WorldWideScience

Sample records for beam holes

  1. Improve beam quality of laser proton acceleration with funnel-shaped-hole target

    Science.gov (United States)

    Yang, Peng; Fan, Da Peng; Li, Yu Xiao

    2016-03-01

    Improve beam quality of laser proton acceleration using a funnel-shaped-hole target is demonstrated through particle simulations. When an intense short pulse laser illuminates a thin foil target with a hole at the rear surface, the proton beam divergence is suppressed compared with that obtained in a traditional flat target. In this paper, a funnel-shaped-hole target is proposed to improve the proton beam quality. Using two-dimensional particle-in-cell (PIC) simulations, three different shapes of target (funnel-shaped-hole target, cylinder-shaped-hole target and flat target) are simulated and compared. The funnel-shaped hole in the rear surface of the target helps to focus the electron cloud significantly and improve the maximum proton energy and suppress the proton beam divergence. Different thicknesses of the new target are also simulated, and the effects of thickness on the divergence angle and proton spectra are investigated. The optimal size of the new target is obtained and the quality of the proton beam is improved significantly. The funnel-shaped-hole target serves as a new method to improve the proton beam quality in laser-plasma interactions.

  2. Analysis of the topological charge of vortex beams using a hole wheel

    Science.gov (United States)

    Emile, Olivier; Emile, Janine; Viaris de Lesegno, Bruno; Pruvost, Laurence; Brousseau, Christian

    2015-08-01

    The measurement of the topological charge of a vortex beam is demonstrated using the diffraction pattern produced by hole wheel. The resulting mandala-like interference pattern depends on the number of holes relatively to the topological charge. The interference at the centre of the pattern —bright or dark—enables us to determine the topological charge in a procedure when hole wheels with different number of holes are applied. This method is direct and wavelength independent. It does not require any image analysis and could find applications in classical telecommunications or quantum optics using twisted light.

  3. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoerner, K., E-mail: karsten.schoerner.ext@siemens.co [Corporate Technology, Siemens AG, 81739 Muenchen (Germany); Physik-Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Goldammer, M.; Stephan, J. [Corporate Technology, Siemens AG, 81739 Muenchen (Germany)

    2011-02-01

    Research highlights: {yields} We propose a scatter correction method employing a beam-hole array. {yields} Beam-hole and beam-stop array techniques are compared in respect of geometric and scattering properties. {yields} The beam-hole array method reduces overall scattering compared to a beam-stop array. {yields} Application of the beam-hole array method is successfully demonstrated for a CT of ceramic specimen. -- Abstract: In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  4. Exploring the parent population of beamed NLS1s: from the black hole to the jet

    CERN Document Server

    Berton, M; Ciroi, S; Caccianiga, A; Cracco, V; La Mura, G; Di Mille, F; Lister, M L; Mathur, S; Peterson, B M; Richards, J L; Congiu, E; Frezzato, M; Rafanelli, P

    2015-01-01

    The aim of this work is to understand the nature of the parent population of beamed narrow-line Seyfert 1 galaxies (NLS1s), by studying the physical properties of three parent candidates samples: steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. In particular, we focused on the black hole mass and Eddington ratio distribution and on the interactions between the jet and the narrow-line region.

  5. Focusing characteristics of an accelerating structure with non-circular beam holes

    International Nuclear Information System (INIS)

    High energy linacs of the next generation are required to keep stably high bunch populations and very small beam spots at colliding points, in order to realize high luminosity at TeV energy region. CERN proposed to apply the rf focusing technology which makes a strong focusing force according to the rf phase within a bunch, and rf focusing power is proportional to both the accelerating gradient and the operating frequency. Some computed results of the focusing property of 3 GHz accelerating structures are presented which has non-circular beam holes. The construction of this 3 GHz structure, because an rf technology for 3 GHz is well-established, will be useful in order to know, at an early stage of the development, whether the idea will be successful or not. The 3D code MAFIA was used to investigate the deflecting force caused by the asymmetry of the beam aperture. (R.P.) 5 refs., 14 figs., 3 tabs

  6. Observability of pulsar beam bending by the Sgr~A* black hole

    CERN Document Server

    Stovall, Kevin; Price, Richard H; Jenet, Fredrick A

    2011-01-01

    According to some models, there may be a significant population of radio pulsars in the Galactic center. In principle, a beam from one of these pulsars could pass close to the supermassive black hole (SMBH) at the center, be deflected, and be detected by Earth telescopes. Such a configuration would be an unprecedented probe of the properties of spacetime in the moderate- to strong-field regime of the SMBH. We present here background on the problem, and approximations for the probability of detection of such beams. We conclude that detection is marginally probable with current telescopes, but that telescopes that will be operating in the near future, with an appropriate multiyear observational program, will have a good chance of detecting a beam deflected by the SMBH.

  7. The Fundamental Plane of Black Hole Activity Represented in Terms of Dimensionless Beam Power and Bolometric Luminosity

    OpenAIRE

    Daly, Ruth A.; Stout, Douglas A.; Mysliwiec, Jeremy N.

    2016-01-01

    The fundamental plane of black hole activity indicates a relationship between compact radio emission, X-ray luminosity, and black hole mass of black hole systems. The compact radio source is likely a tracer of jet power and the X-ray luminosity is likely a tracer of the bolometric luminosity of an accretion disk. To study the relationship between beam power, $L_j$, accretion disk bolometric luminosity, $L_{bol}$, and black hole mass or Eddington luminosity, $L_{EDD}$, for sources with various...

  8. Characterisation of the Energy of Gaussian Beams on Lorentzian Manifolds - with Applications to Black Hole Spacetimes

    CERN Document Server

    Sbierski, Jan

    2013-01-01

    It is known that using the Gaussian beam approximation one can show that there exist solutions of the wave equation on a general globally hyperbolic Lorentzian manifold whose energy is localised along a given null geodesic for a finite, but arbitrarily long time. In this paper, we show that the energy of such a localised solution is determined by the energy of the underlying null geodesic. This result opens the door to various applications of Gaussian beams on Lorentzian manifolds that do not admit a globally timelike Killing vector field. In particular we show that trapping in the exterior of Kerr or at the horizon of an extremal Reissner-Nordstr\\"om black hole necessarily leads to a `loss of derivative' in a local energy decay statement. We also demonstrate the obstruction formed by the red-shift effect at the event horizon of a Schwarzschild black hole to scattering constructions from the future (where the red-shift turns into a blue-shift): we construct solutions to the backwards problem whose energies gr...

  9. STRESS DISTRIBUTIONS AND STRESS CONCENTRATION FACTORS IN A SIMPLE BEAM WITH A CIRCULAR HOLE SUBJECTED TO CONSTANT BENDING MOMENT

    Directory of Open Access Journals (Sweden)

    Seçil ERİM

    1998-03-01

    Full Text Available In this study, a beam subjected to pure bending with a circular hole on its transverse axis, is analyzed by the Finite Element Method. The hole is shifted to various locations along the transverse axis and two different materials, namely isotropic (steel and orthotropic (graphite-epoxy, are used as beam material. Stress distribution and stress concentration factors around the hole are determined for each case. In order to establish the effect of fiber reinforcing angle on the stress distribution, the examination is repeated at various reinforcing angles between 0° and 90° for graphite-epoxy. Denoting the distance between the longitudinal axis and the center of the hole as b, the value of the critical hole diameter which leads to the maximum theoretical bending moment is determined by using the Finite Element Method. Furthermore, the critical distance b which will create the maximum theoretical bending moment for a constant hole diameter of 10 mm, is calculated for steel and each reinforcing angle of the composite beam.

  10. The Fundamental Plane of Black Hole Activity Represented in Terms of Dimensionless Beam Power and Bolometric Luminosity

    CERN Document Server

    Daly, Ruth A; Mysliwiec, Jeremy N

    2016-01-01

    The fundamental plane of black hole activity indicates a relationship between compact radio emission, X-ray luminosity, and black hole mass of black hole systems. The compact radio source is likely a tracer of jet power and the X-ray luminosity is likely a tracer of the bolometric luminosity of an accretion disk. To study the relationship between beam power, $L_j$, accretion disk bolometric luminosity, $L_{bol}$, and black hole mass or Eddington luminosity, $L_{EDD}$, for sources with various tracers of beam power and disk luminosity, it is shown that fundamental plane parameters allow the plane to be recast in the form $\\rm{log} (L_j/L_{EDD}) = A ~\\rm{log}(L_{bol}/L_{EDD}) +B$, where $A$ can be expressed in terms of best fit fundamental plane parameters. Consistent values of $A$ are obtained for nine samples of sources. Samples of LINERS, AGN, and GBH that lie on the fundamental plane are converted to dimensionless luminosities and studied, and a sample of powerful radio sources is included. The different ca...

  11. Influence of laser beam's image-plane position on geometry of through-holes in percussion-drilled glass using excimer laser

    OpenAIRE

    Petkovšek, Rok; Babnik, Aleš; Možina, Janez

    2015-01-01

    We study the influence of a laser beam's image-plane position relative to the processed surface for the deep-hole, laser-microdrilling of soda-lime glass with an excimer 308-nm laser and mask-projection technique. It is demonstrated that the image-plane position has a significant influence on the holes tapering and final depth. Holes with exit diameters up to 10 times smaller than the mask-image diameter are produced in the case of perforation during the appropriate process phase determined b...

  12. Fast‐writing E‐beam for defining large arrays of nano‐holes

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik; Christiansen, Alexander Bruun;

    2013-01-01

    Efficient nanoscale patterning of large areas is required for sub-wavelength optics. For example, 200 nm periodic structures are often too small to be made with standard UV- and DUV-equipment. Still, the final product must be made at an economic cost. Here we use a fast-writing strategy described...... in [1], where electron beam lithography (EBL) with a focused Gaussian beam is used to define shapes directly. The serial technique is optimized for speed and pattern fidelity to a maximum writing speed of around 30 min/cm2 for 200 nm periods in 2D lattices. The overall costs in terms of machine time...

  13. Single-spot e-beam lithography for defining large arrays of nano-holes

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Greibe, Tine; Mortensen, N. Asger;

    2014-01-01

    Efficient nanoscale patterning of large areas is required for sub-wavelength optics. Here we use the single-spot exposure strategy, where electron beam lithography (EBL) with a focused Gaussian beam is used to define shapes directly. The serial technique is optimized on the JEOL JBX-9500FS 100 ke......V prototype EBL system for speed and pattern fidelity to a minimum writing time of around 30 min/cm2 for 200 nm periods in 2D lattices. The machine time and feasibility of the method are assessed in terms of the trade-off between high current and large writing field. © 2014 Elsevier B.V. All rights reserved....

  14. Proton beams with controlled divergence and concentrated energy in TNSA regime by USUI laser pulse interaction with a tailored hole-target

    CERN Document Server

    Wang, Huan; He, X T

    2015-01-01

    An improved acceleration scheme to produce protons with controlled divergence and concentrated energy density is studied using ultrashort ultraintense (USUI) laser pulse interaction with a tailored hole-target in target normal sheath acceleration (TNSA) regime. Two-dimension-in-space and three-dimension-in-velocity (2D3V) particle-in-cell (PIC) simulations show that the tailored hole-target helps to reshape the sheath electric field and generate a transverse quasistatic electric field of $TV/m$ along the inner wall of the hole. The transverse electric field suppresses the transverse expansion of the proton beam effectively, as it tends to force the produced protons to focus inwards to the central axis, resulting in controlled divergence and concentrated energy density compared with that of a single plain target. The dependence of proton beam divergence and energy feature on depth of the hole is investigated in detail. A rough estimation of the hole depth ranges depending on $a_{0}$ of the incident laser is al...

  15. Tensile, Compression, Open-Hole Compression and Double Cantilever Beam Fracture Toughness Testing of Multiple NASA Langley Research Center Composite Materials

    Science.gov (United States)

    Adams, Donald F.

    1999-01-01

    The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.

  16. Deep hole traps in Be-doped Al0.2Ga0.8As layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Deep hole traps in Be doped p-type Al0.2Ga0.8As grown by molecular beam epitaxy have been studied by the deep-level transient-spectroscopy method applied to samples with a Schottky diode configuration. Six hole traps, labeled as H1-H6, were found. Activation energies and capture cross sections have been determined for all the traps. Hole emission from the traps H1 and H2 was electric field dependent obeying the Poole-Frenkel effect relation. Their thermal activation energies when extrapolated to zero electric field were ET1,0=0.31 and ET2,0=0.36. For the traps H3-H6 the activation energies for emission were equal to: ET3=0.30 eV, ET4=0.46 eV, ET5=0.55 eV and ET6=0.59 eV. Comparison with the data for LPE material indicates that the levels H5 and H6 can be Cu and Fe related, respectively

  17. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Science.gov (United States)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance-voltage (C-V) measurement. In addition, the temperature dependence of the junction capacitance (C-T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C-T results explains the measured carrier concentration at room temperature using C-V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C-T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  18. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  19. DETERMINATION OF STEEL BAR PERFORATING HOLE ON RIGID REINFORCED CONCRETE BEAM AND COLUMN%劲性钢筋混凝土梁柱穿筋孔的确定

    Institute of Scientific and Technical Information of China (English)

    李小勇; 张辉; 王少松; 郭富强; 吴显辉

    2012-01-01

    Mutual obstruction of steel bar, hooked steel bar anchorage and perforation on steel skeleton are seldom considered during design of steel bar for rigid reinforced concrete. An engineering project is taken for example to make suggestions for determination of diameter of steel bar perforating hole, position of steel column hooped reinforcement hole, position of beam reinforcement hole of steel column, position of hooped reinforcement hole and draw hook hole of steel beam and position of longitudinal column reinforcement hole of steel beam.%在劲性钢筋混凝土配筋设计时较少考虑交叉梁的钢筋冲突、钢筋弯钩锚固及钢骨开孔.以具体工程为例,对穿筋孔直径的确定,钢柱箍筋孔位置确定,钢柱的梁筋孔位置确定,钢梁箍筋孔、拉钩孔位置确定,钢梁的柱纵筋孔位置确定提出了建议.

  20. Study on mechanical properties of reinforced concrete beams with double holes on shear bending region%剪弯段开双孔钢筋混凝土梁受力性能的试验研究

    Institute of Scientific and Technical Information of China (English)

    李志奇; 袁广林; 邱辉

    2015-01-01

    It had focused on the mechanical properties of beams double - holes on shear - bending region under the action of concen-trated load,considering the number of holes,distance and position factors,analyzing the mechanical properties of beams double - holes on shear - bending region under the action of concentrated load.The results show that compared with RC beam with no opening,with the different number of holes,distance and position,the bearing capacity of the beams with holes and no reinforced have different de-grees of decline.When the position of the holes near the support,the beam hole,the holes spacing of less than one times the diameter of the beam and the holes spacing of more than one times the diameter of the beam bearing capacity decreased 12.7%,23.3%,16.8%.The bottom steel of beams does not yield and performance of shear compression failure state,when the position of the hole near the pure bending section,the holes spacing of less than one times the diameter of the beam bearing capacity decreased 6.6%,performance of Bending failure state.Compared with RC beam with no opening,the bearing capacity of the beams double - holes with steel reinforce-ment decreased 3.1%,the reinforcement effect is obvious,performance of bending failure state.%基于剪弯段开双孔钢筋混凝土梁受力的特点,考虑了孔洞数量、间距和位置的因素,对剪弯段开双孔梁在集中荷载作用下的受力性能进行了试验研究。研究结果表明,与未开孔钢筋混凝土梁相比,未加固开孔梁的承载力随着孔洞数量、间距和位置的变化有不同程度的降低。当孔洞位置靠近支座时,单孔梁、孔间距小于1倍孔径的双孔梁和孔间距大于1倍孔径的双孔梁的承载力分别降低了12.7%、23.3%、16.8%,破坏时梁底部钢筋均未发生屈服,呈剪压破坏状态。当孔洞位置靠近纯弯段时,孔间距小于1倍孔径的双孔梁承载力降低了6.6%,破坏时呈

  1. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  2. Derivation of the surface free energy of ZnO and GaN using in situ electron beam hole drilling.

    Science.gov (United States)

    Ghatak, Jay; Huang, Jun-Han; Liu, Chuan-Pu

    2016-01-01

    Surface free energy, as an intrinsic property, is essential in determining the morphology of materials, but it is extremely difficult to determine experimentally. We report on the derivation of the SE of different facets of ZnO and GaN experimentally from the holes developed using electron beam drilling with transmission electron microscopy. Inverse Wullf's construction is employed to obtain polar maps of the SE of different facets to study different nanomaterials (ZnO and GaN) in different morphologies (nanorod, nanobelt and thin film) to prove its versatility and capability. The results show that the SE of ZnO{10-13} is derived to be 0.99 J m(-2), and the SE of ZnO{10-10} is found to be less than {0002} and {11-20}. A GaN thin film also exhibits a similar trend in the SE of different facets as ZnO and the SE of GaN{10-13} is determined to be 1.36 J m(-2).

