnosis system for EAST NBI and the latest experiment results obtained on the test-stand and EAST-NBI-1 and 2. The results show that the optimal divergence angle is (0.62°, 1.57°) and the full energy particle is up to 77%. They indicate that EAST NBI work properly and all targets reach or almost reach the design targets. All these lay a solid foundation for the achievement of high quality plasma heating for EAST.

  10. A method for evaluating aberration in the crossover image in mask irradiation optics of electron beam

    Science.gov (United States)

    Sohda, Yasunari; Ohta, Hiroya; Saitou, Norio

    2002-02-01

    A method for evaluating aberration in the crossover image in a cell projection lithography system has been developed. In an electron-beam lithography system of projection-type such as a cell projection lithography system, the aberration in the crossover image causes the electron beam to pass off-axis in the electron optics. Optical simulation has quantitatively shown that the aberration in the crossover image causes an electron-beam blur and a positioning error on a writing sample. The evaluating method consists of four square apertures and a mark-detection function in a cell projection system. By measuring each position of the images of the four square apertures on the writing sample at difference focuses, the aberration can be calculated. The field curvature and the astigmatism in a cell projection system were evaluated by using this method. The field curvature agrees with the simulation. In addition, the measurement of the effect of beam alignment is also demonstrated. It is thus concluded that the method can effectively evaluate the aberration in the crossover image. This method is also useful for other projection-type lithographies of charged particles—like ion and electron beams.

  11. A Laue–Bragg monolithic beam splitter for efficient X-ray 2-beam imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oberta, P., E-mail: peter.oberta@rigaku.com [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-18221 Praha 8 (Czech Republic); Mokso, R. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2013-03-01

    Newly emerging techniques for probing matter simultaneously by two spatially and angularly separated X-ray beams require efficient and versatile beam splitting. We present a Laue–Bragg monolithic crystal beam splitter in the form of an L-shaped monolithic Si crystal. By simultaneous Laue and Bragg diffractions the X-ray beam is split into a transmitted polychromatic and a diffracted monochromatic branch with a spatial separation of tens of millimeters. The energy spectrum of the transmitted branch can be tuned via diffraction on a second crystal re-creating a beam intersection on the sample. We propose three multi-modal imaging setups exploiting the large angular separation of the two intersecting beams provided by the proposed optics. Photon efficiency and dual-energy operation are the main assets of our scheme as compared to other existing setups. The theoretical description for an energy range between 10 keV and 30 keV was developed.

  12. Medical imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Frangioni, John V. (Wayland, MA)

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  13. Advanced Light Source beam diagnostics systems

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed

  14. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  15. Surgical stent for dental implant using cone beam CT images

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  16. Surgical stent for dental implant using cone beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Soo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Department of Oral and Maxillofacial Radiology, School of Dentistry, Kung Hee University, Seoul (Korea, Republic of)

    2010-12-15

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  17. Active MMW/Terahertz Security System Based on Bessel Beams

    OpenAIRE

    Igor Minin; Oleg Minin

    2013-01-01

    The novel concept of the security system based on THz Bessel beams is offered. The system is based on a novel THz diffractive optics for scanning the person (without the application of THz laser) and on a sensitive scheme for the detection of the reflected and scattered THz radiation. The development of enabling technology, namely, sensitive detector arrays and Millimeter wave/THz diffractive optics, will allow building compact, easy-to-use millimeter wave/THz imaging systems without expensiv...

  18. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    OpenAIRE

    Dang, H; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model re...

  19. Towards a proton imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Civinini, C., E-mail: Carlo.Civinini@fi.infn.i [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Brianzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Bruzzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Bucciolini, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Candiano, G. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Capineri, L. [Dipartimento di Elettronica e Telecomunicazioni, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Lo Presti, D. [Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy); INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Marrazzo, L. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Mazzaglia, E. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Menichelli, D.; Pieri, S. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Randazzo, N. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Sipala, V. [Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy); INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy)

    2010-11-01

    Hadron therapy for tumor treatment is nowadays used in several medical centres. The main advantage in using protons or light ions beams is the possibility of tightly shaping the radiation dose to the target volume. Presently the spatial accuracy of the therapy is limited by the uncertainty in stopping power distribution, which is derived, for each treatment, from the photon attenuation coefficients measured by X-ray tomography. A direct measurement of the stopping powers will help in reducing this uncertainty. This can be achieved by using a proton beam and a detection system able to reconstruct a tomography image of the patient. As a first step towards such a system an apparatus able to perform a proton transmission radiography (pCR) has been designed. It consists of a silicon microstrip tracker, measuring proton trajectories, and a YAG:Ce calorimeter to determine the particle residual energy. Proton beam and laboratory tests have been performed on the system components prototypes: the main results will be shown and discussed.

  20. Towards a proton imaging system

    International Nuclear Information System (INIS)

    Hadron therapy for tumor treatment is nowadays used in several medical centres. The main advantage in using protons or light ions beams is the possibility of tightly shaping the radiation dose to the target volume. Presently the spatial accuracy of the therapy is limited by the uncertainty in stopping power distribution, which is derived, for each treatment, from the photon attenuation coefficients measured by X-ray tomography. A direct measurement of the stopping powers will help in reducing this uncertainty. This can be achieved by using a proton beam and a detection system able to reconstruct a tomography image of the patient. As a first step towards such a system an apparatus able to perform a proton transmission radiography (pCR) has been designed. It consists of a silicon microstrip tracker, measuring proton trajectories, and a YAG:Ce calorimeter to determine the particle residual energy. Proton beam and laboratory tests have been performed on the system components prototypes: the main results will be shown and discussed.

  1. Detection systems for radioactive ion beams

    International Nuclear Information System (INIS)

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  2. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  3. Infrared imaging diagnostics for intense pulsed electron beam

    International Nuclear Information System (INIS)

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm2 and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work

  4. Momentum imaging of photofragments and photoelectrons using fast ion beams

    International Nuclear Information System (INIS)

    Momentum imaging of photofragments and photoelectrons using fast ion beams - Within the framework of this thesis a method for break-up channel specific detection of the photoelectrons from photon-induced dissociation processes of fast moving molecular ion has been established. For this purpose, a novel saddlepoint electron spectrometer was commissioned while investigating the photodetachment dynamics on a fast moving beam of oxygen anions. For a complete detection of all outgoing reaction products emerging from the photolysis of small water clusters (H2O)nH+(n≤3) in the wavelength range of 13.5-40 nm a new fragment analyzing system has been developed and in combination with the novel saddle-point spectrometer applied, to investigate the dissociative photoionization of the hydronium (H3O+) and the Zundel ion (H5O2+). In case of the hydronium ion, a binary H2O++H+ and two three-body channels OH++2H+, OH++H++H have been identified to be initiated by outer valence vacancies, where the binary channel is mainly triggered by the ionization of the 3a1 orbital and the three-body channels follow ionization from the 1e orbital. The photolysis of H5O2+ is found to proceed via five prominent pathways, where for a large number of processes the hydronium ion is split off as a stable structural unit. Also here, the investigation of the photoelectron spectra revealed the prominent dissociation pathways to be initiated by outer valence vacancies.

  5. Infrared imaging diagnostics for intense pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao; Shen, Jie; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Zhang, Gaolong; Le, Xiaoyun, E-mail: xyle@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191 (China); Qu, Miao; Yan, Sha [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2015-08-15

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm{sup 2} and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  6. Walking beam pumping unit system efficiency measurements

    International Nuclear Information System (INIS)

    The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes

  7. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  8. Effect of beam-pointing errors on bistatic SAR imaging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors.Based on the moving geometry configuration of aero bistatic SAR,a model of beam pointing errors is built.Based on this,the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied,and then the imaging result of different errors are analyzed.The computer's simulations are provided to prove the validity of the above analysis.

  9. Practical Beam Transport for the Planet Formation Imager (PFI)

    CERN Document Server

    Mozurkewich, David; Ireland, Michael

    2016-01-01

    The Planet Formation Imager (PFI) is a future kilometric-baseline infrared interferometer to image the complex physical processes of planet formation. Technologies that could be used to transport starlight to a central beam-combining laboratory in PFI include free-space propagation in air or vacuum, and optical fibres. This paper addresses the design and cost issues associated with free-space propagation in vacuum pipes. The signal losses due to diffraction over long differential paths are evaluated, and conceptual beam transport designs employing pupil management to ameliorate these losses are presented and discussed.

  10. Radiation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  11. Radiation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  12. Fluoroscopic Imaging Systems. Chapter 8

    International Nuclear Information System (INIS)

    Fluoroscopy refers to the use of an X ray beam and a suitable image receptor for viewing images of processes or instruments in the body in real time. Fluoroscopic imaging trades the high signal to noise ratio (SNR) of radiography for high temporal resolution, as factors that maintain patient dose at an acceptable level must be used

  13. Single beam two-views holographic particle image velocimetry.

    Science.gov (United States)

    Sheng, Jian; Malkiel, Edwin; Katz, Joseph

    2003-01-10

    Holographic particle image velocimetry (HPIV) is presently the only method that can measure at high resolution all three components of the velocity in a finite volume. In systems that are based on recording one hologram, velocity components parallel to the hologram can be measured throughout the sample volume, but elongation of the particle traces in the depth direction severely limits the accuracy of the velocity component that is perpendicular to the hologram. Previous studies overcame this limitation by simultaneously recording two orthogonal holograms, which inherently required four windows and two recording systems. This paper introduces a technique that maintains the advantages of recording two orthogonal views, but requires only one window and one recording system. Furthermore, it enables a quadruple increase in the spatial resolution. This method is based on placing a mirror in the test section that reflects the object beam at an angle of 45 degrees. Particles located in the volume in which the incident and reflected beams from the mirror overlap are illuminated twice in perpendicular directions. Both views are recorded on the same hologram. Off-axis holography with conjugate reconstruction and high-pass filtering is used for recording and analyzing the holograms. Calibration tests show that two views reduce the uncertainty in the three-dimensional (3-D) coordinates of the particle centroids to within a few microns. The velocity is still determined plane-by-plane by use of two-dimensional particle image velocimetry procedures, but the images are filtered to trim the elongated traces based on the 3-D location of the particle. Consequently, the spatial resolution is quadrupled. Sample data containing more than 200 particles/mm3 are used for calculating the 3-D velocity distributions with interrogation volumes of 220 x 154 x 250 microm, and vector spacing of 110 x 77 x 250 microm. Uncertainty in velocity is addressed by examining how well the data satisfies

  14. The Imaging and Medical Beam Line at the Australian Synchrotron

    Science.gov (United States)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  15. The Imaging and Medical Beam Line at the Australian Synchrotron

    International Nuclear Information System (INIS)

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  16. Satellite Imaging System

    Directory of Open Access Journals (Sweden)

    AA Somaie

    2013-06-01

    Full Text Available The aim of this paper is to present the essential elements of the electro-optical imaging system EOIS for space applications and how these elements can affect its function. After designing a spacecraft for low orbiting missions during day time, the design of an electro-imaging system becomes an important part in the satellite because the satellite will be able to take images of the regions of interest. An example of an electro-optical satellite imaging system will be presented through this paper where some restrictions have to be considered during the design process. Based on the optics principals and ray tracing techniques the dimensions of lenses and CCD (Charge Coupled Device detector are changed matching the physical satellite requirements. However, many experiments were done in the physics lab to prove that the resizing of the electro optical elements of the imaging system does not affect the imaging mission configuration. The procedures used to measure the field of view and ground resolution will be discussed through this work. Examples of satellite images will be illustrated to show the ground resolution effects.

  17. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  18. Beam position monitoring electronics system for LEHIPA

    International Nuclear Information System (INIS)

    The primary function of beam position monitoring system (BPM) is to determine the position of the beam with respect to the centre of beam pipe. The present system is VME based and mainly consists of two VME boards one Analog and one Digital. The system has been developed for 352.21 MHz Low Energy High Intensity Proton Accelerator (LEHIPA). The electronic system processes the signals coming from the sensor which incorporates four button pick-ups placed orthogonally around the beam pipe. The fundamental component of the beam signal is extracted from the signals from the sensor and amplified with gain stabilized amplifiers on the analog board. Offset tone based technique has been used for the stabilization of the gain of the amplifiers against changes in temperature, power supply, etc. The filtered and amplified signals are given to the digital board for digitization and further processing. The signal processing consists of demodulation in I-Q domain followed by CORDIC which gives the signal information in the form of amplitude and phase. The stabilization of the gain is also carried out in the digital domain. The phase information can be utilized for energy gain measurements. The amplitudes give the position of the beam which is calculated online in FPGA using difference over sum method. The EPICS system has been chosen as the basic framework for command control. The hardware architecture is as per standard VME crate. (author)

  19. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit of the...... column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  20. Preliminary images from an adaptive imaging system

    NARCIS (Netherlands)

    J.A. Griffiths; M.G. Metaxas; S. Pani; H. Schulerud; C. Esbrand; G.J. Royle; B. Price; T. Rokvic; R. Longo; A. Asimidis; E. Bletsas; D. Cavouras; A. Fant; P. Gasiorek; H. Georgiou; G. Hall; J. Jones; J. Leaver; G. Li; D. Machin; N. Manthos; J. Matheson; M. Noy; J.M. Østby; F. Psomadellis; P.F. van der Stelt; S. Theodoridis; F. Triantis; R. Turchetta; C. Venanzi; R.D. Speller

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephal

  1. Tangible imaging systems

    Science.gov (United States)

    Ferwerda, James A.

    2013-03-01

    We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.

  2. Study of CMOS image sensors for laser beam position detection

    International Nuclear Information System (INIS)

    We report on the study made on commercial CMOS image sensors in order to determine their feasibility for light beam position reconstruction. Measurements of the intrinsic position resolution, sensor photoresponse and uniformity were done. The effect of eventual background illumination was evaluated. The precision on the spatial point reconstruction was determined from linearity measurements. First results on gamma-ray radiation tolerance are presented

  3. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  4. TFTR neutral beam injection system conceptual design

    International Nuclear Information System (INIS)

    Three subsystems are described in the following chapters: (1) Neutral Beam Injection Line; (2) Power Supplies; and (3) Controls. Each chapter contains two sections: (1) Functions and Design Requirements; this is a brief listing of the requirements of components of the subsystem. (2) Design Description; this section describes the design and cost estimates. The overall performance requirements of the neutral beam injection system are summarized. (MOW)

  5. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  6. Verification of segmented beam delivery using a commercial electronic portal imaging device.

    Science.gov (United States)

    Curtin-Savard, A J; Podgorsak, E B

    1999-05-01

    In modern radiotherapy, three-dimensional conformal dose distributions are achieved through the delivery of beam ports having precalculated planar distributions of photon beam intensity. Although sophisticated means to calculate and deliver these spatially modulated beams have been developed, means to verify their actual delivery are relatively cumbersome, making equipment and treatment quality assurance difficult to enforce. An electronic portal imaging device of the scanning liquid ionization chamber type yields images which, once calibrated from a previously determined calibration curve, provide highly precise planar maps of the incident dose rate. For verification of an intensity-modulated beam delivered in the segmented approach with a multileaf collimator, a portal image is acquired for each subfield of the leaf sequence. Subsequent to their calibration, the images are multiplied by their respective associated monitor unit settings, and summed to produce a planar dose distribution at the measurement depth in phantom. The excellent agreement of our portal imager measurements with calculations of our treatment planning system and measurements with a one-dimensional beam profiler attests to the usefulness of this method for the planar verification of intensity-modulated fields produced in the segmented approach on a computerized linear accelerator equipped with a multileaf collimator. PMID:10360535

  7. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  8. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  9. A secondary electron imaging system for a nuclear microprobe

    International Nuclear Information System (INIS)

    A secondary electron imaging system has been developed to provide an efficient means of identifying the position of the beam spot on specimens analysed with the Harwell nuclear microprobe facility. Conventional signal processing is used to improve the image quality, and in addition a dividing circuit is used to reduce the effects of time variation of the accelerator beam current intensity. Images have been obtained with proton beams of energies 1.5 MeV and 2.8 MeV on a variety of specimens and good contrast is possible using beam currents as low as 200 pA. (Auth.)

  10. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 1010 to 1.5 x 1013 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  11. Calibration of Cone Beam Rotational X-Ray Image Sequence

    Institute of Scientific and Technical Information of China (English)

    YUHengyong; MOUXuanqin; CAIYuanlong

    2004-01-01

    The real X-ray projection does not abide by Lambert-Beer Law, since the X-ray is polychromatic and the imaging chains are nonlinear. Based on the generating process of X-ray images, an equivalent nonlinear transform model is firstly proposed which considers all the nonlinear factors as one nonlinear transform. Then the 3D (three-dimensional) X-ray projection of cone beam is defined. The constraints of Radon transform, named H-L (Helgasson-ludwig) consistency conditions, are expanded to fan-beam. After that an algorithm is developed to calibrate Rotational X-ray image sequence (RXIS). The algorithm uses a set of exponential functions to approximate the nonlinear inverse transform. According to expanded H-L consistency conditions, finally a kind of nonlinear measure for RXIS is defined. Experimental results show that the proposed algorithm can decrease the nonlinear measure to below 0.01.

  12. The elettra beam line control system

    International Nuclear Information System (INIS)

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  13. Upgrading of the beam diagnostic system of U-70 beam transfer lines

    CERN Document Server

    Kovaltsov, V I; Matyushin, A T; Milyutkin, V; Romanov, I; Seleznev, V; Sytin, A N; Clausen, M

    2001-01-01

    The beam diagnostic system of U-70 beam transfer lines (beam profiles, intensity and beam losses measurements) was designed in the beginning of 80-th on the base of 8-bit microprocessor, SUMMA hardware and home made serial communication link. Because of the maintenance problems the decision was taken to upgrade the hardware and software parts of the system.

  14. Projection imaging of photon beams using Čerenkov-excited fluorescence

    Science.gov (United States)

    Glaser, Adam K.; Davis, Scott C.; Voigt, William H. A.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-02-01

    Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in a fast timeframe, potentially leading toward 3D tomographic beam profiling. Detailed analysis was carried out to optimize the imaging parameters in the experimental setup. The results demonstrate that the captured images are linear with delivered dose, independent of dose rate, and comparison of experimentally captured images to a reference dose distribution for a 4 × 4 cm2 6 MV x-ray photon beam yielded results with improved accuracy over a previous study which used direct imaging and Monte Carlo calibration of the Čerenkov emission itself. The agreement with the reference dose distribution was within 1-2% in the lateral direction, and ±3% in the depth direction. The study was restricted to single 2D image projection, with the eventual goal of creating full 3D profiles after tomographic reconstruction from multiple projections. Given the increasingly complex advances in radiation therapy, and the increased emphasis on patient-specific treatment plans, further refinement of the technique could prove to be an important tool for fast and robust QA of x-ray photon LINAC beams.

  15. S2-imaging of Bessel-like Beams

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Israelsen, Stine Møller; Rottwitt, Karsten

    Bessel-like beams generated in a double cladding fiber are characterized for the first time using S2-imaging. The wavelength independence across the beam is examined numerically.......Bessel-like beams generated in a double cladding fiber are characterized for the first time using S2-imaging. The wavelength independence across the beam is examined numerically....

  16. Lock-In Imaging System for Detecting Disturbances in Fluid

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2014-01-01

    A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.

  17. Automated planning of breast radiotherapy using cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Amit, Guy [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G2M9 (Canada); Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Techna Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 1P5 (Canada)

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  18. Beam developments for the Harwell microprobe system

    International Nuclear Information System (INIS)

    A consequence of the rapid development of micron and submicron size electronic devices is the diminished applicability of high energy ion microprobes with their present resolution limitations to the study of such components. Although submicron beams have been reported the available beam current is barely sufficiently for PIXE and is not adequate for RBS. This lack of lateral resolution is due to low beam brightness at the microprobe object and aberrations in the focussing elements. As part of a program to address these problems the Harwell microprobe lens has been relocated on a new 5 MV Laddertron accelerator. The increased brightness and improved stability of this facility has so far led to a reduction in beam size from 3x3 μm2 to about 2x2 μm2. The feasibility of using a liquid metal ion source has been examined with a view to achieving more substantial increases in brightness. While such sources have brightness approximately 105 times greater than conventional gaseous sources the highly divergent nature of the beam presents problems for the beam transport system. The use of a liquid metal source on the accelerator has been successfully demonstrated but it indicates the need for a special low aberration injection lens if brightness is to be maintained. (orig.)

  19. Beam developments for the Harwell microprobe system

    International Nuclear Information System (INIS)

    A consequence of the rapid development of micron and submicron size electronic devices is the diminished applicability of high energy ion microprobes with their present resolution limitations to the study of such components. Although submicron beams have been reported the available beam current is barely sufficiently for PIXE and is not adequate for RBS. This lack of lateral resolution is due to low beam brightness at the microprobe object and aberrations in the focusing elements. As part of a program to address these problems the Harwell microprobe lens has been relocated on a new 5 MV Laddertron accelerator. The increased brightness and improved stability of this facility has so far led to a reduction in beam size from 3 x 3 μm2 to about 2 x 2 μm2. The feasibility of using a liquid metal ion source has been examined with a view to achieving more substantial increases in brightness. While such sources have brightness approximately 105 times greater than conventional gaseous sources the highly divergent nature of the beam presents problems for the beam transport system. The use of a liquid metal source on the accelerator has been successfully demonstrated but it indicates the need for a special low aberration injection lens if brightness is to be maintained

  20. Real-time synthetic aperture ultrasonic scroll-imaging system and imaging experiment for nuclear power plant NDT

    International Nuclear Information System (INIS)

    The authors discuss their development of a real-time synthetic aperture imaging system which provides a cross sectional image of an object in real-time. They have already confirmed the performance of the system by imaging experiments using the normal-beam method. To confirm the wide applicability of the system, they have carried out imaging experiments with the angle-beam method. They considered four different sound paths for angle-beam SAFT imaging. After calculating sound path lengths, computer simulation and experiments were carried out. It is shown that there were two dominant paths for image reconstruction caused by the directivity of the transducer

  1. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongmei; Zhu, Shouping, E-mail: zhusp2009@gmail.com; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin [Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  2. Generic image matching system

    Science.gov (United States)

    Liang, Zhongjie T.