  3. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  4. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  5. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  6. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  7. 用PDCA循环减少电梯直梁孔位错的应用%The Application of PDCA Circulation Decreasing the Deviation of Hole Position in Straight Beam in Elevator

    Institute of Scientific and Technical Information of China (English)

    吕舒波; 周娟

    2012-01-01

    With the developing of market economy,competition between enterprises is becoming more and more fierce.Whether having a good product quality is a base of enterprises to adapt the market environment and to develop.Thus developing product quality is an essential method for enterprises to compete.This assay accords to A company as a reference.In order to improve the company's problem of the deviation of hole position in straight beam in elevator,we use PDCA circulation and CauseEffect/Fishbone Diagram to find out the cause of the problem and quality improvement's direction and method.%随着市场经济的不断增长,企业之间的竞争也日益激烈,能否拥有良好的产品质量是企业适应市场环境和发展的基础,所以提高产品质量的能力是企业竞争的必备手段。该文以A公司为研究对象,为了改进该公司的电梯直梁孔位的偏差问题,运用PDCA循环法及因果图,找出直梁孔位偏差的原因以及质量改进的方向和方法。

  8. Illumination of 3 and 4 hole spherical laser driven hohlraums

    International Nuclear Information System (INIS)

    We have considered what laser beam orientations entering static spherical hohlraums through three or four holes are needed to uniformly distribute the incident laser energy on the hohlraum wall. Each incident beam is characterized by its angle of incidence, i, with respect to the normal to the laser entrance hole. In the set of beams needed to cover the hohlraum interior, let imin be the minimum angle of incidence of beams in this set, i.e. the beam which most closely approaches the center. Let imax be the beam which passes most obliquely through the entrance hole. To leave the maximum unexposed central volume we desire the largest imin. To minimize the entrance hole diameter imax should be minimized. For a hohlraum with three holes located 120 degree apart in a plane through the hohlraum center, the wall can be covered uniformly by a set of beams with imin = 30 degree and imax = 60 degree. For a hohlraum with four holes located at the corners of a tetrahedron there exist two sets, one with imin = 27.3 degree and imax = 54.6 degree, and another with imin = 35.4 degree and imax = 62.6 degree

  9. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  10. Electromagnetic Excitation of Rotating Black Holes and Relativistic Jets

    OpenAIRE

    Burinskii, A.; E. Elizalde; Hildebrandt, S. R.; Magli, G.

    2006-01-01

    We show that electromagnetic excitations of rotating black holes can lead to the appearance of narrow singular beams which break up the black hole horizon forming a tube-like region which connects the interior and exterior. It is argued that this effect may be at the origin of jet formation.

  11. Noncommutative black holes

    International Nuclear Information System (INIS)

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole

  12. Deburring small intersecting holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-08-01

    Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.

  13. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  14. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  15. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  16. Utilization of the irradiation holes in the core at HANARO

    International Nuclear Information System (INIS)

    HANARO is a multipurpose research reactor. The three hexagonal and four circular holes are reserved for the irradiation tests in the core. Twenty holes including two NTD(Neutron Transmutation Doping) holes, a LH(Large Hole) and NAA holes are located in the reflector tank. These holes have been used for radioisotope production, material and fuel irradiation tests, beam application research and neutron activation analysis. In the initial stage of normal operation, the using time of irradiation holes located in the core was less than 40% of the reactor operation day. To raise utilization of irradiation holes, the equipments and facilities have been developed such as various capsules. Another area for increasing the utilization of HANARO was the fuel irradiation tests to develop the new fuels. Various fuel irradiation tests have been performed. Recently, the usage time of the irradiation holes in the core was more than 90% of the reactor operation day. If the FTL starts an irradiation service, the irradiation holes in the core will be fully used. In this paper describes the status of utilization of irradiation holes in the core. (author)

  17. Sound Hole Sound

    CERN Document Server

    Politzer, David

    2015-01-01

    The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alternate way to understand the most important of those effects. The measurements also confirm and illuminate aspects of Helmholtz's "bottle" resonator model as applied to musical instrument sound boxes and sound holes.

  18. Stuffed Black Holes

    CERN Document Server

    Arbona, A; Carot, J; Mas, L; Massó, J; Stela, J

    1998-01-01

    Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case. The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics. The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The resulting matched solutions cover then the whole initial (Cauchy) hypersurface, without any singularity, and can be useful for numerical applications. The simpler cases of one black hole (Schwarzschild data) or two identical black holes (Misner data) are explicitly solved. A procedure for extending this construction to the multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions obtained by the conformal imaging method. The numerical evolution of one such 'stuffed' black hole is compared with that of a pure vacuum or 'plain' black hole in the...

  19. Hole history, rotary hole DC-3

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation.

  20. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  1. Twisting of light around rotating black holes

    CERN Document Server

    Tamburini, Fabrizio; Molina-Terriza, Gabriel; Anzolin, Gabriele; 10.1038/nphys1907

    2011-01-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted nearby them. We have found that this leads to a new relativistic effect that imposes orbital angular momentum onto such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. Since non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  2. Twisting of light around rotating black holes

    Science.gov (United States)

    Tamburini, Fabrizio; Thidé, Bo; Molina-Terriza, Gabriel; Anzolin, Gabriele

    2011-03-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  3. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  4. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  5. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  6. Perturbations around black holes

    CERN Document Server

    Wang, B

    2005-01-01

    Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.

  7. ULXs: Neutron Stars vs Black Holes

    CERN Document Server

    King, Andrew

    2016-01-01

    We consider ultraluminous X-ray sources (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently-discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker ($\\simeq 10^{11}{\\rm G}$) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have {\\it higher} apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely propo...

  8. ULXs: Neutron stars versus black holes

    Science.gov (United States)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  9. Evidence for black holes.

    Science.gov (United States)

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138

  10. Asymptotic Black Holes

    CERN Document Server

    Ho, Pei-Ming

    2016-01-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  11. A Black Hole Levitron

    CERN Document Server

    Arsiwalla, Xerxes D

    2009-01-01

    We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.

  12. Deforming regular black holes

    CERN Document Server

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  13. Black holes and beyond

    International Nuclear Information System (INIS)

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK

  14. Hole-hole propagation and saturation

    International Nuclear Information System (INIS)

    Ladder contributions to the effective interaction are calculated with inclusion of hole-hole (hh) propagation to all orders. For a correct calculation of the self-energy resulting from the ladder-summed effective interaction, ΓL, dispersion relations are used numerically. The single-particle (sp) energy is calculated self-consistently from the real on-shell self-energy. The contribution of the hh terms leads to a repulsive contribution to the energy per particle which increases with density. This saturation mechanism has not been identified previously and results are presented for the ν2 homework potential. (orig.)

  15. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  16. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  17. Noncommutative Singular Black Holes

    International Nuclear Information System (INIS)

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  18. Noncommutative Singular Black Holes

    Science.gov (United States)

    Hamid Mehdipour, S.

    2010-11-01

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  19. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  20. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  1. Massive Black Hole Recoil in High Resolution Hosts

    OpenAIRE

    Guedes, Javiera; Diemand, Jürg; Zemp, Marcel; Kuhlen, Michael; Madau, Piero; Mayer, Lucio; Stadel, Joachim

    2008-01-01

    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting or...

  2. Jets from Tidal Disruptions of Stars by Black Holes

    OpenAIRE

    Krolik, Julian H.; Piran, Tsvi

    2012-01-01

    Tidal disruption of main sequence stars by black holes has generally been thought to lead to a signal dominated by UV emission. If, however, the black hole spins rapidly and the poloidal magnetic field intensity on the black hole horizon is comparable to the inner accretion disk pressure, a powerful jet may form whose luminosity can easily exceed the thermal UV luminosity. When the jet beam points at Earth, its non-thermal luminosity can dominate the emitted spectrum. The thermal and non-ther...

  3. Fluctuating Black Hole Horizons

    CERN Document Server

    Mei, Jianwei

    2013-01-01

    In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

  4. Lifshitz Topological Black Holes

    CERN Document Server

    Mann, R B

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  5. Evolution of massive black holes

    OpenAIRE

    Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...

  6. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  7. Delayed Macular Hole Closure

    Directory of Open Access Journals (Sweden)

    Peter Distelmaier

    2014-04-01

    Full Text Available Purpose: The presented case raises questions regarding the favorable scheduling of planned postoperative care and the ideal observation interval to decide for reoperations in macular hole surgery. Furthermore a discussion about the use of short- and long-acting gas tamponades in macular hole surgery is encouraged. Methods: We present an interventional case report and a short review of the pertinent literature. Results: We report a case of spontaneous delayed macular hole closure after vitreoretinal surgery had been performed initially without the expected success. A 73-year-old male Caucasian patient presented at our clinic with a stage 2 macular hole in his left eye. He underwent 23-gauge pars plana vitrectomy and internal limiting membrane peeling with a 20% C2F6-gas tamponade. Sixteen days after the procedure, an OCT scan revealed a persistent stage 2 macular hole, and the patient was scheduled for reoperation. Surprisingly, at the date of planned surgery, which was another 11 days later, the macular hole had resolved spontaneously without any further intervention. Conclusions: So far no common opinion exists regarding the use of short- or long-acting gas in macular hole surgery. Our case of delayed macular hole closure after complete resorption of the gas tamponade raises questions about the need and duration of strict prone positioning after surgery. Furthermore short-acting gas might be as efficient as long-acting gas. We suggest to wait with a second intervention at least 4 weeks after the initial surgery, since a delayed macular hole closure is possible.

  8. Antarctic Ozone Hole, 2000

    Science.gov (United States)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  9. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  10. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  11. Noncommutative Solitonic Black Hole

    CERN Document Server

    Chang-Young, Ee; Lee, Daeho; Lee, Youngone

    2012-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  12. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  13. Scalarized hairy black holes

    Directory of Open Access Journals (Sweden)

    Burkhard Kleihaus

    2015-05-01

    Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  14. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  15. Scalarized hairy black holes

    International Nuclear Information System (INIS)

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn

  16. The Effect of Gravitational Recoil on Black Holes Forming in a Hierarchical Universe

    OpenAIRE

    Libeskind, N. I.; S. Cole; Frenk, C.S.; Helly, J. C.

    2005-01-01

    Galactic bulges are known to harbour central black holes whose mass is tightly correlated with the stellar mass and velocity dispersion of the bulge. In a hierarchical universe, mergers of subgalactic units are accompanied by the amalgamation of bulges and the likely coalescence of galactocentric black holes. In these mergers, the beaming of gravitational radiation during the plunge phase of the black hole collision can impart a linear momentum kick or ``gravitational recoil'' to the remnant....

  17. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  18. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  19. Cosmological Black Holes

    OpenAIRE

    Stornaiolo, Cosimo

    2001-01-01

    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...

  20. Cosmic Black Holes

    OpenAIRE

    Ahn, Eun-Joo; Cavaglia, Marco

    2003-01-01

    Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...

  1. Quantum black holes

    International Nuclear Information System (INIS)

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  2. Modelling quantum black hole

    CERN Document Server

    Govindarajan, T R

    2016-01-01

    Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.

  3. Compact radio cores : from the first black holes to the last

    NARCIS (Netherlands)

    Falcke, H; Kording, E; Nagar, NM

    2004-01-01

    One of the clearest signs of black hole activity is the presence of a compact radio core in the nuclei of galaxies. While in the past the focus had been on the few bright and relativistically beamed sources, new surveys now show that essentially all black holes produce compact radio emission that ca

  4. On Noncommutative Black Holes Thermodynamics

    CERN Document Server

    Faizal, Mir; Ulhoa, S C

    2015-01-01

    In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.

  5. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  6. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  7. Ultramassive Black Hole Coalescence

    CERN Document Server

    Khan, Fazeel; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...

  8. Topics in black hole evaporation

    International Nuclear Information System (INIS)

    Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process

  9. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  10. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  11. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  12. Sensitivity of entangled photon holes to loss and amplification

    Energy Technology Data Exchange (ETDEWEB)

    Franson, J. D. [Physics Department, University of Maryland, Baltimore County, Baltimore, Maryland 21250 (United States)

    2011-10-15

    Energy-time entangled photon holes are shown to be relatively insensitive to photon loss due to absorption by atoms whose coherence times are longer than the time delays typically employed in nonlocal interferometry (a fraction of a nanosecond). Roughly speaking, the excited atoms do not retain any significant ''which-path'' information regarding the time at which a photon was absorbed. High-intensity entangled photon holes can also be amplified under similar conditions. Decoherence does occur from losses at beam splitters, and these results show that photon loss cannot always be adequately modeled using a sequence of beam splitters. These properties of entangled photon holes may be useful in quantum communications systems where the range of the system is limited by photon loss.

  13. A geometric crescent model for black hole images

    CERN Document Server

    Kamruddin, Ayman Bin

    2013-01-01

    The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g., a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivated, while the latter are subject to large systematic uncertainties. Motivated by the dominant relativistic effects of Doppler beaming and gravitational lensing in many calculations, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A* and M87, superior to other geometric models for Sgr A*. It also qualitatively matches physically predicted models, bridging accretion theory and observation. Based on our r...

  14. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  15. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  16. Janus black holes

    Science.gov (United States)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  17. Black hole entropy quantization

    CERN Document Server

    Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique

    2006-01-01

    Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.

  18. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  19. Black Hole Bose Condensation

    Science.gov (United States)

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2013-12-01

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.

  20. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746

  1. Noncommutative black hole thermodynamics

    International Nuclear Information System (INIS)

    We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one

  2. Ozone Hole Over Antarctica

    Science.gov (United States)

    2002-01-01

    These images from the Total Ozone Mapping Spectrometer (TOMS) show the progressive depletion of ozone over Antarctica from 1979 to 1999. This 'ozone hole' has extended to cover an area as large as 10.5 million square miles in September 1998. The previous record of 10.0 million square miles was set in 1996. The Antarctic ozone hole develops each year between late August and early October. Regions with higher levels of ozone are shown in red. NASA and NOAA instruments have been measuring Antarctic ozone levels since the early 1970s. Large regions of depleted ozone began to develop over Antarctica in the early 1980s. Ozone holes of substantial size and depth are likely to continue to form during the next few years, scientists hope to see a reduction in ozone loss as levels of ozone-destroying CFCs (chlorofluorocarbons) are gradually reduced. Credit: Images by Greg Shirah, NASA Goddard Space Flight Center Scientific Visualization Studio

  3. Slowly balding black holes

    International Nuclear Information System (INIS)

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  4. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  5. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  6. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  7. Noncommutative solitonic black hole

    International Nuclear Information System (INIS)

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)

  8. Noncommutative solitonic black hole

    Science.gov (United States)

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2012-05-01

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  9. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  10. Dancing with black holes

    CERN Document Server

    Aarseth, Sverre J

    2007-01-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  11. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  12. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  13. Black holes and quasiblack holes: Some history and remarks

    CERN Document Server

    Lemos, José P S

    2011-01-01

    A brief reference to the two Schwarzschild solutions and what Petrov had to say about them is given. Comments on how the Schwarzschild vacuum solution describes a black hole are also provided. Then we compare the properties, differences and similarities between black holes and quasiblack holes. Black holes are well known. Quasiblack hole is a new concept. A quasiblack hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's own gravitational radius (the quasihorizon). They are objects that are on the verge of being black holes but actually are distinct from them in many ways. We display some of their properties: there are infinite redshift whole regions; the curvature invariants remain perfectly regular everywhere, in the quasiblack hole limit; a free-falling observer finds in his own frame infinitely large tidal forces in the whole inner region, showing some form of degeneracy; outer and inner regions become mutually impenetr...

  14. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah [Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia); Azemin, Mohd Zulfaezal Che [Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia)

    2015-04-24

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.

  15. Tunnelling from black holes and tunnelling into white holes

    Science.gov (United States)

    Chatterjee, Bhramar; Ghosh, A.; Mitra, P.

    2008-03-01

    Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.

  16. Transmittance of long-wavelength infrared surface plasmon by hexagonal periodic metal hole arrays

    Science.gov (United States)

    Lee, Byungwoo; Kwak, Hoe Min; Kim, Ha Sul

    2016-03-01

    For long wave length infrared transmission, a surface plasmonic device, having the periodic subwavelength metal hole array on Si substrate, was fabricated using photo-lithography and electron beam evaporation. The maximum transmitted wavelength was adjustable arbitrarily as a function of the period hole arrays. The maximum transmittance was measured 70.3% at 15.4 μm with a plasmonic device composed of a pitch of 5 μm and hole arrays of 3 μm. When the hole size became larger than a half pitch of the hole array, the transmitted infrared spectrum was split into two peaks. The surface plasmon mode of the six degenerated (1,0) Ag/Si was split from three to five modes depending on the incident beam angle. The blue and red wavelength shifts were measured at the same time.

  17. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  18. Black holes and qubits

    CERN Document Server

    Duff, M J

    2012-01-01

    Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two.

  19. Rotating regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn

    2013-04-25

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.

  20. Moulting Black Holes

    Science.gov (United States)

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2012-03-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.

  1. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  2. The black hole final state

    OpenAIRE

    Horowitz, Gary T.; Maldacena, Juan

    2003-01-01

    We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.

  3. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  4. Black Hole Evaporation. A Survey

    OpenAIRE

    Benachenhou, Farid

    1994-01-01

    This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...

  5. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  6. Towards noncommutative quantum black holes

    International Nuclear Information System (INIS)

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole

  7. Towards Noncommutative Quantum Black Holes

    OpenAIRE

    Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  8. Slowly balding black holes

    Science.gov (United States)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  9. Warped products and black holes

    International Nuclear Information System (INIS)

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  10. Warped products and black holes

    CERN Document Server

    Hong, S T

    2005-01-01

    We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.

  11. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  12. Analysis and simulation of BGK electron holes

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    1999-01-01

    Full Text Available Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions are self-consistent and compatible with the field and particle data associated with the observed pulses. In particular, the spatial width increases with increasing amplitude. The stability of the analytic solution is tested by means of a two-dimensional particle-in-cell simulation code with open boundaries. We consider a strongly magnetized parameter regime in which the bounce frequency of the trapped electrons is much less than their gyrofrequency. Our investigation includes the influence of the ions, which in the frame of the hole appear as an incident beam, and impinge on the BGK potential with considerable energy. The nonlinear structure is remarkably resilient

  13. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  14. Observational Evidence for Black Holes

    OpenAIRE

    Narayan, Ramesh; McClintock, Jeffrey E.

    2013-01-01

    Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...

  15. Prisons of light : black holes

    Science.gov (United States)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  16. Point mass Cosmological Black Holes

    CERN Document Server

    Firouzjaee, Javad T

    2016-01-01

    Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.

  17. Philosophical Issues of Black Holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.

  18. Black Holes and Fourfolds

    CERN Document Server

    Bena, Iosif; Vercnocke, Bert

    2012-01-01

    We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.

  19. Shape of black holes

    CERN Document Server

    Clement, María E Gabach

    2015-01-01

    It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

  20. Presentism meets black holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.

  1. Photon Black Holes

    CERN Document Server

    Hernández, X; Mendoza, S; Sussman, R A

    2005-01-01

    We study the relationship between the energy and entropy of a black body photon gas, within an idealised spherical adiabatic enclosure of radius R, as this is compressed into a self-gravitating regime. We show that this regime approximately coincides with the black hole regime for the system, i.e., R ~ R_{s}, where R_{s} denotes the Schwarzschild radius of the system. The entropy of this system is always below the suggested Holographic bound, even as R \\to R_{s}. A plausible quantum configuration for the photon gas at R \\to R_{s} is suggested, which satisfies all energy, entropy and temperature black hole conditions. Finally we examine our results from the point of view of recent Loop Quantum Gravity ideas.

  2. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  3. A simple model of electron beam initiated dielectric breakdown

    Science.gov (United States)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  4. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  5. Noncommutative Solitonic Black Hole

    OpenAIRE

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2011-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...

  6. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  7. Thermal corpuscular black holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-06-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.

  8. Moulting Black Holes

    CERN Document Server

    Bena, Iosif; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no b...

  9. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  10. Production of ion micro-beams

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki; Isoya, Akira; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tanaka, Ryuichi [Ion Beam Irradiation Service Limited Company, Takasaki, Gunma (Japan)

    2001-02-01

    This is a short summary on the test fabrication and performance testing. Here micro-beams are understood as beams in diameter smaller than 0.01 {mu} m. We had made a choice of the combination, of the focusing action with a single hole lens, and of the focusing and acceleration actions with a uniform electrostatic field between the electrodes. Measurements has been repeated of the beam radius with a moving knifedge. The spatial resolution now reaches 0.05 {mu} m. (M. Tanaka)

  11. Calculation of the coupling impedances of holes and slots on the liner using MAFIA and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Thiagarajan, V.; Barts, T.; Kurennoy, S.; Chou, W.

    1993-11-01

    The location of a liner inside the beam tube is one of the options considered for the Super Colliders. The liner could serve as a synchrotron radiation intercept and also help enhance the vacuum. A definite distribution of holes or slots is required to be located on the liner for pumping out the desorbing gases. There will be wake fields propagating within the liner due to diffraction at discontinuities following the incident beam fields. The effect of these wake fields can be minimized by adopting the least number of pumping holes/slots required and through an optimal choice of hole/slot shape and size. The effect of the wake fields on the beam may be expressed through coupling impedances defined proportional to the corresponding forces integrated through distance per unit charge. It is necessary to compute the impedance of holes and slots and determine the scaling of the impedance with the dimensions of the hole/slot and the liner, in order to optimize the choice of pumping holes/slots. The coupling impedances of slots and holes have been calculated here using the code MAFIA and the scaling assessed. The results compare favorably with existing analytical results.

  12. AA, entrance of proton beam to antiproton production target

    CERN Multimedia

    1980-01-01

    Please look up 8010295 first. The intense proton beam from the 26 GeV PS arrives from the right, through the vacuum chamber. The big flange contains a thin window, after which the proton beam continues through free air. A beam transformer, affixed to the shielding block, measures its intensity, before it enters the hole in the concrete to hit the target behind it.

  13. The random walk of a drilling laser beam

    Science.gov (United States)

    Anthony, T. R.

    1980-01-01

    The disregistry of holes drilled with a pulse laser beam in 330-micron-thick single-crystal silicon-on-sapphire wafers is examined. The exit positions of the holes were displaced from the hole entrance positions on the opposing face of the wafer, and this random displacement increased with the number of laser pulses required. A model in which the bottom of the drill hole experiences small random displacements during each laser pulse is used to describe the experimental observations. It is shown that the average random displacement caused by each pulse is only a few percent of the hole diameter and can be reduced by using as few laser pulses as necessary while avoiding the cracking and spalling of the wafer that occur with a hole drilled with a single pulse.

  14. Pin-Hole Luminosity Monitor with Feedback

    Science.gov (United States)

    Norem, James H.; Spencer, James E.

    Previously, the generalized luminosity { L} was defined and calculated for all incident channels based on an NLC e+e- design. Alternatives were then considered to improve the differing beam-beam effects in the e-e-, eγ and γγ channels. Regardless of the channel, there was a large flux of outgoing, high energy photons that were produced from the beam-beam interaction e.g. beamstrahlung that needs to be disposed of and whose flux depended on { L}. One approach to this problem is to consider it a resource and attempt to take advantage of it by disposing of these straight-ahead photons in more useful ways than simply dumping them. While there are many options for monitoring the luminosity, any method that allows feedback and optimization in real time and in a non-intercepting and non-interfering way during normal data taking is extremely important - especially if it provides other capabilities such as high resolution tuning of spot sizes and can be used for all incident channels without essential modifications to their setup. Our "pin-hole" camera appears to be such a device if it can be made to work with high energy photons in ways that are compatible with the many other constraints and demands on space around the interaction region. The basis for using this method is that it has, in principle, the inherent resolution and bandwidth to monitor the very small spot sizes and their stabilities that are required for very high, integrated luminosity. While there are many possible, simultaneous uses of these outgoing photon beams, we limit our discussion to a single, blind, proof-of-principle experiment that was done on the FFTB line at SLAC to certify the concept of a camera obscura for high energy photons.

  15. Numerical simulation of parallel hole cut blasting with uncharged holes

    Institute of Scientific and Technical Information of China (English)

    Shijie Qu; Xiangbin Zheng; Lihua Fan; Ying Wang

    2008-01-01

    The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with AN-SYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, node velocity, node time-acceleration history and the blasting cartridge volume ratio during the process were analyzed. It was found that the detonation of charged holes would cause the interaction of stress wave with the wall of uncharged holes. Initial rock cracking and displacement to neighboring uncharged holes become the main mechanism of cavity formation in early stage.

  16. Convenient contrast enhancement by a hole-free phase plate

    DEFF Research Database (Denmark)

    Malac, Marek; Beleggia, Marco; Kawasaki, Masahiro;

    2012-01-01

    Decrease of the irradiation dose needed to obtain a desired signal-to-noise ratio can be achieved by Zernike phase-plate imaging. Here we present results on a hole-free phase plate (HFPP) design that uses the incident electron beam to define the center of the plate, thereby eliminating the need......- to four-fold increase in contrast, leading to a corresponding decrease in the irradiation dose required to obtain a desired signal-to-noise ratio. A local potential distribution, developed due to electron beam-induced secondary-electron emission, is the most likely mechanism responsible for the contrast...

  17. Geometry of black hole spacetimes

    CERN Document Server

    Andersson, Lars; Blue, Pieter

    2016-01-01

    These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.

  18. Hidden Structures of Black Holes

    CERN Document Server

    Vercnocke, Bert

    2010-01-01

    This thesis investigates two main topics concerning black holes in extensions of general relativity inspired by string theory. First, the structure of the equations of motion underlying black hole solutions is considered, in theories of D-dimensional gravity coupled to scalars and vectors. For solutions preserving supersymmetry, the equations of motion have a dramatic simplification: they become first-order instead of the second-order equations one would expect. Recently, it was found that this is a feature some non-supersymmetric black hole solutions exhibit as well. We investigate if this holds more generally, by examining what the conditions are to have first-order equations for the scalar fields of non-supersymmetric black holes, that mimic the form of their supersymmetric counterparts. This is illustrated in examples. Second, the structure of black holes themselves is investigated. String theory has been successful in explaining the Bekenstein-Hawking entropy for (mainly supersymmetric) black holes from ...

  19. Small black holes on cylinders

    International Nuclear Information System (INIS)

    We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders

  20. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  1. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  2. stu Black Holes Unveiled

    Directory of Open Access Journals (Sweden)

    Armen Yeranyan

    2008-10-01

    Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.

  3. Noncommutative black holes

    Science.gov (United States)

    Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  4. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  5. Noncommutative black holes

    International Nuclear Information System (INIS)

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  6. Artificial ozone holes

    CERN Document Server

    Dolya, S N

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.

  7. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  8. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  9. Information Storage in Black Holes

    OpenAIRE

    Maia, M. D.

    2005-01-01

    The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.

  10. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  11. Brane-world black holes

    International Nuclear Information System (INIS)

    In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.

  12. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  13. Black Holes in Higher Dimensions

    International Nuclear Information System (INIS)

    In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology

  14. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  15. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  16. Quantum black hole without singularity

    CERN Document Server

    Kiefer, Claus

    2015-01-01

    We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.

  17. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  18. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  19. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  20. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  1. Twistors and Black Holes

    CERN Document Server

    Neitzke, A; Vandoren, S; Neitzke, Andrew; Pioline, Boris; Vandoren, Stefan

    2007-01-01

    Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \\Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function ...

  2. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  3. Quantum black hole evaporation

    CERN Document Server

    Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman

    1993-01-01

    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...

  4. Thermal BEC black holes

    CERN Document Server

    Casadio, Roberto; Micu, Octavian; Orlandi, Alessio

    2015-01-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...

  5. Thermal corpuscular black holes

    CERN Document Server

    Casadio, Roberto; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...

  6. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  7. Effect of Laser Cutting Methods on Hole Deviation and Surface Integrity

    Directory of Open Access Journals (Sweden)

    Hamid Salih Mahdi

    2012-01-01

    Full Text Available In the present work usedNd:YAG laser systems of different output characteristic were employed to study the drilling process of material used in scientific and industrial fields. This material include Manganese hard steel. Our study went into the affecting parameters in drilling of Manganese hard steel by laser. Drilling process is achieved through material absorption of part of the incident laser beam. It is the resultant of interfering both, laser beam and material properties and the focusing conditions of the beam. The results as shown that the increase in the laser pulse energy over the used level has raised the hole diameter, depth and increased the hole taper. In addition to that a hole taper was affected by the laser energy, the focusing position and focal length of the lens used.

  8. Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian

    2015-01-01

    Full Text Available In the framework of microscopic theory of black hole (MTBH, which explores the most important processes of rearrangement of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of numerical simulations with the goal to trace an evolution of the mass assembly history of 377 plausible accreting supermassive black hole seeds in active galactic nuclei (AGNs to the present time and examine the observable signatures today. Given the redshifts, masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and masses of the corresponding seed black holes. For the present masses MBH/M⊙≃1.1×106 to 1.3×1010 of 377 black holes, the computed intermediate seed masses are ranging from MBHSeed/M⊙≃26.4 to 2.9×105. We also compute the fluxes of ultrahigh energy (UHE neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies, and collimated in smaller opening angle (θ≪1.

  9. A geometric crescent model for black hole images

    Science.gov (United States)

    Kamruddin, Ayman Bin; Dexter, Jason

    2013-09-01

    The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic centre black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g. a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivated, while the latter are subject to large systematic uncertainties. Motivated by the dominant relativistic effects of Doppler beaming and gravitational lensing in many calculations, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A* and M87, superior to other geometric models for Sgr A*. It also qualitatively matches physically predicted models, bridging accretion theory and observation. Based on our results, we make predictions for the detectability of the black hole shadow, a signature of strong gravity, in future observations.

  10. Neutralization of low energy broad ion beam

    International Nuclear Information System (INIS)

    The paper is devoted to experimental and theoretical investigation of a low energy broad ion beam space charge and current compensation and ion-beam plasma (IBP), which would be created in transport space of the beam. The beam had cylindrical symmetry. The continuous uniform and hole tube like ion beams are used in the experiments. Different channels of electron appearing have been investigated for cases of neutralization due to secondary γ-electrons from the target and by electrons from glow cathode-neutralizer with metal or dielectric target. Results of neutralizing electrons energy distributions function measurements are presented as well as dependences of electron temperature and self-consisted plasma potential vs. beam parameters, ambient gas pressure, neutralizer parameters. Role of the thermoelectrons and dependence of IBP parameters on neutralizer area, location and potential are discussed. Significant role in neutralization of spatial collisional processes has been revealed even in neutralization by thermocathode. On the base of the experimental results self-consistent theoretical model have been developed, which describes the behavior of intense ion beam passing through the neutral gas at low pressure within conductive walls. The collisionless approach is used which means absence of collisional relaxation of the beam. This theory is used to derive the plasma potential and electron temperature within the beam

  11. X-ray and Radio Constraints on the Mass of the Black Hole in Swift J164449.3+573451

    OpenAIRE

    Miller, J.M.; Gultekin, K.

    2011-01-01

    Swift J164449.3+573451 is an exciting transient event, likely powered by the tidal disruption of a star by a massive black hole. The distance to the source, its transient nature, and high internal column density serve to complicate several means of estimating the mass of the black hole. Utilizing newly-refined relationships between black hole mass, radio luminosity, and X-ray luminosity, and de-beaming the source flux, a weak constraint on the black hole mass is obtained: log(M/Msun) = 5.5 +/...

  12. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  13. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  14. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  15. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  16. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    . The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  17. METHOD FOR CLEAINING A HOLE

    NARCIS (Netherlands)

    Janssen, G.C.A.

    1997-01-01

    Abstract of WO 9749122 (A1) Method for making a conducting connection between two spaced metallic layers situated in a semiconductor substrate. After a hole, a so-called via, has been made by etching, tungsten or aluminium is introduced into the hole by conventional techniques, such as CVD or fo

  18. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Science.gov (United States)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  19. Recoiling Black Holes in Quasars

    CERN Document Server

    Bonning, E W; Salviander, S

    2007-01-01

    Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.

  20. Prisons of Light - Black Holes

    Science.gov (United States)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  1. Wormholes as Black Hole Foils

    CERN Document Server

    Damour, Thibault

    2007-01-01

    We study to what extent wormholes can mimic the observational features of black holes. It is surprisingly found that many features that could be thought of as ``characteristic'' of a black hole (endowed with an event horizon) can be closely mimicked by a globally static wormhole, having no event horizon. This is the case for: the apparently irreversible accretion of matter down a hole, no-hair properties, quasi-normal-mode ringing, and even the dissipative properties of black hole horizons, such as a finite surface resistivity equal to 377 Ohms. The only way to distinguish the two geometries on an observationally reasonable time scale would be through the detection of Hawking's radiation, which is, however, too weak to be of practical relevance for astrophysical black holes. We point out the existence of an interesting spectrum of quantum microstates trapped in the throat of a wormhole which could be relevant for storing the information ``lost'' during a gravitational collapse.

  2. Black Hole Final State Conspiracies

    CERN Document Server

    McInnes, Brett

    2008-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of "conspiracies" between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required "conspiracies" if real black holes are described by some kind of sum over all AdS black holes having the same entropy.

  3. Black holes and the multiverse

    CERN Document Server

    Garriga, Jaume; Zhang, Jun

    2015-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...

  4. When Charged Black Holes Merge

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  5. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  6. Spacetime Duality of BTZ Black Hole

    OpenAIRE

    Ho, Jeongwon; Kim, Won T.; Park, Young-Jai

    1999-01-01

    We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.

  7. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  8. Fear of holes.

    Science.gov (United States)

    Cole, Geoff G; Wilkins, Arnold J

    2013-10-01

    Phobias are usually described as irrational and persistent fears of certain objects or situations, and causes of such fears are difficult to identify. We describe an unusual but common phobia (trypophobia), hitherto unreported in the scientific literature, in which sufferers are averse to images of holes. We performed a spectral analysis on a variety of images that induce trypophobia and found that the stimuli had a spectral composition typically associated with uncomfortable visual images, namely, high-contrast energy at midrange spatial frequencies. Critically, we found that a range of potentially dangerous animals also possess this spectral characteristic. We argue that although sufferers are not conscious of the association, the phobia arises in part because the inducing stimuli share basic visual characteristics with dangerous organisms, characteristics that are low level and easily computed, and therefore facilitate a rapid nonconscious response.

  9. Slicing black hole spacetimes

    CERN Document Server

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T

    2015-01-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  10. Fear of holes.