    1992-05-01

    The generic imaging matching system (GIMS) provides an optimal systematic solution to any problem of color image processing in printing and publishing that can be classified as or modeled to the generic image matching problem defined. Typical GIMS systems/processes include color matching from different output devices, color conversion, color correction, device calibration, colorimetric scanner, colorimetric printer, colorimetric color reproduction, and image interpolation from scattered data. GIMS makes color matching easy for the user and maximizes operational flexibility allowing the user to obtain the degree of match wanted while providing the capability to achieve the best balance with respect to the human perception of color, color fidelity, and preservation of image information and color contrast. Instead of controlling coefficients in a transformation formula, GIMS controls the mapping directly in a standard device-independent color space, so that color can be matched, conceptually, to the highest possible accuracy. An optimization algorithm called modified vector shading was developed to minimize the matching error and to perform a 'near-neighborhood' gamut compression. An automatic error correction algorithm with a multidirection searching procedure using correlated re-initialization was developed to avoid local minimum failures. Once the mapping for color matching is generated, it can be utilized by a multidimensional linear interpolator with a small look-up-table (LUT) implemented by either software, a hardware interpolator or a digital-signal-processor.

  3. The AGS Booster beam loss monitor system

    International Nuclear Information System (INIS)

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 x 1013 protons and carbon to gold ions at 50-3 x 109 ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs

  4. SPECT imaging of feet using uniplanar fad-beam collimators

    International Nuclear Information System (INIS)

    Background: This study was performed to assess the utility of bone SPECT in the feet using a new commercially available uniplanar fan-beam collimator originally designed for cardiac imaging. Methods: 18 patients with symptoms or signs of probable skeletal pathology in either the foot or ankle were imaged using a two headed gamma camera fitted with uniplanar fan-beam collimators. All patients were imaged 2.5-4 h after administration of 500-750 MBq 99mTc MDP. If indicated planar dynamic and blood pool images were also obtained. The SPECT acquisition was performed in a 128 x 128 matrix, giving a pixel size of 2.00-2.30 mm depending on the radius of orbit. Images were displayed as transaxial, coronal and sagittal slices and a three dimensional volume rendered image and displayed for reading by three readers blind to the clinical results. Sites of abnormal uptake on the foot SPECT scan were then compared with the site of known or suspected pathology and in 17 patients with planar radiology. Results: The SPECT images produced using the uniplanar fan-beam collimators were of good quality in all patients with all three readers finding localisation easiest on the sagittal and three-dimensional images. In 10 patients abnormalities were found which could explain the patient's symptoms or signs and at the site expected from the patient's clinical history. In 5 patients there were abnormalities on the bone scan in the ipsilateral foot but at a different site, all were interpreted as degenerative disease. 2 patients had contralateral degenerative disease to side suggested by the clinical history and no abnormality in the bones of the foot with symptoms. One patient had bilateral degenerative disease. Planar radiology was normal or unhelpful in 13 of the 17 patients in which it was performed. Conclusion: SPECT imaging of feet is possible and provides accurate localisation of abnormal uptake when performed using uniplanar fan-beam collimators with a standard acquisition time of 15

  5. Beam loss monitor system for the SSC

    International Nuclear Information System (INIS)

    At full intensity the energy contained in each beam of the Superconducting Super Collider (SSC) is 400 MJ. The loss of a small fraction of that beam has the potential to cause magnet quenches or even severe damage to Collider components. To help protect the machine a sensitive and reliable beam loss monitor (BLM) system must be designed and built. In fact, BLM systems will be needed for all the accelerators of the SSC. The BLM system requirements for each of these accelerators will be discussed, but emphasis will be placed on the Collider. The discussion will include the preliminary design of BLM systems, the considerations that led to these designs, the calculations that were performed in development of the designs, and the problems that remain to be solved. A major tool in the design process has been a series of Monte Carlo calculations that were used to estimate beam loss distributions for the Collider arcs, the interaction regions, and the west utility region. These calculations were also used to study the fluence as a function of energy, the particle content, and the dose rate at selected positions. Detailed considerations such as detector spacing and sensitivity, loss fluctuations, reliability, and maintainability will be discussed. The proposed preliminary BLM system design for the Collider uses a radiation-hard, solid-state ionization detector and fast analog-to-digital conversion. Details of this design and relevant options will be discussed

  6. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    International Nuclear Information System (INIS)

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port

  7. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  8. Multi-beam synchrotron infrared chemical imaging with high spatial resolution: Beamline realization and first reports on image restoration

    International Nuclear Information System (INIS)

    Table-top Fourier transform infrared (FT-IR) imaging using focal plane array (FPA) multi-element detectors is an increasingly popular chemical microscopy technique because it can provide microspectroscopic images of large sample areas in short times at moderate spatial resolution. The novel IR beamline IRENI at the Synchrotron Radiation Center (Wisconsin, USA), the first dedicated multi-beam synchrotron-based FT-IR imaging system, offers, within minutes, high quality chemical images at the highest available spatial resolution (diffraction-limited at all mid-IR wavelengths) with a pixel size of 0.54x0.54 μm2 for transmission measurements. Due to this very high spatial sampling, mathematical image enhancement algorithms such as deconvolution and total variation (TV) reconstruction can be implemented to improve image contrast and thus spatial resolution. This is demonstrated for US Air force (USAF) targets, micron-sized aluminum beads, and a single living algal cell.

  9. Multispectral Panoramic Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  10. Suppression of COTR in electron beam imaging diagnosis at FLASH

    International Nuclear Information System (INIS)

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  11. Suppression of COTR in electron beam imaging diagnosis at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Minjie

    2012-05-15

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  12. Quantitative Luminescence Imaging System

    International Nuclear Information System (INIS)

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R ampersand D Magazine 1991 R ampersand D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support

  13. ISR internal beam-dumping system

    CERN Multimedia

    1970-01-01

    Parts of the internal beam-dumping system. In the ring on the right are shown the four tanks containing the vertically deflecting magnets and in the ring on the left is the absorber block. Identical parts are on opposite sides in the other half of this intersection region.

  14. Systems analysis on laser beamed power

    Science.gov (United States)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  15. High resolution fluorescent bio-imaging with electron beam excitation.

    Science.gov (United States)

    Kawata, Yoshimasa; Nawa, Yasunori; Inami, Wataru

    2014-11-01

    We have developed electron beam excitation assisted (EXA) optical microscope[1-3], and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.Figure 1(a) shows schematic diagram of the proposed EXA microscope. An electron beam is focused on a luminescent film. A specimen is put on the luminescent film directly. The inset in Fig. 1(a) shows magnified image of the luminescent film and the specimen. Nanometric light source is excited in the luminescent film by the focused electron beam. The nanometric light source illuminates the specimen, and the scattered or transmitted radiation is detected with a photomultiplier tube (PMT). The light source is scanned by scanning of the focused electron beam in order to construct on image. Figure 1(b) shows a luminescence image of the cells acquired with the EXA microscope, and Fig. 1(c) shows a phase contrast microscope image. Cells were observed in culture solution without any treatments, such as fixation and drying. The shape of each cell was clearly recognized and some bright spots were observed in cells. We believe that the bright spots indicated with arrows were auto-fluorescence of intracellular granules and light- grey regions were auto-fluorescence of cell membranes. It is clearly demonstrated that the EXA microscope is useful tool for observation of living biological cells in physiological conditions.jmicro;63/suppl_1/i

  16. Development of beam flattening system using non-linear beam optics at J-PARC/JSNS

    International Nuclear Information System (INIS)

    As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak intensity is important for the beam injection system. At the JSNS, beam profile can be described by the clear Gaussian functions. To reduce peak intensity, we have developed a beam transport system by non-linear beam optics using octupole magnets. (author)

  17. Biomaterial imaging with MeV-energy heavy ion beams

    International Nuclear Information System (INIS)

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi3-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi3 ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis

  18. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  19. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  20. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly Marie

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...

  1. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...

  2. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    Science.gov (United States)

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  3. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  4. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    International Nuclear Information System (INIS)

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ∼50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350–650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy. (paper)

  5. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  6. Imaging the lymphatic system

    OpenAIRE

    Munn, Lance L.; Padera, Timothy P

    2014-01-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility a...

  7. Imaging system fundamentals

    Science.gov (United States)

    Holst, Gerald C.

    2011-05-01

    Point-and-shoot, TV studio broadcast, and thermal infrared imaging cameras have significantly different applications. A parameter that applies to all imaging systems is Fλ/d, where F is the focal ratio, λ is the wavelength, and d is the detector size. Fλ/d uniquely defines the shape of the camera modulation transfer function. When Fλ/dcorrupts the imagery. Mathematically, the worst case analysis assumes that the scene contains all spatial frequencies with equal amplitudes. This quantifies the potential for aliasing and is called the spurious response. Digital data cannot be seen; it resides in a computer. Cathode ray tubes, flat panel displays, and printers convert the data into an analog format and are called reconstruction filters. The human visual system is an additional reconstruction filter. Different displays and variable viewing distance affect the perceived image quality. Simulated imagery illustrates different Fλ/d ratios, displays, and sampling artifacts. Since the human visual system is primarily sensitive to intensity variations, aliasing (a spatial frequency phenomenon) is not considered bothersome in most situations.

  8. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  9. SU-E-J-99: Reconstruction of Cone Beam CT Image Using Volumetric Modulated Arc Therapy Exit Beams

    International Nuclear Information System (INIS)

    Purpose: To test the possibility of obtaining an image of the treated volume during volumetric modulated arc therapy (VMAT) with exit beams. Method: Using a Varian Clinac 21EX and MVCT detector the following three sets of detector projection data were obtained for cone beam CT reconstruction with and without a Catphan 504 phantom. 1) 72 projection images from 20 × 16 cm2 open beam with 3 MUs, 2) 72 projection images from 20 × 16 cm2 MLC closed beam with 14 MUs. 3) 137 projection images from a test RapicArc QA plan. All projection images were obtained in ‘integrated image’ mode. We used OSCaR code to reconstruct the cone beam CT images. No attempts were made to reduce scatter or artifacts. Results: With projection set 1) we obtained a good quality MV CBCT image by optimizing the reconstruction parameters. Using projection set 2) we were not able to obtain a CBCT image of the phantom, which was determined to be due to the variation of interleaf leakage with gantry angle. From projection set 3), we were able to obtain a weak but meaningful signal in the image, especially in the target area where open beam signals were dominant. This finding suggests that one might be able to acquire CBCT images with rough body shape and some details inside the irradiated target area. Conclusion: Obtaining patient images using the VMAT exit beam is challenging but possible. We were able to determine sources of image degradation such as gantry angle dependent interleaf leakage and beams with a large scatter component. We are actively working on improving image quality

  10. Ultrasonic large aperture imaging system

    International Nuclear Information System (INIS)

    A new ultrasonic large aperture imaging technique is described. This device combines a focussed transducer as a transmitter, producing a small ultrasonic beam, with N transducers as receivers. We show that is possible to considerably reduce the number of receivers if, on the one hand, we limit the reconstitution process to the emitter beam area and, on the other hand, we ensure that the artefacts, caused by the spatial sampling of the reception, are outside this area. Under these conditions, the result is a high resolution image which does not require large reconstitution processing times. Theoretical and experimental results are given

  11. Digital IBIC - new spectroscopic modalities for ion-beam-induced charge imaging

    International Nuclear Information System (INIS)

    The first implementation of digital ion-beam-induced charge (IBIC) imaging is presented, which permits spectroscopic time-resolved IBIC imaging of charge transport in semiconductors. A digital IBIC system has been developed which uses a high-speed waveform digitiser to capture the pulse shapes produced by interactions of a 1 μm resolution scanning microbeam in semiconductor samples. Using a variety of digital pulse shape analysis algorithms, quantitative images of charge signal amplitude, charge carrier lifetime, mobility and trapping phenomena can be acquired in real-time, with a time resolution of 3 cm2/Vs

  12. RHIC beam loss monitor system design

    International Nuclear Information System (INIS)

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented

  13. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  14. Slice image pretreatment for cone-beam computed tomography based on adaptive filter

    International Nuclear Information System (INIS)

    According to the noise properties and the serial slice image characteristics in Cone-Beam Computed Tomography (CBCT) system, a slice image pretreatment for CBCT based on adaptive filter was proposed. The judging criterion for the noise is established firstly. All pixels are classified into two classes: adaptive center weighted modified trimmed mean (ACWMTM) filter is used for the pixels corrupted by Gauss noise and adaptive median (AM) filter is used for the pixels corrupted by impulse noise. In ACWMTM filtering algorithm, the estimated Gauss noise standard deviation in the current slice image with offset window is replaced by the estimated standard deviation in the adjacent slice image to the current with the corresponding window, so the filtering accuracy of the serial images is improved. The pretreatment experiment on CBCT slice images of wax model of hollow turbine blade shows that the method makes a good performance both on eliminating noises and on protecting details. (authors)

  15. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  16. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Science.gov (United States)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  17. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Dario, E-mail: dario.nicolosi@lns.infn.it; Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  18. Luminescence imaging of water during proton-beam irradiation for range estimation

    International Nuclear Information System (INIS)

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy

  19. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  20. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  1. Personal digital image filing system

    International Nuclear Information System (INIS)

    The authors have developed a personal digital image filing system for archiving and displaying radiologic images. The system consists of a data link to the central storage of the picture archiving and communication system, an archiving system with a 3.5-inch optical disk drive for personal image data, and display stations for reviewing personal image files. The optical disk is analogous to the patient's film jacket

  2. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    International Nuclear Information System (INIS)

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  3. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  4. Indexing system for optical beam steering

    Science.gov (United States)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  5. Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

    CERN Document Server

    Twedt, Kevin A; Davanco, Marcelo; Srinivasan, Kartik; McClelland, Jabez J; Aksyuk, Vladimir A

    2016-01-01

    Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics, biosensing, microfludics, and cavity optomechanics. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high quality factor resonances. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam. An ion beam (radius about 50 nm) induces a picometer-scale dynamic deformation of the resonator surface, which we detect through a shift in the optical resonance wavelength. We map five modes of a silicon microdisk resonator (Q > 20,000) with both high spatial and spectral resolution. Our technique also enables in-situ observation of ion implantation d...

  6. Ion beam figuring system in NUDT

    Science.gov (United States)

    Zhou, Lin; Xie, Xuhui; Dai, Yifan; Jiao, Changjun; Li, Shengyi

    2007-12-01

    Ion beam figuring (IBF) is an optical fabrication technique that provides highly deterministic process to correct surface figure error of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Recently, an ion beam figuring system KDIFS-500 has been designed and built in National University of Defense Technology (NUDT) of the P.R. China. KDIFS-500 is capable of processing workpiece up to Φ500mm. Line scanning process was discussed in detail for estimating the parameters of the beam removal function (BRF) in process. Experiments were conducted to demonstrate that the BRF increases gradually in process and by employing a stability control, the BRF can be kept stable in process. Finally, a Φ95 mm plano optical sample of CVD coated SiC substrate has been figured in two process iterations for demonstrating the correction capability of the KDIFS-500. Their figure convergence ratios reached 5.8 and 2.1 respectively. The actual figure residual errors were basically consistent with the predicted error. These consistencies indicated that the IBF processes on KDIFS-500 are predictable deterministic processes.

  7. Neutral particle beam distributed data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Daly, R.T.; Kraimer, M.R.; Novick, A.H.

    1987-01-01

    A distributed data acquisition system has been designed to support experiments at the Argonne Neutral Particle Beam Accelerator. The system uses a host VAXstation II/GPX computer acting as an experimenter's station linked via Ethernet with multiple MicroVAX IIs and rtVAXs dedicated to acquiring data and controlling hardware at remote sites. This paper describes the hardware design of the system, the applications support software on the host and target computers, and the real-time performance.

  8. Beam dynamics in the SLC final focus system

    International Nuclear Information System (INIS)

    The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects

  9. Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions

    OpenAIRE

    Hamming, N. M.; Daly, M. J.; Irish, J. C.; Siewerdsen, J. H.

    2009-01-01

    Intraoperative imaging offers a means to account for morphological changes occurring during the procedure and resolve geometric uncertainties via integration with a surgical navigation system. Such integration requires registration of the image and world reference frames, conventionally a time consuming, error-prone manual process. This work presents a method of automatic image-to-world registration of intraoperative cone-beam computed tomography (CBCT) and an optical tracking system. Multimo...

  10. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  11. Beam diagnostics and data acquisition system for ion beam transport line used in applied research

    International Nuclear Information System (INIS)

    Ion beam transport line for applied research on U-400 cyclotron, beam diagnostics and data acquisition system for condensed matter studies are described. The main features of Windows-based real time program are considered

  12. Colliding beam fusion reactor space propulsion system

    Science.gov (United States)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 106-109 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, Isp~106 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameter×10-meters length, magnetic field ~7 Tesla, ion beam current ~10 A, and fuels of either D-He3,P-B11,P-Li6,D-Li6, etc. .

  13. Internally shielded beam transport and support system

    International Nuclear Information System (INIS)

    Due to environmental concerns, the Advanced Photon Source has a policy that disallows any exposed lead within the facility. This creates a real problem for the beam transport system, not so much for the pipe but for the flexible coupling (bellows) sections. A complete internally shielded x-ray transport system, consisting of long transport lines joined by flexible coupling sections, has been designed for CARS sector 14 to operate either at high vacuum or as a helium flight tube. It can effectively shield against air scattering of wiggler or undulator white beam with proper placement of apertures, collimators, and masks for direct beam control. The system makes use of male- and female-style fittings that create a labyrinth allowing for continuous shielding through the flexible coupling sections. These parts are precision machined from a ternary hypereutectic lead alloy (cast under 15 inches of head pressure to assure a pinhole-free casting) then pressed into either end (rotatable vacuum flanges) of the bellows assembly. The transport pipe itself consists of a four part construction using a stepped transition ring (Z-ring) to connect an inner tube to the vacuum flange and also to a protective and supportive outer tube. The inner tube is wrapped with 1/16 double-prime pure lead sheet to a predetermined thickness following the shape of the stepped transition ring for continuous shielding. This design has been prototyped and radiation tested. copyright 1996 American Institute of Physics

  14. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  15. Development of a transverse beam emittance and Twiss parameters measurement system for transport line-1

    International Nuclear Information System (INIS)

    Beam Transport Line-1 (TL-1) in Indus Accelerator Complex at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore is being used to transport 20 MeV, 30 mA beam from the injector Microton exit point to the Booster Synchrotron where energy of electron beam is raised from 20 MeV to 450 MeV for injection into Indus-1 storage ring and 550 MeV to Indus-2 storage ring. It is important to measure the transverse beam emittance and Twiss parameters at Microton beam exit point for beam optics optimization in the transport line and to judge the beam quality. A transverse emittance and Twiss parameters measurement system using quadrupole scan method has been developed and tested. The system uses the electron beam images from the existing scintillator based beam profile monitor installed in TL-1 for beam size measurement. We have developed MATLAB codes that can extract transverse beam size and estimate transverse beam emittance. This paper describes the measurement method, software and some initial results obtained using this system. (author)

  16. Neutral Beam Power System for TPX

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements

  17. Proton therapy beam dosimetry with silicon CMOS image sensors

    International Nuclear Information System (INIS)

    In a previous publication, it has been shown how neutron and proton beams in a quite broad energy interval, could be simply monitored with a position sensitive CMOS image detector. The direct read out, the lack of pile up effects, the stability of the signal, the detector linear response with proton energy and current and the very low costs of the device could make the CMOS detector a good candidate in addition to other well established detectors for proton radiation dosimetry. (N.T.)

  18. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    International Nuclear Information System (INIS)

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA’s nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition

  19. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  20. Switched steerable multiple beam antenna system

    Science.gov (United States)

    Iwasaki, Richard S.

    1988-09-01

    A steerable multibeam five element cross-feed cluster antenna system is described. The feed power is divided into five branches. Each branch includes a switching network comprised of a plurality of time delay elements each individually controlled by a respective electromagnetic latching switch. Frequency independent individual two-dimensional beam steering at intermediate (IF) scanning frequencies is thereby provided wherein discrete incremental time delays are introduced by the switching networks into each branch and the signals recombined thereafter to form each beam. The electromagnetic latched switching reduces power consumption and permits higher power switching and reciprocal coincident tranmsit and receive operation. Frequency independence due to incremental time delay switching permits coincident reciprocal operation and steering for transmit-receive signal paths carrying different transmit-receive frequencies. Diagonal quarter wave plates in the waveguides alter polarization from the circular to orthogonal linear to provide transmitter-receiver isolation.

  1. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  2. 101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

    Indian Academy of Sciences (India)

    S K Sharma; A J Singh; P K Mukhopadhyay; S M Oak

    2010-11-01

    Studies on intracavity frequency doubling of acousto-optically Q-switched Nd:YAG rod laser using 18 mm long type-II phase-matched LBO crystal in a relay-imaged cavity is reported. A single pump head comprised of Nd:YAG rod, diffusive reflectors and linear array laser diode bars is used. 101 W of average green power at a total diode pumping power of 700 W is obtained corresponding to 14.4% optical-to-optical conversion efficiency. The pulse repetition rate is 30 kHz with an individual pulse duration of 200 ns.