    Science.gov (United States)

    Cole, Geoff G; Wilkins, Arnold J

    2013-10-01

    Phobias are usually described as irrational and persistent fears of certain objects or situations, and causes of such fears are difficult to identify. We describe an unusual but common phobia (trypophobia), hitherto unreported in the scientific literature, in which sufferers are averse to images of holes. We performed a spectral analysis on a variety of images that induce trypophobia and found that the stimuli had a spectral composition typically associated with uncomfortable visual images, namely, high-contrast energy at midrange spatial frequencies. Critically, we found that a range of potentially dangerous animals also possess this spectral characteristic. We argue that although sufferers are not conscious of the association, the phobia arises in part because the inducing stimuli share basic visual characteristics with dangerous organisms, characteristics that are low level and easily computed, and therefore facilitate a rapid nonconscious response. PMID:23982244

  11. Supersymmetric black holes in string theory

    OpenAIRE

    Mohaupt, T.

    2007-01-01

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...

  12. Spatial modifications of three-dimensional elliptic Gaussian beam scattered by two-dimensional periodic array.

    OpenAIRE

    Alexander Gribovsky; Oleg Yeliseyev

    2012-01-01

    The diffraction problem of a three-dimensional elliptic p- polarized Gaussian beam on an aperture array of rectangular holes is solved. The new algorithm for the solution of three-dimensional scattering problems of linearly polarized wave beams on two-dimensional periodic structures is offered. The given algorithm allows exploring of wave beams with any allocation of a field on cross section. The case of oblique incidence of linearly polarized elliptic Gaussian wave beam on two-dimensio...

  13. Superconducting electron and hole lenses

    Science.gov (United States)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  14. Rotating black hole and quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2016-04-15

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)

  15. A nonsingular rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2015-11-15

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  16. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  17. Acceleration of Black Hole Universe

    Science.gov (United States)

    Zhang, Tianxi

    2012-05-01

    An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.

  18. The GRAVITY integrated optics beam combination

    Science.gov (United States)

    Jocou, L.; Perraut, K.; Nolot, A.; Berger, J. P.; Moulin, T.; Labeye, P.; Lacour, S.; Perrin, G.; Lebouquin, J. B.; Bartko, H.; Thiel, M.; Eisenhauer, F.

    2010-07-01

    Gravity is a 2nd generation interferometric instrument for VLTI. It will combine 4 telescopes in dual feed in the K band to study general relativity effects around the Galactic Center black hole. The concept of Gravity is based on two equivalent beam combiner instruments: the scientific one fed by the science target (Sgr A*) and the fringe tracker fed by a bright reference star (See Gillessen et al.1). Both beam combination instruments are based on silica on silicon integrated optics (IO) component glued to fluoride glass fiber array. The beam combiners are implemented in a cryogenic vessel cooled at 200°K and back-illuminated by a high power laser used for metrology (Bartko et al.2). This paper is dedicated to the description of the development of the integrated beam combiner assembly.

  19. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  20. Thermodynamics of Lifshitz black holes

    Science.gov (United States)

    Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür

    2011-06-01

    We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.

  1. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-01-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  2. Static-Fluid Black Holes

    CERN Document Server

    Cho, Inyong

    2016-01-01

    We investigate black holes formed by static perfect fluid with $p=-\\rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.

  3. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  4. The Black Hole Information Problem

    CERN Document Server

    Polchinski, Joseph

    2016-01-01

    The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.

  5. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  6. Hole history core hole DC-2 Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The purpose of core hole DC-2 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrological testing. The total depth of core hole DC-2 was 3,300 feet. Core recovery exceeded 99 percent of the total footage cores. The coring record is tabulated. 3 figures, 3 tables. (RWR)

  7. Large area electron beam diode development

    International Nuclear Information System (INIS)

    A large area annular electron beam diode has been tested at Physics International Co. on the multi-terawatt PITHON generator. A twelve element post hole convolute converted the coaxial MITL into a triaxial arrangement of anode current return structures both inside and outside the cathode structure. The presence of both inner and outer current return paths provide magnetic pressure balance for the beam, as determined by diode current measurements. X-ray pinhole photographs indicated uniform emission with intensity maxima between the post positions. Current losses in the post hole region were negligible, as evidenced by the absence of damage to the aluminum hardware. Radial electron flow near the cathode ring however did damage the inner anode cylinder between the post positions. Cutting away these regions prevented further damage of the transmission lines

  8. Harmonic beam splitter design and fabrication

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Ma(马小凤); Yingjian Wang(王英剑); Zhengxiu Fan(范正修); Jianda Shao(邵建达)

    2004-01-01

    Two problems of half-wave hole and high ripples in the transmittance region for a harmonic beam splitter had been pointed out and analyzed. Based on the application of a half-wavelength control and a new admittance matching methods, a harmonic beam splitter was designed and fabricated. The former method eliminated the half-wave hole fundamentally, and the latter smoothed high ripples in the transmittance region effectively. The matching stack consisted of a symmetrically periodic structure and provided a complete matching at the desired wavelength, i.e., both conditions for the equivalent admittance and phase thickness were fulfilled. Furthermore, both the theoretical and the tested curves had been given, and a good agreement between them was obtained.

  9. Electron-Acoustic Compressive Soliton and Electron Density Hole in Aurora

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2003-01-01

    Electron-acoustic solitary waves have been studied in an electron-beam plasma system. It is found that the solution of compressive soliton only exists within a limited range of soliton velocity around the electron beam velocity. A compressive electron-acoustic soliton always accompanies with a cold electron density hole. This theoretical model is used to explain the ‘fast solitary wave' event observed by the FAST satellite in the midaltitude auroral zone.

  10. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  11. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  12. Black Hole Meiosis

    CERN Document Server

    Van Herck, Walter

    2009-01-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...

  13. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  14. Borehole cylindrical noise during hole-surface and hole-hole resistivity measurements

    Science.gov (United States)

    Osiensky, James L.; Nimmer, Robin; Binley, Andrew M.

    2004-04-01

    Drilled boreholes generally are the only feasible means to access the subsurface for the emplacement of downhole electrodes for most hole-hole and hole-surface resistivity experiments. However, the very existence of the borehole itself creates the potential for significant noise due to the inevitable conductivity contrast that develops between the borehole walls and the formation. Borehole cylindrical noise develops whenever a current source is placed in a drilled borehole. Borehole geometries may range from nearly perfect cylinders to highly, irregular, rugose holes in consolidated rock, to relatively minor, collapsed, disturbed zones in caving sediments. Boreholes in non-caving formations generally are filled with artificial, conductive materials to afford crucial, electrical continuity between downhole electrodes and the borehole walls. Filled boreholes form cylindrically shaped heterogeneities that create significant noise due to preferential current flow up and down the conductive columns. Selected conditions are simulated with a finite difference model to illustrate the significance of borehole cylindrical noise on hole-hole and hole-surface mise-à-la-masse electrical potentials near a current electrode. Mise-à-la-masse electrical potentials measured during a field tracer experiment also are presented. These measurements are used to illustrate significant errors may develop in the interpretation of apparent resistivity estimates out to a distance of several meters from the current source if borehole cylindrical noise is not recognized and accounted for in the analysis of electrical potential data.

  15. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  16. 'Black holes': escaping the void.

    Science.gov (United States)

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche.

  17. Space, time, and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Darling, D.

    1980-10-01

    A discussion of Einstein's General Relativity and how it can explain black holes is included. The key idea of general relativity being that gravitational forces are a direct outcome of local curvature of space-time. The more mass something has the deeper the depression or well it causes in space-time. Black holes are supermassive objects, hence their gravity well is so steep even light can't escape. The three properties associated with a black hole are mass angular momentum, and electric charge. Non-rotating, Schwarzchild, and rotating, Kerr, black holes are studied. A Kruskal-Szekeres diagram for each type is given and explained. (SC)

  18. Black hole accretion disc impacts

    Science.gov (United States)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  19. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  20. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  1. Switching off black hole evaporation

    International Nuclear Information System (INIS)

    The inclusion of the back-reaction in the Hawking effect leads to the result that, if vector boson fields predominate in nature, then black holes stop evaporating when their mass reaches a non-vanishing limiting value. (author)

  2. Black holes and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)

    2010-07-15

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.

  3. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  4. Black hole information vs. locality

    CERN Document Server

    Itzhaki, N

    1996-01-01

    We discuss the limitations on space time measurement in Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole can not be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evaporation by means of an effective local field theory will necessarily lead to information loss. We also present a new interpretation of the black hole entropy which leads to S=cA , where c is a constant of order 1 which does not depend on the number of fields.

  5. The Black Hole Universe Model

    Science.gov (United States)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  6. Vacuum metastability with black holes.

    OpenAIRE

    Burda, Philipp; Gregory, Ruth; Moss, Ian

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evapor...

  7. Energy Extraction from Black Holes

    OpenAIRE

    Straumann, Norbert

    2007-01-01

    In this lecture I give an introduction to the rotational energy extraction of black holes by the electromagnetic Blandford-Znajek process and the generation of relativistic jets. After some basic material on the electrodynamics of black hole magnetospheres, we derive the most important results of Blandford and Znajek by making use of Kerr-Schild coordinates, which are regular on the horizon. In a final part we briefly describe results of recent numerical simulations of accretion flows on rota...

  8. Dynamic black-hole entropy

    OpenAIRE

    Hayward, Sean A.; Mukohyama, Shinji; Ashworth, M. C.

    1998-01-01

    We consider two non-statistical definitions of entropy for dynamic (non-stationary) black holes in spherical symmetry. The first is analogous to the original Clausius definition of thermodynamic entropy: there is a first law containing an energy-supply term which equals surface gravity times a total differential. The second is Wald's Noether-charge method, adapted to dynamic black holes by using the Kodama flow. Both definitions give the same answer for Einstein gravity: one-quarter the area ...

  9. Black Holes and String Theory

    CERN Document Server

    Myers, R C

    2001-01-01

    This is a short summary of my lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. These lectures gave a brief introduction to black holes in string theory, in which I primarily focussed on describing some of the recent calculations of black hole entropy using the statistical mechanics of D-brane states. The following overview will also provide the interested students with an introduction to the relevant literature.

  10. Charged rotating noncommutative black holes

    International Nuclear Information System (INIS)

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  11. Charged rotating noncommutative black holes

    Science.gov (United States)

    Modesto, Leonardo; Nicolini, Piero

    2010-11-01

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  12. Charged rotating noncommutative black holes

    CERN Document Server

    Modesto, Leonardo

    2010-01-01

    In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  13. Geometric inequalities for black holes

    CERN Document Server

    Dain, Sergio

    2014-01-01

    It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.

  14. Tensor Network and Black Hole

    CERN Document Server

    Matsueda, Hiroaki; Hashizume, Yoichiro

    2012-01-01

    A tensor network formalism of thermofield dynamics is introduced. The formalism relates the original Hilbert space with its tilde space by a product of two copies of a tensor network. Then, their interface becomes an event horizon, and the logarithm of the tensor rank corresponds to the black hole entropy. Eventually, multiscale entanglement renormalization anzats (MERA) reproduces an AdS black hole at finite temperature. Our finding shows rich functionalities of MERA as efficient graphical representation of AdS/CFT correspondence.

  15. Accretion, Primordial Black Holes and Standard Cosmology

    OpenAIRE

    Nayak, Bibekananda; Singh, Lambodar Prasad

    2009-01-01

    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.

  16. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  17. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  18. Towards a Theory of Quantum Black Hole

    OpenAIRE

    Berezin, V.

    2001-01-01

    We describe some specific quantum black hole model. It is pointed out that the origin of a black hole entropy is the very process of quantum gravitational collapse. The quantum black hole mass spectrum is extracted from the mass spectrum of the gravitating source. The classical analog of quantum black hole is constructed.

  19. Black holes as parts of entangled systems

    Science.gov (United States)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  20. Thermodynamics of Horava-Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo; Kim, Yong-Wan [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea)

    2010-07-15

    We study black holes in the Horava-Lifshitz gravity with a parameter {lambda}. For 1/3{<=}{lambda}<3, the black holes behave the Lifshitz black holes with dynamical exponent 03, the black holes behave the Reissner-Nordstroem type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes. (orig.)

  1. How objective is black hole entropy?

    CERN Document Server

    Lau, Y K

    1994-01-01

    The objectivity of black hole entropy is discussed in the particular case of a Schwarzchild black hole. Using Jaynes' maximum entropy formalism and Euclidean path integral evaluation of partition function, it is argued that in the semiclassical limit when the fluctutation of metric is neglected, the black hole entropy of a Schwarzchild black hole is equal to the maximal information entropy of an observer whose sole knowledge of the black hole is its mass. Black hole entropy becomes a measure of number of its internal mass eigenstates in accordance with the Boltzmann principle only in the limit of negligible relative mass fluctutation. {}From the information theoretic perspective, the example of a Schwarzchild black hole seems to suggest that black hole entropy is no different from ordinary thermodynamic entropy. It is a property of the experimental data of a black hole, rather than being an intrinsic physical property of a black hole itself independent of any observer. However, it is still weakly objective in...

  2. Black hole quantum spectrum

    International Nuclear Information System (INIS)

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  3. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  4. Jets from Tidal Disruptions of Stars by Black Holes

    CERN Document Server

    Krolik, Julian H

    2011-01-01

    Tidal disruption of main sequence stars by black holes has generally been thought to lead to a signal dominated by UV emission. If, however, the black hole spins rapidly and the poloidal magnetic field intensity on the black hole horizon is comparable to the inner accretion disk pressure, a powerful jet may form whose luminosity can easily exceed the thermal UV luminosity. When the jet beam points at Earth, its non-thermal luminosity can dominate the emitted spectrum. The thermal and non-thermal components decay differently with time. In particular, the thermal emission should remain roughly constant for a significant time after the period of maximum accretion, beginning to diminish only after a delay, whereas after the peak accretion rate, the non-thermal jet emission decays, but then reaches a plateau. When the newly-found flare source Swift J2058 is analyzed in terms of this model, it is found to be consistent with an event in which a main sequence solar-type star is disrupted by a black hole of mass at le...

  5. Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques

    CERN Document Server

    Magnes, J; Hartke, J; Fountain, M; Florence, L; Davis, V

    2006-01-01

    We present a comparative overview of existing laser beam profiling methods. We compare the the knife-edge, scanning slit, and pin-hole methods. Data is presented in a comparative fashion. We also elaborate on the use of CCD profiling methods and present appropriate imagery. These methods allow for a quantitative determination of transverse laser beam-profiles using inexpensive and accessible methods. The profiling techniques presented are inexpensive and easily applicable to a variety of experiments.

  6. Massive Black Holes: formation and evolution

    OpenAIRE

    Rees, Martin J.; Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Observations have revealed us vast information on the population of local and distant black holes, but the detailed physical properties of these dark massive objects are still to be proven. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. We briefly review here the basic properties of the population of supermassive black holes,...

  7. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  8. Regular black hole in three dimensions

    International Nuclear Information System (INIS)

    We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)

  9. Regular black hole in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea); Yoon, Myungseok [Sogang University, Center for Quantum Spacetime, Seoul (Korea)

    2009-07-15

    We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)

  10. Observational features of equatorial coronal hole jets

    OpenAIRE

    Nisticò, G.; V. Bothmer; S. Patsourakos; Zimbardo, G.

    2010-01-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet e...

  11. Holes Cannot Be Counted As Immaterial Objects

    OpenAIRE

    Dr Phillip John Meadows

    2014-01-01

    In this paper I argue that the theory that holes are immaterial objects faces an objection that has traditionally been thought to be the principal difficulty with its main rival, which construes holes as material parts of material objects. Consequently, one of the principal advantages of identifying holes with immaterial objects is illusory: its apparent ease of accounting for truths about number of holes. I argue that in spite of this we should not think of holes as material p...

  12. Measurement of Beta Particles Induced Electron-Hole Pairs Recombination in Depletion Region of GaAs PN Junction

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-Yang; JIANG Lan; LI Da-Rang

    2011-01-01

    PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current (EBIC) techniques and betavoltaic batteries, in which the recombination in depletion regions is ignored.We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+ PN+ junction, based on comparisons between measured short currents and ideal values. The results show that only 20% electron-hole pairs in the depletion can be collected, causing the short current. This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region. Hence, it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.%@@ PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current(EBIC) techniques and betavoltaic batteries,in which the recombination in depletion regions is ignored.We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+ PN+ junction,based on comparisons between measured short currents and ideal values.The results show that only 20% electron-hole pairs in the depletion can be collected,causing the short current.This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region.Hence,it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.

  13. Strong-field tests of gravity using pulsars and black holes

    NARCIS (Netherlands)

    M. Kramer; D.C. Backer; J.M. Cordes; T.J.W. Lazio; B.W. Stappers; S. Johnston

    2004-01-01

    The sensitivity of the SKA enables a number of tests of theories of gravity. A Galactic Census of pulsars will discover most of the active pulsars in the Galaxy beamed toward us. In this census will almost certainly be pulsar black hole binaries as well as pulsars orbiting the super-massive black ho

  14. Lorentz factor distribution of blazars from the optical Fundamental plane of black hole activity

    CERN Document Server

    Saikia, Payaswini; Falcke, Heino

    2016-01-01

    Blazar radiation is dominated by a relativistic jet which can be modeled at first approximation using just two intrinsic parameters - the Lorentz factor $\\Gamma$ and the viewing angle $\\theta$. Blazar jet observations are often beamed due to relativistic effects, complicating the understanding of these intrinsic properties. The most common way to estimate blazar Lorentz factors needs the estimation of apparent jet speeds and Doppler beaming factors. We present a new and independent method of constructing the blazar Lorentz factor distribution, using the optical fundamental plane of black hole activity. The optical fundamental plane is a plane stretched out by both the supermassive black holes and the X-ray binaries, in the 3D space provided by their [OIII] line luminosity, radio luminosity and black hole mass. We use the intrinsic radio luminosity obtained from the optical fundamental plane to constrain the boosting parameters of the VLBA Imaging and Polarimetry Survey (VIPS) blazar sample. We find a blazar b...

  15. Through-hole processing of silicon wafer using high power short pulse laser

    International Nuclear Information System (INIS)

    Fine processing of silicon using high-power short-pulse laser has been studied. Through-holes are formed on silicon wafer by irradiation of the laser pulses, and the relationship between hole shapes and the laser-beam characters has been studied. The hole shape strongly depends on the beam profile, pulse width and wave length. Ultra-short (60fs) laser pulses shaped by image-relay technique give better results, namely, good shape and high speed. If the wavelength is short, processing using longer pulse laser (350ps) is also possible, although it often causes damage of the wafer. The data shown here indicate the advantage of ultra-short laser for the fine processing of silicon. (author)

  16. Beam crossing studies in a Megajoule laser

    International Nuclear Information System (INIS)

    In the framework of laser-plasma interaction, this PhD thesis presents the studies on the effects produced by the intersection of two laser beams. This study is motivated by the CEA Megajoule laser project in which 240 beams cross at input holes of the enclosure containing the fusible target. Especially, the beating of two coherent laser beams create an interference figure, which, by the ponderomotive force, produces an ion acoustic wave. This specific acoustic wave is a Bragg grating in which each beam is diffracted in the exact direction of the other. It is an energy transfer mechanism between the two beams. This mechanism is modeled in two dimensions and is resolved analytically and numerically. The application of this easy model is qualitatively satisfying. In order to be nearer to the experimental conditions, the optical smoothing by slides of random phases has to be taken into account. This leads us to a statistical approach of exchanges and tends to confirm the hypothesis in which they are governed by hot spots. Simultaneously, stimulated Brillouin scattering and the intersection of two beams of the same frequencies have been treated. In our simulations appear a competition between Bragg diffraction and Brillouin scattering, this last one being modified compared to Brillouin scattering for an only one beam. We conclude in indicating some extrapolations for the Megajoule laser. (O.M.)

  17. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  18. Spin Properties of Supermassive Black Holes with Powerful Outflows

    CERN Document Server

    Daly, Ruth A

    2016-01-01

    Relationships between beam power and accretion disk luminosity are studied for a sample of 55 HERG, 13 LERG, and 29 RLQ with powerful outflows. The ratio of beam power to disk luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disk luminosity and beam power and applying the empirically determined relationships allows a function that parameterizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in MAD and ADAF models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and AGN type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  19. Spin properties of supermassive black holes with powerful outflows

    Science.gov (United States)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  20. Time-course of perceptual processing of "hole" and "no-hole"figures: An ERP study

    Institute of Scientific and Technical Information of China (English)

    Weina Zhu; Junjun Zhang; Changle Zhou

    2013-01-01

    Closure or the presence of a "hole" is an emergent perceptual feature that can be extracted by the visual system early on.This feature has been shown to have perceptual advantages over openness or "no-hole".In this study,we investigated when and how the human brain differentiates between "hole" and "no-hole" figures.Event-related potentials (ERPs) were recorded during a passive observation paradigm.Two pairs of simple figures (Experiment 1) and two sets of Greek letters (Experiment 2) were used as stimuli.The ERPs of "hole" and "no-hole"figures differed ~90 ms after stimulus onset:"hole"figures elicited smaller P1 and N1 amplitudes than "no-hole" figures.These suggest that both P1 and N1 components are sensitive to the difference between "hole" and "no-hole" figures; perception of "hole" and "no-hole" figures might be differentiated early during visual processing.

  1. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  2. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  3. Wavelength effect on hole shapes and morphology evolution during ablation by picosecond laser pulses

    Science.gov (United States)

    Zhao, Wanqin; Wang, Wenjun; Li, Ben Q.; Jiang, Gedong; Mei, Xuesong

    2016-10-01

    An experimental study is presented of the effect of wavelength on the shape and morphology evolution of micro holes ablated on stainless steel surface by a 10 ps Q-switched Nd:VAN pulsed laser. Two routes of hole development are associated with the visible (532 nm) and near-infrared (1064 nm) laser beams, respectively. The evolution of various geometric shapes and morphological characteristics of the micro holes ablated with the two different wavelengths is comparatively studied for other given processing conditions such as a laser power levels and the number of pulses applied. Plausible explanations, based on the light-materials interaction associated with laser micromachining, are also provided for the discernable paths of geometric and morphological development of holes under laser ablation.

  4. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I [Depto. Fisica, Fac. Ciencias, Universidad de Oviedo - CINN, Av. Calvo Sotelo s/n, 33007 Oviedo (Spain); Marconi, V I; Kolton, A B; Parrondo, J M R [Depto. Fisica Atomica, Molecular y Nuclear, and GISC, Universidad Complutense, 28040 Madrid (Spain); Anguita, J V [Instituto de Microelectronica de Madrid, CNM-CSIC, Isaac Newton 8, PTM, Tres Cantos, 28760 Madrid (Spain)

    2009-02-21

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 {mu}m triangles, which is the characteristic length scale set by domain wall width.

  5. Information locking in black holes

    CERN Document Server

    Smolin, J; Smolin, John; Oppenheim, Jonathan

    2005-01-01

    The black hole information loss paradox has plagued physicists since Hawking's discovery that black holes evaporate. The calculation suggests that information thrown into a black hole is evaporated away as thermal radiation, and is destroyed: either the unitary laws of quantum theory break down, or we must modify the laws of general relativity. Here we show that one of the central presumptions of the debate is incorrect. Ensuring that information not escape during the semi-classical evaporation process does not require that all the information remain in the black hole until the final stages of evaporation. By taking into account recent results in quantum information theory, we find that the amount of information that must remain in the black hole until the final stages of evaporation can be very small, even though the amount of information which has already radiated away is negligible. Quantum effects mean that information need not be additive: a small number of quanta can lock a large amount of information, ...

  6. Wormholes as black hole foils

    Science.gov (United States)

    Damour, Thibault; Solodukhin, Sergey N.

    2007-07-01

    We study to what extent wormholes can mimic the observational features of black holes. It is surprisingly found that many features that could be thought of as “characteristic” of a black hole (endowed with an event horizon) can be closely mimicked by a globally static wormhole, having no event horizon. This is the case for the apparently irreversible accretion of matter down a hole, no-hair properties, quasi-normal-mode ringing, and even the dissipative properties of black hole horizons, such as a finite surface resistivity equal to 377 Ohms. The only way to distinguish the two geometries on an observationally reasonable time scale would be through the detection of Hawking’s radiation, which is, however, too weak to be of practical relevance for astrophysical black holes. We point out the existence of an interesting spectrum of quantum microstates trapped in the throat of a wormhole which could be relevant for storing the information lost during a gravitational collapse.

  7. Force-feeding Black Holes

    CERN Document Server

    Begelman, Mitchell C

    2012-01-01

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few per cent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees K, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion (sigma) of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and sigma that resembles the empiri...

  8. Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation

    Science.gov (United States)

    Kaakkunen, J. J. J.; Paivasaari, K.; Vahimaa, P.

    2011-05-01

    We present a novel method to fabricate hole arrays by forming a four-beam interference pattern with two gratings. In this method a femtosecond laser beam is split into four and collected to interfere using two cascaded diffractive gratings. One benefit of this grating pair is that it is achromatic, because of the geometry of the grating pair, and therefore it is suitable for femtosecond ablation. Grating pairs were designed and fabricated for a standard Ti:sapphire femtosecond laser, with 800-nm central wavelength, so that the interference pattern generates holes with less than 1-μm diameter. Holes with this size diffract with a colorful visual appearance in the visible wavelength range and therefore these structures are suitable for security, authentication and decorative marking. We show that this method is suitable for fast ablation of hole arrays in both silicon and steel.

  9. Macroscopic black holes, microscopic black holes and noncommutative membrane

    Energy Technology Data Exchange (ETDEWEB)

    Li Miao [Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080 (China)

    2004-07-21

    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m{sup 2}/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes.

  10. Macroscopic black holes, microscopic black holes and noncommutative membrane

    International Nuclear Information System (INIS)

    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m2/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes

  11. Resource Letter BH-2: Black Holes

    CERN Document Server

    Gallo, Elena

    2008-01-01

    This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...

  12. Scrambling with matrix black holes

    Science.gov (United States)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  13. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  14. Liouvillian perturbations of black holes

    Science.gov (United States)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  15. Black holes and galaxy formation

    CERN Document Server

    Propst, Raphael J

    2010-01-01

    Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.

  16. Energy on black hole spacetimes

    CERN Document Server

    Corichi, Alejandro

    2012-01-01

    We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

  17. Disrupting Entanglement of Black Holes

    CERN Document Server

    Leichenauer, Stefan

    2014-01-01

    We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.

  18. Constraints on Black Hole Remnants

    CERN Document Server

    Giddings, Steven B

    1994-01-01

    One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain a problem barring what would be described in that theory as a strong coupling conspiracy. The relation to euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g. Reissner Nordstrom or others) is suppressed due to strong effective couplings....

  19. Massive Black Holes and Galaxies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  20. Calabi-Yau black holes

    Science.gov (United States)

    Shmakova, Marina

    1997-07-01

    We find the entropy of N=2 extreme black holes associated with general Calabi-Yau moduli space and the prepotential F=dABC(XAXBXC/X0). We show that for arbitrary dABC and black hole charges p and q the entropy-area formula depends on combinations of these charges and parameters dABC. These combinations are the solutions of a simple system of algebraic equations. We give a few examples of particular Calabi-Yau moduli spaces for which this system has an explicit solution. For the special case when one of the black hole charges is equal to zero (p0=0) the solution always exists.

  1. Black holes with vector hair

    Science.gov (United States)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  2. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  3. Implementing black hole as efficient power plant

    OpenAIRE

    Wei, Shao-Wen; Liu, Yu-Xiao

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine w...

  4. Astrophysical Black Holes: Evidence of a Horizon?

    Science.gov (United States)

    Colpi, Monica

    In this Lecture Note we first follow a short account of the history of the black hole hypothesis. We then review on the current status of the search for astrophysical black holes with particular attention to the black holes of stellar origin. Later, we highlight a series of observations that reveal the albeit indirect presence of supermassive black holes in galactic nuclei, with mention to forthcoming experiments aimed at testing directly the black hole hypothesis. We further focus on evidences of a black hole event horizon in cosmic sources.

  5. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  6. Black holes and warped spacetime

    International Nuclear Information System (INIS)

    Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime

  7. Falling into a black hole

    OpenAIRE

    Mathur, Samir D.

    2007-01-01

    String theory tells us that quantum gravity has a dual description as a field theory (without gravity). We use the field theory dual to ask what happens to an object as it falls into the simplest black hole: the 2-charge extremal hole. In the field theory description the wavefunction of a particle is spread over a large number of `loops', and the particle has a well-defined position in space only if it has the same `position' on each loop. For the infalling particle we find one definition of ...

  8. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  9. Asymptotic black hole quasinormal frequencies

    OpenAIRE

    Motl, Lubos; Neitzke, Andrew

    2003-01-01

    We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...

  10. Black-Hole and White-Hole Horizons in Superfluids

    CERN Document Server

    Volovik, G E

    2006-01-01

    Ripplons -- gravity-capillary waves on the free surface of a liquid or at the interfaces between two superfluids -- are the most favourable excitations for simulation of the general-relativistic effects related to horizons and ergoregions. The white-hole horizon for the ``relativistic'' ripplons at the surface of the shallow liquid is easily simulated using the kitchen-bath hydraulic jump. The same white-hole horizon is observed in quantum liquid -- superfluid 4He. The ergoregion for the ``non-relativistic'' ripplons is generated in the experiments with two sliding 3He superfluids. The common property experienced by all these ripplons is the Miles instability inside the ergoregion or horizon. Because of the universality of the Miles instability, one may expect that it could take place inside the horizon of the astrophysical black holes, if there is a preferred reference frame which comes from the trans-Planckian physics. If this is the case, the black hole would evapotate much faster than due to the Hawking r...

  11. Effects of Beam Size and Pulse Duration on the Laser Drilling Process

    CERN Document Server

    Afrin, Nazia; Chen, J K; Zhang, Yuwen

    2016-01-01

    A two-dimensional axisymmetric transient laser drilling model is used to analyze the effects of laser beam diameter and laser pulse duration on the laser drilling process. The model includes conduction and convection heat transfer, melting, solidification and vaporization, as well as material removal resulting from the vaporization and melt ejection. The validated model is applied to study the effects of laser beam size and pulse duration on the geometry of the drilled hole. It is found that the ablation effect decrease with the increasing beam diameter due to the effect of increased vaporization rate, and deeper hole is observed for the larger pulse width due to the higher thermal ablation efficiency.

  12. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  13. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    Science.gov (United States)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  14. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  15. Beam-dump/diagnostics box for a 10-kA 50-MeV, 50-ns electron beam

    International Nuclear Information System (INIS)

    We have developed a dump for the ATA beam that consists of a series of carbon plates whose collective thickness totals approximately 1.5 ranges at 50 MeV. The energy dissipated in the plates is radiated to a water-cooled wall. The dump is designed to dissipate up to 175 kW of average power. A small hole along the axis of the plates forms a beamlet that passes through an energy analyzer. The analyzer consists of a 600 bending magnet and two high-sensitivity beam-current/position monitors. The ratio of the beamlet current to full current is used to estimate the beam emittance

  16. Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets

    CERN Document Server

    Weng, S M; Sheng, Z M

    2014-01-01

    The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.

  17. The first massive black holes

    OpenAIRE

    Volonteri, Marta

    2012-01-01

    I briefly outline recent theoretical developments on the formation of the first massive black holes (MBHs) that may grow into the population of MBHs powering quasars and inhabiting galactic centers today. I also touch upon possible observational tests that may give insights on what the properties of the first MBHs were.

  18. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  19. Extremal Higher Spin Black Holes

    CERN Document Server

    Bañados, Máximo; Faraggi, Alberto; Jottar, Juan I

    2015-01-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require nor implies the existence of supersymmetry, we exemplify its consequences in the context of sl(3|2) + sl(3|2) Chern-Simons theory. Remarkably, while as usual not all extremal solutions preserve supersymmetries, we find that the higher spin setup allows for non-extremal supersymmetric black hole solutio...

  20. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  1. Improving accuracy of holes honing

    Directory of Open Access Journals (Sweden)

    Ivan М. Buykli

    2015-03-01

    Full Text Available Currently, in precision engineering industry tolerances for linear dimensions and tolerances on shape of surfaces of processing parts are steadily tightened These requirements are especially relevant in processing of holes. Aim of the research is to improve accuracy and to enhance the technological capabilities of holes honing process and, particularly, of blind holes honing. Based on formal logic the analysis of formation of processing errors is executed on the basis of consideration of schemes of irregularity of dimensional wear and tear along the length of the cutting elements. With this, the possibilities of compensating this irregularities and, accordingly, of control of accuracy of processing applied to the honing of both throughout and blind holes are specified. At the same time, a new method of honing is developed, it is protected by the patent of Ukraine for invention. The method can be implemented both on an existing machine tools at insignificant modernization of its system of processing cycle control and on newly designed ones.

  2. Black holes in brane worlds

    Indian Academy of Sciences (India)

    M S Modgil; S Panda; S Sengupta

    2004-03-01

    A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  3. Information retrieval from black holes

    CERN Document Server

    Lochan, Kinjalk; Padmanabhan, T

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semi-classically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation non-thermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show ...

  4. Close encounters of black holes

    CERN Document Server

    Giulini, D

    2003-01-01

    This is an introduction into the problem of how to set up black hole initial-data for the matter-free field equations of General Relativity. The approach is semi-pedagogical and addresses a more general audience of astrophysicists and students with no specialized training in General Relativity beyond that of an introductory lecture.

  5. Black Holes: A Selected Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  6. Regular Black Holes with Cosmological Constant

    Institute of Scientific and Technical Information of China (English)

    MO Wen-Juan; CAI Rong-Gen; SU Ru-Keng

    2006-01-01

    We present a class of regular black holes with cosmological constant Λ in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the Λ term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole, and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.

  7. Brief History of Black-Holes

    CERN Document Server

    Berman, M S

    2004-01-01

    We show that the gravitational collapse of a black-hole terminates in the birth of a white-hole, due to repulsive gravitation (antigravitation); in particular, the infinite energy density singularity does NOT occur.

  8. Implementing black hole as efficient power plant

    CERN Document Server

    Wei, Shao-Wen

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.

  9. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  10. An Introduction to Black Hole Evaporation

    OpenAIRE

    Traschen, Jennie

    2000-01-01

    Classical black holes are defined by the property that things can go in, but don't come out. However, Stephen Hawking calculated that black holes actually radiate quantum mechanical particles. The two important ingredients that result in back hole evaporation are (1) the spacetime geometry, in particular the black hole horizon, and (2) the fact that the notion of a "particle" is not an invariant concept in quantum field theory. These notes contain a step-by-step presentation of Hawking's calc...