  3. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors

    OpenAIRE

    Knoernschild, Caleb; Kim, Changsoon; Lu, Felix P.; Kim, Jungsang

    2009-01-01

    We present a beam steering system based on micro-electromechanical systems technology that features high speed steering of multiple laser beams over a broad wavelength range. By utilizing high speed micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously incorporate a wide range of wavelengths and multiple beams. We demonstrate reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array with 4 us settlin...

  4. Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy

    Science.gov (United States)

    Purnapatra, Subhajit B.; Bera, Sampa; Mondal, Partha Pratim

    2012-09-01

    Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 µm. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.

  5. A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery

    International Nuclear Information System (INIS)

    Kilovoltage cone-beam CT (kV CBCT) can be acquired during the delivery of volumetric modulated arc therapy (VMAT), in order to obtain an image of the patient during treatment. However, the quality of such CBCTs is degraded by megavoltage (MV) scatter from the treatment beam onto the imaging panel. The objective of this paper is to introduce a novel MV scatter correction method for simultaneous CBCT during VMAT, and to investigate its effectiveness when compared to other techniques. The correction requires the acquisition of a separate set of images taken during VMAT delivery, while the kV beam is off. These images—which contain only the MV scatter contribution on the imaging panel—are then used to correct the corresponding kV/MV projections. To test this method, CBCTs were taken of an image quality phantom during VMAT delivery and measurements of contrast to noise ratio were made. Additionally, the correction was applied to the datasets of three VMAT prostate patients, who also received simultaneous CBCTs. The clinical image quality was assessed using a validated scoring system, comparing standard CBCTs to the uncorrected simultaneous CBCTs and a variety of correction methods. Results show that the correction is able to recover some of the low and high-contrast signal to noise ratio lost due to MV scatter. From the patient study, the corrected CBCT scored significantly higher than the uncorrected images in terms of the ability to identify the boundary between the prostate and surrounding soft tissue. In summary, a simple MV scatter correction method has been developed and, using both phantom and patient data, is shown to improve the image quality of simultaneous CBCTs taken during VMAT delivery. (paper)

  6. In-process thermal imaging of the electron beam freeform fabrication process

    Science.gov (United States)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-05-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  7. In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-01-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  8. Multitier image streaming teleradiology system

    Science.gov (United States)

    Swarnakar, Vivek; Eldar, Adi; Pourfathi, Shahrzad; Keselbrener, Laurence; Genant, Harry K.

    2001-08-01

    With the advent of real-time image streaming, a new paradigm for development of image display and viewing systems that communicate with Picture Archiving and Communication (PACS) systems can be proposed. In this paradigm, the high bandwidth requirements of current systems can be significantly relaxed and security features can be seamlessly adopted and enforced. Based upon this paradigm RealTimeImage and OARG have developed a multi-tiered web-based image display and analysis system for teleradiology. The system architecture consisted of a backend module to communicate with the PACS system via direct file system access or standard DICOM protocols, an Image Server to stream image data to its clients using RealTimeImage Pixel-On-DemandTM streaming technology and a web-based client to provide image display and analysis functionality. The system was used in a clinical research study that required analysis of several hundred images and included participants located at various remote geographical locations. Performance and maintainability of the system were objectively quantified. Usability issues were subjectively identified by the various users of the system. It was observed that the performance of such a system is comparable to that of today's systems over fast LAN, even if the user is connected via standard, dial-up connections. This level of performance was achieved without compromising the usability of the system required for the research study.

  9. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  10. Dosimetric precision of an ion beam tracking system

    International Nuclear Information System (INIS)

    Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems

  11. Dosimetric precision of an ion beam tracking system

    Directory of Open Access Journals (Sweden)

    Kraft Gerhard

    2010-06-01

    Full Text Available Abstract Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum. Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3% between measurements and calculations within the target volume for beam tracking (stationary measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.

  12. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    International Nuclear Information System (INIS)

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H+ or He+ ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs

  13. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  14. Radiotherapy dose calculation on KV cone-beam CT image for lung tumor using the CIRS calibration

    OpenAIRE

    Ma, ChangSheng; Cao, Jianping; Yin, Yong; Zhu, Jian

    2014-01-01

    On-board kilovoltage (KV) cone-beam computed tomography (CBCT) images are used predominantly for the setup of patients' positioning. The image data can also potentially be used for dose calculation with the precise calibration of Hounsfield units (HU) to electron density (HU-density). CBCT calibration was analyzed in this study. A clinical treatment planning system was employed for CT and KV CBCT image to dose calculations and subsequent comparisons. Two HU-density tables were generated using...

  15. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  16. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  17. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea)

    Science.gov (United States)

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-05-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.

  18. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    Science.gov (United States)

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  19. Flattop beam illumination for 3D imaging ladar with simple optical devices in the wide distance range

    Science.gov (United States)

    Tsuji, Hidenobu; Nakano, Takayuki; Matsumoto, Yoshihiro; Kameyama, Shumpei

    2016-04-01

    We have developed an illumination optical system for 3D imaging ladar (laser detection and ranging) which forms flattop beam shape by transformation of the Gaussian beam in the wide distance range. The illumination is achieved by beam division and recombination using a prism and a negative powered lens. The optimum condition of the transformation by the optical system is derived. It is confirmed that the flattop distribution can be formed in the wide range of the propagation distance from 1 to 1000 m. The experimental result with the prototype is in good agreement with the calculation result.

  20. On the connection between image formation formulas in geometrical optics and beam transformation formulas in wave optics

    Science.gov (United States)

    Bisson, Jean-François

    2013-11-01

    The close connection between image formation in geometrical optics and beam transformation by a paraxial optical system is examined analytically using mathematical tools accessible to undergraduate students, such as the Fresnel diffraction integral and Fourier transforms, instead of the more complicated Wigner distribution or coherence functions frequently employed in the literature. It is shown that geometrical optics correctly predicts the plane where a beam is refocused and its magnification only for afocal optical systems or in the limit of point sources. We illustrate this theory by simulating the transformation of a flat-top beam by a pair of lenses.

  1. Conceptual Design of Neutral Beam Injection System for EAST

    Science.gov (United States)

    Hu, Chundong; NBI Team

    2012-06-01

    Neutral beam injection (NBI) system with two neutral beam injections will be constructed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2~4 MW beam power with 50~80 keV beam energy in 10~100 s pulse length. Each elements of the NBI system are presented in this contribution.

  2. Image characteristics of cone beam computed tomography using a CT performance phantom

    International Nuclear Information System (INIS)

    To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR 9000N TM dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. CT number of both PSR 9000N TM dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR 9000N TM dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR 9000N TM dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR 9000N TM dental CT system and i-CAT CBCT. CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics

  3. The fast beam interlock system for JET neutral injection

    International Nuclear Information System (INIS)

    The JET Neutral Beam Injection (NBI) system poses severe interlock problems with the possibility of unsafe conditions arising on a fast timescale. In order to cope with this the high-security Fast Beam Interlock System (FBIS) has been developed. It is used to turn off the beams in a failsafe manner when a condition arises which could damage the beam line or torus on a timescale too short to be dealt with by the JET Central Interlock and Safety System (CISS). FBIS interfaces signals from many JET safety systems and processes them to act directly on the Neutral Beam power supplies. The interfaces and the fail safety operation of FBIS are described. It is presently planned to upgrade the system to include a real-time comparison of the ion beam deflection magnet currents and the beam extraction voltage and a system which will compensate for the effects of the Tokamak stray fields on the NBI beamlines

  4. Positioning variation analysis using Cone Beam Computed Tomography volumetric images

    International Nuclear Information System (INIS)

    Radiotherapy is one of the main treatment modalities of malignancies, either associated with other techniques or not. The successful use of radiation depends on several factors, such as the choice of treatment technique, dosimetric accuracy and geometric precision. The movement of internal organs plays a role quite significant in the calculation of setup margins, but during treatment, the most important variation is the patient’s positioning error. This study evaluated the geometric accuracy in positioning patients with anal canal, prostate, and head and neck cancer, who were treated at ICESP. Cone Beam Computed Tomography (CBCT) images of 40 patients were used, totalizing 224 images. For every CBCT image, the displacement was calculated through the fusion between the images acquired before the treatment and CT images obtained in the simulation.The average deviation was 0.24±0.10 cm to the left-right direction, 0.21±0.12 cm in the anterior-posterior and 0.30±0.18 cm in the superior-inferior direction for cases of anal canal; 0.20±0.10 cm in the left-right, 0.20±0.10 cm in the anterior-posterior and 0.23±0.11 cm in superior-inferior direction for prostate treatments; and 0.11±0.07 cm in the left-right, 0.13±0.06 cm in the anterior-posterior and 0.15±0.10 cm in superior-inferior direction for the treatment of head and neck. The results found were within the predicted PTV margins used at the Institution. (author)

  5. Construction of the beam profile monitor system with CameraLink in the SPring-8 booster ring and beam transport line

    International Nuclear Information System (INIS)

    We had measured the beam position and size in the SPring-8 booster ring and beam transport line by the monitor system that consists of analog video camera and fluorescent plate. It was difficult to estimate the seasonal change of the beam position and beam size between user operation cycles. In order to keep the high injection efficiency to SPring-8 storage ring, we need to achieve the tuning reproducibility of the accelerator parameter in the booster ring and beam transport line by using the quantitative data. The newly constructed beam profile monitor system consists of the digital CCD camera with external trigger synchronous capturing function, camera selectors, and server computers. Each camera system placed on the booster ring and beam transport line are managed by the UNIX server computer setup for each area. This system is connected by the cameralink configuration devices with cameralink cables or optical fiber cables. It became possible to capture image of beam profile synchronous with a beam trigger with a high resolution and a fast capturing time as same as it by using the analog video system. We will report the detail of beam profile monitor system with cameralink and the system operation. (author)

  6. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  7. Optical image encryption based on multi-beam interference and common vector decomposition

    Science.gov (United States)

    Chen, Linfei; He, Bingyu; Chen, Xudong; Gao, Xiong; Liu, Jingyu

    2016-02-01

    Based on multi-beam interference and common vector decomposition, we propose a new method for optical image encryption. In encryption process, the information of an original image is encoded into n amplitude masks and n phase masks which are regarded as a ciphertext and many keys. In decryption process, parallel light irradiates the amplitude masks and phase masks, then passes through lens that takes place Fourier transform, and finally we obtain the original image at the output plane after interference. The security of the encryption system is also discussed in the paper, and we find that only when all the keys are correct, can the information of the original image be recovered. Computer simulation results are presented to verify the validity and the security of the proposed method.

  8. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  9. Implementation of visualization system for beam service time in RIBF

    International Nuclear Information System (INIS)

    Beam availability is one important factor affecting research productivity of accelerator facilities. In RI Beam Factory (RIBF), the beam availability is defined simply as the ratio of actual beam service time to scheduled beam service time. The availability was previously estimated based on the down time of beam service recorded in our log-books of the paper medium. However, manual estimation of actual beam service time has limitation in its accuracy especially in case of hardware trouble. Hence, in order to realize labor-saving and accurate recording of down time, we have developed a visualization system that automatically records down time by using insertion status of Faraday cups. Implementation of the system has been completed and the system has been successfully operated in recent beam services performed in RIBF. (author)

  10. Megavoltage planar and cone-beam imaging with low-Z targets: Dependence of image quality improvement on beam energy and patient separation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L.; Connell, Tanner; Huang Weihong; Kelly, Robin G. [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada); Medical Physics Unit, McGill University Health Centre, 1650 Avenue Cedar, Montreal, Quebec H3G 1A4 (Canada); Nova Scotia Cancer Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada); Department of Radiation Oncology, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada)

    2009-09-15

    Purpose: The purpose of this study is to investigate the improvement of megavoltage planar and cone-beam CT (CBCT) image quality with the use of low atomic number (Z) external targets in the linear accelerator. Methods: In this investigation, two experimental megavoltage imaging beams were generated by using either 3.5 or 7.0 MeV electrons incident on aluminum targets installed above the level of the carousel in a linear accelerator (2100EX, Varian Medical, Inc., Palo Alto, CA). Images were acquired using an amorphous silicon detector panel. Contrast-to-noise ratio (CNR) in planar and CBCT images was measured as a function of dose and a comparison was made between the imaging beams and the standard 6 MV therapy beam. Phantoms of variable diameter were used to examine the loss of contrast due to beam hardening. Porcine imaging was conducted to examine qualitatively the advantages of the low-Z target approach in CBCT. Results: In CBCT imaging CNR increases by factors as high as 2.4 and 4.3 for the 7.0 and 3.5 MeV/Al beams, respectively, compared to images acquired with 6 MV. Similar factors of improvement are observed in planar imaging. For the imaging beams, beam hardening causes a significant loss of the contrast advantage with increasing phantom diameter; however, for the 3.5 MeV/Al beam and a phantom diameter of 25 cm, a contrast advantage remains, with increases of contrast by factors of 1.5 and 3.4 over 6 MV for bone and lung inhale regions, respectively. The spatial resolution is improved slightly in CBCT images for the imaging beams. CBCT images of a porcine cranium demonstrate qualitatively the advantages of the low-Z target approach, showing greater contrast between tissues and improved visibility of fine detail. Conclusions: The use of low-Z external targets in the linear accelerator improves megavoltage planar and CBCT image quality significantly. CNR may be increased by a factor of 4 or greater. Improvement of the spatial resolution is also apparent.

  11. Evaluation of imaging performance of megavoltage cone-beam CT over an extended period

    International Nuclear Information System (INIS)

    A linear accelerator vendor and the AAPM TG-142 report propose that quality assurance testing for image-guided devices such megavoltage cone-beam CT (MV-CBCT) be conducted on a monthly basis. In clinical settings, however, unpredictable errors such as image artifacts can occur even when quality assurance results performed at this frequency are within tolerance limits. Here, we evaluated the imaging performance of MV-CBCT on a weekly basis for ∼1 year using a Siemens ONCOR machine with a 6-MV X-ray and an image-quality phantom. Image acquisition was undertaken using 15 monitor units. Geometric distortion was evaluated with beads evenly distributed in the phantom, and the results were compared with the expected position in three dimensions. Image-quality characteristics of the system were measured and assessed qualitatively and quantitatively, including image noise and uniformity, low-contrast resolution, high-contrast resolution and spatial resolution. All evaluations were performed 100 times each. For geometric distortion, deviation between the measured and expected values was within the tolerance limit of 2 mm. However, a subtle systematic error was found which meant that the phantom was rotated slightly in a clockwise manner, possibly due to geometry calibration of the MV-CBCT system. Regarding image noise and uniformity, two incidents over tolerance occurred in 100 measurements. This phenomenon disappeared after dose calibration of beam output for MV-CBCT. In contrast, all results for low-contrast resolution, high-contrast resolution and spatial resolution were within their respective tolerances. (author)

  12. Response of SOI image sensor to therapeutic carbon ion beam

    CERN Document Server

    Matsumura, Akihiko

    2015-01-01

    Carbon ion radiotherapy is known as a less invasive cancer treatment. The radiation quality is an important parameter to evaluate the biological effect and the clinical dose from the measured physical dose. The performance of SOPHIAS detector, which is the SOI image sensor having a wide dynamic range and large active area, was tested by using therapeutic carbon ion beam at Gunma University Heavy Ion Medical Center (GHMC). It was shown that the primary carbon and secondary particles can be distinguishable by SOPHIAS detector. On the other hand, a LET dependence was observed especially at the high LET region. This phenomenon will be studied by using the device simulator together with Monte Carlo simulation.

  13. Development of fast beam-stop system using RF chopper

    International Nuclear Information System (INIS)

    To avoid heat damage and radioactivation by beam loss of the J-PARC accelerator, Machine Protection System (MPS) has been developed. Actually, high responsibility and high reliability have been achieved in J-PARC. Beam-stop method in addition to a way of RFQ OFF has been requested in order to avoid damage to the RFQ. Therefore, we have been developing a fast beam-stop system by using a RF chopper. The fast beam-stop system, including beam test, is described in this paper. (author)

  14. Beam Instrumentation Using BPM System of the SPring-8 Linac

    CERN Document Server

    Yanagida, K; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Tomizawa, H

    2004-01-01

    A beam position monitor (BPM) system of the SPring-8 linac has been operated since 2002. The following upgrade programs have been carried out during this period: The BPMs were installed in the linac's dispersive sections. A synchronized accumulation of beam position data into the database system started. A feedback control of steering magnets for beam position stabilization has been under development. In this conference the authors report a performance of the BPM system, and discuss its usefulness for beam diagnostics, machine diagnostics and beam stabilization.

  15. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  16. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  17. Modal Analysis of Millimetre-wave and Terahertz Imaging Systems

    OpenAIRE

    Mahon, Ronan John

    2011-01-01

    This thesis presents the theory and applications of electromagnetic field calculation using orthogonal Gaussian beam modes within the context of far-infrared imaging systems. Laguerre and Hermite-Gaussian modes have been frequently reported in the analysis of paraxial millimetre-wave propagation in astronomical optical systems. Here the method of Gaussian beam mode analysis (GBMA) is extended to fields of optical research that have until recently been associated with wavelen...

  18. Quality assessment and enhancement for cone-beam computed tomography in dental imaging

    International Nuclear Information System (INIS)

    Cone-beam CT will become increasingly important in diagnostic imaging modality in the dental practice over the next decade. For dental diagnostic imaging, cone-beam computed tomography (CBCT) system based on large area flat panel imager has been designed and developed for three-dimensional volumetric image. The new CBCT system can provide a 3-D volumetric image during only one circular scanning with relatively short times (20-30 seconds) and requires less radiation dose than that of conventional CT. To reconstruct volumetric image from 2-D projection images, FDK algorithm was employed. The prototype of our CBCT system gives the promising results that can be efficiently diagnosed. This dissertation deals with assessment, enhancement, and optimization for dental cone-beam computed tomography with high performance. A new blur estimation method was proposed, namely model based estimation algorithm. Based on the empirical model of the PSF, an image restoration is applied to radiological images. The accuracy of the PSF estimation under Poisson noise and readout electronic noise is significantly better for the R-L estimator than the Wiener estimator. In the image restoration experiment, the result showed much better improvement in the low and middle range of spatial frequency. Our proposed algorithm is more simple and effective method to determine 2-D PSF of the x-ray imaging system than traditional methods. Image based scatter correction scheme to reduce the scatter effects was proposed. This algorithm corrects scatter on projection images based on convolution, scatter fraction, and angular interpolation. The scatter signal was estimated by convolving a projection image with scatter point spread function (SPSF) followed by multiplication with scatter fraction. Scatter fraction was estimated using collimator which is similar to SPECS method. This method does not require extra x-ray dose and any additional phantom. Maximum estimated error for interpolation was less than 7

  19. Laser scanning stereomicroscopy for fast volumetric imaging with two-photon excitation and scanned Bessel beams

    Science.gov (United States)

    Yang, Yanlong; Zhou, Xing; Li, Runze; Van Horn, Mark; Peng, Tong; Lei, Ming; Wu, Di; Chen, Xun; Yao, Baoli; Ye, Tong

    2015-03-01

    Bessel beams have been used in many applications due to their unique optical properties of maintaining their intensity profiles unchanged during propagation. In imaging applications, Bessel beams have been successfully used to provide extended focuses for volumetric imaging and uniformed illumination plane in light-sheet microscopy. Coupled with two-photon excitation, Bessel beams have been successfully used in realizing fluorescence projected volumetric imaging. We demonstrated previously a stereoscopic solution-two-photon fluorescence stereomicroscopy (TPFSM)-for recovering the depth information in volumetric imaging with Bessel beams. In TPFSM, tilted Bessel beams were used to generate stereoscopic images on a laser scanning two-photon fluorescence microscope; upon post image processing we could successfully provide 3D perception of acquired volume images by wearing anaglyph 3D glasses. However, tilted Bessel beams were generated by shifting either an axicon or an objective laterally; the slow imaging speed and severe aberrations made it hard to use in real-time volume imaging. In this article, we report recent improvements of TPFSM with newly designed scanner and imaging software, which allows 3D stereoscopic imaging without moving any of the optical components on the setup. This improvement has dramatically improved focusing qualities and imaging speed so that the TPFSM can be performed potentially in real-time to provide 3D visualization in scattering media without post image processing.

  20. Improved beam spot measurements in the 2nd generation proton beam writing system

    International Nuclear Information System (INIS)

    Nanosized ion beams (especially proton and helium) play a pivotal role in the field of ion beam lithography and ion beam analysis. Proton beam writing has shown lithographic details down to the 20 nm level, limited by the proton beam spot size. Introducing a smaller spot size will allow smaller lithographic features. Smaller probe sizes, will also drastically improve the spatial resolution for ion beam analysis techniques. Among many other requirements, having an ideal resolution standard, used for beam focusing and a reliable focusing method, is an important pre-requisite for sub-10 nm beam spot focusing. In this paper we present the fabrication processes of a free-standing resolution standard with reduced side-wall projection and high side-wall verticality. The resulting grid is orthogonal (90.0° ± 0.1), has smooth edges with better than 6 nm side-wall projection. The new resolution standard has been used in focusing a 2 MeV H2+ beam in the 2nd generation PBW system at Center for Ion Beam Applications, NUS. The beam size has been characterized using on- and off-axis scanning transmission ion microscopy (STIM) and ion induced secondary electron detection, carried out with a newly installed micro channel plate electron detector. The latter has been shown to be a realistic alternative to STIM measurements, as the drawback of PIN diode detector damage is alleviated. With these improvements we show reproducible beam focusing down to 14 nm

  1. Beam systems without failures - What can be done?

    International Nuclear Information System (INIS)

    The beam dumps at 3.5 TeV triggered by interlocks not related to the magnet powering are discussed. This concerns the systems like the RF, the transverse feedbacks, beam instrumentation, beam dumping system, collimators and control systems. An analysis of the reasons of these dumps is presented together with a possible strategy to mitigate the effect of these failures. It is very important to notice that no system has been identified to have any structural problem

  2. Non-contact high resolution Bessel beam probe for diagnostic imaging of cornea and trabecular meshwork region in eye

    Science.gov (United States)

    Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung

    2015-07-01

    Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.

  3. Query Adaptive Image Retrieval System

    Directory of Open Access Journals (Sweden)

    Amruta Dubewar

    2014-03-01

    Full Text Available Images play a crucial role in various fields such as art gallery, medical, journalism and entertainment. Increasing use of image acquisition and data storage technologies have enabled the creation of large database. So, it is necessary to develop appropriate information management system to efficiently manage these collections and needed a system to retrieve required images from these collections. This paper proposed query adaptive image retrieval system (QAIRS to retrieve images similar to the query image specified by user from database. The goal of this system is to support image retrieval based on content properties such as colour and texture, usually encoded into feature vectors. In this system, colour feature extracted by various techniques such as colour moment, colour histogram and autocorrelogram and texture feature extracted by using gabor wavelet. Hashing technique is used to embed high dimensional image features into hamming space, where search can be performed by hamming distance of compact hash codes. Depending upon minimum hamming distance it returns the similar image to query image.

  4. Beam extraction system in AIC-144 automatic isochronous cyclotron

    International Nuclear Information System (INIS)

    Project of beam extraction system in Cracow AIC-144 cyclotron is described. The problems of increase of beam emittance, and change of the magnetic field in the cyclotron chamber are discussed. Expected extraction coefficient of the beam is about 0.7. (S.B.)

  5. Beam characterisation of the KIRAMS electron microbeam system

    International Nuclear Information System (INIS)

    An electron microbeam system has been installed at the Korea Inst. of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 μm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV μm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics. (authors)

  6. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams

    CERN Document Server

    Kannegulla, Akash; Rahman, Syed; Fay, Patrick; Xing, Huili Grace; Cheng, Li-Jing; Liu, Lei

    2013-01-01

    We report terahertz coded-aperture imaging using photo-induced reconfigurable aperture arrays on a silicon wafer. The coded aperture was implemented using programmable illumination from a commercially available digital light processing projector. At 590 GHz, each of the array element apertures can be optically turned on and off with a modulation depth of 20 dB and a modulation rate of ~1.3 KHz. Prototype demonstrations of 4 by 4 coded-aperture imaging using Hadamard coding have been performed and this technique has been successfully applied to mapping THz beams by using a 6 by 6 aperture array at 590 GHz. The imaging results agree closely with theoretical calculations based on Gaussian beam transformation, demonstrating that this technique is promising for realizing real-time and low-cost terahertz cameras for many applications. The reported approach provides a simple but powerful means to visualize THz beams, which is highly desired in quasi-optical system alignment, quantum-cascade laser design and characte...

  7. Impact of large x-ray beam collimation on image quality

    Science.gov (United States)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  8. Objective specific beam generation for image guided robotic radiosurgery

    International Nuclear Information System (INIS)

    Robotic radiosurgery enables precise dose delivery throughout the body. Planning for robotic radiosurgery comprises of finding a suitable set of beams and beam weights. The problem can be addressed by generating a large set of candidate beams, and selection of beams with nonzero weight by mathematical programming. We propose to use different randomized beam generation methods depending on the type of lesion and the clinical objective. Results for three patient cases indicate that this can improve the plan quality. (orig.)

  9. Particle beam injector system and method

    Science.gov (United States)

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  10. An application of ultrasonic phased array imaging in electron beam welding inspection

    Institute of Scientific and Technical Information of China (English)

    周琦; 刘方军; 李志军; 李旭东; 齐铂金

    2002-01-01

    The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.

  11. Analysis of the effects of mismatched errors on coherent beam combining based on a self-imaging waveguide

    Science.gov (United States)

    Tao, R.; Wang, X.; Zhou, Pu; Si, Lei

    2016-01-01

    A theoretical model of coherent beam combining (CBC) based on a self-imaging waveguide (SIW) is built and the effects of mismatched errors on SIW-based CBC are simulated and analysed numerically. With the combination of the theoretical model and the finite difference beam propagation method, two main categories of errors, assembly and nonassembly errors, are numerically studied to investigate their effect on the beam quality by using the M2 factor. The optimisation of the SIW and error control principle of the system is briefly discussed. The generalised methodology offers a good reference for investigating waveguide-based high-power coherent combining of fibre lasers in a comprehensive way.

  12. Application of imaging plate to micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    A new type of integrating area detector system with high sensitivity and high spatial resolution was recently developed for diagnostic radiography. In this detector system, a two dimensional X-ray image is temporarily stored as a distribution of F-centers in a photostimulable phosphor screen called the imaging plate (IP). The image in the IP is then read out by measuring the intensity of fluorescence which is stimulated by a focused He-Ne laser beam scanning the surface of the phosphor screen. The residual X-ray image in the IP can be erased simply by exposing it to a large dose of visible light and the IP can be used repeatedly. The detector has 100% detective quantum efficiency for 0-20 keV X-ray, a spatial resolution better than 0.15mm(fwhm), a dynamic range of 105 and no counting rate limitation. The exposure time can be shorten to 1/20-1/60 in comparison with the use of the X-ray film. In this study, we examined the possibility of the IP for the X-ray studies on the mechanical behaviour of materials by using the back-reflection X-ray technique. An exposure time of more than 30 minutes would be required for a conventional high sensitivity X-ray film in the case of αFe(211) diffraction by Cr-Kα X-rays. When the imaging plates were used in place of the film under the same X-ray condition, we could obtain visually similar patterns by exposing the time of less than 90 seconds. These diffraction patterns can be precisely analyzed with the help of the image processing analyzer. We conclude that this detector system is usable in almost the same way as an X-ray film. Especially, this will be more powerful means in the field of micro-beam X-ray diffraction. (author)

  13. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)

    2009-07-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  14. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Science.gov (United States)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  15. Toward design of the Collider Beam Collimation System

    International Nuclear Information System (INIS)

    A multi-component beam collimation system for the Superconducting Super Collider is described. System choice justification and design requirements are presented. System consists of targets, scrapers, and collimators with appropriate cooling and radiation shielding. Each component has an independent control for positioning and aligning with respect to the beam. Results of beam loss distribution, energy deposition calculations, and thermal analyses, as well as cost estimate, are presented

  16. A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging

    International Nuclear Information System (INIS)

    Background and purpose: Image Guidance of patient set-up for radiotherapy can be achieved by acquiring X-ray volumetric images (XVI) with Elekta Synergy and registering these to the planning CT scan. This enables full 3D registration of structures from similar 3D imaging modalities and offers superior image quality, rotational set-up information and a large field of view. This study uses the head section of the Rando phantom to demonstrate a new paradigm of faster, lower dose XVI that still allows registration to high precision. Materials and methods: One high exposure XVI scan and one low exposure XVI scan were performed with a Rando Head Phantom. The second scan was used to simulate ultra low dose, fast acquisition, full and half scans by discarding a large number of projections before reconstruction. Dose measurements were performed using Thermo Luminescent Dosimeters (TLD) and an ion chamber. The reconstructed XVI scans were automatically registered with a helical CT scan of the Rando Head using the volumetric, grey-level, cross-correlation algorithm implemented in the Syntegra software package (Philips Medical Systems). Reproducibility of the registration process was investigated. Results: In both XVI scans the body surface, bone-tissue and tissue air interfaces were clearly visible. Although the subjective image quality of the low dose cone beam scan was reduced, registration of both cone beam scans with the planning CT scan agreed within 0.1 mm and 0.1 deg. Dose to the patient was reduced from 28 mGy to less than 1 mGy and the equivalent scan speed reduced to one minute or less. Conclusions: Automatic 3D registration of high speed, ultra low dose XVI scans with the planning CT scan can be used for precision 3D patient set-up verification/image guidance on a daily basis with out loss of accuracy when compared to higher dose XVI scans

  17. An ImageJ plugin for ion beam imaging and data processing at AIFIRA facility

    Energy Technology Data Exchange (ETDEWEB)

    Devès, G.; Daudin, L. [Univ. Bordeaux, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bessy, A.; Buga, F.; Ghanty, J.; Naar, A.; Sommar, V. [Univ. Bordeaux, F-33170 Gradignan (France); Michelet, C.; Seznec, H.; Barberet, P. [Univ. Bordeaux, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-01

    Quantification and imaging of chemical elements at the cellular level requires the use of a combination of techniques such as micro-PIXE, micro-RBS, STIM, secondary electron imaging associated with optical and fluorescence microscopy techniques employed prior to irradiation. Such a numerous set of methods generates an important amount of data per experiment. Typically for each acquisition the following data has to be processed: chemical map for each element present with a concentration above the detection limit, density and backscattered maps, mean and local spectra corresponding to relevant region of interest such as whole cell, intracellular compartment, or nanoparticles. These operations are time consuming, repetitive and as such could be source of errors in data manipulation. In order to optimize data processing, we have developed a new tool for batch data processing and imaging. This tool has been developed as a plugin for ImageJ, a versatile software for image processing that is suitable for the treatment of basic IBA data operations. Because ImageJ is written in Java, the plugin can be used under Linux, Mas OS X and Windows in both 32-bits and 64-bits modes, which may interest developers working on open-access ion beam facilities like AIFIRA. The main features of this plugin are presented here: listfile processing, spectroscopic imaging, local information extraction, quantitative density maps and database management using OMERO.

  18. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-03-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and Bi4Ge3O12 (BGO) crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast

  19. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  20. A photothermal "mirage" imaging system

    OpenAIRE

    C. Hall; A. Williams

    1994-01-01

    We describe a scanning mirage microscope system that uses a diode probe laser. The sample is raster scanned using X-Y motorised microstepping stages under an Ar+ pump beam to give two dimensional scans and depth profiles. The results for a test sample are given and are compared to that obtained by scanning using a conventional large photoacoustic (PA) cell.

  1. Quantifying the influence of Bessel beams on image quality in optical coherence tomography.

    Science.gov (United States)

    Curatolo, Andrea; Munro, Peter R T; Lorenser, Dirk; Sreekumar, Parvathy; Singe, C Christian; Kennedy, Brendan F; Sampson, David D

    2016-01-01

    Light scattered by turbid tissue is known to degrade optical coherence tomography (OCT) image contrast progressively with depth. Bessel beams have been proposed as an alternative to Gaussian beams to image deeper into turbid tissue. However, studies of turbid tissue comparing the image quality for different beam types are lacking. We present such a study, using numerically simulated beams and experimental OCT images formed by Bessel or Gaussian beams illuminating phantoms with optical properties spanning a range typical of soft tissue. We demonstrate that, for a given scattering parameter, the higher the scattering anisotropy the lower the OCT contrast, regardless of the beam type. When focusing both beams at the same depth in the sample, we show that, at focus and for equal input power and resolution, imaging with the Gaussian beam suffers less reduction of contrast. This suggests that, whilst Bessel beams offer extended depth of field in a single depth scan, for low numerical aperture (NA 0.95), superior contrast (by up to ~40%) may be obtained over an extended depth range by a Gaussian beam combined with dynamic focusing. PMID:27009371

  2. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  3. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  4. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  5. The N8 channel beam loss monitor system

    International Nuclear Information System (INIS)

    High intensity 70 GeV proton beam loss monitor system architecture in the area of single beam pass is described. The main system components choosing as detectors recording and controlling electronics are grounded on. There are list of the main system monitoring tasks and some experimental results. 12 refs.; 6 figs

  6. An interactive image processing system.

    Science.gov (United States)

    Troxel, D E

    1981-01-01

    A multiuser multiprocessing image processing system has been developed. It is an interactive picture manipulation and enhancement facility which is capable of executing a variety of image processing operations while simultaneously controlling real-time input and output of pictures. It was designed to provide a reliable picture processing system which would be cost-effective in the commercial production environment. Additional goals met by the system include flexibility and ease of operation and modification. PMID:21868923

  7. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  8. Image optimization for chemical species tomography with an irregular and sparse beam array

    International Nuclear Information System (INIS)

    High-speed tomographic imaging of hostile engineering processes using absorption-based measurements presents a number of difficulties. In some cases, these challenges include severe limitations on the number of available measurement paths through the subject and the process of designing the geometrical arrangement of these paths for best imaging performance. This paper considers the case of a chemical species tomography system based on near-IR spectroscopic absorption measurements, intended for application to one cylinder of a multi-cylinder production engine. Some of the results, however, are also applicable to other hard-field tomographic modalities in applications where similar constraints may be encountered. A hitherto unreported design criterion is presented for optimal beam geometry for imaging performance, resulting in an irregular array with only 27 measurement paths through the subject for the engine application. Image reconstruction for this severely limited geometry is considered at length, using both simulated and experimental phantom data. Novel methods are presented for the practical generation of gaseous phantoms for calibration and testing of the system. The propane absorption coefficient at 1700 nm is measured. Quantitative imaging of propane plumes in air is demonstrated, showing good localization of circular plumes with diameter as small as 1/5 of the subject diameter and excellent imaging of multiple plumes

  9. Point spread function modeling and images restoration for cone-beam CT

    OpenAIRE

    Zhang, Hua; Huang, Kuidong; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the...

  10. BeamOptics : a Symbolic Platform for Modeling and the Solution of Beam Optics System

    International Nuclear Information System (INIS)

    BeamOptics [1] is a Mathematica-based computing platform devoted to the following objectives: (1) Structured representation and manipulation of particle beam optics systems with symbolic capabilities, (2) Analytical and numerical modeling of beam optics system behaviors, (3) Solution to specific beam optical or general accelerator system problems, in algebraic form in certain cases, through customized algorithms. Taking advantage of and conforming to the highly formal and self-contained structure of Mathematica, BeamOptics provides a unique platform for developing accelerator design and analysis programs. The feature of symbolic computation and the ability to manipulate the beam optics system at the programming language level enable the user to solve or optimize his system with considerably more efficiency, rigour and insight than can be easily achieved with passive modeling or numerical simulation methods. BeamOptics is developed with continuous evolution in mind. New features and algorithms from diverse sources can be incorporated without major modification, due to its formal and generic structure. In this report, a survey is given of the basic structure and methodology of BeamOptics, as well as a demonstration of some of its more specialized applications, and possible direction of evolution

  11. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  12. Computerized treatment planning systems for external photon beam radiotherapy

    International Nuclear Information System (INIS)

    Computerized treatment planning systems (TPSs) are used in external beam radiotherapy to generate beam shapes and dose distributions with the intent to maximize tumour control and minimize normal tissue complications. Patient anatomy and tumour targets can be represented as 3-D models. The entire process of treatment planning involves many steps and the medical physicist is responsible for the overall integrity of the computerized TPS to accurately and reliably produce dose distributions and associated calculations for external beam radiotherapy. The planning itself is most commonly carried out by a dosimetrist, and the plan must be approved by a radiation oncologist before implementation in actual patient treatments. Treatment planning prior to the 1970s was generally carried out through the manual manipulation of standard isodose charts on to patient body contours that were generated by direct tracing or lead wire representation, and relied heavily on the judicious choice of beam weight and wedging by an experienced dosimetrist. The simultaneous development of computed tomography (CT), along with the advent of readily accessible computing power from the 1970s on, led to the development of CT based computerized treatment planning, providing the ability to view dose distributions directly superimposed upon a patient's axial anatomy. The entire treatment planning process involves many steps, beginning from beam data acquisition and entry into the computerized TPS, through patient data acquisition, to treatment plan generation and the final transfer of data to the treatment machine. Successive improvements in treatment planning hardware and software have been most notable in the graphics, calculation and optimization aspects of current systems. Systems encompassing the 'Virtual Patient' are able to display beam's eye views (BEVs) of radiation beams and digitally reconstructed radiographs (DRRs) for arbitrary dose distributions. Dose calculations have evolved from

  13. Simulation of mechanical misalignments in a cone-beam micro-CT system

    OpenAIRE

    Vidal-Migallón, I.; Abella, Mónica; Sisniega, Alejandro; Vaquero, Juan José; Desco, Manuel

    2008-01-01

    X-ray CT images usually show artefacts due not only to physical effects -e.g., beam hardening-, but also to misalignments that remain after mechanical calibration. These artefacts become particularly noticeable in the case of high spatial resolution systems and in hybrid systems, such as PETCT, SPECT-CT scanners, which rely on a correct registration of emission and CT data. Hence, slight mechanical misalignments affect the quality of the CT images and any attenuation correction metho...

  14. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  15. High-fidelity artifact correction for cone-beam CT imaging of the brain

    International Nuclear Information System (INIS)

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30–50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ∼4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ∼3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ∼7 to 49.7 HU, in good

  16. Image sets for satellite image processing systems

    Science.gov (United States)

    Peterson, Michael R.; Horner, Toby; Temple, Asael

    2011-06-01

    The development of novel image processing algorithms requires a diverse and relevant set of training images to ensure the general applicability of such algorithms for their required tasks. Images must be appropriately chosen for the algorithm's intended applications. Image processing algorithms often employ the discrete wavelet transform (DWT) algorithm to provide efficient compression and near-perfect reconstruction of image data. Defense applications often require the transmission of images and video across noisy or low-bandwidth channels. Unfortunately, the DWT algorithm's performance deteriorates in the presence of noise. Evolutionary algorithms are often able to train image filters that outperform DWT filters in noisy environments. Here, we present and evaluate two image sets suitable for the training of such filters for satellite and unmanned aerial vehicle imagery applications. We demonstrate the use of the first image set as a training platform for evolutionary algorithms that optimize discrete wavelet transform (DWT)-based image transform filters for satellite image compression. We evaluate the suitability of each image as a training image during optimization. Each image is ranked according to its suitability as a training image and its difficulty as a test image. The second image set provides a test-bed for holdout validation of trained image filters. These images are used to independently verify that trained filters will provide strong performance on unseen satellite images. Collectively, these image sets are suitable for the development of image processing algorithms for satellite and reconnaissance imagery applications.

  17. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  18. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  19. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    Science.gov (United States)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  20. Physical performance and image optimization of megavoltage cone-beam CT

    International Nuclear Information System (INIS)

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  1. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  2. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    International Nuclear Information System (INIS)

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  3. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Campbell, J [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  4. Automatic segmentation of maxillofacial cysts in cone beam CT images.

    Science.gov (United States)

    Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu

    2016-05-01

    Accurate segmentation of cysts and tumors is an essential step for diagnosis, monitoring and planning therapeutic intervention. This task is usually done manually, however manual identification and segmentation is tedious. In this paper, an automatic method based on asymmetry analysis is proposed which is general enough to segment various types of jaw cysts. The key observation underlying this approach is that normal head and face structure is roughly symmetric with respect to midsagittal plane: the left part and the right part can be divided equally by an axis of symmetry. Cysts and tumors typically disturb this symmetry. The proposed approach consists of three main steps as follows: At first, diffusion filtering is used for preprocessing and symmetric axis is detected. Then, each image is divided into two parts. In the second stage, free form deformation (FFD) is used to correct slight displacement of corresponding pixels of the left part and a reflected copy of the right part. In the final stage, intensity differences are analyzed and a number of constraints are enforced to remove false positive regions. The proposed method has been validated on 97 Cone Beam Computed Tomography (CBCT) sets containing various jaw cysts which were collected from various image acquisition centers. Validation is performed using three similarity indicators (Jaccard index, Dice's coefficient and Hausdorff distance). The mean Dice's coefficient of 0.83, 0.87 and 0.80 is achieved for Radicular, Dentigerous and KCOT classes, respectively. For most of the experiments done, we achieved high true positive (TP). This means that a large number of cyst pixels are correctly classified. Quantitative results of automatic segmentation show that the proposed method is more effective than one of the recent methods in the literature. PMID:27035862

  5. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics. (paper)

  6. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    Science.gov (United States)

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-06-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.