  11. Modified dispersion relations and black hole physics

    OpenAIRE

    Ling, Yi; Hu, Bo; Li, Xiang

    2005-01-01

    A modified formulation of energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such modification will give corrections to both the temperature and the entropy of black holes. In particular this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaching the Planck scale. It can prevent black holes from total evaporation, as a result pr...

  12. Black-hole formation from stellar collapse

    International Nuclear Information System (INIS)

    I review the end-state of massive stellar evolution, following the evolution of these massive stars from the onset of collapse through the formation of a compact remnant and the possible supernova or hypernova explosion. In particular, I concentrate on the formation of black holes from stellar collapse: the fraction of stars that form black holes, the black-hole mass distribution and the velocities these black-hole remnants may receive during their formation process

  13. Rotating Black Holes in Higher Dimensions

    CERN Document Server

    Kleihaus, Burkhard; Navarro-Lerida, Francisco

    2007-01-01

    The properties of higher-dimensional black holes can differ significantly from those of black holes in four dimensions, since neither the uniqueness theorem, nor the staticity theorem or the topological censorship theorem generalize to higher dimensions. We first discuss black holes of Einstein-Maxwell theory and Einstein-Maxwell-Chern-Simons theory with spherical horizon topology. Here new types of stationary black holes are encountered. We then discuss nonuniform black strings and present evidence for a horizon topology changing transition.

  14. Rotating Black Holes in Higher Dimensions

    Science.gov (United States)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2008-03-01

    The properties of higher-dimensional black holes can differ significantly from those of black holes in four dimensions, since neither the uniqueness theorem, nor the staticity theorem or the topological censorship theorem generalize to higher dimensions. We first discuss black holes of Einstein-Maxwell theory and Einstein-Maxwell-Chern-Simons theory with spherical horizon topology. Here new types of stationary black holes are encountered. We then discuss nonuniform black strings and present evidence for a horizon topology changing transition.

  15. Supermassive Black Holes and Their Environments

    OpenAIRE

    Colberg, Joerg M.; Di Matteo, Tiziana

    2008-01-01

    We make use of the first high--resolution hydrodynamic simulations of structure formation which self-consistently follows the build up of supermassive black holes introduced in Di Matteo et al. (2007) to investigate the relation between black holes (BH), host halo and large--scale environment. There are well--defined relations between halo and black hole masses and between the activities of galactic nuclei and halo masses at low redshifts. A large fraction of black holes forms anti--hierarchi...

  16. Black hole growth in hierarchical galaxy formation.

    OpenAIRE

    Malbon, R. K.; Baugh, C M; Frenk, C. S.; Lacey, C. G.

    2007-01-01

    We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on Lambda-CDM proposed by Baugh et al. (2005). Our black hole model has one free parameter, which we set by matching the observed zeropoint of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of ...

  17. Energy conservation for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2004-01-01

    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures o...

  18. Noncommutative geometry inspired Schwarzschild black hole

    OpenAIRE

    Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2005-01-01

    We investigate the behavior of a noncommutative radiating Schwarzschild black hole. It is shown that coordinate noncommutativity cures usual problems encountered in the description of the terminal phase of black hole evaporation. More in detail, we find that: the evaporation end-point is a zero temperature extremal black hole even in the case of electrically neutral, non-rotating, objects; there exists a finite maximum temperature that the black hole can reach before cooling down to absolute ...

  19. Residual stress field of ballised holes

    International Nuclear Information System (INIS)

    Ballising, involving pushing a slightly over-sized ball made of hard material through a hole, is a kind of cold working process. Applying ballising process to fastener holes produces compressive residual stress on the edge of the holes, and therefore increases the fatigue life of the components or structures. Quantification of the residual stress field is critical to define and precede the ballising process. In this article, the ballised holes are modeled as cold-expanded holes. Elastic-perfectly plastic theory is employed to analyze the holes with cold expansion process. For theoretical simplification, an axially symmetrical thin plate with a cold expanded hole is assumed. The elasticplastic boundaries and residual stress distribution surrounding the cold expanded hole are derived. With the analysis, the residual stress field can be obtained together with actual cold expansion process in which only the diameters of hole before and after cold expansion need to be measured. As it is a non-destructive method, it provides a convenient way to estimate the elastic-plastic boundaries and residual stresses of cold worked holes. The approach is later extended to the case involving two cold-worked holes. A ballised hole is looked upon as a cold expanded hole and therefore is investigated by the approach. Specimens ballised with different interference levels are investigated. The effects of interference levels and specimen size on residual stresses are studied. The overall residual stresses of plates with two ballised holes are obtained by superposing the residual stresses induced on a single ballised hole. The effects of distance between the centers of the two holes with different interference levels on the residual stress field are revealed

  20. Extremal higher spin black holes

    Science.gov (United States)

    Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.

    2016-04-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.

  1. Information retrieval from black holes

    Science.gov (United States)

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-08-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.

  2. Signatures of black holes at the LHC

    OpenAIRE

    Cavaglia, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-01-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  3. 30 CFR 77.1010 - Collaring holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Collaring holes. 77.1010 Section 77.1010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with...

  4. Micro black holes in the laboratory

    CERN Document Server

    Bleicher, Marcus; Sprenger, Martin; Winstanley, Elizabeth

    2011-01-01

    The possibility of creating microscopic black holes is one of the most exciting predictions for the LHC, with potentially major consequences for our current understanding of physics. We briefly review the theoretical motivation for micro black hole production, and our understanding of their subsequent evolution. Recent work on modelling the radiation from quantum-gravity-corrected black holes is also discussed.

  5. Scalar field radiation from dilatonic black holes

    Science.gov (United States)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  6. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS), whic

  7. Event horizons of two Schwarzchild black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, N.T.

    1988-06-01

    The problem of two Schwarzchild black holes, one much smaller than the other, is investigated by an approximate analytic method. The critical separation between the black holes at which their event horizons join is found for two cases, (2) time-symmetric initial data, and (b) the small black hole falls from rest at infinity.

  8. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years. Consequent

  9. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…

  10. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    A. Castro; J.M. Lapan; A. Maloney; M.J. Rodriguez

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event h

  11. Resource Letter BH-1: Black Holes.

    Science.gov (United States)

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  12. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    CERN Document Server

    Macedo, Caio F B; Crispino, Luís C B

    2015-01-01

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  13. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  14. An intermediate-mass black hole candidate in M51?

    Science.gov (United States)

    Earnshaw, H. M.

    2016-05-01

    We present the current results of an investigation into M51 ULX-7, using archival data from XMM-Newton, Chandra and NuSTAR, and optical and radio data from HST and VLA. The source has a consistently hard power-law X-ray spectrum and high short-term variability. This is unusual variability behaviour for a ULX, as we would expect highly variable ULXs to have soft energy spectra. The power spectrum features a break at ˜ 10-3 Hz, from low frequency spectral index α=0.1 to high frequency spectral index α=0.8, analogous to the low frequency break found in power spectra of black holes accreting in the low/hard state. We do not observe a corresponding high frequency break, however taking the white noise level as a frequency lower limit of the break, we can calculate a black hole mass upper limit of 9.12×104 M⊙, assuming that the ULX is in the low/hard state. While there is no radio detection, we find a flux density upper limit of 87 μJy/beam. Using the X-ray/radio fundamental plane, we calculate a black hole mass upper limit of 1.95×105 M⊙. Therefore, this ULX is consistent with being an IMBH accreting in the low/hard state.

  15. Beam-Wall interaction in the LHC liner

    CERN Document Server

    Mostacci, A

    2001-01-01

    The beam pipe foreseen for the LHC is rather unconventional. To shield the cold bore of the magnets from the synchrotron radiation emitted by protons at 7 TeV, a beam screen (the so called "liner") has been introduced practically along all the machine. The present design of the liner is a compromise among beam stability issues, vacuum requirements, heat load on the cold bore, electron cloud effects and mechanical constraints. Three main potential sources of beam energy loss in the actual LHC liner are addressed, namely the interaction with the pumping holes, the (sawtooth) surface corrugation and the effect of an azimuthally inhomogeneous metallic beam pipe modelling the high resistivity of the welding. The losses are estimated through a detailed electromagnetic analysis (by means of standard theories) seeking for analytical expressions of electromagnetic fields and/or coupling impedance. An analytical (or semi-analytical) approach is considered for each problem, to better understand the relevant parameters t...

  16. Residual Stress Evaluation by the Hole-Drilling Method with Eccentric Hole

    OpenAIRE

    Švaříček, Karel; Vlk, Miloš

    2007-01-01

    The hole drilling method is the commonest method for residual stresses measurement. This method usually assumes the centric hole within the strain gauge rosette. However, the hole is never exactly located centric with the centre of the strain gauge rosette. In such a case it is committing some inaccuracy at the evaluated residual stresses. This paper interprets the value of this inaccuracy and provides an extension of the hole drilling method to case with the eccentric hole by D. Vangi [1].

  17. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  18. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  19. Black Hole Radiation and Volume Statistical Entropy

    CERN Document Server

    Rabinowitz, M

    2005-01-01

    The simplest possible equations for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh are can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius RH

  20. Toroidal Horizons in Binary Black Hole Mergers

    OpenAIRE

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...

  1. Spectral Hole Burning via Kerr Nonlinearity

    Science.gov (United States)

    Khan, Anwar Ali; Abdul Jabar, M. S.; Jalaluddin, M.; Bacha, Bakht Amin; Iftikhar, Ahmad

    2015-10-01

    Spectral hole burning is investigated in an optical medium in the presence of Doppler broadening and Kerr nonlinearity. The Kerr nonlinearity generates coherent hole burning in the absorption spectrum. The higher order Kerr nonlinearity enhances the typical lamb dip of the hole. Normal dispersion in the hole burning region while Steep anomalous dispersion between the two hole burning regions also enhances with higher order Kerr effect. A large phase shift creates large delay or advancement in the pulse propagation while no distortion is observed in the pulse. These results provide significant steps to improve optical memory, telecom devices, preservation of information and image quality. Supported by Higher Education Commission (HEC) of Pakistan

  2. Black holes under external influence

    Indian Academy of Sciences (India)

    Jiří Bičák

    2000-10-01

    The work on black holes immersed in external fields is reviewed in both test-field approximation and within exact solutions. In particular we pay attention to the effect of the expulsion of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating black holes accelerated by strings.

  3. Stationary Scalar Clouds Around Rotating Black Holes

    CERN Document Server

    Hod, Shahar

    2012-01-01

    Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stationary scalar field dark matter distributions surrounding rapidly rotating black holes.

  4. On coupling impedances of pumping holes

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  5. An Optical Analog of a Black Holes

    CERN Document Server

    Royston, A; Royston, Andrew; Gass, Richard

    2002-01-01

    Using media with extremely low group velocities one can create an optical analog of a curved space-time. Leonhardt and Piwnicki have proposed that a vortex flow will act as an optical black hole. We show that although the Leonhardt - Piwnicki flow has an orbit of no return and an infinite red-shift surface, it is not a true black hole since it lacks a null hypersurface. However a radial flow will produce a true optical black hole that has a Hawking temperature and obeys the first law of black hole mechanics. By combining the Leonhardt - Piwnicki flow with a radial flow we obtain the analog of the Kerr black hole.

  6. Superradiance by mini black holes with mirror

    CERN Document Server

    Lee, Jong-Phil

    2011-01-01

    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger angular momentum of the black hole. Possibilities of the forming the black-hole bomb at the LHC are discussed.

  7. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  8. Quantum information erasure inside black holes

    CERN Document Server

    Lowe, David A

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  9. Modeling Flows Around Merging Black Hole Binaries

    CERN Document Server

    van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...

  10. From Schwinger Balls to Black Holes

    CERN Document Server

    Allahbakhshi, Davood

    2016-01-01

    We have shown intriguing similarities between Schwinger balls and black holes. By considering black hole as a gravitational Schwinger ball, we have derived the Bekenstein-Hawking entropy and the first law of black hole thermodynamics as a direct result of the inverse area dependence of the gravitational force. It is also shown that the Planck length is nothing but the gravitational Schwinger length. The relation between the mass and the radius of the black hole is derived by considering the black hole as a Schwinger ball of gravitons. We show how the evolution of the entanglement entropy of the black hole, as Page introduced many years ago, can be obtained by including gravitons in the black hole's evaporation process and using a deformed EPR mechanism. Also this deformed EPR mechanism can solve the information paradox. We show how naive simultaneous usage of Page's argument and equivalence principle leads to firewall problem.

  11. Plasma electron-hole kinematics: momentum conservation

    CERN Document Server

    Hutchinson, I H

    2016-01-01

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, that behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside it, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  12. Symmetries of supergravity black holes

    CERN Document Server

    Chow, David D K

    2008-01-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Stackel tensors. These are induced by rank-2 Killing-Stackel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric, and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the "physical" metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity, but also consider certain other solutions.

  13. Massive BTZ black hole thermodynamics

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2016-01-01

    Motivated by large applications of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometric as well as thermodynamic structure of the solutions through canonical ensemble. Despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Next, we regard varying cosmological constant and examine Van der Waals like behavior of the solutions in the extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields uniform picture. For neutral case, it will be shown that generalization to massive gravity leads to presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly on...

  14. Looking inside a black hole

    International Nuclear Information System (INIS)

    The cosmic censorship conjecture posits that singularities forming to the future of a regular Cauchy surface are hidden by an event horizon. Consequently any topological structures will ultimately collapse within the horizon of a black hole and so no observer can actively probe them classically. We consider here a quantum analogue of this problem, in which we compare the transition rates of an Unruh–DeWitt detector placed outside the horizon of an eternal BTZ black hole and its associated geon counterpart. We find the transition rates differ, with the latter being time-dependent, implying that we are indeed able to probe the structure of the singularity from outside the horizon. (fast track communications)

  15. Black hole with quantum potential

    Science.gov (United States)

    Ali, Ahmed Farag; Khalil, Mohammed M.

    2016-08-01

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  16. Black holes in magnetic monopoles

    Science.gov (United States)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.

  17. Cosmological Parameters and Black Holes

    CERN Document Server

    Harun-al-Rashid, S M

    2002-01-01

    This work is related to different questions within cosmology. The principal idea herein is to develop cosmological knowledge making use of the analyses of observational data in order to find the values of the matter density Omega_m and vacuum energy density Omega_Lambda. Data fitting is carried out using two statistical methods, chi^2 and maximum likelihood. The data analysis exhibits that a low density and flat Universe is strongly favoured. Applying the Omega_m value found for clusters of galaxies, we demonstrate that clusters have very little room for baryonic dark matter. An upper limit to the small but non-negligible sum of baryonic dark matter and galaxy mass can be estimated, requiring the use of special statistics. A Toroidal Black Hole (TBH) study, in contrast to the Spherical Black Hole (SBH), shows that the TBH can be used as an important tool in explaining AGN phenomena.

  18. Black holes in magnetic monopoles

    Science.gov (United States)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1992-04-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs-field vacuum expectation value v is less than or equal to a critical value vcr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordström solution. For vsolutions which are singular at r=0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordström solutions are discussed.

  19. Black Holes in Magnetic Monopoles

    CERN Document Server

    Lee, K; Weinberg, Erick J; Weinberg, Erick J.

    1992-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs vacuum expectation value $v$ is less than or equal to a critical value $v_{cr}$, which is of the order of the Planck mass. In the limiting case the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For $v

  20. Black Holes at the LHC

    CERN Document Server

    Kanti, Panagiota

    2008-01-01

    In these two lectures, we will address the topic of the creation of small black holes during particle collisions in a ground-based accelerator, such as LHC, in the context of a higher-dimensional theory. We will cover the main assumptions, criteria and estimates for their creation, and we will discuss their properties after their formation. The most important observable effect associated with their creation is likely to be the emission of Hawking radiation during their evaporation process. After presenting the mathematical formalism for its study, we will review the current results for the emission of particles both on the brane and in the bulk. We will finish with a discussion of the methodology that will be used to study these spectra, and the observable signatures that will help us identify the black-hole events.

  1. Black Hole with Quantum Potential

    CERN Document Server

    Ali, Ahmed Farag

    2015-01-01

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which introduces a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. It also ameliorates the black hole singularity and the information loss problem.

  2. Extremal Black Holes as Qudits

    CERN Document Server

    Rios, Michael

    2011-01-01

    We extend the black hole/qudit correspondence by identifying five and six-dimensional 1/2-BPS black string and hole charge vectors in N=8 and N=2 magic supergravities with qubits and qutrits over composition algebras. In D=6, this is accomplished via Hopf fibrations, which map qubits over composition algebras to rank one elements of Jordan algebras of degree two. An analogous procedure maps qutrits over composition algebras to D=5 charge vectors, which are rank one elements of Jordan algebras of degree three. In both cases, the U-duality groups are interpreted as qudit SLOCC transformation groups. We provide explicit gates for such transformations and study their applications in toroidally compactified M-theory.

  3. Black Holes with Proca Hair

    CERN Document Server

    Fan, Zhong-Ying

    2016-01-01

    In this paper, we consider Einstein gravity coupled to a Proca field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+ m^2 A^2/2 + \\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first laws of the extremal black holes are modified by a one form associated with the Proca. In particular, due to the existence of the non-minimal coupling, the Proca forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first laws. For a minimally coupled theory with $\\Lambda_0\

  4. Black hole with quantum potential

    Directory of Open Access Journals (Sweden)

    Ahmed Farag Ali

    2016-08-01

    Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  5. "Twisted" black holes are unphysical

    CERN Document Server

    Gray, Finnian; Schuster, Sebastian; Visser, Matt

    2016-01-01

    So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.

  6. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  7. Black Hole Thermodynamics and Electromagnetism

    CERN Document Server

    Sidharth, B G

    2005-01-01

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  8. Black holes and the Universe

    International Nuclear Information System (INIS)

    The superstrong gravitational field is the protagonist of this book. This gravitation is the power that warps space and time into a funnel and generates a black hole when a cosmic body undergoes catastrophic collapse. This superstrong gravitation reigns in the Universe, controlling the motion of infinitely large masses. The book describes natural phenomena caused by superstrong gravitation but perceived as nothing short of miracles, but it also explains how these miracles are studied and understood. (author)

  9. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  10. Complexity, Action, and Black Holes

    CERN Document Server

    Brown, Adam; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2015-01-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are fastest computers in nature.

  11. Black Hole Thermodynamics and Electromagnetism

    OpenAIRE

    Sidharth, Burra G.

    2005-01-01

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in...

  12. Van der Waals black hole

    International Nuclear Information System (INIS)

    In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters) all three weak, strong, and dominant energy conditions

  13. Geometric obstruction of black holes

    CERN Document Server

    Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N. R.

    2006-01-01

    We study the global structure of Lorentzian manifolds with partial sectional curvature bounds. In particular, we prove completeness theorems for homogeneous and isotropic cosmologies as well as static spherically symmetric spacetimes. The latter result is used to rigorously prove the absence of static spherically symmetric black holes in more than three dimensions. The proofs of these new results are preceded by a detailed exposition of the local aspects of sectional curvature bounds for Lorentzian manifolds, which extends and strengthens previous constructions.

  14. Gayge Fields and Black Holes

    Science.gov (United States)

    Gal'Tsov, D. V.

    1987-10-01

    Exact solutions of the Einstein-Yang-Mills and Einstein-Yang-Mills-Higgs systems of equations are examined, which describe Black Holes, with gluonic and scalar hairs. A simple deduction of these equations, based on the use of the gayge symmetry is given. The transition to a nonsingular gayge for gravitating Wu - Yang monopoles, in which the singularity is headen inside the horizon, is discussed. Bibliography: 11

  15. Complexity, action, and black holes

    Science.gov (United States)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  16. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  17. Hair of astrophysical black holes

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    The "no hair" theorem is not applicable to black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N_B = e \\Phi_\\infty /(\\pi c \\hbar), where \\Phi_\\infty is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. The black hole's magnetosphere subsequently relaxes to the split monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that...

  18. Quantum Tunneling in Black Holes

    CERN Document Server

    Majhi, Bibhas Ranjan

    2011-01-01

    This thesis is focussed towards the applications of the quantum tunneling mechanism to study black holes. Here we give a general frame work of the existing tunneling mechanism, both the radial null geodesic and Hamilton Jacobi methods. On the radial null geodesic method side, we study the modifications to the tunneling rate, Hawking temperature and the Bekenstein- Hawking area law by including the back reaction as well as non-commutative effects in the space-time. A reformulation of the Hamilton-Jacobi (HJ) method is first introduced. Based on this, a close connection between the quantum tunneling and the gravitational anomaly mechanisms to discuss Hawking effect, is put forwarded. An interesting advantage of this reformulated HJ method is that one can get directly the emission spectrum from the event horizon of the black hole, which was missing in the earlier literature. Also, the quantization of the entropy and area of a black hole is discussed in this method. Another part of the thesis is the introduction ...

  19. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223

  20. Glory scattering by black holes

    International Nuclear Information System (INIS)

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π2lambda-1B/sub g/ 2(dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  1. Entanglement Entropy of Black Holes

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  2. Soft Hair on Black Holes

    CERN Document Server

    Hawking, Stephen W; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the ho...

  3. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  4. Entropy of Quantum Black Holes

    Directory of Open Access Journals (Sweden)

    Romesh K. Kaul

    2012-02-01

    Full Text Available In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons are described by a SU(2 Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U(1 gauge theory which is just a gauged fixed version of the SU(2 theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU(2 formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U(1 framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.

  5. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  6. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  7. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  8. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  9. Development of a quantitative method for the characterization of hole quality during laser trepan drilling of high-temperature alloy

    Science.gov (United States)

    Zhang, Hongyu; Zhou, Ming; Wang, Yunlong; Zhang, Xiangchao; Yan, Yu; Wang, Rong

    2016-02-01

    Short-pulsed lasers are of significant industrial relevance in laser drilling, with an acceptable compromise between accuracy and efficiency. However, an intensive research with regard to qualitative and quantitative characterization of the hole quality has rarely been reported. In the present study, a series of through holes were fabricated on a high-temperature alloy workpiece with a thickness of 3 mm using a LASERTEC 80 PowerDrill manufacturing system, which incorporated a Nd:YAG millisecond laser into a five-axis positioning platform. The quality of the holes manufactured under different laser powers (80-140 W) and beam expanding ratios (1-6) was characterized by a scanning electron microscope associated with an energy-dispersive X-ray analysis, focusing mainly on the formation of micro-crack and recast layer. Additionally, the conicity and circularity of the holes were quantitatively evaluated by the apparent radius, root-mean-square deviation, and maximum deviation, which were calculated based on the extraction of hole edge through programming with MATLAB. The results showed that an amount of melting and spattering contents were presented at the entrance end and the exit end of the holes, and micro-cracks and recast layer (average thickness 15-30 µm) were detected along the side wall of the holes. The elemental composition of the melting and spattering contents and the recast layer was similar, with an obvious increase in the contents of O, Nb, and Cr and a great reduction in the contents of Fe and Ni in comparison with the bulk material. Furthermore, the conicity and circularity evaluation of the holes indicated that a laser power of 100 W and a beam expanding ratio of 4 or 5 represented the typical optimal drilling parameters in this specific experimental situation. It is anticipated that the quantitative method developed in the present study can be applied for the evaluation of hole quality in laser drilling and other drilling conditions.

  10. Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation

    Science.gov (United States)

    Zhou, C.; Hutchinson, I. H.

    2016-08-01

    The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of "jetting."

  11. Hawking Radiation from Regular Black Hole as a Possible Probe for Black Hole Interior Structure

    CERN Document Server

    Deng, Yanbin

    2016-01-01

    The notion of the black hole singularity and the proof of the singularity theorem in general relativity were considered great successes in gravitational physics. On the other hand they also presented deep puzzles to physicists. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the interior, including the singularity of the black hole from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts to establish a tractable and understandable interior structure for black hole and to avoid the singularity inside the black hole body. A method is needed to check the correctness of the new constructions of black holes. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The r...

  12. Shapes of rotating nonsingular black hole shadows

    Science.gov (United States)

    Amir, Muhammed; Ghosh, Sushant G.

    2016-07-01

    It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .

  13. Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners

    Directory of Open Access Journals (Sweden)

    Cho Dae Seung

    2015-04-01

    Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.

  14. The Revival of White Holes as Small Bangs

    OpenAIRE

    Retter, Alon; Heller, Shlomo

    2011-01-01

    Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the "death of while holes". So far,...

  15. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    Science.gov (United States)

    Yu, Changhai; Deng, Aihua; Tian, Ye; Li, Wentao; Wang, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Liu, Jiansheng

    2016-08-01

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside the overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.

  16. Susceptibilities from a black hole engineered EoS with a critical point

    CERN Document Server

    Portillo, Israel

    2016-01-01

    Currently at the Beam Energy Scan at RHIC experimental efforts are being made to find the QCD critical point. On the theoretical side, the behavior of higher-order susceptibilities of the net-baryon charge from Lattice QCD at $\\mu_{_B}\\!=\\!0$ may allow us to estimate the position of the critical point in the QCD phase diagram. However, even if the series expansion continues to higher-orders, there is always the possibility to miss the critical point behavior due to truncation errors. An alternative approach is to use a black hole engineered holographic model, which displays a critical point at large densities and matches lattice susceptibilities at $\\mu_{_B}\\!=\\!0$. Using the thermodynamic data from this black hole model, we obtain the freeze-out points extracted from the net-protons distribution measured at STAR and explore higher order fluctuations at the lowest energies at the beam energy scan to investigate signatures of the critical point.

  17. holes

    Directory of Open Access Journals (Sweden)

    X. Barcons

    2007-01-01

    Full Text Available La acreción es el mecanismo dominante en el crecimiento de los agujeros negros presentes en los centros galácticos. Los rastreos del cielo a longitudes de onda de rayos X trazan la historia de esta acreción en el Universo y muestran que la mayor parte de ella ocurre en objetos oscurecidos. En este artículo presentamos algunos resultados obtenidos con el XMM-Newton Medium Sensitivity survey (XMS, que investiga la población de fuentes que produce aproximadamente la mitad más brillante del fondo de rayos X por debajo de 10 keV. Hacemos énfasis en el papel que juegan los telescopios de gran apertura, como GTC, en poner al descubierto el crecimiento de agujeros negros en objetos oscurecidos

  18. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  19. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  20. String condensation: Nemesis of Black Holes?

    CERN Document Server

    Hewitt, Michael

    2015-01-01

    This paper puts forward a conjecture that there are no black holes in M theory. We will show that a mechanism to prevent black hole formation is needed in 4 dimensions to make string theory a viable high energy model of quantum gravity. Black hole formation may be averted by a gravity regulation mechanism based on string condensation. In this scenario, black holes are replaced by `hot holograms' that form during gravitational collapse. The geometric conditions based on the properties of free thermalon solutions that are proposed for conversion to a high temperature hologram to occur, however, are local and generic in dimension and could apply throughout M space. This idea can be applied to resolve the problems presented by the process of black hole evaporation, which appears to be inconsistent with quantum information theory. Whereas, in the conventional view, black holes are real and firewalls are probably a chimera, in the scenario proposed here that situation would be reversed.

  1. What does a black hole look like?

    CERN Document Server

    Bailyn, Charles D

    2014-01-01

    Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...

  2. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  3. Design of Flywheel with a Moving Hole

    Directory of Open Access Journals (Sweden)

    Jihad S. Addasi

    2005-01-01

    Full Text Available A special apparatus has been designed to study linear, circular, and rotational motions. This apparatus consists of a flywheel, rotating in horizontal plane by the mean of a hanging mass. This flywheel carries a hole, which can be moved on a radial rail. This hole can be fixed at desired distance from the flywheel axis. Putting a metallic sphere on this hole gives centripetal motion with certain radius to this sphere. The moving hole acts by normal force on the metallic sphere and moves it in circular path. The increasing angular velocity of the metallic sphere has its maximum value when the sphere leaves the hole. Theoretical and experimental analysis for this apparatus shows that the centripetal acceleration depends only on the geometry of both sphere and hole. The designed apparatus has a very simple design and does not have any undesired forces.

  4. Kerr-Newman Black Hole In Quintessence

    CERN Document Server

    Xu, Zhaoyi

    2016-01-01

    We study the Kerr-Newman solutions of the Einstein-Maxwell equation in quintessence field around a black hole by Newman-Janis algorithm. From the horizon structure and stationary limit surfaces, we find that Kerr-Newman black hole exists an ergosphere with $r^{+} < r < r^{L}$, which is related to the parameters $\\omega$ and $\\alpha$. We obtain the general expression between $\\alpha$ and $\\omega$ if the cosmological horizon exists, in which for $\\omega=-1/2$, $\\alpha\\leq\\sqrt{2}/5$, and for $\\omega=-2/3$, $\\alpha\\leq 1/6$. For $\\omega=-2/3$, the result is same with rotational black hole in quintessence. The singularity of the black holes is the same with that of Kerr black hole. We also discuss the rotation velocity of the black holes on the equatorial plane for $\\omega =-2/3$ and $-1/2$.

  5. Monitoring Holes in the Sun's Corona

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    Coronal holes are where the fast solar wind streams out of the Suns atmosphere, sending charged particles on rapid trajectories out into the solar system. A new study examines how the distribution of coronal holes has changed over the last 40 years.Coronal holes form where magnetic field lines open into space (B) instead of looping back to the solar surface (A). [Sebman81]Source of the Fast Solar WindAs a part of the Suns natural activity cycle, extremely low-density regions sometimes form in the solar corona. These coronal holes manifest themselves as dark patches in X-ray and extreme ultraviolet imaging, since the corona is much hotter than the solar surface that peeks through from underneath it.Coronal holes form when magnetic field lines open into space instead of looping back to the solar surface. In these regions, the solar atmosphere escapes via these field lines, rapidly streaming away from the Suns surface in whats known as the fast solar wind.Coronal Holes Over Space and TimeAutomated detection of coronal holes from image-based analysis is notoriously difficult. Recently, a team of scientists led by Kenichi Fujiki (ISEE, Nagoya University, Japan) has developed an automated prediction technique for coronal holes that relies instead on magnetic-field data for the Sun, obtained at the National Solar Observatorys Kitt Peak between 1975 and 2014. The team used these data to produce a database of 3335 coronal hole predictions over nearly 40 years.Latitude distribution of 2870 coronal holes (each marked by an x; color indicates polarity), overlaid on the magnetic butterfly map of the Sun. The low-latitude coronal holes display a similar butterfly pattern, in which they move closer to the equator over the course of the solar cycle. Polar coronal holes are more frequent during solar minima. [Fujiki et al. 2016]Examining trends in the coronal holes distribution in latitude and time, Fujiki and collaborators find a strong correlation between the total area covered

  6. Charge Fluctuations of an Uncharged Black Hole

    CERN Document Server

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations are exponentially suppressed. For black holes lighter than this, the Schwarzschild black hole is unstable under charge fluctuations for almost every possible size of the confining vessel. The stability regime and the fluctuations are calculated through the second derivative of the entropy with respect to the charge. The expression obtained contains many puzzling terms besides the expected thermodynamical fluctuations: terms corresponding to instabilities that do not depend on the specific value of charge of the charge car...

  7. The thermal radiation from dynamic black holes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.

  8. Weighing black holes in the universe

    Institute of Scientific and Technical Information of China (English)

    WU Xue-bing

    2006-01-01

    The determination of the mass of black holes in our universe is crucial to understand their physics nature but is a great challenge to scientists.In this paper Ⅰ briefly review some methods that are currently used to estimate the mass of black holes,especially those in X-ray binary systems and in galactic nuclei.Our recent progress in improving the mass estimates of supermasssive black holes in active galactic nuclei by involving some empirical relations is presented.Finally Ⅰ point out the similarities and common physics in Galactic black hole X-ray binaries and active galactic nuclei,and demonstrate that the black hole mass estimation is very much helpful to understand the accretion physics around black holes.

  9. Reversible Carnot cycle outside a black hole

    Institute of Scientific and Technical Information of China (English)

    Deng Xi-Hao; Gao Si-Jie

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.

  10. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  11. Black hole chemistry: thermodynamics with Lambda

    CERN Document Server

    Kubiznak, David; Teo, Mae

    2016-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...

  12. Boosting jet power in black hole spacetimes

    CERN Document Server

    Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T

    2010-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  13. Boosting jet power in black hole spacetimes

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  14. Black Holes and Abelian Symmetry Breaking

    CERN Document Server

    Chagoya, Javier; Tasinato, Gianmassimo

    2016-01-01

    Black hole configurations offer insights on the non-linear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarization, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solu...

  15. Information Retention by Stringy Black Holes

    CERN Document Server

    AUTHOR|(CDS)2108556

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  16. Instability of ultra-spinning black holes

    Energy Technology Data Exchange (ETDEWEB)

    Emparan, Roberto [Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA) (Spain); Myers, Robert C. [Perimeter Institute for Theoretical Physics, 35 King Street North, Waterloo, Ontario N2J 2W9 (Canada) and Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)]. E-mail: rmyers@perimeterinstitute.ca

    2003-09-01

    It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)

  17. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  18. Peculiarities of profile formation for orifices fabricated by electron beam drilling at gun pulsed supply with trapezoidal voltage

    International Nuclear Information System (INIS)

    Peculiarities of substance removal from the surface of a solid body under effect of a pulse beam with beam diameter varying during the pulse and distribution of power density by its cross section taking place at electron gun pulsed supply with trapezoidal voltage are considered. Conical holes with different configuration of the profile envelope can be obtained with variation of pulse duration. Photos of hole profiles obtained by pulsed beam at gun pulsed supply with different pulse duration are presented. Experiments have been conducted with various materials including quartz and nickel

  19. Locking information in black holes.

    Science.gov (United States)

    Smolin, John A; Oppenheim, Jonathan

    2006-03-01

    We show that a central presumption in the debate over black-hole information loss is incorrect. Ensuring that information not escape during evaporation does not require that it all remain trapped until the final stage of the process. Using the recent quantum information-theoretic result of locking, we show that the amount of information that must remain can be very small, even as the amount already radiated is negligible. Information need not be additive: A small system can lock a large amount of information, making it inaccessible. Only if the set of initial states is restricted can information leak. PMID:16606164

  20. Comparisons of Black Hole Entropy

    CERN Document Server

    Kupferman, Judy

    2016-01-01

    In this thesis I examine several different concepts of black hole entropy in order to understand whether they describe the same quantity. I look at statistical and entanglement entropies, Wald entropy and Carlip's entropy from conformal field theory, and compare their behavior in a few specific aspects: divergence at the BH horizon, dependence on space time curvature and behavior under a geometric variation. I find that statistical and entanglement entropy may be similar but they seem to differ from the entropy of Wald and Carlip. Chapters 2 and 3 overlap with 1010.4157 and 1310.3938. Chapter 4 does not appear elsewhere.