  7. Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy

    International Nuclear Information System (INIS)

    Kilovoltage cone-beam computerized tomography (kV-CBCT) systems integrated into the gantry of linear accelerators can be used to acquire high-resolution volumetric images of the patient in the treatment position. Using on-line software and hardware, patient position can be determined accurately with a high degree of precision and, subsequently, set-up parameters can be adjusted to deliver the intended treatment. While the patient dose due to a single volumetric imaging acquisition is small compared to the therapy dose, repeated and daily image guidance procedures can lead to substantial dose to normal tissue. The dosimetric properties of a clinical CBCT system have been studied on an Elekta linear accelerator (Synergy[reg] RP, XVI system) and additional measurements performed on a laboratory system with identical geometry. Dose measurements were performed with an ion chamber and MOSFET detectors at the center, periphery, and surface of 30 and 16-cm-diam cylindrical shaped water phantoms, as a function of x-ray energy and longitudinal field-of-view (FOV) settings of 5,10,15, and 26 cm. The measurements were performed for full 360 deg.CBCT acquisition as well as for half-rotation scans for 120 kVp beams using the 30-cm-diam phantom. The dose at the center and surface of the body phantom were determined to be 1.6 and 2.3 cGy for a typical imaging protocol, using full rotation scan, with a technique setting of 120 kVp and 660 mAs. The results of our measurements have been presented in terms of a dose conversion factor fCBCT, expressed in cGy/R. These factors depend on beam quality and phantom size as well as on scan geometry and can be utilized to estimate dose for any arbitrary mAs setting and reference exposure rate of the x-ray tube at standard distance. The results demonstrate the opportunity to manipulate the scanning parameters to reduce the dose to the patient by employing lower energy (kVp) beams, smaller FOV, or by using half-rotation scan

  8. Influence of the beam divergence on the quality neutron radiographic images improved by Richardson-Lucy deconvolution

    International Nuclear Information System (INIS)

    Full text: Images produced by radiation transmission, as many others, are affected by disturbances caused by random and systematic uncertainties. Those caused by noise or statistical dispersion can be diminished by a filtering procedure which eliminates high-frequencies associated to the noise, but unfortunately also those belonging to the signal itself. Systematic uncertainties, in principle, could be more effectively removed if one knows the spoiling convolution function causing the degradation of the image. This function depends upon the detector resolution and the non-punctual character of the source employed in the acquisition, which blur the image making a single point to appear as a spot with a vanishing edge. For an extended source, exhibiting however a reasonable parallel beam, the penumbra degrading the image would be caused by the unavoidable beam divergence. In both cases, the essential information to improve the degraded image is the law of transformation of a single point into a blurred spot, known as point spread function-PSF. Even for an isotropic system, where this function would have a symmetric bell-like shape, it is very difficult to obtain experimentally and to apply it to the data processing. For this reason it is usually replaced by an approximated analytical function such as a Gaussian or Lorentzian. In this work, the Richardson-Lucy deconvoultion has been applied to ameliorate thermal neutron radiographic images acquired with imaging plates using a Gaussian PSF as deconvolutor. Due to the divergence of the neutron beam, reaching 1 deg 16', the penumbra affecting the final image depends upon the gap object-detector. Moreover, even if the object were placed in direct contact with the detector the non-zero dimension of the object along the beam path would produce penumbrae of different magnitudes, i.e., the spatial resolution of the system would be dependent upon the object-detector arrangement. This means that the width of the PSF increases

  9. On board imaging and cone beam computed tomography: QA procedures

    International Nuclear Information System (INIS)

    The newly installed On Board Imager (OBI) system uses two retractable arms that deploy on either side of the treatment couch in addition to the portal vision MV imager (MVD). The source arm holds a KV X ray tube (KVS) and the detector arm holds a high performance Kilo-voltage amorphous silicon detector (KVD). These devices are linked to the OBI workstation which provides a platform for acquisition/analysis of images and auto couch motion for repositioning the patient. As OBI becomes a routine clinical modality, we propose a quality program QA for OBI and CBCT. The suggested QA procedure was based on the OBI/CBCT customer acceptance procedure and additional tests assuring proper performance of the system. Our QA program addresses safety of patients and staff, geometric calibration, image performance, database and software integrity. Safety and functionality QA. The items to be tested for safety are door interlock, warning lights and alarm, collision detection and interlock, and hand pendant motion enable bars. All tests could be quickly performed during tube warm-up that will not only prevent X ray tube damage but also verify functionality of the system and network connection among the record-and-verifying system server, the treatment workstation, and the OBI system. We suggest most safety QA testes to be performed daily during the tube warm-up. Geometrical accuracy QA. 1) Mechanical accuracy: Mechanical arm positioning accuracy and arm travel accuracy should be checked for the source (KVS) and detector (KVD). The discrepancy between the calibrated position and the measured position should be within 2 mm. We suggest this test to be performed monthly. 2) OBI isocenter accuracy: This QA could be performed with a phantom that contains a small positioning marker visible in OBI images. This test should be performed with calibrated room lasers, linear accelerator (Linac) crosshair, and optical distance indicator (ODI). The disagreement between the Linac isocenter and the

  10. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  11. Apparent beam size definition of focused ion beams based on scanning electron microscopy images of nanodots

    OpenAIRE

    Vladov, Nikola; Segal, Joel; Ratchev, Svetan

    2015-01-01

    In this paper the new term apparent beam size of Focused Ion Beam (FIB) is introduced and an original method of its evaluation is demonstrated. Traditional methods of measuring the beam size, like the knife edge method, provide information about the quality of the beam itself but practically they do not give information on the FIB sputtering resolution. To do this, it is necessary to take into account the material dependant interaction of the beam with the specimen and the gas precursor in th...

  12. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  13. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  14. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  15. Beam kicker control system for CSR project in Lanzhou

    International Nuclear Information System (INIS)

    The beam kicker system is a key part for beam extraction and injection in ring-like accelerator, which works under high voltage and huge current. This paper introduces the kicker control system based on ARM+DSP+FPGA for CSR project in Lanzhou, which has nanosecond timing precision. ARM mainly completes the control signals with the network communication, and the time control precision for the beam kicker system is performed mainly by FPGA and DSP. The sequence control signals through the optic fiber transmission, synchronous to kicker power supply the voltage to assign uses the signal isolators and ferrites to suppress the disturbance pulses. Scene test has proved that this system can meet beam kicker control's request and work safely and stably. The control system has extracted and injected the CSR beam successfully in October 2007. (authors)

  16. System Requirements Toward Specification of an Image Recorder

    Science.gov (United States)

    Corsover, S. L.; Herzog, D. G.; Donze, D. W.

    1986-07-01

    This paper approaches the topic of Laser Beam Image Recording from the user's perspective. It discusses the parameters of concern to a system group charged with specifying a high performance Laser Beam Image Recording Subsystem. The paper concentrates on those parameters that have significant impact on interface complexity, image quality and cost. A block diagram of a typical Laser Beam Recorder is shown along with a brief explanation of the following subsystems: Image Data Interface, Control Data Interface, Image Data Processor, Annotation, Scan Data Processor, Command and Control, Electro Optics, Film Transport, and Built-In-Test Equipment. Ranges of the following signal parameters are given: Line Rate, Data Rate, Data Duty Factor and Bytes/Line. Typical values of the following critical image quality parameters are given: Resolution, Raster and Banding, Geometric Fidelity, and Density Fidelity. Each of the critical parameters are defined and measuring techniques and equipment discussed. A list of system level questions which a user should consider when formulating the Laser Beam Recorder specification are also presented.

  17. Design and performance of a video-based laser beam automatic alignment system

    Institute of Scientific and Technical Information of China (English)

    Daizhong Liu(刘代中); Renfang Xu(徐仁芳); Dianyuan Fan(范滇元)

    2004-01-01

    @@ A laser alignment system is applied to a high power laser facility for inertial confinement fusion.A designof the automated,close-loop laser beam alignment system is described.Its function is to sense beamalignment errors in a laser beam transport system and automatically steer mirrors preceding the sensorlocation as required to maintain beam alignment.The laser beam is sampled by a sensor package,whichuses video cameras to sense pointing and centering errors.The camera outputs are fed to a personalcomputer,which includes video digitizers and uses image storage and software to sense the centroid of theimage.Signals are sent through the computer to a stepper motor controller,which drives stepper motorson mirror mounts preceding the beam sampling location to return the beam alignment to the prescribedcondition.Its optical principles and key techniques are given.The pointing and centering sensitivities ofthe beam aligmnent sensor package are analyzed.The system has been verified on the multi-pass amplifier experimental system.

  18. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Science.gov (United States)

    Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus

    2016-07-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  19. High resolution imaging with TM01 laser beams

    Science.gov (United States)

    Dehez, Harold; Piché, Michel; De Koninck, Yves

    2009-06-01

    Using the vectorial diffraction theory established by Richards and Wolf, we demonstrate that the resolution of a two-photon microscope can be improved with a radially polarized TM01 laser beam and an interface between dielectrics, instead of the linearly polarized Gaussian beam already used in laser scanning microscopy. To verify the theoretical results, we developed a mode converter producing radially polarized beams and we have integrated it in a commercial two-photon microscope.

  20. Can Neutron Beam Components and Radiographic Image Quality be determined by the Use of Beam Purity and Sensitivity Indicators?

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    radiography f a c i l i t i e s of the European Community. The direct, transfer and track-etch methods using different f i lm recording materials were used. Neutron beam components were calculated from film density measurements under the beam purity indicators and radiographic image quality was assessed by......In the Euratom Neutron Radiography Working Group Test Program beam purity and s e n s i t i v i t y indicators, as prescribed by the ASTM E 545-81 were used together with the NRWG beam purity i n d i c a t o r - f u e l and c a l i b r a t i o n fuel pin. They were radiographed together at neutron...

  1. Detectors for the Imaging and Medical Beam Line at the Australian Synchrotron

    International Nuclear Information System (INIS)

    The Australian Synchrotron Imaging and Medical Beam Line (IMBL) began phased commissioning in late 2008 and was opened for Users this year (November, 2012). It will provide Australia with an unrivaled facility for x-ray imaging and radiotherapy research covering a wide range of applications in disease studies, treatments, and revealing physiological processes. The clinical research drivers for IMBL rely on the facility's ability to support high spatial and contrast resolution imaging. The wide variety of demands for x-ray imaging with IMBL cannot be covered with any single detector system. A list of six detector categories was drawn up after assessing the techniques that are most likely to be used during our first years of operation. Detectors in this list will cover the fields of view, resolutions (both spatial and contrast), and frame rates required for a majority of the experiments. We present the six detectors within these categories. One detector system is the topic of a development project with the goal of producing a large field of view high aspect ratio system. Some initial design ideas are presented.

  2. A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics

    Science.gov (United States)

    Runkel, Mike; Hawley-Fedder, Ruth; Widmayer, Clay; Williams, Wade; Weinzapfel, Carolyn; Roberts, Dave

    2005-12-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO2 lasers.

  3. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  4. Design and initial characterisation of X-ray beam diagnostic imagers for the European XFEL

    Science.gov (United States)

    Koch, Andreas; Freund, Wolfgang; Grünert, Jan; Planas, Marc; Roth, Thomas; Samoylova, Liubov; Lyamayev, Viktor

    2015-05-01

    The European X-Ray Free-Electron-Laser facility requires diagnostics of its x-ray photon beam. Besides other diagnostic components, imaging stations will be employed for the characterisation of beam properties like position, profile, and pointing, before and after different types of mirrors, slits and monochromators. In combination with soft x-ray grating monochromators or other dispersive devices, imagers can also deliver spectral information. The imagers will usually absorb the beam (invasive devices), however, for some applications they will be partially transmissive to allow for beam pointing monitoring together with a second imaging unit further downstream. For the first commissioning 25 diagnostic imagers are planned at various positions in the photon beam tunnels. Further similar devices are under development for monitoring the beam properties at the experimental stations. The design of theses imaging stations will be described. Initial testing has started and the optimization of some components will be reported. The main components of these imaging stations are: retractable scintillators for conversion of x-rays to visible light, mirrors, optics and CCD / CMOS cameras for image recording, an ultra-high vacuum (UHV) chamber, and the associated control electronics and software. Scintillators and mirrors will be the only components in an ultra-high vacuum chamber. Performance characteristics are addressed, especially mechanical stability, spatial resolution, signal-to-noise properties, and radiation hardness. The challenge in the design is to deal with a wide range of beam properties: photon energies from 0.26 - 25 keV, beam sizes from several 100 μm to several mm, large beam position shifts of up to 120 mm, pulse durations of 10 fs and pulse energies up to 10 mJ which may destroy materials by a single pulse.

  5. Devices, systems, and methods for imaging

    Science.gov (United States)

    Appleby, David; Fraser, Iain; Watson, Scott

    2008-04-15

    Certain exemplary embodiments comprise a system, which can comprise an imaging plate. The imaging plate can be exposable by an x-ray source. The imaging plate can be configured to be used in digital radiographic imaging. The imaging plate can comprise a phosphor-based image storage device configured to convert an image stored therein into light.

  6. Beam monitor system for high-energy beam transportation at HIMAC

    International Nuclear Information System (INIS)

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x105 and 1x106 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are used for continuously monitoring the beam during treatments, which play a role in keeping qualities of the treatments. The monitor system has been designed to meet requirements for medical uses, and works in a stable and reliable manner and satisfies the requirements. (author)

  7. Data acquisition system for KOMAC beam monitoring using EPICS middleware

    Science.gov (United States)

    Song, Young-Gi

    2015-10-01

    The beam diagnostics instrument used to measure the beam properties is one of the important devices for the 100-MeV proton linear accelerator of the KOrea Multi-purpose Accelerator Complex (KOMAC). A data acquisition system (DAQ) is required to collect the output beam signals conditioned in the analog front-end circuitry of a beam loss monitor (BLM) and a beam position monitor (BPM). The electrical beam signal must be digitized, and the sampling has to be synchronized to a global timing system that produces a pulse signal for the pulsed beam operation. The digitized data must be accessible by the experimental physics and industrial control system (EPICS)-based control system, which manages all accelerator control. An input output controller (IOC), which runs Linux on a central process unit (CPU) module with a peripheral component interconnect (PCI) express-based Analog-to-digital converter (ADC) card, has been adopted to satisfy the requirements. An associated Linux driver and EPICS device support module have also been developed. The IOC meets the requirements, and the development and maintenance of software for the IOC is very efficient. In this paper, the details of the DAQ system for the BLM and the BPM with the introduction of the KOMAC beam-diagnostics devices, along with the performance, are described.

  8. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging.

    Science.gov (United States)

    Meng, Congsen; Janssen, Maurice H M

    2015-02-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude. PMID:25725826

  9. Beam transfer functions and beam stabilisation in a double RF system

    CERN Document Server

    Shaposhnikova, Elena; Linnecar, Trevor Paul R

    2005-01-01

    The high intensity proton beam for LHC accelerated in the CERN SPS is stabilised against coupled-bunch instabilities by a 4th harmonic RF system in bunch-shortening mode. Bunch-lengthening mode, which could also be useful to reduce peak line density and alleviate problems from e-cloud and kicker heating, does not give desirable results for beam stability. In this paper an analysis of the limitations of these two different modes of operation is presented together with measurements of the Beam Transfer Function for the double RF system. As predicted by theory, for sufficiently long bunches with the same noise excitation, the measured amplitude of the beam response in bunchlengthening mode is an order of magnitude higher than that for bunch-shortening mode or for a single RF system.

  10. Velocity map imaging of a slow beam of ammonia molecules inside a quadrupole guide

    CERN Document Server

    Pérez, Marina Quintero; Bethlem, Hendrick L

    2012-01-01

    Velocity map imaging inside an electrostatic quadrupole guide is demonstrated. By switching the voltages that are applied to the rods, the quadrupole can be used for guiding Stark decelerated molecules and for extracting the ions. The extraction field is homogeneous along the axis of the quadrupole while it defocuses the ions in the direction perpendicular to both the axis of the quadrupole and the axis of the ion optics. To compensate for this astigmatism, a series of planar electrodes with horizontal and vertical slits is used. A velocity resolution of 35 m/s is obtained. It is shown that signal due to thermal background can be eliminated, resulting in the detection of slow molecules with an increased signal-to-noise ratio. As an illustration of the resolving power, we have used the velocity map imaging system to characterize the phase-space distribution of a Stark decelerated ammonia beam.

  11. Velocity map imaging of a slow beam of ammonia molecules inside a quadrupole guide.

    Science.gov (United States)

    Quintero-Pérez, Marina; Jansen, Paul; Bethlem, Hendrick L

    2012-07-21

    Velocity map imaging inside an electrostatic quadrupole guide is demonstrated. By switching the voltages that are applied to the rods, the quadrupole can be used for guiding Stark decelerated molecules and for extracting the ions. The extraction field is homogeneous along the axis of the quadrupole, while it defocuses the ions in the direction perpendicular to both the axis of the quadrupole and the axis of the ion optics. To compensate for this astigmatism, a series of planar electrodes with horizontal and vertical slits is used. A velocity resolution of 35 m s(-1) is obtained. It is shown that signal due to thermal background can be eliminated, resulting in the detection of slow molecules with an increased signal-to-noise ratio. As an illustration of the resolving power we have used the velocity map imaging system to characterize the phase-space distribution of a Stark decelerated ammonia beam. PMID:22652864

  12. Ralicon anodes for image photon counting fabricated by electron beam lithography

    International Nuclear Information System (INIS)

    The Anger wedge and strip anode event location system developed for microchannel plate image photon detectors at the Space Sciences Laboratory of the University of California, Berkeley, has been extended in the present work by the use of electron beam lithography (EBL). This method of fabrication can be used to produce optical patterns for the subsequent manufacture of anodes by conventional photo-etching methods and has also enabled anodes to be produced directly by EBL microfabrication techniques. Computer-aided design methods have been used to develop several types of RALICON (Readout Anodes of Lithographic Construction) for use in photon counting microchannel plate imaging detectors. These anodes are suitable for linear, two dimensional or radial position measurements and they incorporate novel design features made possible by the EBL fabrication technique which significantly extend their application relative to published wedge-strip anode designs. (author)

  13. Azimuth–opening angle domain imaging in 3D Gaussian beam depth migration

    International Nuclear Information System (INIS)

    Common-image gathers indexed by opening angle and azimuth at imaging points in 3D situations are the key inputs for amplitude-variation-with-angle and velocity analysis by tomography. The Gaussian beam depth migration, propagating each ray by a Gaussian beam form and summing the contributions from all the individual beams to produce the wavefield, can overcome the multipath problem, image steep reflectors and, even more important, provide a convenient and efficient strategy to extract azimuth–opening angle domain common-image gathers (ADCIGs) in 3D seismic imaging. We present a method for computing azimuth and opening angle at imaging points to output 3D ADCIGs by computing the source and receiver wavefield direction vectors which are restricted in the effective region of the corresponding Gaussian beams. In this paper, the basic principle of Gaussian beam migration (GBM) is briefly introduced; the technology and strategy to yield ADCIGs by GBM are analyzed. Numerical tests and field data application demonstrate that the azimuth–opening angle domain imaging method in 3D Gaussian beam depth migration is effective. (paper)

  14. An XCT image database system

    International Nuclear Information System (INIS)

    In this paper, an expansion of X-ray CT (XCT) examination history database to XCT image database is discussed. The XCT examination history database has been constructed and used for daily examination and investigation in our hospital. This database consists of alpha-numeric information (locations, diagnosis and so on) of more than 15,000 cases, and for some of them, we add tree structured image data which has a flexibility for various types of image data. This database system is written by MUMPS database manipulation language. (author)

  15. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  16. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    Science.gov (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  17. Image guided radiotherapy : performance of a cone beam CT automatic image registration of the prostate

    International Nuclear Information System (INIS)

    Full text: Image registration is one source of uncertainty in image guided radiotherapy. The performance of masked, soft-tissue, automatic image registration of the prostate between CT and CBCT images was measured and its relationship with reduced imaging dose investigated. An anthropomorphic pelvis phantom (CIRS) was CT scanned and used as a reference for lGRT. Seven CBCT scans were taken using the Elekta Synergy system with nominal imaging doses from I to 40 mGy. Rigid-body image registration was repeated 100 times with randomly selected start positions representing normal prostate set-up errors. Image registration used the 'Elekta Correlation Ratio' algorithm with CT data masked to the prostate + 5 mm isotropic margin. Residual error analysis was performed to determine the registration accuracy, precision and robustness. Rigid body errors were analysed as target registration error (TRE), the average error between any two corresponding points on the surface of a 5 cm sphere centred on the isocentre. Similar methods were applied to 21 CBCT scans from seven patients. The TRE was stable for imaging doses above 6 mGy. Median(TRE) was 3.6 mm) was ation performance for patient images was highly variable; 4121 CT-CBCT registrations showed median(TRE) < I mm and RFF <20%. For the rest, median(TRE) was up to 9 mm and RFF from 20 to 90%. A clear dose response relationship was evident for CTCBCT image registration performance of the prostate in phantom measurements. Performance with patient images was highly variable.

  18. Stepped scanner radiographic imaging system

    International Nuclear Information System (INIS)

    The imaging system includes a radiographic camera, a bed for supporting a subject in view of the camera, and a display system. The camera provides X and Y coordinate signals of each radiographic event. The position of the bed relative to the camera is altered sequentially by drive means, between each of a sequence of images provided by the camera. The sequentially occurring images are presented on the display system, each image being positioned on the display in correspondence with the location of the bed relative to the camera. The coordinates of each image point presented on the display is equal to the sum of the respective X and Y coordinate signals from the camera with X and Y coordinate signals provided by a timer which controls the drive means and defines the location of the bed relative to the camera. The camera is electronically decoupled from the display by a gate during movement of the bed relative to the camera from one location to the next location to prevent any smearing effect within the composite image presented on the display. (author)

  19. Transverse oscillations of an underwater beam-cable system

    OpenAIRE

    Blanco, Max; Wilson, P.A.

    2010-01-01

    An Autonomous Underwater Vehicle refuel station is proposed. The power source is located on board a surface vessel, while the AUV is serviced at depth. The structure which connects the two craft is modelled as a cable-beam. Transverse oscillations of this cable-beam system are investigated through a fourth-order differential equation.

  20. Mechanical engineering problems in the TFTR neutral beam system

    International Nuclear Information System (INIS)

    A conceptual design of a prototype beam line for the TFTR Neutral Beam System has been developed. The basic components have been defined, cost estimates prepared, and the necessary development programs identified. Four major mechanical engineering problems, potential solutions and the required development programs are discussed

  1. Hyperspectral imaging system for UAV

    Science.gov (United States)

    Zhang, Da; Zheng, Yuquan

    2015-10-01

    Hyperspectral imaging system for Unmanned Aerial Vehicle (UAV) is proposed under airborne remote sensing application background. By the application of Offner convex spherical grating spectral imaging system and using large area array detector push-broom imaging, hyperspectral imaging system with the indicators of 0.4μm to 1.0μm spectral range, 120 spectral bands, 5nm spectral resolution and 1m ground sampling interval (flight altitude 5km) is developed and completed. The Offner convex grating spectral imaging system is selected to achieve non-spectral line bending and colorless distortion design results. The diffraction efficiency is 15%-30% in the range of 0.4μm to 1.0μm wavelength. The system performances are tested by taking spectral and radiometric calibration methods in the laboratory. Based on monochromatic collimated light method for spectral performance parameters calibration of hyperspectral optical remote sensor, the analysis results of spectral calibration data show that the calibration test repeatability is less than 0.2 nm within one hour. The spectral scaling results show that the average spectral resolution of hyperspectral optical remote sensor is 4.94 nm, and the spatial dimension of the high-spectral optical remote sensor spectral resolution is less than 5 nm, the average of the typical spectral bandwidth is about 6 nm, the system average signal-to-noise ratio (SNR) is up to 43dB under typical operating conditions. Finally the system functionalities and performance indicators are verified by the aviation flight tests, which it's equipped on UAV. The actual image quality is good, and the spectral position is stable.

  2. The development of a range of C60 ion beam systems

    International Nuclear Information System (INIS)

    C60 ion beams are being used in a widening variety of analytical applications. The interaction of the C60 molecule with most sample surfaces differs markedly from that of an atomic ion beam, leading to elevated sputter yields and ion yields. A further important consequence of C60 bombardment is very low residual damage after sputtering of surface layers. We have developed a range of C60 ion beam systems for use in static SIMS, dynamic SIMS, SIMS imaging, including intracellular imaging of biological compounds, and in surface cleaning and depth profiling in electron spectroscopy. We describe the design criteria for the C60 range and illustrate the performance of these systems with recent applications data

  3. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  4. Beam Position and Phase Monitor - Wire Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  5. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  6. A beam waveguide linearly polarized KU band feed system

    Science.gov (United States)

    Flannery, J. B.

    The linearly polarized KU band beam waveguide feed system considered was designed for use with large Cassegrain antennas typical of those associated with satellite comunications earth stations. The beam waveguide technique permits fixed ground installations of the transmitters and low noise receivers and eliminates the large equipment room usually mounted behind the reflector vertex. The feed system consists of a tapered corrugated wall horn, a matching network, a TE21 mode coupler, three differential phase shifters, a choke coupled rotatable, orthogonal mode transducer, and a servo amplifier system. Attention is given to TE21 mode coupler operation, TE21 mode coupling and directivity, a horn description, a beam wave description, and polarization control.

  7. System for programmable micromachining by means of submicron ion beam

    International Nuclear Information System (INIS)

    A system with submicron ion beam is described. Very bright ion beams are generated by electrohydrodynamic source and are focused in electrostatic ion-optical column. An octupole deflector is used for astigmatism correction and beam deviation. Stabilized power supply of all elements is ensured. Lines of 0.1 μm minimum width are obtained. The micromachining process is controlled by an automated system in CAMAC standard on line with Odrenok computer. Specific features of programmable micromachining and operation of the system in the mode of scanning ion microscope are considered

  8. Phase-preserving beam expander for biomedical X-ray imaging.

    Science.gov (United States)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-05-01

    The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called `magic condition' that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used. PMID:25931100

  9. Beam combination schemes and technologies for the Planet Formation Imager (PFI)

    CERN Document Server

    Minardi, Stefano; Berger, Jean-Philippe; Labadie, Lucas; Thomson, Robert R; Haniff, Chris; Ireland, Michael

    2016-01-01

    The Planet Formation Imager (PFI) initiative aims at developing the next generation large scale facility for imaging astronomical optical interferometry operating in the mid-infrared. Here we report on the progress of the Planet Formation Imager Technical Working Group on the beam-combination instruments. We will discuss various available options for the science and fringe-tracker beam combination instruments, ranging from direct imaging, to non-redundant fiber arrays, to integrated optics solutions. Besides considering basic characteristics of the schemes, we will investigate the maturity of the available technological platforms at near- and mid-infrared wavelengths.

  10. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    Science.gov (United States)

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  11. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties

  12. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  13. A dual modality phantom for cone beam CT and ultrasound image fusion in prostate implant

    International Nuclear Information System (INIS)

    In transrectal ultrasound (TRUS) guided prostate seed brachytherapy, TRUS provides good delineation of the prostate while x-ray imaging, e.g., C-arm, gives excellent contrast for seed localization. With the recent availability of cone beam CT (CBCT) technology, the combination of the two imaging modalities may provide an ideal system for intraoperative dosimetric feedback during implantation. A dual modality phantom made of acrylic and copper wire was designed to measure the accuracy and precision of image coregistration between a C-arm based CBCT and 3D TRUS. The phantom was scanned with TRUS and CBCT under the same setup condition. Successive parallel transverse ultrasound (US) images were acquired through manual stepping of the US probe across the phantom at an increment of 1 mm over 7.5 cm. The CBCT imaging was done with three reconstructed slice thicknesses (0.4, 0.8, and 1.6 mm) as well as at three different tilt angles (0 deg., 15 deg., 30 deg. ), and the coregistration between CBCT and US images was done using the Variseed system based on four fiducial markers. Fiducial localization error (FLE), fiducial registration error (FRE), and target registration error (TRE) were calculated for all registered image sets. Results showed that FLE were typically less than 0.4 mm, FRE were less than 0.5 mm, and TRE were typically less than 1 mm within the range of operation for prostate implant (i.e., <6 cm to surface of US probe). An analysis of variance test showed no significant difference in TRE for the CBCT-US fusion among the three slice thicknesses (p=0.37). As a comparison, the experiment was repeated with a US-conventional CT scanner combination. No significant difference in TRE was noted between the US-conventional CT fusion and that for all three CBCT image slice thicknesses (p=0.21). CBCT imaging was also performed at three different C-arm tilt angles of 0 deg., 15 deg., and 30 deg. and reconstructed at a slice thickness of 0.8 mm. There is no significant

  14. SU-E-J-14: A Comparison of a 2.5MV Imaging Beam to KV and 6MV Imaging Beams

    International Nuclear Information System (INIS)

    Purpose: To compare image quality metrics and dose of TrueBeam V2.0’s 2.5MV imaging beam and kV and 6MV images. Methods: To evaluate the MV image quality, the Standard Imaging QC-3 and Varian Las Vegas (LV) phantoms were imaged using the ‘quality’ and ‘low dose’ modes and then processed using RIT113 V6.3. The LEEDS phantom was used to evaluate the kV image quality. The signal to noise ratio (SNR) was also evaluated in patient images using Matlab. In addition, dose per image was evaluated at a depth of 5cm using solid water for a 28.6 cm × 28.6 cm field size, which is representative of the largest jaw settings at an SID of 150cm. Results: The 2.5MV images had lower dose than the 6 MV images and a contrast to noise ratio (CNR) about 1.4 times higher, when evaluated using the QC-3. When energy was held constant but dose varied, the different modes, ‘low dose’ and ‘quality’, showed less than an 8% difference in CNR. The ‘quality’ modes demonstrated better spatial resolution than the ‘low dose’; however, even with the ‘low dose’ all line pairs were distinct except for the 0.75lp/mm on the 2.5MV. The LV phantom was used to measure low contrast detectability and showed similar results to the QC-3. Several patient images all confirmed that SNR were highest in kV images followed by 2.5MV and then 6MV. Qualitatively, for anatomical areas with large variability in thickness, like lateral head and necks, 2.5MV images show more anatomy, such as shoulder position, than kV images. Conclusions: The kV images clearly provide the best image metrics per unit dose. The 2.5MV beam showed excellent contrast at a lower dose than 6MV and may be superior to kV for difficult to image areas that include large changes in anatomical thickness. P Balter: Varian, Sun Nuclear, Philips, CPRIT

  15. Development of compact quantum beam generation system and the application

    International Nuclear Information System (INIS)

    After the approval of the project as the 'High-Tech Research Center Project' conducted by MEXT at Waseda University, the laser driven photo-cathode RF-Gun (RF-Gun) has been developed very extensively. The system was developed to obtain the stable and high quality (i.e. very low emittance) electron beam in conjunction with the system stabilization such as RF power source and laser system for the electron emission. The high quality electron beams have been applied for the development of novel beam diagnostic system. At the same time, the beams (electron and laser) are applied for the inverse Compton scattering experiment for the generation of soft-X-ray with quasi-monochromatic energy and short time structure, and for the pump probe experiment (the pico-second pulse radiolysis) as the very compact system. (author)

  16. High-resolution ophthalmic imaging system

    Science.gov (United States)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  17. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  18. Antenna systems with beam forming and beam steering capabilities for HF skywave radars

    OpenAIRE

    Uluışık, Çağatay

    2010-01-01

    Radiation characteristics of linearly phased, periodic, planar dipole arrays, which can be used as transmitting/ receiving antenna systems for HF skywave radars, are investigated. Rectangular, triangular and trapezoidal arrays are proposed in obtaining different beam shapes in the desired directions. Beam steering is achieved by adjusting the inter-element phase increments coherently. The effects of vertical array-tilt with a desired take-off angle (TOA) α are presented by a number of radiati...

  19. Antenna systems with beam forming and beam steering capabilities for HF skywave radars

    OpenAIRE

    ULUIŞIK, Çağatay

    2010-01-01

    Radiation characteristics of linearly phased, periodic, planar dipole arrays, which can be used as transmitting/receiving antenna systems for HF skywave radars, are investigated. Rectangular, triangular and trapezoidal arrays are proposed in obtaining different beam shapes in the desired directions. Beam steering is achieved by adjusting the inter-element phase increments coherently. The effects of vertical array-tilt with a desired take-off angle (TOA) a are presented by a number o...

  20. Comparison Analysis of MR Images Before and After External Beam Radiotherapy in Brachytherapy

    International Nuclear Information System (INIS)

    To analyze availability of MR images before and after external beam radiotherapy in brachytherapy, we will acquire MR images before and after external beam radiotherapy and compare the change of direction of uterine cavity and analyze the accuracy of applicator insertion. From January 2009 to December 2010, we compared MR images before and after external beam radiotherapy for uterine cervical cancer only with radical purpose treatment. MR images which was acquired after external beam radiotherapy has done with inserted status of CT/MR applicator. As a consequence, the tumor was markedly reduced after external beam radiotherapy. The change of anteflexion of uterus turned into retroflexion of the uterine cavity was 17.1%. The case of wrong insertion of tandem include direction or length was 14.3%. According to MR images taken after external beam radiotherapy, we recognized not only reduced the tumor volume but the marked change of exact direction or length of the uterine cavity. So the confirmation of accurate insertion based on MR images before brachytherapy could be very helpful for optimal brachytherapy treatment planning with reduced applicator insertion errors.

  1. Low-Dose Megavoltage Cone-Beam CT imaging using Thick, Segmented Scintillators

    OpenAIRE

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-01-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overc...

  2. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Thongvigitmanee, Saowapak S.; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  3. Shading correction algorithm for improvement of cone-beam CT images in radiotherapy

    OpenAIRE

    Marchant, T. E.; Moore, C. J.; Rowbottom, C G; Mackay, R. I.; Williams, P.C.

    2008-01-01

    Cone-beam CT (CBCT) images have recently become an established modality for treatment verification in radiotherapy. However, identification of soft-tissue structures and the calculation of dose distributions based on CBCT images is often obstructed by image artefacts and poor consistency of density calibration. A robust method for voxel-by-voxel enhancement of CBCT images using a priori knowledge from the planning CT scan has been developed and implemented. CBCT scans were enhanced using a lo...

  4. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  5. The Groningen image processing system

    International Nuclear Information System (INIS)

    This paper describes an interactive, integrated software and hardware computer system for the reduction and analysis of astronomical images. A short historical introduction is presented before some examples of the astonomical data currently handled by the system are shown. A description is given of the present hardware and software structure. The system is illustrated by describing its appearance to the user, to the applications programmer, and to the system manager. Some quantitative information on the size and cost of the system is given, and its good and bad features are discussed

  6. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  7. A compact THz imaging system

    Science.gov (United States)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  8. A MATLAB-based interface for the beam-transport system of an AMS facility

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Guzmán, J.M., E-mail: jm_gomez@us.es [Centro Nacional de Aceleradores (CNA), University of Seville (Spain); Dpto. de Física Atómica, Molecular y Nuclear, University of Seville (Spain); Gómez-Morilla, I. [Technische Universität Dresden, Fakultät Maschinenwesen, Professur für Magnetofluiddynamik (Germany); Enamorado-Báez, S.M.; Moreno-Suárez, A.I.; Pinto-Gómez, A.R. [Centro Nacional de Aceleradores (CNA), University of Seville (Spain)

    2013-12-01

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation.

  9. A MATLAB-based interface for the beam-transport system of an AMS facility

    International Nuclear Information System (INIS)

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation

  10. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    Science.gov (United States)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  11. Towards image quality, beam energy and effective dose optimisation in digital thoracic radiography

    International Nuclear Information System (INIS)

    This paper outlines how objective measurements of both image quality, in terms of signal-to-noise ratio, and effective dose may be used as tools to find the optimum kVp range for a digital chest radiography system. Measurements were made with Thoravision, an amorphous selenium-based digital chest X-ray system. The entrance surface dose and the effective dose to an anthropomorphic chest phantom were determined demonstrating how effective dose is related to beam quality. The image quality was measured using detective quantum efficiency, threshold contrast and a radiologist preference trial involving 100 patients. The results show that, despite the fact that the entrance surface dose decreases as the kVp increases, the effective dose, a better measure of the risk, reaches a minimum value between 90 and 110 kVp; however, the image quality decreases as the kVp increases. In this study the optimum kVp for chest radiography, using a selenium-based radiography system, is in the range 90-110 kVp. This is contrary to the 120- to 150-kVp range that is commonly used. Also, this study shows how objective measurements can be used to optimise radiographic technique without prolonged patient trials. (orig.)

  12. Acceleration of image reconstruction by generalized Landweber's iteration for X-ray cone-beam CT

    International Nuclear Information System (INIS)

    Low-dose data acquisition is required for the imaging of rapidly moving objects, and the number of projections is usually sparse. In this case, severe artifacts will be introduced by conventional Filtered-backprojection (FBP) method. However, Iterative reconstruction (IR) has been shown to achieve great image quality improvements with the advantage of better noise tolerance and handling of sparse data. The main repellant for using IR in clinical situations was the slow speed. In this paper, we introduce an acceleration procedure based on the generalized Landweber's iteration (GLI) method for X-ray CT image reconstruction from cone-beam projections. Compared to conventional iterative methods, GLI can accelerate the reconstruction of high frequency components and preserve the stability of the solution when the system matrix is illconditioned. Specifically, the relaxation parameter in GLI is selected to be a linear operator, which can shape the response to singular functions of the forward operator. We study various linear operators, and their behavior with respect to speed up the convergence. Basically, we choose the linear operator as polynomials. Compared to conventional iterative methods which updates the image by multiplying a constant to the difference of measured and calculated projections, GLI methods update the image by several reprojection-backprojection of the difference of measured and calculated projections. At last, we compare the performance of using various linear operators by numerical experiments. Computational complexity is also analyzed. While our primary interest is in X-ray CT image reconstruction, it can be applied to radar, acoustic and geophysical imaging, to name a few. (orig.)

  13. Fusion of intraoperative cone-beam CT and endoscopic video for image-guided procedures

    Science.gov (United States)

    Daly, M. J.; Chan, H.; Prisman, E.; Vescan, A.; Nithiananthan, S.; Qiu, J.; Weersink, R.; Irish, J. C.; Siewerdsen, J. H.

    2010-02-01

    Methods for accurate registration and fusion of intraoperative cone-beam CT (CBCT) with endoscopic video have been developed and integrated into a system for surgical guidance that accounts for intraoperative anatomical deformation and tissue excision. The system is based on a prototype mobile C-Arm for intraoperative CBCT that provides low-dose 3D image updates on demand with sub-mm spatial resolution and soft-tissue visibility, and also incorporates subsystems for real-time tracking and navigation, video endoscopy, deformable image registration of preoperative images and surgical plans, and 3D visualization software. The position and pose of the endoscope are geometrically registered to 3D CBCT images by way of real-time optical tracking (NDI Polaris) for rigid endoscopes (e.g., head and neck surgery), and electromagnetic tracking (NDI Aurora) for flexible endoscopes (e.g., bronchoscopes, colonoscopes). The intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) parameters of the endoscopic camera are calibrated from images of a planar calibration checkerboard (2.5×2.5 mm2 squares) obtained at different perspectives. Video-CBCT registration enables a variety of 3D visualization options (e.g., oblique CBCT slices at the endoscope tip, augmentation of video with CBCT images and planning data, virtual reality representations of CBCT [surface renderings]), which can reveal anatomical structures not directly visible in the endoscopic view - e.g., critical structures obscured by blood or behind the visible anatomical surface. Video-CBCT fusion is evaluated in pre-clinical sinus and skull base surgical experiments, and is currently being incorporated into an ongoing prospective clinical trial in CBCT-guided head and neck surgery.

  14. Prompt gamma imaging of proton pencil beams at clinical dose rate.

    Science.gov (United States)

    Perali, I; Celani, A; Bombelli, L; Fiorini, C; Camera, F; Clementel, E; Henrotin, S; Janssens, G; Prieels, D; Roellinghoff, F; Smeets, J; Stichelbaut, F; Vander Stappen, F

    2014-10-01

    In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 10(8), 1.4 × 10(8) and 3.4 × 10(8) protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients. PMID:25207724

  15. Prompt gamma imaging of proton pencil beams at clinical dose rate

    Science.gov (United States)

    Perali, I.; Celani, A.; Bombelli, L.; Fiorini, C.; Camera, F.; Clementel, E.; Henrotin, S.; Janssens, G.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Vander Stappen, F.

    2014-10-01

    In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.

  16. Prompt gamma imaging of proton pencil beams at clinical dose rate

    International Nuclear Information System (INIS)

    In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3–6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients. (paper)

  17. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  18. Point spread function modeling and image restoration for cone-beam CT

    Science.gov (United States)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  19. Internal beam abort system for the Tevatron upgrade

    International Nuclear Information System (INIS)

    In this paper, the authors examine the properties of an internal beam dump system for the Tevatron running in the p bar p collider mode. The authors assume that the beam energy can be as high as 1.8 TeV. The motivation behind this report comes from the fact that the present proton abort system is a single-turn fast-extraction system, which becomes progressively more difficult to perform as the beam energy is raised without lengthening the straight section. The authors examine three different designs. The first is a system comprised of two beam dumps at each end of the existing straight section, the second dump acting as an absorber for the secondary particles produced in the primary dump as well as functioning as the primary dump for the particles of the opposite sign

  20. The beam handling system of the Oslo Cyclotron

    International Nuclear Information System (INIS)

    The beam optic system of the Oslo Cyclotron is described. A computer program for the calculation of optimal settings of quadropoles is presented. The reliability of the computer program is confirmed by experimental data

  1. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  2. Phase-preserving beam expander for biomedical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Mercedes, E-mail: mercedes.m@usask.ca [University of Saskatchewan, 116 Science Place, Rm 163, Saskatoon, Saskatchewan (Canada); Samadi, Nazanin [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Bassey, Bassey [University of Saskatchewan, 116 Science Place, Rm 163, Saskatoon, Saskatchewan (Canada); Gomez, Ariel [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan (Canada); Chapman, Dean [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); University of Saskatchewan, 116 Science Place, Rm 163, Saskatoon, Saskatchewan (Canada)

    2015-04-15

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used.

  3. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl; Bilenberg, Brian; Vannahme, Christoph; Kristensen, Anders; Berg-Sørensen, Kirstine

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the...... microfluidic chip or with optical fibers mounted in the chip....

  4. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  self-calibration (p  self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  5. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada) and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2011-10-15

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific

  6. Super-resolution deep imaging with hollow Bessel beam STED microscopy

    CERN Document Server

    Yu, Wentao; Dong, Dashan; Yang, Xusan; Xiao, Yunfeng; Gong, Qihuang; Xi, Peng; Shi, Kebin

    2015-01-01

    Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method beating the diffraction barrier for improved lateral spatial resolution in cellular imaging, lithography, etc. Due to specimen-induced aberrations and scattering distortion, it has been a great challenge for STED to maintain consistent lateral resolution deeply inside the specimens. Here we report on a deep imaging STED microscopy by using Gaussian beam for excitation and hollow Bessel beam for depletion (GB-STED). The proposed scheme shows the improved imaging depth up to ~155{\\mu}m in solid agarose sample, ~115{\\mu}m in PDMS and ~100{\\mu}m in phantom of gray matter in brain tissue with consistent super resolution, while the standard STED microscopy shown a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB-STED, making it a promising tool for deep 3D imaging optical nanoscopy and laser fabrication.

  7. An advanced beam steering system for the SRS at Daresbury

    International Nuclear Information System (INIS)

    The Daresbury SRS is a 2 GeV electron storage ring dedicated to providing synchrotron radiation to approximately 32 stations on 10 beamlines. The storage ring beam steering systems are being replaced to allow automatic real time correction of the electron beam position. The stability problem and the proposed solutions are briefly summarized. Progress on development of the constituent systems is reviewed and some data from early performance trials is presented. (author) 7 refs.; 7 figs

  8. A beam guide system for laser-surgery

    International Nuclear Information System (INIS)

    A beam guide system for medical application is described. Using rotatable dielectric mirrors the transmission of the system is very high and the beam quality is not debased. A special end tube suitable for surgery in the nasal cavity is presented solving the problems of a clean optical end face. The instrument was applied clinically to surgery of the lower human turbinates using an argon ion laser with a power up to 4 W. (Author)

  9. Transient Beam Loading in the ALS Harmonic RF System

    International Nuclear Information System (INIS)

    We report on the commissioning of a higher harmonic radiofrequency system at the Advanced Light Source, designed to improve the beam lifetime. We have achieved an increase above a factor of two in our best results up to now. Transient beam loading of the harmonic cavities, due to the unequal fill patterns, creates the greatest limitations on lifetime improvement. We also describe several interesting effects on the operation of the longitudinal and transverse multibunch feedback systems

  10. BECOLA Beam Line Construction and Laser System

    Science.gov (United States)

    Pedicini, Eowyn; Minamisono, Kei; Barquest, Brad; Bollen, Georg; Klose, Andrew; Mantica, Paul; Morrissey, Dave; Ringle, Ryan; Schwarz, Stefan; Vinnikova, Sophia

    2010-11-01

    The BECOLA (BEam COoler and LAser spectroscopy) facility is being installed at NSCL for experiments on radioactive nuclides.ootnotetextK. Minamisono et al, Proc. Inst. Nucl. Theory 16, 180 (2009). Low energy ion beams will be cooled/bunched in an RFQ ion trap and then extracted to a max of 60 kV. The ion beam will be neutralized through a charge exchange cell (CEC), and remaining ions will be removed by a deflector and collected in a Faraday cup. Collinear laser spectroscopy will be used to measure the atomic hyperfine structure, and nuclear properties will be extracted. The assembly, vacuum testing, and optical alignment of the CEC have been completed and the ion deflector and Faraday cup were also assembled. Stabilization of the Ti:sapphire laser to be used for spectroscopy is achieved through a feedback loop using a precision wavelength meter that is calibrated by a stabilized He-Ne laser. Coupling the He-Ne laser into a single-mode optical fiber was optimized for stable operation of the feedback loop. Finally, a wall chart of nuclear moments was prepared to view trends in μ and Q for nuclear ground states for planning future measurements.

  11. Electron beam irradiation in polymeric systems

    International Nuclear Information System (INIS)

    The electron beam applications in the chemistry of polymers, such as the production of acrylamide polymers, which are of great interest in the treatment of waste industrial waters are given. These products have unique properties: the required dose is smaller by a factor of 10 to 50 as compared to the dose requirement for other polymeric materials and they are used in aqueous solutions in a concentration of one or two magnitude orders smaller than the conventional inorganic flocculants. The acrylamide polymers technologies was first developed at semi-industrial scale with IETI 10000 gamma rays source and then transferred to the ALIN-10 electron linear accelerator. The operation of the ALIN-10 built in the Accelerator Laboratory from the Institute of Atomic Physics is presented. An original feature of this accelerator, using an electron gun of the diode type is its capability to obtain programmed beam single shots and pulse trains. It is particularly useful for the automatic control of irradiation processing in order to provide the maximum efficiency of the electron beam application. The preliminary results obtained by ALIN-10 lead to the assumption that the low output power high energy linacs are economically attractive for the commercial production of acrylamide type polymers. (Author) 7 Figs. 2 Tabs., 10 Refs

  12. Beam monitor system for high-energy beam transportation at HIMAC

    CERN Document Server

    Torikoshi, M; Takada, E; Kanai, T; Yamada, S; Ogawa, H; Okumura, K; Narita, K; Ueda, K; Mizobata, M

    1999-01-01

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO sub 2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x10 sup 5 and 1x10 sup 6 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are use...

  13. A beam-synchronous gated peak-detector for the LHC beam observation system

    CERN Document Server

    Levens, T E; Wehrle, U

    2013-01-01

    Measurements of the bunch peak amplitude using the longitudinal wideband wall-current monitor are a vital tool used in the Large Hadron Collider (LHC) beam observation system. These peak-detected measurements can be used to diagnose bunch shape oscillations, for example coherent quadrupole oscillations, that occur at injection and during beam manipulations. Peak-detected Schottky diagnostics can also be used to obtain the synchrotron frequency distribution and other parameters from a bunched beam under stable conditions. For the LHC a beam-synchronous gated peak detector has been developed to allow individual bunches to be monitored without the influence of other bunches circulating in the machine. The requirement for the observation of both low intensity pilot bunches and high intensity bunches for physics requires a detector front-end with a high bandwidth and a large dynamic range while the usage for Schottky measurements requires low noise electronics. This paper will present the design of this detector s...

  14. Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination

    Science.gov (United States)

    Suzuki, Yoshio; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Nakazawa, Hiromoto; Ohzawa, Sumito; Aoyama, Tomoki; Nii, Hajime; Handa, Katsumi

    2013-10-01

    An optical system for illumination of object in x-ray imaging microscopy is developed. The optical system is a beam condenser consisting of a single-bounce conical-shape mono-capillary (x-ray guide tube: XGT) made of Pyrex glass. The XGT condenser was tested at the beam line 47XU of SPring-8 using a Fresnel zone plate as an objective lens. Comparing with the microscope without beam condenser, the flux density is improved by a factor of 12-20 in the x-ray energy range of 6-8 keV. Test patterns with a 50 nm-structure are clearly resolved at 8 keV with an exposure time less than 1 s.

  15. Imaging and dosimetric considerations for titanium prosthesis implanted within the irradiated region by high photon beams

    International Nuclear Information System (INIS)

    The aim of this research was to observe dose distributions in the vicinity of titanium prosthetic implants during radiotherapy procedures. Data were obtained using a locally fabricated tissue equivalent phantom CT images, and in blue water phantom with titanium prosthesis which was irradiated with 60Co gamma radiation and Elekta Platform photon beams. Images obtained were loaded into Prowess Panther and Oncentra treatment planning systems (TPSs) for dose simulations. Prowess TPS (1.25 MeV) estimated lesser errors whilst Oncentra (6 and 15 MV) dose simulations yielded large variations. Proximal ends of the metal recorded slight increase in doses as a rcsult of backscatter with dose increment below acceptable tolerance of ±3%. Doses measured decreases on the distal side of the prosthesis at a distance less than dmax from the plate on each beam energy. Beyond certain depth along the axis, depth doses increased slightly mainly due to increase in electron fluence by portions receiving unperturbed dose. An increase in the plate thickness showed a corresponding decrease on percentage depth dose. A reduction in the above trend was also noticed with an increase in beam energy primarily because scattered photons are more forwardly directed. Prowess TPS (convolution superposition algorithm) was found to be better at reducing dose variation than OMP (collapse cone algorithm) when correction for artifact. Manual calculations on blue phantom data agree with results from Prowess. Oncentra is not capable of simulating dose around titanium prosthesis as its range of densities, 0.00121 to 2.83, excludes titanium density (rED for titanium is 3.74). (au)

  16. Novel beam delivery system for microvia drilling using holographic and refractive optics

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest P.

    2003-07-01

    The research and development of the optical system described was due in part to the virtual stalemate of current microvia dirlling technology within the High Density Interconnect market. The desire by industry to acquire faster processes for drilling microvias led to our research in the utilization of hybrid optical systems, where standard refractive and computer generated diffractive optics could be meshed to create a system that would out perform the current technology in the marketplace. The outcome of this work is covered in the following paper and will, at the outset, briefly cover the targeted market segment for which the beam delivery system was developed, as well as its general capabilities. The paper will cover the basic architecture and technology behind the laser optical beam delivery system, as well as the unique components that make up the assembly. Each of the optical elements within the system will be briefly described, and the CGH elements will be briefly explained, including a description of the software used. The laser beam characteristics at several points along the beam delivery will be discussed, as well as the final image formed at the target plane where the microvia is drilled. Specific performance details will be shared with regards to component efficiency, i.e. diffraction efficiency losses, as well as total system performance throughout the beam line. The final section will cover materials processing, including the remarkable process rate increases and microvia hole quality achieved.

  17. A novel track imaging system as a range counter

    Science.gov (United States)

    Chen, Z.; Matsufuji, N.; Kanayama, S.; Ishida, A.; Kohno, T.; Koba, Y.; Sekiguchi, M.; Kitagawa, A.; Murakami, T.

    2016-05-01

    An image-intensified, camera-based track imaging system has been developed to measure the tracks of ions in a scintillator block. To study the performance of the detector unit in the system, two types of scintillators, a dosimetrically tissue-equivalent plastic scintillator EJ-240 and a CsI(Tl) scintillator, were separately irradiated with carbon ion (12C) beams of therapeutic energy from HIMAC at NIRS. The images of individual ion tracks in the scintillators were acquired by the newly developed track imaging system. The ranges reconstructed from the images are reported here. The range resolution of the measurements is 1.8 mm for 290 MeV/u carbon ions, which is considered a significant improvement on the energy resolution of the conventional ΔE/E method. The detector is compact and easy to handle, and it can fit inside treatment rooms for in-situ studies, as well as satisfy clinical quality assurance purposes.

  18. Assessment of flatness and symmetry of megavoltage x-ray beam with an electronic portal imaging device

    International Nuclear Information System (INIS)

    The input/output characteristics of the Wellhofer BIS 710 electronic portal imaging device (EPID) have been investigated to establish its efficacy for periodic quality assurance (QA) applications. Calibration curves have been determined for the energy fluence incident on the detector versus the pixel values. The effect of the charge coupled device (CCD) camera sampling time and beam parameters (such as beam field size, dose rate, photon energy) on the calibration have been investigated for a region of interest (ROI) around the central beam axis. The results demonstrate that the pixel output is a linear function of the incident exposure, as expected for a video-based electronic portal imaging system. The field size effects of the BIS 710 are similar to that of an ion chamber for smaller field sizes up to 10 x 10 cm2. However, for larger field sizes the pixel value increases more rapidly. Furthermore, the system is slightly sensitive to dose rate and is also energy dependent. The BIS 710 has been used in the current study to develop a QA procedure for measurements of flatness and symmetry of a linac x-ray beam. As a two-dimensional image of the radiation field is obtained from a single exposure of the BIS 710, a technique has been developed to calculate flatness and symmetry from a defined radiation area. The flatness and symmetry values obtained are different from those calculated conventionally from major axes only (inplane, crossplane). This demonstrates that the technique can pick up the 'cold' and 'hot' spots in the analysed area, providing thus more information about the radiation beam. When calibrated against the water tank measurements, the BIS 710 can be used as a secondary device to monitor the x-ray beam flatness and symmetry. Copyright (2002) Australasian College of Physical Scientists and Engineers in Medicine

  19. Laser beam riding guided system principle and design research

    Science.gov (United States)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  20. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  1. Beam Tracking in Switched-Beam Antenna System for V2V Communication

    Directory of Open Access Journals (Sweden)

    Settawit Poochaya

    2016-01-01

    Full Text Available This paper presents the proposed switched beam antenna system for V2V communication including optimum antenna half power beamwidth determination in urban road environments. SQP optimization method is selected for the computation of optimum antenna half power beamwidth. In addition, beam tracking algorithm is applied to guarantee the best beam selection with maximum RSSI. The results present the success of the proposed system with the increasing of V2V performance metrics. Also, V2V data dissemination via the proposed system introduces the enhancement of V2V link in terms of RSSI, PER, BER, Tsafe, and Rsafe. The results indicate the improvement of V2V link reliability. Consequently, the road safety is improved.

  2. [Advanced development of particle beam probe diagnostic system

    International Nuclear Information System (INIS)

    This progress report under DOE Grant DE-FG02-85ER3211 covers the period 15 December 1992 through 15 October 1993. The major accomplishments of this period are summarized below: The basic TEXT heavy ion beam probe including the primary beam line, the upper secondary beam line with the old 500 keV analyzer, and the lower secondary beam line with the new 2 MeV analyzer is operational and system shake-down is now beginning. Several subsystems of the complete system design are still under development, including secondary beam line sweeps, primary beam detectors, the digital control and data acquisition system. The lower analyzer entrance aperture and detector plates also have very limited capabilities to make it possible to more rapidly obtain satisfactory initial alignment and calibration conditions. We have performed a variety of high voltage tests that establish the basic efficacy of the 2 MeV analyzer design. We have upgraded the ion optics and added vacuum chambers in our vertical test stand facility to allow us to test the 2 MeV analyzers. We have also constructed a facility for testing ion source characteristics. We analyzed data on primary beam modulation taken during the last run period and confirmed the accuracy of our simulation code. Analysis of magnetic field measurements continued

  3. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  4. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  5. Image quality of an image-intensifier fluorographic system

    International Nuclear Information System (INIS)

    For an image-intensifier fluorographic system, all essential image-quality parameters (such as MTF, noise Wiener spectrum, sensitivity, and characteristic curve) were determined. The results are in good agreement with theoretical considerations and allow a specification of the influence of the system's components on image quality. Film noise especially, because of the small image format, is of much more importance than had been assumed. A formula for the adjustment of system sensitivity (optimum input dose) has also been derived. (author)

  6. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  7. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  8. Relevance of head motion in dental cone-beam CT scanner images depending on patient positioning

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the effect of head motion on the reconstruction image quality in relation to patient positioning in dental cone-beam computed tomography (CBCT) systems. This study should be intended as the first step to evaluate the effect of the head movements also in more stringent conditions. Head motion was monitored using an EasyTrack-500 system in three acquisition conditions: lying down, sitting and standing. Motion was simulated on a cylinder used to calculate the modulation transfer function in order to quantify the resolution loss associated with it. In none of the three acquisition layouts, head motion could be avoided. As expected head rotation angles are found to be smaller in the lying down configuration than in the sitting and standing ones. In the latter there is a probability of 30% of cases with high excursion rotation angles which would have a clearly perceptible lower image quality. Patient positioning during CBCT scanning can significantly influence occurrence of motion. This should be taken into account when very high image resolution is required in particular in patients that for age or clinical conditions may have difficulties in staying still. (orig.)

  9. Control system for the text diagnostic neutral beam source

    International Nuclear Information System (INIS)

    A diagnostic neutral beam source (DNB) has been designed, built, and installed on the Texas Experimental Tokamak (TEXT). The control system, presented in this paper, coordinates the functioning of all associated subsystems necessary for neutral beam operation. These include the modulator/regulator, the capacitor bank charging system, the arc and filament supplies, the biased snubber supply, the deflection magnet supply, the suppressor switch, and the Culham vacuum system. The control system architecture is a hierarchical, decentralized, hardwired logic system designed to meet criteria of reliability, modularity, and flexibility

  10. Automatic image registration performance for two different CBCT systems; variation with imaging dose

    Science.gov (United States)

    Barber, J.; Sykes, J. R.; Holloway, L.; Thwaites, D. I.

    2014-03-01

    The performance of an automatic image registration algorithm was compared on image sets collected with two commercial CBCT systems, and the relationship with imaging dose was explored. CBCT images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings. Each CBCT image was registered 100 times, with random initial offsets introduced. Image registration was performed using the grey value correlation ratio algorithm in the Elekta XVI software, to a mask of the prostate volume with 5 mm expansion. Residual registration errors were calculated after correcting for the initial introduced phantom set-up error. Registration performance with the OBI images was similar to that of XVI. There was a clear dependence on imaging dose for the XVI images with residual errors increasing below 4mGy. It was not possible to acquire images with doses lower than ~5mGy with the OBI system and no evidence of reduced performance was observed at this dose. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 9% of registrations except for the lowest dose XVI scan (31%). The uncertainty in automatic image registration with both OBI and XVI images was found to be adequate for clinical use within a normal range of acquisition settings.

  11. Automatic image registration performance for two different CBCT systems; variation with imaging dose

    International Nuclear Information System (INIS)

    The performance of an automatic image registration algorithm was compared on image sets collected with two commercial CBCT systems, and the relationship with imaging dose was explored. CBCT images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings. Each CBCT image was registered 100 times, with random initial offsets introduced. Image registration was performed using the grey value correlation ratio algorithm in the Elekta XVI software, to a mask of the prostate volume with 5 mm expansion. Residual registration errors were calculated after correcting for the initial introduced phantom set-up error. Registration performance with the OBI images was similar to that of XVI. There was a clear dependence on imaging dose for the XVI images with residual errors increasing below 4mGy. It was not possible to acquire images with doses lower than ∼5mGy with the OBI system and no evidence of reduced performance was observed at this dose. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 9% of registrations except for the lowest dose XVI scan (31%). The uncertainty in automatic image registration with both OBI and XVI images was found to be adequate for clinical use within a normal range of acquisition settings.

  12. Imaging systems for geotechnical boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Scott Thomson; S. Adam [CoalBed Concepts Pty Ltd. (Australia)

    2009-05-15

    The objective of this project was to develop a new system for evaluating geotechnical boreholes in underground mining. This approach was predicated on the demonstration of a commercial prototype imaging system (the Slim Borehole Scanner (SBS)) which is designed to be suitable for application in all standard geotechnical boreholes and is certified Intrinsically Safe (IS) in Europe. This project was designed to test this new imaging system in Australian conditions and critically compare the outcomes from the work with currently available technologies. A key aspect of the project was the assessment of the likely impact the imaging system has on current practices and recommendations for improved methods of geotechnical assessment in underground operations. A comprehensive field-testing program of the SBS was undertaken to evaluate its suitability for application in Australian conditions. Test work was completed at BHPB Illawarra Appin Colliery and Xstrata Coal Tahmoor Colliery. The Slim Borehole Scanner (SBS) was found to be a useful tool for enhancing the capability of Australian underground mine operators to assess roof conditions. The SBS is a significant advance on existing qualitative assessment methods such as the Borescope, and is complementary to existing direct measurement methods such as Tel-tales and Gel-extensometers. It is recommended that the SBS system undergo Australian intrinsic safety approval and be adopted as a routine part of the geotechnical engineer's arsenal in assessing roof control issues in Australian mines.

  13. A microwave tomography system using a tunable mirror for beam steering

    International Nuclear Information System (INIS)

    Microwave tomography is a fast-growing technique in the fields of NDE and medical industry. This paper presents a new microwave tomography system which reduces the complexities of conventional microwave imaging systems by utilizing a reconfigurable mirror, a tunable reflectarray antenna. In order to build a tunable reflectarray with beam steering capabilities, the unit cell characteristics should dynamically alter. Modelling and experimental results of a single unit cell are presented in this work

  14. A microwave tomography system using a tunable mirror for beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, A. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Non-Destructive Evaluation Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physic (United States); Tang, J. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Paladhi, P. Roy; Udpa, L.; Udpa, S. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Non-Destructive Evaluation Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2014-02-18

    Microwave tomography is a fast-growing technique in the fields of NDE and medical industry. This paper presents a new microwave tomography system which reduces the complexities of conventional microwave imaging systems by utilizing a reconfigurable mirror, a tunable reflectarray antenna. In order to build a tunable reflectarray with beam steering capabilities, the unit cell characteristics should dynamically alter. Modelling and experimental results of a single unit cell are presented in this work.

  15. Diagnostic Lithium Beam System for COMPASS Tokamak

    Czech Academy of Sciences Publication Activity Database

    Háček, P.; Weinzettl, Vladimír; Stöckel, Jan; Anda, G.; Veres, G.; Zoletnik, S.; Berta, M.

    Prague : MATFYZPRESS, 2011 - (Šafránková, J.; Pavlů, J.), s. 215-220 ISBN 978-80-7378-185-9. - (WDS. 2). [WDS 2011 - Annual Conference of Doctoral Students /20./. Prague (CZ), 31.05.2011-03.06.2011] R&D Projects: GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma diagnostics * tokamak, COMPASS * beam diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics http:// server .ipp.cas.cz/~vwei/work/wds2010_201_f2.pdf

  16. Testing of electro-optical imaging systems

    Science.gov (United States)

    Chrzanowski, Krzysztof; Barela, Jaroslaw; Firmanty, Krzysztof

    2004-08-01

    Humans cannot objectively judge electro-optical imaging systems looking on an image of typical scenery. Quality of the image can be bad for some people but good for others and therefore objective test methods and advanced equipment are needed to evaluate these imaging systems. Test methods and measuring systems that enable reliable testing and evaluation of modern thermal cameras, color and monochrome TV cameras, LLLTV cameras and image intensifier systems are presented in this paper.

  17. JET neutral beam injection system, construction and component tests

    International Nuclear Information System (INIS)

    The two neutral injection systems for JET are each determined by 40 mw beam power extracted from eight sources during 10 s pulses. Under the existing spatial restrictions, this has led to a complex beam-line system design. The applied manufacturing techniques and the approach to quality assurance are discussed. The beam sources have been operated at 80 kv, 60 a, 5 s in hydrogen. Plasma source development has increased the H+ yield to approximately 84%. Beamlet steering by aperture offset has experimentally been adjusted to the values required for the restricted tokamak entrance geometry. A beam source has also been operated at 160 kv, 37 a in deuterium. At the tokamak the 7 m high injector vacuum box has been installed incorporating a fast shutter and a cryopump. This LHE cooled pump with 40 m2 entrance area and 45% pumping efficiency has successfully been tested as well as the flexible cryoliquid transfer-lines. The bakeable valve between injector box and tokamak vacuum (1.1 m x 0.5 m gate cross-section) has been operated with leak rates <10-9 mbar1/s. The sub-system commissioning is completed by short-pulse operation of the beam sources with their final power supplies in situ at the tokamak and, in parallel to this, testing of the beam-line system in the neutral injection testbed

  18. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    Science.gov (United States)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  19. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...... modulation, the perturbation grows initially and then shows a periodic change of amplitude along the beam, while in the case of a density modulation only an instability causes growth. The findings are in agreement with experimental results obtained by SATO et al. (1977)....

  20. Molecular beam sampling system with very high beam-to-background ratio: The rotating skimmer concept

    International Nuclear Information System (INIS)

    A novel method of reducing the background pressure in a vacuum system used for sampling a molecular beam from a high pressure region is presented. A triple differential pumping stage is constructed with a chopper with rotating skimmer within the first pumping stage, which serves effectively as a valve separating periodically the vacuum system from the ambient environment. The mass spectrometry measurement of the species in the molecular beam show an excellent beam-to-background ratio of 14 and a detection limit below 1 ppm. The potential of this method for detection of low density reactive species in atmospheric pressure plasmas is demonstrated for the detection of oxygen atoms generated in an atmospheric pressure microplasma source.

  1. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    OpenAIRE

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned anima...

  2. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  3. Electron beam diagnostic system using computed tomography and an annular sensor

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  4. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  5. Beam commissioning of KEKB crab cavity RF system

    International Nuclear Information System (INIS)

    KEKB started the first crab crossing operation in February 2007 with two superconducting crab cavities. After four months operation dedicated for machine tuning, physics run with high-current beams resumed in October with the crab crossing. The crab cavities have been working stably for one and a half years. The crab cavity RF system, commissioning process and performance of the crab cavities with high-current beams are presented. (author)

  6. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    International Nuclear Information System (INIS)

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario

  7. Evaluating the capability of time-of-flight cameras for accurately imaging a cyclically loaded beam

    Science.gov (United States)

    Lahamy, Hervé; Lichti, Derek; El-Badry, Mamdouh; Qi, Xiaojuan; Detchev, Ivan; Steward, Jeremy; Moravvej, Mohammad

    2015-05-01

    Time-of-flight cameras are used for diverse applications ranging from human-machine interfaces and gaming to robotics and earth topography. This paper aims at evaluating the capability of the Mesa Imaging SR4000 and the Microsoft Kinect 2.0 time-of-flight cameras for accurately imaging the top surface of a concrete beam subjected to fatigue loading in laboratory conditions. Whereas previous work has demonstrated the success of such sensors for measuring the response at point locations, the aim here is to measure the entire beam surface in support of the overall objective of evaluating the effectiveness of concrete beam reinforcement with steel fibre reinforced polymer sheets. After applying corrections for lens distortions to the data and differencing images over time to remove systematic errors due to internal scattering, the periodic deflections experienced by the beam have been estimated for the entire top surface of the beam and at witness plates attached. The results have been assessed by comparison with measurements from highly-accurate laser displacement transducers. This study concludes that both the Microsoft Kinect 2.0 and the Mesa Imaging SR4000s are capable of sensing a moving surface with sub-millimeter accuracy once the image distortions have been modeled and removed.

  8. Patient doses and image quality in chest radiography: The influence of different beam qualities

    Directory of Open Access Journals (Sweden)

    Ciraj-Bjelac Olivera

    2007-01-01

    Full Text Available A simple method of assessing optimal X-ray beam quality in respect to patient exposure and image quality in chest screen-film radiography is presented here. Different beam qualities were generated by the use of various combinations of tube voltages (70 kV to 110 kV and Al and Cu filter thick nesses. Patient doses were assessed by kerma-area product measurements. Simultaneously, image quality was evaluated by a twofold method: a clinical study applying European quality criteria for the radiographic technique of image on image of 126 patients and a multifunctional home-made dosimetric phantom with embedded test objects. The quantification of image quality criteria yields a simpler method of optimizing image quality and patient dose relationships. Modifications of radiographic practice, based on image quality assessment and dose measurements, resulted in significant dose reductions and preservation of image quality. Through the use of harder beam quality, dose reduction of up to a value of factor 3 were observed, compared to the doses from previously used radiographic techniques, implying that sufficient image quality does not necessarily imply higher doses. As a result of the optimization process, an optimal radiographic technique was suggested.

  9. Physical image quality of computed radiography in mammography system

    International Nuclear Information System (INIS)

    Full-text: Mammography is a screening procedure that mostly used for early detection of breast cancer. In digital imaging system, Computed Radiography is a cost-effective technology that applied indirect conversion detector. The paper presents physical image quality parameter measurements namely modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of Computed Radiography in mammography system. MTF was calculated from two different orientations of slanted images of an edge test device and NNPS was estimated using flat-field image. Both images were acquired using a standard mammography beam quality. DQE was determined by applying the MTF and NNPS values into our developed software program. Both orientations have similar DQE characteristics. (author)

  10. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes

    International Nuclear Information System (INIS)

    We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ∼10 kcal mol−1. The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed

  11. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuanyuan; Kamasah, Alexander; Joalland, Baptiste; Suits, Arthur G., E-mail: asuits@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (United States)

    2015-05-14

    We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ∼10 kcal mol{sup −1}. The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed.

  12. CT number variations in micro CT imaging systems

    Science.gov (United States)

    Tu, Shu-Ju; Hsieh, Hui-Ling; Chao, Tsi-Chian

    2008-03-01

    CT numbers can be directly computed from the linear attenuation coefficients in the reconstructed CT images and are correlated to the electron densities of the chemical elements with specific atomic numbers. However, the computed CT numbers can be varied when different imaging parameters are used. Phantoms composed of clinically relevant and tissue-equivalent materials (lung, bone, muscle, and adipose) were scanned with a commercial circular-scanning micro CT imager. This imaging system is composed with a micro-focused x-ray tube and charged-coupled device (CCD) camera as the detector. The mean CT numbers and the corresponding standard deviations in terms of Hounsfield units were then computed from a pre-defined region of interest located within the reconstructed volumetric images. The variations of CT number were then identified from a series of imaging parameters. Those parameters include imaging acquisition modes (e.g., the metal filter used in the x-ray tube), reconstruction methods (e.g., Feldkamp and iterative algorithm), and post-image processing techniques (e.g., ring artifact, beam-hardening artifact, and smoothing processing). These variations of CT numbers are useful and important in tissue characterization, quantitative bone structure analysis, bone marrow density evaluation, and Monte Carlo dose calculations for the pilot small animal study when micro CT imaging systems are employed. Also these variations can be used as the quantification for the performance of the micro CT imaging systems.

  13. Cone beam CT for dental and maxillofacial imaging: dose matters

    OpenAIRE

    Pauwels, Ruben

    2015-01-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiogr...

  14. T2-weighted endorectal magnetic resonance imaging of prostate cancer after external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Antonio C. Westphalen

    2009-04-01

    Full Text Available PURPOSE: To retrospectively determine the accuracy of T2-weighted endorectal MR imaging in the detection of prostate cancer after external beam radiation therapy and to investigate the relationship between imaging accuracy and time since therapy. MATERIAL AND METHODS: Institutional review board approval was obtained and the study was HIPPA compliant. We identified 59 patients who underwent 1.5 Tesla endorectal MR imaging of the prostate between 1999 and 2006 after definitive external beam radiation therapy for biopsy-proven prostate cancer. Two readers recorded the presence or absence of tumor on T2-weighted images. Logistic regression and Fisher’s exact tests for 2x2 tables were used to determine the accuracy of imaging and investigate if accuracy differed between those imaged within 3 years of therapy (n = 25 and those imaged more than 3 years after therapy (n = 34. Transrectal biopsy was used as the standard of reference for the presence or absence of recurrent cancer. RESULTS: Thirty-four of 59 patients (58% had recurrent prostate cancer detected on biopsy. The overall accuracy of T2-weighted MR imaging in the detection cancer after external beam radiation therapy was 63% (37/59 for reader 1 and 71% for reader 2 (42/59. For both readers, logistic regression showed no difference in accuracy between those imaged within 3 years of therapy and those imaged more than 3 years after therapy (p = 0.86 for reader 1 and 0.44 for reader 2. CONCLUSION: T2-weighted endorectal MR imaging has low accuracy in the detection of prostate cancer after external beam radiation therapy, irrespective of the time since therapy.

  15. Imaging single electrons to enable the generation of ultrashort beams for single-shot femtosecond relativistic electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Li, R. K.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Bender, H. A.; Wilcox, N. S.; Wu, M. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2011-10-01

    The generation and control of relativistic electron beams well suited for ultrafast electron diffraction application has rapidly advanced, greatly benefiting from the overlap in techniques and expertise with the accelerator community. However, imaging the diffracted MeV electrons with high detection efficiency has remained an under-explored area. In this paper, we report on a quantitative study of the imaging of MeV electrons using a detection system consisting of a phosphor screen, a lens-coupling optics, and a charge-coupled device camera. It is shown that every MeV electron in the beam yields a signal well above the camera noise. With this detection efficiency, only {approx}10{sup 5} electrons per pulse are needed to obtain a high quality single-shot diffraction pattern from a crystalline sample. We measured that such a low charge beam can be as short as 30 fs rms. Further, we discuss the possibility of compressing these electron beams to sub-5 fs rms bunch length by velocity bunching using a short high gradient rf accelerating structure scheduled to be installed next year at the UCLA Pegasus Laboratory. This opens the possibility of single-shot determinations of structural changes in many ultrafast physical processes like nonequilibrium phonon dynamics or relaxation pathways in systems with strong electron-phonon coupling.

  16. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  17. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images

  18. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author)

  19. Combined terahertz imaging system for enhanced imaging quality

    Science.gov (United States)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yakovlev, Egor V.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2016-06-01

    An improved terahertz (THz) imaging system is proposed for enhancing image quality. Imaging scheme includes THz source and detection system operated in active mode as well as in passive one. In order to homogeneously illuminate the object plane the THz reshaper is proposed. The form and internal structure of the reshaper were studied by the numerical simulation. Using different test-objects we compare imaging quality in active and passive THz imaging modes. Imaging contrast and modulation transfer functions in active and passive imaging modes show drawbacks of them in high and low spatial frequencies, respectively. The experimental results confirm the benefit of combining both imaging modes into hybrid one. The proposed algorithm of making hybrid THz image is an effective approach of retrieving maximum information about the remote object.

  20. Properties of the imaging performance of an electron optical system for SEM

    International Nuclear Information System (INIS)

    The behavior of beam intensity distributions and optimum focus positions have been calculated as a function of beam convergence angle α at the image plane near the optimum focus condition for an optical system, including the effect of spherical aberration. In the diffraction-limited region, the beam intensity distribution can be modeled by a Gaussian and the image resolution is proportional to the FWHM of the beam intensity distribution. In this region, the FWHM of beam is proportional to 1/α and the optimum focus position measured from Gaussian image plane is proportional to α2, which is near the disk of least confusion due to spherical aberration. In the aberration-limited region, the FWHM of beam is independent of α and the beam tail radius increases with increase in α. In this region, the optimum focus is also independent of α; however it varies with the pixel size of the SEM image. The attainable resolution is obtained under the condition where the system makes a transition from diffraction-limited to aberration-limited, and at this point there is a minimum FWHM, a minimum tail of the beam and maximum axial intensity of the beam. The information passing capacity (IPC) of an optical system can be used to detect precisely the transition point.

  1. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  2. A beam position monitor system for electron cooler in HIRFL-CSR

    International Nuclear Information System (INIS)

    The efficient electron cooling requires that the ion beam and electron beam are parallel and overlapped. In order to measure the positions of ion beam and electron beam simultaneously, a beam position monitor system is developed for the HIRFL-CSR electron cooler device, which probe consists of four capacitive cylinder linear-cut poles. One can get the both beam positions from the picking up signals of four poles by using Fourier transform (FFT) method. The measurement results show that the beam position monitor system is accurate. This system is suitable for investigating the relation between electron cooling processing and the angle of ion beam and electron beam. (authors)

  3. Absolute nodal coordinate plane beam formulation for multibody systems dynamics

    International Nuclear Information System (INIS)

    A new plane beam dynamic formulation for constrained multibody system dynamics is developed. Flexible multibody system dynamics includes rigid body dynamics and superimposed vibratory motions. The complexity of mechanical system dynamics originates from rotational kinematics, but the natural coordinate formulation does not use rotational coordinates, so that simple dynamic formulation is possible. These methods use only translational coordinates and simple algebraic constraints. A new formulation for plane flexible multibody systems are developed utilizing the curvature of a beam and point masses. Using absolute nodal coordinates, a constant mass matrix is obtained and the elastic force becomes a nonlinear function of the nodal coordinates. In this formulation, no infinitesimal or finite rotation assumptions are used and no assumption on the magnitude of the element rotations is made. The distributed body mass and applied forces are lumped to the point masses. Closed loop mechanical systems consisting of elastic beams can be modeled without constraints since the loop closure constraints can be substituted as beam longitudinal elasticity. A curved beam is modeled automatically. Several numerical examples are presented to show the effectiveness of this method.

  4. Absolute nodal coordinate plane beam formulation for multibody systems dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Souh, Byungyil, E-mail: bysouh@dyu.ac.kr [Dongyang University (Korea, Republic of)

    2013-06-15

    A new plane beam dynamic formulation for constrained multibody system dynamics is developed. Flexible multibody system dynamics includes rigid body dynamics and superimposed vibratory motions. The complexity of mechanical system dynamics originates from rotational kinematics, but the natural coordinate formulation does not use rotational coordinates, so that simple dynamic formulation is possible. These methods use only translational coordinates and simple algebraic constraints. A new formulation for plane flexible multibody systems are developed utilizing the curvature of a beam and point masses. Using absolute nodal coordinates, a constant mass matrix is obtained and the elastic force becomes a nonlinear function of the nodal coordinates. In this formulation, no infinitesimal or finite rotation assumptions are used and no assumption on the magnitude of the element rotations is made. The distributed body mass and applied forces are lumped to the point masses. Closed loop mechanical systems consisting of elastic beams can be modeled without constraints since the loop closure constraints can be substituted as beam longitudinal elasticity. A curved beam is modeled automatically. Several numerical examples are presented to show the effectiveness of this method.

  5. Image and information management system

    Science.gov (United States)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2009-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places ''hot spots'', or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  6. Image and information management system

    Science.gov (United States)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2007-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places hot spots, or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  7. Proton therapy beam dosimetry with silicon CMOS image sensors

    International Nuclear Information System (INIS)

    A 16 mm2 CMOS Image Sensor with more than 100 000 pixels and with a standard video output was irradiated with 48, 95 and 180 MeV protons. Proton-induced nuclear reactions in silicon were detected as bright spots or tracks in the images. The angular and energy-dependent response of the detector were studied. The application to proton dosimetry is discussed

  8. High-speed screen beam-profile-monitor system for high-energy beam-transport line at the HIMAC

    International Nuclear Information System (INIS)

    A screen monitor system was developed for beam profile monitors at the new High-Energy Beam-Transport (HEBT) section out the HIMAC. This monitor consists of the very thin fluorescent screen and the high-speed CCD camera. In addition to perform high-speed and high-resolution, this monitor does not almost destroy the beam. (author)

  9. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  10. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    DEFF Research Database (Denmark)

    Petersen, Lars Bo; Olsen, Kim Rose; Christensen, Jennifer Heather; Wenzel, A

    2014-01-01

    Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios on the ...

  11. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    International Nuclear Information System (INIS)

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At PSI, our new Gantry is equipped with a Beams Eye View (BEV) imaging system which will be able to acquire 2D x-ray images in fluoroscopy mode during treatment delivery. However, besides precisely tracking motion from BEVs, it is also essential to obtain information on the 3D motion vector throughout the whole region of interest, and any sparsely acquired surrogate motion is generally not sufficient to describe the deformable behaviour of the whole volume in three dimensions. In this study, we propose a method by which 3D deformable motions can be estimated from surrogate motions obtained using this monoscopic imaging system. The method assumes that example motions over a number of breathing cycles can be acquired before treatment for each patient using 4DMRI. In this study, for each of 11 different subjects, 100 continuous breathing cycles have been extracted from extended 4DMRI studies in the liver and then subject specific motion models have been built using principle component analysis (PCA). To simulate treatment conditions, a different set of 30 continuous breathing cycles from the same subjects have then been used to generate a set of simulated 4DCT data sets (so-called 4DCT(MRI) data sets), from which time-resolved digitally reconstructed radiographs (DRRs) were calculated using the BEV geometry for three treatment fields respectively. From these DRRs, surrogate motions from fiducial markers or the diaphragm have been used as a predictor to estimate 3D motions in the liver region for each subject. The prediction results have been directly compared to the ‘ground truth’ motions extracted from the same 30 breath cycles of the originating 4DMRI data set. Averaged

  12. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    Science.gov (United States)

    Zhang, Ye; Knopf, A.; Tanner, C.; Boye, D.; Lomax, A. J.

    2013-12-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At PSI, our new Gantry is equipped with a Beams Eye View (BEV) imaging system which will be able to acquire 2D x-ray images in fluoroscopy mode during treatment delivery. However, besides precisely tracking motion from BEVs, it is also essential to obtain information on the 3D motion vector throughout the whole region of interest, and any sparsely acquired surrogate motion is generally not sufficient to describe the deformable behaviour of the whole volume in three dimensions. In this study, we propose a method by which 3D deformable motions can be estimated from surrogate motions obtained using this monoscopic imaging system. The method assumes that example motions over a number of breathing cycles can be acquired before treatment for each patient using 4DMRI. In this study, for each of 11 different subjects, 100 continuous breathing cycles have been extracted from extended 4DMRI studies in the liver and then subject specific motion models have been built using principle component analysis (PCA). To simulate treatment conditions, a different set of 30 continuous breathing cycles from the same subjects have then been used to generate a set of simulated 4DCT data sets (so-called 4DCT(MRI) data sets), from which time-resolved digitally reconstructed radiographs (DRRs) were calculated using the BEV geometry for three treatment fields respectively. From these DRRs, surrogate motions from fiducial markers or the diaphragm have been used as a predictor to estimate 3D motions in the liver region for each subject. The prediction results have been directly compared to the ‘ground truth’ motions extracted from the same 30 breath cycles of the originating 4DMRI data set. Averaged

  13. Electromagnetic instability in an electron beam-ion channel system

    Science.gov (United States)

    Su, D.; Tang, C. J.

    2009-05-01

    The transverse electromagnetic instability in the electron beam-ion channel system is investigated using kinetic theory. The equilibrium distribution function of a relativistic electron beam, which takes into account a strong ion channel effect, is obtained. The linearized Vlasov equation is solved and the dispersion relation of the system is derived by perturbing the equilibrium with a high frequency electromagnetic wave (EMW). Analysis of the dispersion relation shows that the coupling of the electron beam with the transverse high frequency EMW is achieved through the deflection of the beam electrons due to the synergistic effects of the transverse high frequency EMW and transverse betatron oscillation. The numerical calculation finds that a branch of slow wave instability (SWI) with a wide frequency band is excited. The attenuation index of the SWI increases and its frequency band broadens as the normalized beam radii increases. Besides, the SWI will be suppressed as the longitudinal velocity of the electron beam increases to a certain value; meanwhile, a bunch of fast wave instability (FWI) is excited, which is equal to the increase of the relativistic factor. Also both the SWI and the FWI reach maximum when the EMW frequency meets a resonance condition.

  14. Electromagnetic instability in an electron beam-ion channel system

    International Nuclear Information System (INIS)

    The transverse electromagnetic instability in the electron beam-ion channel system is investigated using kinetic theory. The equilibrium distribution function of a relativistic electron beam, which takes into account a strong ion channel effect, is obtained. The linearized Vlasov equation is solved and the dispersion relation of the system is derived by perturbing the equilibrium with a high frequency electromagnetic wave (EMW). Analysis of the dispersion relation shows that the coupling of the electron beam with the transverse high frequency EMW is achieved through the deflection of the beam electrons due to the synergistic effects of the transverse high frequency EMW and transverse betatron oscillation. The numerical calculation finds that a branch of slow wave instability (SWI) with a wide frequency band is excited. The attenuation index of the SWI increases and its frequency band broadens as the normalized beam radii increases. Besides, the SWI will be suppressed as the longitudinal velocity of the electron beam increases to a certain value; meanwhile, a bunch of fast wave instability (FWI) is excited, which is equal to the increase of the relativistic factor. Also both the SWI and the FWI reach maximum when the EMW frequency meets a resonance condition.

  15. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  16. Instrumentation architecture for ITER diagnostic neutral beam power supply system

    International Nuclear Information System (INIS)

    A Neutral Beam (NB) Injection system is used for heating or diagnostics of the plasma in a Tokamak. The Diagnostics Neutral Beam (DNB) system for ITER (International Thermonuclear Experimental Reactor) based on acceleration of negative ions; injects a neutral (H0) beam at 100 KeV with specified modulation into the plasma for charge exchange recombination spectroscopy. DNB Power Supply (DNBPS) system consists of various high voltage power supplies, high current power supplies and RF Generators. The system operates in a given operating sequence; very high electromagnetic transients are intrinsically generated during frequent short circuit at the accelerator grid (breakdowns) and sudden loss of load (Beam off). Instrumentation is to be provided to operate the DNBPS system remotely with required control and protection in synchronisation with ITER operation as directed by CODAC (COntrol Data Access and Communication); the central control system for ITER. Instrumentation functionality includes 1. Operation and control of DNBPS subsystems and associated auxiliaries 2. Protection of DNB components and power supplies using interlock system, 3. To ensure safe operation of high voltage hazardous systems 4. Acquisition of injector performance parameters and 5. To facilitate test and maintenance of individual subsystem. This paper discusses about proposed DNBPS instrumentation architecture. The design generally follows the protocols from the ITER- Plant Control Design Handbook (PCDH). (author)

  17. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging

    Science.gov (United States)

    Pan, X.; Veetil, S. P.; Liu, C.; Tao, H.; Jiang, Y.; Lin, Q.; Li, X.; Zhu, J.

    2016-05-01

    A coherent-modulation-imaging-based (CMI) algorithm has been employed for on-shot laser beam diagnostics in high-power laser facilities, where high-intensity short-pulsed lasers from terawatt to petawatt are designed to realize inertial confinement fusion (ICF). A single-shot intensity measurement is sufficient for wave-front reconstruction, both for the near-field and far-field at the same time. The iterative reconstruction process is computationally very efficient and was completed in dozens of seconds by the additional use of a GPU device to speed it up. The compact measurement unit—including a CCD and a piece of pre-characterized phase plate—makes it convenient for focal-spot intensity prediction in the target chamber. It can be placed almost anywhere in high-power laser facilities to achieve near-field wave-front diagnostics. The feasibility of the method has been demonstrated by conducting a series of experiments with diagnostic beams and seed pulses with deactivated amplifiers in our high-power laser system.

  18. Advanced Imaging Algorithms for Radiation Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  19. Space-Ready Advanced Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  20. Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers

    Science.gov (United States)

    Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley

    2012-01-01

    A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.