  1. Black Holes With Vector Hair

    OpenAIRE

    Fan, Zhong-Ying

    2016-01-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+\\ft 12 m^2 A^2+\\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find...

  2. Black Hole Researchers in Schools

    Science.gov (United States)

    Doran, Rosa

    2016-07-01

    "Black Holes in my School" is a research project that aims to explore the impact of engaging students in real research experiences while learning new skills and topics addressed in the regular school curriculum. The project introduces teachers to innovative tools for science teaching, explore student centered methodologies such as inquiry based learning and provides a setting where students take the role of an astrophysicist researching the field of compact stellar mass objects in binary systems. Students will study already existing data and use the Faulkes Telescopes to acquire new data. In this presentation the main aim is to present the framework being built and the results achieved so far.

  3. Bohr-like black holes

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Dipartimento di Fisica e Chimica, Istituto Universitario di Ricerca Scientifica ' Santa Rita' , Centro di Scienze Naturali, Via di Galceti, 74, 59100 Prato (Italy); Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Via Santa Gonda 14, 59100 Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), B.M. Birla Science Centre, Adarsh Nagar, Hyderabad - 500 463 (India)

    2015-03-10

    The idea that black holes (BHs) result in highly excited states representing both the “hydrogen atom” and the “quasi-thermal emission” in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.

  4. Low dimensional worm-holes

    Science.gov (United States)

    Samardzija, Nikola

    1995-01-01

    A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.

  5. Schwarzchild Black Holes in Matrix Theory, 2

    CERN Document Server

    Banks, T; Klebanov, Igor R; Susskind, Leonard

    1998-01-01

    We present a crude Matrix Theory model for Schwarzchild black holes in uncompactified dimension greater than 5. The model accounts for the size, entropy, and long range static interactions of black holes. The key feature of the model is a Boltzmann gas of D0 branes, a concept which depends on certain qualitative features of Matrix Theory which previously have not been utilized in studies of black holes.

  6. Big rip avoidance via black holes production

    OpenAIRE

    Fabris, Julio C.; Pavon, Diego

    2008-01-01

    We consider a cosmological scenario in which the expansion of the Universe is dominated by phantom dark energy and black holes which condense out of the latter component. The mass of black holes decreases via Hawking evaporation and by accretion of phantom fluid but new black holes arise continuously whence the overall evolution can be rather complex. We study the corresponding dynamical system to unravel this evolution and single out scenarios where the big rip singularity does not occur.

  7. Cosmological Constraints from Primordial Black Holes

    OpenAIRE

    Liddle, Andrew R.; Green, Anne M.

    1998-01-01

    Primordial black holes may form in the early Universe, for example from the collapse of large amplitude density perturbations predicted in some inflationary models. Light black holes undergo Hawking evaporation, the energy injection from which is constrained both at the epoch of nucleosynthesis and at the present. The failure as yet to unambiguously detect primordial black holes places important constraints. In this article, we are particularly concerned with the dependence of these constrain...

  8. Qubit Models of Black Hole Evaporation

    OpenAIRE

    Avery, Steven G.

    2011-01-01

    Recently, several simple quantum mechanical toy models of black hole evaporation have appeared in the literature attempting to illuminate the black hole information paradox. We present a general class of models that is large enough to describe both unitary and nonunitary evaporation, and study a few specific examples to clarify some potential confusions regarding recent results. We also generalize Mathur's bound on small corrections to black hole dynamics. Conclusions are then drawn about the...

  9. Quantum Evaporation of Liouville Black Holes

    OpenAIRE

    Mann, R. B.

    1993-01-01

    The classical field equations of a Liouville field coupled to gravity in two spacetime dimensions are shown to have black hole solutions. Exact solutions are also obtained when quantum corrections due to back reaction effects are included, modifying both the ADM mass and the black hole entropy. The thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process. A scenario for the fina...

  10. The coalescence rates of double black holes

    OpenAIRE

    Belczynski, Krzysztof; Bulik, Tomasz; Dominik, Michal; Prestwich, Andrea

    2011-01-01

    We present the summary of the recent investigations of double black hole binaries in context of their formation and merger rates. In particular we discuss the spectrum of black hole masses, the formation scenarios in the local Universe and the estimates of detection rates for gravitational radiation detectors like LIGO and VIRGO. Our study is based on observed properties of known Galactic and extra-galactic stellar mass black holes and evolutionary predictions. We argue that the binary black ...

  11. Black holes and the LHC: A review

    OpenAIRE

    Park, Seong Chan

    2012-01-01

    In low-scale gravity models, a particle collider with trans-Planckian collision energies can be an ideal place for producing black holes because a large amount of energy can be concentrated at the collision point, which can ultimately lead to black hole formation. In this article, the theoretical foundation for microscopic higher dimensional black holes is reviewed and the possible production and detection at the LHC is described and critically examined.

  12. Comments on Black Holes in Matrix Theory

    OpenAIRE

    Horowitz, Gary T.; Martinec, Emil J.

    1997-01-01

    The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using near-extremal D-brane thermodynamics is examined. It is found that the regime in which this approach is valid actually describes black strings stretched across the longitudinal direction, near the transition where black strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other (black hole) side of the transition is that of the zero m...

  13. Primordial Structure of Massive Black Hole Clusters

    OpenAIRE

    Khlopov, Maxim Yu.; Rubin, Sergei G.; Sakharov, Alexander S.(Department of Physics, CERN, 1211, Geneva 23, Switzerland)

    2004-01-01

    We describe a mechanism of the primordial black holes formation that can explain the existence of a population of supermassive black holes in galactic bulges. The mechanism is based on the formation of black holes from closed domain walls. The origin of such domain walls could be a result of the evolution of an effectively massless scalar field during inflation. The initial non-equilibrium distribution of the scalar field imposed by background de-Sitter fluctuations gives rise to the spectrum...

  14. Black Holes in the Early Universe

    OpenAIRE

    Volonteri, Marta; Bellovary, Jillian

    2012-01-01

    The existence of massive black holes was postulated in the sixties, when the first quasars were discovered. In the late nineties their reality was proven beyond doubt, in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of massive black holes. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion...

  15. Black Hole Entropy without Brick Walls

    OpenAIRE

    Demers, J. -G.; Lafrance, R.; Myers, R. C.

    1995-01-01

    We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, $S=\\A/(4G)$. Our calculation also yields a constant contribution to the black hole entropy, a contr...

  16. The thermodynamics in a dynamical black hole

    Institute of Scientific and Technical Information of China (English)

    Bo LIU; Wen-biao LIU

    2009-01-01

    Considering the back-reaction of emitting particles to the black hole, a "new" horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, "new" horizon position and radiating particles' energy will be consistent again under the theory of equilibrium thermodynamical system.

  17. Test fields cannot destroy extremal black holes

    Science.gov (United States)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-09-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

  18. Black holes in the milky way galaxy.

    Science.gov (United States)

    Filippenko, A V

    1999-08-31

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4-16 times the mass of the sun, whereas the latter are "supermassive black holes" with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.

  19. An electromagnetic hole separation survey tool

    International Nuclear Information System (INIS)

    The authors describe an electromagnetic survey tool developed by others, which can be used to accurately determine the offset distances between various points in nearby emplacement holes or adits (e.g., the satellite hole offset from an emplacement hole at the device horizon in a vertical geometry emplacement). The technique was demonstrated on a vertical event at the Nevada Test Site. The basic theory of operation, sample data, and analyzed results are presented and compared to results obtained by conventional survey means

  20. Shadow of noncommutative geometry inspired black hole

    OpenAIRE

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi; Zhou, Xiang-Nan

    2015-01-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter $a/M_{0}$ with $M_{0}$ black hole mass and inclination angle $i$, the dimensionless noncommutative parameter $\\sqrt{\\vartheta}/M_{0}$ is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter $\\sqrt{\\vartheta}/M_{0}$, while the distortion increases wi...

  1. Voros product and noncommutative inspired black holes

    OpenAIRE

    Gangopadhyay, Sunandan

    2013-01-01

    We emphasize the importance of the Voros product in defining noncommutative inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner-Nordstr\\"{o}m black holes show that the area law holds upto order $\\frac{1}{\\sqrt{\\theta}}e^{-M^2/\\theta}$. The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy $E$ for these black holes is then obtained and a deviation from the standard id...

  2. Noncommutative Black Holes and the Singularity Problem

    Science.gov (United States)

    Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.

    2011-09-01

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  3. Noncommutative Black Holes and the Singularity Problem

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2011-01-01

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  4. Noncommutative Black Holes and the Singularity Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.pt, E-mail: orfeu.bertolami@fc.up.pt, E-mail: ncdias@mail.telepac.pt, E-mail: joao.prata@mail.telepac.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2011-09-22

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  5. Noncommutative Black Holes and the Singularity Problem

    International Nuclear Information System (INIS)

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  6. On minor black holes in galactic nuclei

    OpenAIRE

    McKernan, Barry; Ford, K. E. Saavik; Yaqoob, Tahir; Winter, Lisa M.

    2011-01-01

    Small and intermediate mass black holes should be expected in galactic nuclei as a result of stellar evolution, minor mergers and gravitational dynamical friction. If these minor black holes accrete as X-ray binaries or ultra-luminous X-ray sources, and are associated with star formation, they could account for observations of many low luminosity AGN or LINERs. Accreting and inspiralling intermediate mass black holes could provide a crucial electromagnetic counterpart to strong gravitational ...

  7. Test fields cannot destroy extremal black holes

    Science.gov (United States)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-09-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

  8. Boosting jet power in black hole spacetimes

    OpenAIRE

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet tha...

  9. Modeling Flows Around Merging Black Hole Binaries

    OpenAIRE

    van Meter, James R.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.; Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the stron...

  10. Joint evolution of black holes and galaxies

    CERN Document Server

    Colpi, M; Haardt, F

    2006-01-01

    OBSERVATIONAL EVIDENCE FOR SUPERMASSIVE BLACK HOLES Introduction Some Useful Formalism General Considerations Resolved Stellar Dynamics Gas as a Tracer of the Gravitational Potential Tackling the Unresolvable: Reverberation Mapping Scaling Relations for SMBHs Black Hole Demographics The Future JOINT EVOLUTION OF BLACK HOLES AND GALAXIES: OBSERVATIONAL ISSUES Galaxy Activity: Generalities Local Evidence on the Interplay Between the Stellar and Gravitational Origin of AGN Activity The Cosmic History of Galaxy Activity Constraints on the Cosmic Energy Budget Current Observational Programs and Fut

  11. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Parthasarathi Majumdar

    2000-10-01

    This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based = 2 supergravity are also discussed, albeit more briefly.

  12. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  13. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  14. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism. PMID:23250434

  15. Oil Shale Core Hole and Rotary Hole Locations in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes and rotary holes in the state of Colorado and is available as an ESRI shapefile, Google...

  16. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  17. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  18. The odd couple: quasars and black holes

    OpenAIRE

    Tremaine, Scott

    2014-01-01

    Quasars emit more energy than any other objects in the universe, yet are not much bigger than the solar system. We are almost certain that quasars are powered by giant black holes of up to $10^{10}$ times the mass of the Sun, and that black holes of between $10^6$ and $10^{10}$ solar masses---dead quasars---are present at the centers of most galaxies. Our own galaxy contains a black hole of $4.3\\times10^6$ solar masses. The mass of the central black hole appears to be closely related to other...

  19. The horizon of the lightest black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier [University of Sussex, Physics and Astronomy, Falmer, Brighton (United Kingdom); Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy)

    2015-09-15

    We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors. (orig.)

  20. Schwarzschild black holes can wear scalar wigs

    CERN Document Server

    Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-01-01

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.

  1. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  2. Rotating Black Holes and Coriolis Effect

    CERN Document Server

    Wu, Xiaoning; Yuan, Pei-Hung; Cho, Chia-Jui

    2015-01-01

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  3. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  4. Rotating black holes and Coriolis effect

    Science.gov (United States)

    Chou, Chia-Jui; Wu, Xiaoning; Yang, Yi; Yuan, Pei-Hung

    2016-10-01

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  5. Black holes are almost optimal quantum cloners

    CERN Document Server

    Adami, C

    2006-01-01

    We show that black holes clone incoming quantum states with a fidelity that depends on the black hole's absorption coefficient. Perfectly reflecting black holes are optimal universal quantum cloners of the type described by Simon, Weihs, and Zeilinger [1], and operate on the principle of stimulated emission. In the limit of perfect absorption, the fidelity of clones is equal to what can be obtained via quantum state estimation methods, which is suboptimal. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as omega/T >=10, a common parameter for modest-sized black holes.

  6. Thermodynamics of black holes in rainbow gravity

    CERN Document Server

    Banerjee, Ritwick

    2016-01-01

    In this paper, we investigate the thermodynamic properties of black holes under the influence of rainbow gravity. In the metric of Schwarzschild, Reissner-Nordstrom and Reissner-Nordstrom-de-Sitter black hole surrounded by quintessence, we consider a rainbow function and derive the existence of remnant and critical masses of a black hole. Using the Hawking temperature relation we derive the heat capacity and the entropy of the rainbow gravity inspired black holes and closely study the relation between entropy and area of the horizon for different values of n of the rainbow function.

  7. Thermoelectric DC conductivities from black hole horizons

    CERN Document Server

    Donos, Aristomenis

    2014-01-01

    An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.

  8. Noncommutative geometry inspired Schwarzschild black hole

    International Nuclear Information System (INIS)

    We investigate the behavior of a noncommutative radiating Schwarzschild black hole. It is shown that coordinate noncommutativity cures usual problems encountered in the description of the terminal phase of black hole evaporation. More in detail, we find that: the evaporation end-point is a zero temperature extremal black hole even in the case of electrically neutral, non-rotating, objects; there exists a finite maximum temperature that the black hole can reach before cooling down to absolute zero; there is no curvature singularity at the origin, rather we obtain a regular de Sitter core at short distance

  9. Noncommutative geometry inspired Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Nicolini, Piero [Dipartimento di Matematica e Informatica, Universita degli Studi di Trieste, Trieste (Italy) and Dipartimento di Matematica, Politecnico di Torino, Turin (Italy) and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy) and Institut Jozef Stefan, Ljubljana (Slovenia)]. E-mail: nicolini@cmfd.univ.trieste.it; Smailagic, Anais [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy)]. E-mail: anais@ictp.trieste.it; Spallucci, Euro [Dipartimento di Fisica Teorica, Universita degli Studi di Trieste, Trieste (Italy) and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy)]. E-mail: spallucci@trieste.infn.it

    2006-01-19

    We investigate the behavior of a noncommutative radiating Schwarzschild black hole. It is shown that coordinate noncommutativity cures usual problems encountered in the description of the terminal phase of black hole evaporation. More in detail, we find that: the evaporation end-point is a zero temperature extremal black hole even in the case of electrically neutral, non-rotating, objects; there exists a finite maximum temperature that the black hole can reach before cooling down to absolute zero; there is no curvature singularity at the origin, rather we obtain a regular de Sitter core at short distance.

  10. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  11. On ADM quantities of multiple black holes

    CERN Document Server

    Rácz, István

    2016-01-01

    In [11] a proposal was made to construct initial data for binary black hole configurations. It was done by using the parabolic-hyperbolic form of the constraints and choosing the free data provided by superposed Kerr-Schild black holes. The proposal of [11] do also apply to multiple systems involving generic Kerr-Schild black holes. Notably, the specific choice made for the free data allows---without making detailed use of the to be solutions to the constraints---to determine explicitly, the ADM quantities of the multiple system in terms of the separations velocities and spins of the individual Kerr-Schild black holes.

  12. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  13. Destroying black holes with test bodies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-04-01

    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

  14. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  15. Strong Gravitational Lensing by Kiselev Black Hole

    CERN Document Server

    Younas, Azka; Jamil, Mubasher

    2015-01-01

    We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We discuss here these special cases of Kiselev black hole: non-extreme, extreme and naked singularity. We present the detailed derivation for the bending angles of light as it traverses in the equatorial plane of the black hole. We also calculate the approximate bending angle and compare it with exact bending angle expressions. In the weak field approximation we calculate the expression for relativistic images.

  16. Black hole thermodynamics from Euclidean horizon constraints.

    Science.gov (United States)

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209

  17. Galaxies of all Shapes Host Black Holes

    Science.gov (United States)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground). New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams. The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  18. On the thermodynamics of hairy black holes

    International Nuclear Information System (INIS)

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition

  19. The horizon of the lightest black hole

    International Nuclear Information System (INIS)

    We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors. (orig.)

  20. Light geodesics near an evaporating black hole

    International Nuclear Information System (INIS)

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox