WorldWideScience

Sample records for beam heating beams

  1. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  2. Studies of beam heating of proton beam profile monitor SEM's

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  3. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  4. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  5. Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating

    CERN Document Server

    Ho, D

    2000-01-01

    Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.

  6. HEAT-RESISTANT COMPOSITES CURED BY ELECTRON BEAM

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Bao; Yang Li; Xiang-bao Chen; Feng-mei Li

    2001-01-01

    Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250°C.

  7. Status of the ITER heating neutral beam system

    Science.gov (United States)

    Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; DeEsch, H. P. L.; Geli, F.; Milnes, J.; Inoue, T.; Marcuzzi, D.; Sonato, P.; Zaccaria, P.

    2009-04-01

    The ITER neutral beam (NB) injectors are the first injectors that will have to operate under conditions and constraints similar to those that will be encountered in a fusion reactor. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV D- beams for pulse lengths of up to 3600 s. Significant design changes have been made to the ITER heating NB (HNB) injector over the past 4 years. The main changes are: Modifications to allow installation and maintenance of the beamline components with an overhead crane. The beam source vessel shape has been changed and the beam source moved to allow more space for the connections between the 1 MV bushing and the beam source. The RF driven negative ion source has replaced the filamented ion source as the reference design. The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF6 insulated HV deck located above the injector. Introduction of an all metal absolute valve to prevent any tritium in the machine to escape into the NB cell during maintenance. This paper describes the status of the design as of December 2008 including the above mentioned changes. The very important power supply system of the neutral beam injectors is not described in any detail as that merits a paper beyond the competence of the present authors. The R&D required to realize the injectors described in this paper must be carried out on a dedicated neutral beam test facility, which is not described here.

  8. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  9. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Science.gov (United States)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  10. Beam screen regenerative heating cryogenic impact and feasibility

    CERN Document Server

    Tavian, Laurent

    2003-01-01

    Desorbtion of gas (H2, CO, CO2...) trapped on the beam screen wall is envisaged by regenerative heating to temperature varying between 40 K and 90 K depending on the gas species. This new requirement has direct consequences on the cold mass heat loads, on the heating capacity needed to reach the regeneration conditions, as well as on the heater and piping configuration. This note presents different configuration schemes, studies the cryogenic feasibility with existing limitations and gives the impact on the cryogenic system in terms of additional equipment and corresponding extra costs.

  11. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  12. Investigation of heat release in the targets during irradiation by ion beams

    CERN Document Server

    Dalkarov, O D; Rusetskii, A S

    2015-01-01

    The DD-reaction is investigated and the heat emission off the targets during their irradiation with ion beams is studied at the HELIS ion accelerator at LPI. The heat emission is observed to be significantly higher in the case of irradiation of the Ti/TiO2:Dx-targets by a D+ beam, as compared to the H+ and Ne+ beams. Furthermore, it depends on the concentration of deuterium in the target and current density of the deuteron beam.

  13. Heating of Microchannel Plates Detector Positioned Inside the LHC Beam Pipe by the Electromagnetic Fields of Relativistic Beams

    CERN Document Server

    Dubenskiy, V P; CERN. Geneva; Tsimbal, F A

    1995-01-01

    Here we present the results of our estimates of upper limits for heating induced by the relativistic beams of charged particles at the future LHC in the MCP detector placed inside the beam pipe. The energy losses are small for the uppermost intensities of the beams to be expected: less than 0.0033 Wt for the conductive cromium MCP cladding and not greater than 0.02 Wt for the dialectric MCP body (for the whole MCP disk of 100 sq.cm area). The special measurements of the dispersion law e(w) of the MCP dialectric material have been performed in order to get the reference data to the analytical calculations. The approaches outlined here could be applied to any detector positioned in the vicinity of the beams. The possible problems of the beam induced electrical signal in the detector circuits are touched also.

  14. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  15. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    OpenAIRE

    Voutta, Robert

    2016-01-01

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  16. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  17. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  18. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  19. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  20. Coating synthesis controlled by electron-beam heating

    Science.gov (United States)

    Gordienko, A. I.; Knyazeva, A. G.; Pobol, I. L.

    2016-07-01

    The methods of combined electron-beam treatment of parts made of steel with one- and two-layer coatings are studied experimentally. Ti-Ni, Ni-Al and Al-Ti systems were used as the examples in the experiments. The mathematical model is suggested for coating formation in the controlled regime of high temperature synthesis during high energy source motion along the preliminarily deposited layer of exothermic composition. The study takes into account the difference in thermophysical properties of the materials of coating and substrate, heat release from chemical reaction that leads to the coating properties formation and other factors. The realization of the synthesis depends on technological parameters. Various regimes of the treatment process are investigated numerically.

  1. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  2. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-11-29

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  3. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  4. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  5. Neutral beam heating of the TFTR vacuum vessel protective plates

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.

    1976-04-01

    The transmission of neutral beams through plasmas expected in the Tokamak Fusion Test Reactor (TFTR) has been investigated. An analytical expression for the transmission coefficient of a 120 keV deuterium beam through a tritium plasma was used and a model for the flux profile of the TFTR Neutral Beam System designed by LBL/LLL was developed and incorporated. The plasma is assumed to have a parabolic profile and is characterized by a major radius of 310 cm, a minor radius of 57 cm, and a central plasma density of greater than or equal to 0.4 x 10/sup 14/ cm-/sup 3/. To protect the stainless steel vacuum vessel walls of the TFTR device, tungsten plates are located inside the vessel. The loading of the tungsten protective plates during normal operation is well below the neutral beam fluxes which would melt the tungsten. The TFTR Neutral Beam System will inject a total of 20 MW of 120 keV deuterium atoms from twelve sources, as well as approximately 12 MW of 60 keV deuterium atoms. The fluxes anticipated on the tungsten plates due to an unattenuated beam which would be incident at an angle of 45/sup 0/ are less than or equal to 6.5 kW/cm/sup 2/. The fluxes due to an attenuated beam are calculated to be less than or equal to 0.35 kW/cm/sup 2/. For the maximum injection time of 0.5 second, a fault condition in which the plasma was not formed at the time of injection could induce a surface temperature very near the melting point of tungsten. For the standard 0.1 second injection time anticipated for TFTR, a similar fault condition would not cause the temperature to rise to more than 2000 K which is well below the melting point (3640 K) of tungsten.

  6. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  7. Steerable beam systems for electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, J.

    1985-08-31

    Several methods are discussed for steering a 200 kW pencil beam of electromagnetic waves in the 60 GHz to 200 GHz frequency range. These include methods incorporating swivelling mirrors, phased arrays, mode converters, and optical materials. It is found that for the near term, the mechanical systems are best, capable of steering times of 3 ms to 100 ms and losses of less than 5%. Optical methods, as yet virtually uninvestigated, appear to offer the only means of beam-steering in the 5..mu..s to 100..mu..s range necessary for MHD mode tracking.

  8. Transmission of the Neutral Beam Heating Beams at TJ-II; Transmision del Haz de Neutros de Calentamiento en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Lopez, C.

    2007-09-27

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs.

  9. Effect of boundary conditions and convection on thermally induced motion of beams subjected to internal heating

    Institute of Scientific and Technical Information of China (English)

    MALIK Pravin; KADOLI Ravikiran; GANESAN N.

    2007-01-01

    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.

  10. Temporal structure of double plasma frequency emission of thin beam-heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Postupaev, V. V.; Ivanov, I. A.; Arzhannikov, A. V.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Burdakov, A. V.; Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Sklyarov, V. F.; Gavrilenko, D. Ye.; Kandaurov, I. V.; Kurkuchekov, V. V.; Mekler, K. I.; Popov, S. S.; Rovenskikh, A. F.; Sudnikov, A. V.; Sulyaev, Yu. S.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Kasatov, A. A. [Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2013-09-15

    In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.

  11. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  12. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  13. State-space approach to vibration of gold nano-beam induced by ramp type heating

    Institute of Scientific and Technical Information of China (English)

    Hamdy M Youssef; Khaled A Elsibai

    2010-01-01

    In the nanoscale beam, two effects become domineering. One is the non-Fourier effect in heat conduction and the other is the coupling effect between temperature and strain rate. In the present study, a generalized solution for the generalized thermoelastic vibration of gold nano-beam resonator induced by ramp type heating is developed. The solution takes into account the above two effects. State-space and Laplace transform methods are used to determine the lateral vibration, the temperature, the displacement, the stress and the strain energy of the beam. The effects of the relaxation time and the ramping time parameters have been studied.

  14. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  15. Control of Electron Beam Using Strong Magnetic Field for Efficient Core Heating in Fast Ignition

    CERN Document Server

    Johzaki, T; Sentoku, Y; Sunahara, A; Nagatomo, H; Sakagami, H; Mima, K; Fujioka, S; Shiraga, H

    2014-01-01

    For enhancing the core heating efficiency in electron-driven fast ignition, we proposed the fast electron beam guiding using externally applied longitudinal magnetic fields. Based on the PIC simulations for the FIREX-class experiments, we demonstrated the sufficient beam guiding performance in the collisional dense plasma by kT-class external magnetic fields for the case with moderate mirror ratio (~<10 ). Boring of the mirror field was found through the formation of magnetic pipe structure due to the resistive effects, which indicates a possibility of beam guiding in high mirror field for higher laser intensity and/or longer pulse duration.

  16. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  17. Non-Fourier Heat Conduction Effects During High-Energy Beam Metalworking

    Institute of Scientific and Technical Information of China (English)

    张海泉; 张彦华; 赵海燕

    2004-01-01

    Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi-infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a criterion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.

  18. Conceptual design for an electron-beam heated hypersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  19. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  20. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  1. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    Science.gov (United States)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  2. Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating

    Science.gov (United States)

    Lysenko, Elena N.; Surzhikov, Anatoliy P.; Vlasov, Vitaliy A.; Nikolaev, Evgeniy V.; Malyshev, Andrey V.; Bryazgin, Alexandr A.; Korobeynikov, Mikhail V.; Mikhailenko, Mikhail A.

    2017-02-01

    Synthesis of substituted lithium ferrites with chemical formulas Li0.6Fe2.2Ti0.2O4 and Li0.649Fe1.598Ti0.5Zn0.2Mn0.051O4 under the pulsed and continuous electron beam heating was investigated by X-ray diffraction and thermomagnetometric analysis. The electron beams heating of Li2CO3-Fe2O3-TiO2 or Li2CO3-ZnO-Fe2O3-TiO2-MnO mixtures was carried out at a temperature of 750 °C during 60 min using two types of electron accelerators: ELV accelerator generating continuous electron beam or ILU-6 accelerator generating pulse electron beam. It was established that a high energy electron beam heating of initial reagents mixtures allows obtaining the substituted lithium ferrites with final composition at significantly lower temperatures (at least 200 °C lower than in the case of using traditional thermal synthesis) and times of synthesis. That statement is in agreement with results obtained by XRD analysis, showing single phase formation; by magnetic measurements, showing high values of specific magnetization; by DTG measurements showing the certain Curie temperatures of the synthesized samples.

  3. Ion beam transport: modelling and experimental measurements on a large negative ion source in view of the ITER heating neutral beam

    Science.gov (United States)

    Veltri, P.; Sartori, E.; Agostinetti, P.; Aprile, D.; Brombin, M.; Chitarin, G.; Fonnesu, N.; Ikeda, K.; Kisaki, M.; Nakano, H.; Pimazzoni, A.; Tsumori, K.; Serianni, G.

    2017-01-01

    Neutral beam injectors are among the most important methods of plasma heating in magnetic confinement fusion devices. The propagation of the negative ions, prior to their conversion into neutrals, is of fundamental importance in determining the properties of the beam, such as its aiming and focusing at long-distances, so as to deposit the beam power in the proper position inside the confined plasma, as well as to avoid interaction with the material surfaces along the beam path. The final design of the ITER Heating Neutral Beam prototype has been completed at Consorzio RFX (Padova, Italy), in the framework of a close collaboration with European, Japanese and Indian fusion research institutes. The physical and technical rationales on which the design is based were essentially driven by numerical modelling of the relevant physical processes, and the same models and codes will be useful to design the DEMO neutral beam injector in the near future. This contribution presents a benchmark study of the codes used for this purpose, by comparing their results against the measures performed in an existing large-power device, hosted at the National Institute for Fusion Science, Japan. In particular, the negative ion formation and acceleration are investigated. A satisfactory agreement was found between codes and experiments, leading to an improved understanding of beam transport dynamics. The interpretation of the discrepancies identified in previous works, possibly related to the non-uniformity of the extracted negative ion current, is also presented.

  4. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  5. Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

    CERN Document Server

    Iadarola, Giovanni; Rumolo, Giovanni

    2016-01-01

    The expected heat load induced on the beam screens has been evaluated for all the twin-bore magnets in the Insertion Regions (IRs) of the HL-LHC. The contribution from the impedance of the beam screen has been evaluated taking into account the presence of a longitudinal weld in the beam screen and the impact of the temperature and of the magnetic field on the resistivity of the surface. The contribution coming from electron cloud effects has been evaluated for different values of the Secondary Electron Yield of the surface based PyECLOUD build-up simulations.

  6. Long term creep tests on timber beams in heated and non-heated environments

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, S.; Kortesmaa, M.; Ranta-Maunus, A. [VTT Building Technology, Espoo (Finland). Building Materials and Products

    1996-12-31

    The aim of this research investigation was to study the long term effect of creep on different wood materials under natural environmental conditions. The tests were initiated in the summer of 1992 and the results collected until the end of 1995 are reported here. The experiments on sawn timber of pine and spruce, glulam, Kerto-LVL and I-profile with hard board web structural size members were carried out in a sheltered environment, where the changes in moisture and temperature of the surrounding followed the natural climatic conditions of Southern Finland. In addition, separate tests on eight glulam beams were carried out in a heated room environment. The experiments were carried out at low load levels (2-7 MPa). The surface of few groups of specimens were treated with alkyd and emulsion paint, some were creosoted and salt impregnated, while few samples had no treatment. The creep test data of all specimens were analysed systematically to obtain creep curves. The data showed significant variation in creep among wood materials with different treatments. Creep of glulam was same in heated and non-heated environment. (orig.) (3 refs.)

  7. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  8. In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating

    DEFF Research Database (Denmark)

    Homann, Lasse Vinther; Booth, Tim; Lei, Anders;

    2011-01-01

    min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from...

  9. Performance of Chilled Beam with Radial Swirl Jet and Diffuse Ceiling Air Supply in Heating Mode

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Melikov, Arsen Krikor

    2013-01-01

    The performance of diffuse ceiling air supply and chilled beam with swirl jet (CSW) in heating mode (winter situation) was studied and compared with regard to the generated indoor environment. An office mock-up with one occupant was simulated in a test room (4.5 x 3.95 x 3.5 m3 (L x W x H...

  10. Metastable states' population of uranium atoms produced by electron-beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Akihiko; Ogura, Koichi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)

    2000-08-01

    The metastable states' population densities of uranium atoms produced by electron-beam heating were measured by the laser induced fluorescence method. The atomic excitation temperature derived from the metastable state distribution was lower than the evaporation surface temperature. With increasing deposition rate, the atomic excitation temperature decreased to about 2000 K. (author)

  11. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  12. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  13. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    CERN Document Server

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  14. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    Science.gov (United States)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  15. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    energy between zones with one hydronic circuit, operating with a water temperature between 20°C and 23°C. To calculate the energy performance of the system, simulation-based research was developed. The two-pipe system was modelled by using EnergyPlus, a whole building energy simulation program. Hourly......The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  16. Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

    Indian Academy of Sciences (India)

    A K Sinha; K J S Sawhney; R V Nandedkar

    2001-12-01

    This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation source. The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of the beam stop have been optimised. It is also shown that radiation cooling alone is not sufficient for taking away the heat load. Water-cooling of the beam stop is essential.

  17. Research on modeling of heat source for electron beam welding fusion-solidification zone

    Institute of Scientific and Technical Information of China (English)

    Wang Yajun; Fu Pengfei; Guan Yongjun; Lu Zhijun; Wei Yintao

    2013-01-01

    In this paper,the common heat source model of point and linear heat source in the numerical simulation of electron beam welding (EBW) were summarized and introduced.The combined point-linear heat source model was brought forward and to simulate the welding temperature fields of EBW and predicting the weld shape.The model parameters were put forward and regulated in the combined model,which included the ratio of point heat source to linear heat source Qpr and the distribution of linear heat source Lr.Based on the combined model,the welding temperature fields of EBW were investigated.The results show that the predicted weld shapes are conformable to those of the actual,the temperature fields are reasonable and correct by simulating with combined point-linear heat source model and the typical weld shapes are gained.

  18. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    Science.gov (United States)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  19. Non-invasive measurement of X-ray beam heating on a surrogate crystal sample.

    Science.gov (United States)

    Snell, Edward H; Bellamy, Henry D; Rosenbaum, Gerd; van der Woerd, Mark J

    2007-01-01

    Cryocooling is a technique routinely used to mitigate the effects of secondary radiation damage on macromolecules during X-ray data collection. Energy from the X-ray beam absorbed by the sample raises the temperature of the sample. How large is the temperature increase and does this reduce the effectiveness of cryocooling? Sample heating by the X-ray beam has been measured non-invasively for the first time by means of thermal imaging. Specifically, the temperature rise of 1 mm and 2 mm glass spheres (sample surrogates) exposed to an intense synchrotron X-ray beam and cooled in a laminar flow of nitrogen gas is experimentally measured. For the typical sample sizes, photon energies, fluxes, flux densities and exposure times used for macromolecular crystallographic data collection at third-generation synchrotron radiation sources and with the sample accurately centered in the cryostream, the heating by the X-ray beam is only a few degrees. This is not sufficient to raise the sample above the amorphous-ice/crystalline-ice transition temperature and, if the cryostream cools the sample to 100 K, not even enough to significantly enhance radiation damage from secondary effects.

  20. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    Science.gov (United States)

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  1. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  2. The application of arbitrary incidence laser beams heat treatment temperature field calculation formulas

    Institute of Scientific and Technical Information of China (English)

    Kun Ma; Junchang Li; Zebin Fan; Jinbin Gui; Yingxiong Qin; Qiguang Zheng

    2005-01-01

    @@ Based on the calculation formulas of heat treatment temperature field for an arbitrary incident laser intensity distribution, the transformation intensity distribution of CO2 laser beam passing an integrating mirror is studied theoretically and experimentally. The derived formulas are applied in laser heat treatment research which is transformed by optical system, and the theoretical calculation results are compared with experimental results. It is shown that the formulas can be used to calculate the laser heat treatment temperature field accurately, and the calculation speed is obviously faster than the numerical calculation methods with the same precision. The calculation software can be used to select proper experiment parameters.

  3. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  4. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene octene copolymer

    Science.gov (United States)

    Mishra, Joy K.; Chang, Young-Wook; Lee, Byung Chul; Ryu, Sung Hun

    2008-05-01

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  5. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Joy K. [Department of Chemical Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Chang, Young-Wook [Department of Chemical Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)], E-mail: ywchang@hanyang.ac.kr; Lee, Byung Chul [Korea Atomic Energy Research Institute, Dukjin-Dong, Yusong-Gu, Daejon 305-354 (Korea, Republic of); Ryu, Sung Hun [College of Environmental and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)

    2008-05-15

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  6. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  7. Effect of two steel plate's interface on heat transfer under laser beam irradiation

    CERN Document Server

    Zhao Jian Heng; Zhang Shi Wen; Gui Yuan Zhen; Wang Chun Yan; Tang Xiao Song; Zhang Da Yong

    2002-01-01

    It is supposed that there is a gap in the interface of two contacting steel plates due to thermal deformation under laser beam irradiation, and this gap will affect heat transfer in this interface obviously. This supposition is testified by experiments and simulation. This work is helpful to the study of the destruction mechanism under high power laser loading, and provides an effective way for anti-laser research

  8. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  9. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  10. Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights

    CERN Document Server

    Gruber, Matthew; Hartogensis, Oscar

    2014-01-01

    Displaced-beam scintillometer measurements of the turbulence inner-scale length $l_o$ and refractive index structure function $C_n^2$ resolve area-average turbulent fluxes of heat and momentum through the Monin-Obukhov similarity equations. Sensitivity studies have been produced for the use of displaced-beam scintillometers over flat terrain. Many real field sites feature variable topography. We develop here an analysis of the sensitivity of displaced-beam scintillometer derived sensible heat fluxes to uncertainties in spacially distributed topographic measurements. Sensitivity is shown to be concentrated in areas near the center of the beam and where the underlying topography is closest to the beam height. Uncertainty may be decreased by taking precise topographic measurements in these areas.

  11. STRUCTURE AND CHARACTERISTICS OF TI-AL-NI SYSTEM COVERING, APPLIED ON THE STEEL GROUND USING ELECTRON-BEAM HEATING

    Directory of Open Access Journals (Sweden)

    I. V. Murashova

    2011-01-01

    Full Text Available The morphology of the system Ti-Al-Ni covering, received by means of self-distributing high-temperature synthesis, initiated by electron-beam heating, on the basis of steel St3 is investigated.

  12. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  13. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  14. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  15. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector

    Science.gov (United States)

    Hu, Chundong; Chen, Yu; Xu, Yongjian; Yu, Ling; Li, Xiang; Zhang, Weitang

    2016-11-01

    Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001) and the International Science & Technology Cooperation Program of China (No. 2014DFG61950)

  16. Correction of resist heating effect on variable shaped beam mask writer

    Science.gov (United States)

    Nakayamada, Noriaki; Suganuma, Mizuna; Nomura, Haruyuki; Kato, Yasuo; Kamikubo, Takashi; Ogasawara, Munehiro; Zable, Harold; Masuda, Yukihiro; Fujimura, Aki

    2016-04-01

    The specifications for critical dimension (CD) accuracy and line edge roughness are getting tighter to promote every photomask manufacturer to choose electron beam resists of lower sensitivity. When the resist is exposed by too many electrons, it is excessively heated up to have higher sensitivity at a higher temperature, which results in degraded CD uniformity. This effect is called "resist heating effect" and is now the most critical error source in CD control on a variable shaped beam (VSB) mask writer. We have developed an on-tool, real-time correction system for the resist heating effect. The system is composed of correction software based on a simple thermal diffusion model and computational hardware equipped with more than 100 graphical processing unit chips. We have demonstrated that the designed correction accuracy was obtained and the runtime of correction was sufficiently shorter than the writing time. The system is ready to be deployed for our VSB mask writers to retain the writing time as short as possible for lower sensitivity resists by removing the need for increased pass count.

  17. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  18. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  19. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  20. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  1. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  2. NUMERICAL ANALYSIS OF RESIDUAL STRESSES IN TITANIUM ALLOY DURING ELECTRON BEAM LOCAL POST-WELD HEAT TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Huo Lixing; Zhang Yufeng; Liu Fangjun; Chen Gang

    2005-01-01

    The distributions of temperature and residual stresses in thin plates of BT20 titanium alloy are numerically analyzed by three-dimensional finite element software during electron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined with numerical calculating results, the effects of different EBLPWHT mode and parameters, including heat treating position,heating width and heating time, on the distribution of welding residual stresses are analyzed. The results show that, the residual tensile stresses in weld center can be largely decreased when the weld is heat treated at back preface of the plate. The numerical results also indicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinity of the weld is decreased, and the range of the residual longitudinal stresses is increased along with the increase of heating width and heating time.

  3. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.;

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH ...

  4. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  5. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, F., E-mail: federica.bonomo@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Istituto Gas Ionizzati - CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Barbisan, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cristofaro, S. [Universitá degli Studi di Padova, Via 8 Febbraio 2, 35122 Padova (Italy)

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  6. Active Beam Spectroscopy

    Science.gov (United States)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  7. Formation of Sunquakes in Hydrodynamic Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, V. V.; Zharkov, S.

    2015-12-01

    We present hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams and investigate their effects on the solar interior beneath the photosphere for production of acoustic waves, or sunquakes. The temperature, density and macro-velocity variations are calculated as functions of both column and linear depths for different mixed beams revealing strong sweeping of a flaring atmosphere under the quiet photosphere level (QFL). This results in subsequent plasma evaporation into the upper atmosphere and formation of supersonic shocks moving into the solar interior and terminating at depths of 300-5000 km beneath the QFL. The shocks deposited at different depths below the photosphere are found to define the parameters of seismic responses in the interior and their observation as sunquakes, according to the hydrodynamic model of wave propagation (Zharkov, 2013). In addition, we compare temporal and spatial distributions of HXR and optical emission in a few acoustically active flares with those produced by the complex simulations above, in attempt to resolve the puzzle of co-spatial formation of HXR and WL emission reported by Martinez-Oliveros et al. (2012).

  8. Comparison of the Performance of Chilled Beam with Swirl Jet and Diffuse Ceiling Air Supply: Impact of Heat Load Distribution

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Kosonen, Risto

    2013-01-01

    The impact of heat load strength and positioning on the indoor environment generated by diffuse ceiling air supply and chilled beam with radial swirl jet was studied and compared. An office room with two persons and a meeting room with six persons were simulated in a test room (4.5 x 3.95 x 3.5 m3...... (ventilation effectiveness of 0.4) and the air flow rate had to be above minimum to safeguard the indoor air quality. The radial swirl jet of chilled beam also was not capable of creating complete mixing at high and concentrated heat load (ventilation effectiveness of 0.7)....

  9. Overview of the design of the ITER heating neutral beam injectors

    Science.gov (United States)

    Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.

    2017-02-01

    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H‑ and D‑ remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be

  10. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  11. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  12. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  13. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  14. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  15. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  16. Demonstration of counter beam fast heating scheme by using a spherical CD shell target

    Science.gov (United States)

    Mori, Y.; Nishimura, Y.; Hanayama, R.; Nakayama, S.; Ishii, K.; Kitagawa, Y.; Sekine, T.; Takeuchi, Y.; Kurita, T.; Kato, Y.; Sato, N.; Kurita, N.; Kawashima, T.; Hioki, T.; Motohiro, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2016-10-01

    We report fast heating of a shock-imploded core under counter beam configuration that published in recent. Experiments are performed by using a repetitive IFE driver HAMA. Experiments results show that (i) a shock-imploded core with 70 micron diameter, originally deuterated polystyrene (CD) spherical shell of 500 micron diameter, is flashed by counter irradiating 110 fs, 7 TW laser pulses. The coupling efficiency from the laser to the core emission was inferred 13%. A collisional Particle-In-Cell simulation code PICLS2D indicates a possibility that counter hot electron currents generate magnetic filaments in the imploded core. (ii) Fast electrons with energy bellow a few MeV might be trapped by these filaments in the core region supposed to be contributing to the observed X-ray flash and the high coupling efficiency. These results indicate a possibility that counter irradiating fast heating scheme can improve the energy coupling into the core by hot electrons those are limited to less 10% for one-side irradiation fast heating conducted so far.

  17. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  18. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  19. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  20. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Koester, Petra; Cecchetti, Carlo A. [Intense Laser Irradiation Laboratory at INO, CNR, Pisa (Italy); Booth, Nicola; Woolsey, Nigel [Physics Department, University of York, York (United Kingdom); Chen, Hui [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Evans, Roger G. [Imperial College London, London (United Kingdom); Gregori, Gianluca; Li, Bin; Mithen, James; Murphy, Christopher D. [Physics Department, University of Oxford, Oxford (United Kingdom); Labate, Luca; Gizzi, Leonida A. [Intense Laser Irradiation Laboratory at INO, CNR, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Levato, Tadzio [Intense Laser Irradiation Laboratory at INO, CNR, Pisa (Italy); University of Rome Tor Vergata, Rome (Italy); Makita, Mikako; Riley, David [Physics Department, Queens University Belfast, Belfast (United Kingdom); Notley, Margaret; Pattathil, Rajeev [Rutherford Appleton Laboratory, STFC, Didcot (United Kingdom)

    2015-02-15

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.

  1. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  2. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  3. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  4. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  5. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  6. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  7. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  8. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    Science.gov (United States)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T.; Hippler, R.

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 °C with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (˜10-6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 °C of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  9. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  10. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  11. Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams

    Directory of Open Access Journals (Sweden)

    Khalane Sanjay Anandrao

    2013-05-01

    Full Text Available The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in terms of buckling temperatures and frequencies, is presented, considering the temperature independent and temperature dependent material properties. The buckling temperature and fundamental frequency obtained using the temperature independent material properties is higher than that obtained by using the temperature dependent material properties, for all the material distributions, geometrical parameters in terms of length to thickness ratios and the boundary conditions considered. It is also observed that the frequencies of the FGM beam will reduce with the increase in temperature. This observation is applicable for the higher modes of vibration also. The necessity of considering the temperature dependency of material properties in determining thermal buckling and vibration characteristics of FGM beams is clearly demonstrated.Defence Science Journal, 2013, 63(3, pp.315-322, DOI:http://dx.doi.org/10.14429/dsj.63.2370

  12. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    Energy Technology Data Exchange (ETDEWEB)

    King, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  13. Evaluation of electron beam irradiation under heating process on vulcanized EPDM

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Leandro; Cardoso, Jessica R.; Moura, Eduardo; Geraldo, Aurea B.C., E-mail: lgabriell@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Global consumption of rubber is estimated around 30.5 million tons in 2015, when it is expected an increase of 4.3% of this volume in the coming of years. This demand is mainly attributed to the production of elastomeric accessories for the automotive sector. However, the generation of this type of waste also reaches major proportions at the end of its useful life, when it is necessary to dispose the environmental liability. Rubber reprocessing is an alternative where it can be used as filler in other polymer matrices or in other types of materials. The devulcanization process is another alternative and it includes the study of methods that allow economic viability and waste reduction. Therefore, this study aims to recycle vulcanized EPDM rubber with the use of ionizing radiation. In this work we are using the electron beam irradiation process with simultaneous heating at absorbed doses from 150 kGy to 800 kGy, under high dose rate of 22.3 kGy/s on vulcanized EPDM powder and on samples about 4 mm thick. Their characterization, before and after the irradiation process, have been realized by thermal analysis and their changes have been discussed. (author)

  14. High energy laser beam dump

    Science.gov (United States)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  15. Beam instability studies for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  16. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  17. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  18. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  19. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  20. Relativistic Pair Beams from TeV Blazars: A Source of Reprocessed GeV Emission rather than IGM Heating

    CERN Document Server

    Sironi, Lorenzo

    2013-01-01

    The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the non-linear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors gamma_b>>1 and beam-to-plasma density ratios alpha 0.2 (as typically expected for blazar-induced beams), the fraction of beam energy deposited into the IGM is much smaller than ~10%. It follows that at least ~90% of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the Cosmic Microwave Background by the beam pairs.

  1. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  2. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  3. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  4. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  5. (Pulsed electron beam precharger)

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  6. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  7. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    Directory of Open Access Journals (Sweden)

    Igor Savukov

    2016-10-01

    Full Text Available Atomic magnetometers (AM are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz, which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG, magneto-cardiography (MCG, underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  8. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.

    Science.gov (United States)

    Savukov, Igor; Boshier, Malcolm G

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz(1/2) sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz(1/2) and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  9. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  10. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    Science.gov (United States)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  11. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  12. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  13. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  14. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  15. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  16. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  17. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  18. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  19. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  20. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  1. Optical beam dynamics in a gas repetitively heated by femtosecond filaments

    CERN Document Server

    Jhajj, N; Wahlstrand, J K; Milchberg, H M

    2013-01-01

    We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.

  2. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.

    Science.gov (United States)

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  3. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition

    Science.gov (United States)

    Pinkerton, Andrew J.

    2007-12-01

    In the laser direct metal deposition process, interaction between the laser beam and powder from a coaxial powder delivery nozzle alters the temperature of powder and the amount and spatial distribution of laser intensity reaching the deposition melt pool. These factors significantly affect the process and are also important input parameters for any finite element or analytical models of the melt pool and deposition tracks. The analytical model in this paper presents a method to calculate laser attenuation and powder temperatures at every point below such a nozzle. It is applicable to laser beams that are approximately parallel over the beam-powder interaction distance of any initial intensity distribution (Top Hat, Gaussian, TEM01ast or other). The volume below the nozzle is divided into the region above the powder consolidation plane, where the powder stream is annular, and below it, where it is a single Gaussian stream, and expressions derived for each region. Modelled and measured results are reasonably matched. Results indicate that attenuation is more severe once the annular powder stream has consolidated into a single stream but is not zero before that point. The temperature of powder reaching any point is not constant but the mean value is a maximum at the centre of the stream.

  4. Conceptual design of proton beam window

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  5. Multi-Beam Optical Tweezers

    OpenAIRE

    Glückstad, Jesper; Eriksen, Rene Lynge; Hanson, Steen Grüner

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of ...

  6. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  7. Effects of zonal heat treatment on residual stresses and mechanical properties of electron beam welded TC4 alloy plates

    Institute of Scientific and Technical Information of China (English)

    HU Mei-juan; LIU Jin-he

    2009-01-01

    Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses, microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT, and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%, respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint, which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.

  8. Modelling the neutralisation process in neutral beam injectors

    OpenAIRE

    Fitzgerald, Niall J.

    2009-01-01

    High power neutral beams currently play an important role in heating, fuelling and diagnosing magnetically confined thermonuclear fusion plasmas. At the Joint European Torus (JET) in Oxfordshire, England, the formation of such a beam involves passing a positive ion beam through a neutral gas target wherein beam electron-capture collisions result in a neutral beam component. The subsequent beam injection into the fusion plasma requires the sole use of this neutral component, since the charged ...

  9. Multi-Beam Optical Tweezers

    DEFF Research Database (Denmark)

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular...... orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having...

  10. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  12. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  13. Control on Electron Beam Scanning Track

    Institute of Scientific and Technical Information of China (English)

    王学东; 姚舜

    2004-01-01

    In order to use electron beam as a movable welding heat source and whose energy distribution along its moving trace can be controlled, a method of electron beam scanning track and scanning mode control was put forward. Based on it, the electron beam scanning track and scanning mode can be edited at will according to actual requirements, and the energy input of each point of the scanning track can be controlled. In addition, the scanning frequency and points control, real time adjusting of the scanning track etc. were explained. This method can be used in electron beam brazing, surface modification, surface heat treatment etc.

  14. Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Day, H; Caspers, F; Métral, E; Salvant, B; Uythoven, J

    2014-01-01

    The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high beam currents circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam induced heating were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss for operation after long shutdown 1 and for proposed HL-LHC operational parameters.

  15. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  16. Final focus test beam

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  17. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  18. HIRENASD Beam FEM

    Data.gov (United States)

    National Aeronautics and Space Administration — This contains attempts to create BEAM FEM model. I have started a Blog to discuss this... please put your comments there and I will attempt to keep everything...

  19. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  20. SPIDER beam dump as diagnostic of the particle beam

    Science.gov (United States)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  1. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  2. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  3. LHCb: Beam Pipe portrait

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector: it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  4. LHCb: Beam Pipe

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector:it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  5. Low intensity beam target unit

    CERN Multimedia

    1976-01-01

    This is a wheel fitted with many targets around its periphery (each with three longitudinally arranged thin rods) of which one is placed into the beam via a rotation of the wheel. Upstream of each target is placed a luminescent screen, aligbed on each target axis and viewed with a TV camera, to make sure that one is hitting the target. This target unit was probably used to study target's behaviour (like beam heating). Gualtiero Del Torre stands on the left, Pierre Gerdil on the right.

  6. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  7. Vibrating wires for beam diagnostics

    CERN Document Server

    Arutunian, S G; Wittenburg, Kay

    2015-01-01

    A new approach to the technique of scanning by wires is developed. Novelty of the method is that the wire heating quantity is used as a source of information about the number of interacting particles. To increase the accuracy and sensitivity of measurements the wire heating measurement is regenerated as a change of wire natural oscillations frequency. By the rigid fixing of the wire ends on the base an unprecedented sensitivity of the frequency to the temperature and to the corresponding flux of colliding particles. The range of used frequencies (tens of kHz) and speed of processes of heat transfer limit the speed characteristics of proposed scanning method, however, the high sensitivity make it a perspective one for investigation of beam halo and weak beam scanning. Traditional beam profile monitors generally focus on the beam core and loose sensitivity in the halo region where a large dynamic range of detection is necessary. The scanning by a vibrating wire can be also successfully used in profiling and det...

  8. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Science.gov (United States)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  9. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, J., E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni–Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  10. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  11. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  12. The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST

    Science.gov (United States)

    Chang, Pengxiang; Wu, Bin; Wang, Jinfang; Li, Yingying; Wang, Xiaoguang; Xu, Handong; Wang, Xiaojie; Liu, Yong; Zhao, Hailin; Hao, Baolong; Yang, Zhen; Zheng, Ting; Hu, Chundong

    2016-11-01

    Both neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) have been applied on the Experimental Advanced Superconducting Tokamak (EAST) in the 2015 campaign. In order to achieve more effective heating and current drive, the effects of NBI on the heating and current drive with electron cyclotron wave (ECW) are analyzed utilizing the code TORAY and experimental data in the shot #54411 and #54417. According to the experimental and simulated results, for the heating with ECW, NBI can improve the heating efficiency and move the power deposition place towards the inside of the plasma. On the other hand, for the electron cyclotron current drive (ECCD), NBI can also improve the efficiency of ECCD and move the place of ECCD inward. These results will be valuable for the center heating, the achievement of fully non-inductive current drive operation and the suppression of magnetohydrodynamic (MHD) instabilities with ECW on EAST or ITER with many auxiliary heating methods. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2014DFG61950) and National Natural Science Foundation of China (Nos. 11405212 and 11175211)

  13. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Von Hellermann, M.; Giroud, C.; Jaspers, R. [Association Euratom-Fom, FOM Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster (Netherlands); Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Krasilnikov, A.; Tugarinov, S. [SRC RF TRINITI, Troitsk, Moscow region (Russian Federation); Lotte, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; McKee, G. [Wisconsin Univ., Madison, WI (United States); Malaquias, A. [Associacao EURATOM/IST, Instituto Superior Tecnico, Lisboa (Portugal); Rachlew, E. [Kungliga Tekniska Hoegskolan (KTH), Stockholm(Sweden)

    2003-07-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV.

  14. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  15. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  16. Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves

    Science.gov (United States)

    Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  17. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    CERN Document Server

    O'Flannagain, A; Gallagher, P T

    2014-01-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  18. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    Science.gov (United States)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  19. Finite element analysis of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals

    Science.gov (United States)

    Westerberg, K. W.; McClelland, M. A.; Finlayson, B. A.

    1998-03-01

    A numerical analysis is made of the liquid flow and energy transport in a system to evaporate metals. The energy from an electron-beam heats an axisymmetric metal disk supported by a water-cooled platform. Metal evaporates from the surface of a hot pool of liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces, and is located in the transition region between laminar and turbulent flow. The evaporation rate is strongly influenced by the locations of the free boundaries. A modified finite element method is used to calculate the steady state flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an arrow matrix and are solved using the Newton-Raphson method. The electron-beam power and platform contact resistance are varied for cases involving the evaporation of aluminum. The results reveal the interaction of liquid flow, heat transfer and free interfaces.

  20. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  1. Paul Collier : Balancing beams

    CERN Multimedia

    2009-01-01

    As former head of AB Operations, Paul Collier and his group were in the ‘cockpit’ for the LHC’s maiden voyage - piloting the first beam around the ring. But now, as Head of the Beams Department, he will need his feet firmly on the ground in order to balance all the beam activities at CERN. "As Department Head, I’ll have less direct contact with the machines," Collier says with a hint of regret. "I’ll still obviously be very involved, but they won’t actually let me loose in front of the keyboard anymore!" As the new Head of the BE Department, Collier will be in charge of nearly 400 people, and will oversee all the beam activities, including the preparations for the longest period of beam operation in the history of CERN. In the new organization, the BE, TE and EN Departments have been grouped together in the Accelerator and Technology Sector. "‘Partnership’ is a key word for the three departments," says Collier. "The n...

  2. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  3. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  4. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  5. Beam Time Accounting

    CERN Document Server

    Seitova, Diana

    2016-01-01

    ISOLDE is one of the leading research facilities in the field of nuclear physics. A proton beam with an energy 1.4 GeV coming from the Proton Synchrotron Booster (PSB) hits one of the targets at ISOLDE and produces Radioactive Ion Beams (RIBs). Then, the RIBs of interest is selected and delivered to the different experimental stations. In order to deliver the beam to the certain experimental station, the positions of the devices along the beamline should satisfy certain conditions. The purpose of this project is to define the conditions for the beam to pass through the different beamlines and to store the data about device’s status for later analysis and statistics, so it would be possible to know when the beam was used for different experiments. The data with the settings of the different devices is saved in the Timber database and the first steps for making virtual devices to compile the status of the beamlines were completed.

  6. Thermal analysis of the SSC beam scraper

    Energy Technology Data Exchange (ETDEWEB)

    Tran, N.; Dao, B.

    1993-04-01

    When a particle beam impacts a beam scraper, heat is generated resulting in a rise in the temperature of the material. The maximum temperature rise should be kept to a minimum in order to maintain scraper efficiency and performance. In this paper the results of a thermal analysis of a scraper are presented.

  7. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  8. BEAM COUPLING PHENOMENA IN FAST KICKER SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; AHRENS,L.A.; GLENN,J.; SANDBERG,J.; TSOUPAS,N.

    2001-06-18

    Beam coupling phenomena have been observed in most fast kicker systems through out Brookhaven Collider-Accelerator complex. With ever-higher beam intensity, the signature of the beam becomes increasingly recognizable. The beam coupling at high intensity produced additional heat dissipation in high voltage modulator, thyratron grids, thyratron driver circuit sufficient to damage some components, and causes trigger instability. In this paper, we will present our observations, basic coupling mode analysis, relevance to the magnet structures, issues related to the existing high voltage modulators, and considerations of the future design of the fast kicker systems.

  9. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined......(x-xs, y-ys), a Fourier transforming lens for Fourier transforming the electromagnetic radiation, a first spatial light modulator for phase shifting the Fourier transformed electromagnetic radiation with the phase -F(u, v) of S*, S* is the complex conjugate of the Fourier transformed symbol s, a Fourier...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  10. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  11. Beam Synchronous Timing Systems

    CERN Document Server

    Peters, A

    2003-01-01

    For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.

  12. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  13. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence.

  14. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0

  15. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  16. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  17. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  18. Quantized beam shifts

    CERN Document Server

    Kort-Kamp, W J M; Dalvit, D A R

    2015-01-01

    We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  19. Dealing with megawatt beams

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; /Fermilab

    2010-08-01

    The next generation of accelerators for MegaWatt proton, electron and heavy-ion beams puts unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target and collimation systems, detectors and radiation shielding and minimization of their impact on environment. Recent advances in code developments are described for the critical modules related to these challenges. Examples are given for the most demanding areas: targets, collimators, beam absorbers, radiation shielding, induced radioactivity and radiation damage.

  20. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  1. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  2. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  3. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  4. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  5. Experimental Studies on Finite Element Model Updating for a Heated Beam-Like Structure

    Directory of Open Access Journals (Sweden)

    Kaipeng Sun

    2015-01-01

    Full Text Available An experimental study was made for the identification procedure of time-varying modal parameters and the finite element model updating technique of a beam-like thermal structure in both steady and unsteady high temperature environments. An improved time-varying autoregressive method was proposed first to extract the instantaneous natural frequencies of the structure in the unsteady high temperature environment. Based on the identified modal parameters, then, a finite element model for the structure was updated by using Kriging meta-model and optimization-based finite-element model updating method. The temperature-dependent parameters to be updated were expressed as low-order polynomials of temperature increase, and the finite element model updating problem was solved by updating several coefficients of the polynomials. The experimental results demonstrated the effectiveness of the time-varying modal parameter identification method and showed that the instantaneous natural frequencies of the updated model well tracked the trends of the measured values with high accuracy.

  6. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  7. Beam transport elements

    CERN Multimedia

    1965-01-01

    Two of the beam transport elements for the slow ejection system. On the left, a quadrupole 1.2 m long with a 5 cm aperture, capable of producing a gradient of 5000 gauss. On the right, a 1 m bending magnet with a 4 cm gap; its field is 20 000 gauss.

  8. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  9. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  10. Mode Gaussian beam tracing

    CERN Document Server

    Trofimov, M Yu; Kozitskiy, S B

    2015-01-01

    An adiabatic mode Helmholtz equation for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the crosswedge benchmark and proved an excellent agreement with the source images method.

  11. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    During the previous reporting period (Quarter Six), the charging and removal of a fine, high resistivity aerosol using the advanced technology of electron beam precipitation was successfully accomplished. Precharging a dust stream circulating through the EBP wind tunnel produced collection efficiency figures of up to 40 times greater than with corona charging and collection alone (Table 1). The increased system collection efficiency attributed to electron beam precharging was determined to be the result of increased particle charge. It was found that as precharger electric field was raised, collection efficiency became greater. In sequence, saturation particle charge varies with the precharger electric field strength, particle migration velocity varies with the precharger and collector electric field, and collection efficiency varies with the migration velocity. Maximizing the system collection efficiency requires both a high charging electric field (provided by the E-beam precharger), and a high collecting electric field (provided by the collector wires and plates). Because increased particle collection efficiency is directly attributable to higher particle charge, the focus of research during Quarter Seven was shifted to learning more about the actual charge magnitude on the aerosol particles. Charge determinations in precipitators have traditionally been made on bulk dust samples collected from the flue gas stream, which gives an overall charge vs. mass (Q/M) ratio measurement. More recently, techniques have been developed which allow the measurement of the charge on individual particles in a rapid and repeatable fashion. One such advanced technique has been developed at FSU for use in characterizing the electron beam precharger.

  12. Improvement of neutral beam injection heating efficiency with magnetic field well structures in a tokamak with a low magnetic field

    Science.gov (United States)

    Kim, S. K.; Na, D. H.; Lee, J. W.; Yoo, M. G.; Kim, H.-S.; Hwang, Y. S.; Hahm, T. S.; Na, Yong-Su

    2016-10-01

    Magnetic well structures are introduced as an effective means to reduce the prompt loss of fast ions, the so-called first orbit loss from neutral beam injection (NBI), which is beneficial to tokamaks with a low magnetic field strength such as small spherical torus devices. It is found by single-particle analysis that this additional field structure can modify the gradient of the magnetic field to reduce the shift of the guiding center trajectory of the fast ion. This result is verified by a numerical calculation of following the fast ion’s trajectory. We apply this concept to the Versatile Experiment Spherical Torus [1], where NBI is under design for the purpose of achieving high-performance plasma, to evaluate the effect of the magnetic well structure on NBI efficiency. A 1D NBI analysis code and the NUBEAM code are employed for detailed NBI calculations. The simulation results show that the orbit loss can be reduced by 70%-80%, thereby improving the beam efficiency twofold compared with the reference case without the well structure. The well-shaped magnetic field structure in the low-field side can significantly decrease orbit loss by broadening the non-orbit loss region and widening the range of the velocity direction, thus improving the heating efficiency. It is found that this magnetic well can also improve orbit loss during the slowing down process.

  13. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  14. Flare plasma dynamics obseved with the YOHKOH Bragg crystal spectrometer. III. Spectral signatures of electron-beam-heated atmospheres.

    Science.gov (United States)

    Marriska, John. T.

    1995-05-01

    Using numerical simulations of an electon-beam-heated solar flare, we investigate the observational consequences of variations in the electron beam total energy flux and the low-energy cut off value for models with both low and high initial densities. To do this we use the evolution of the physical parameters of the simulated flares to synthesize the time evolution of the spectrum in the wavelength region surrounding tha Ca xix resonance line. These spectra are then summed over a 9 s time interval to simulate typical spectra from the Yohkoh Bragg crystal spectometer and the first three moments are computed for comparison with observational results. This comparison shows that no single low or high initial density model satisfies the observed average behavior of the Ca xix resonance line. Low initial density models produce too large a blue shift velocity, while high initial density model have lines that are too narrow. Comparison of these models with the Yohkok data suggests that the key problem for models of the impulsive phase ofa solar flare is producing significant amounts of stationary hot plasma early in the flare.

  15. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved...

  16. Splash events First Beams 2008

    CERN Multimedia

    Collaboration, CMS

    2008-01-01

    First beam through the detector: images showing the debris, or "splash", of particles picked up in the detector's calorimeters and muon chambers after the beam was steered into the collimator (tungsten blocks) at Point 5.

  17. Depth-controlled Bessel beams

    CERN Document Server

    Müller, Angelina; Wallrabe, Ulrike

    2016-01-01

    We present a ring aperture with independently switchable segments for the three-dimensional control of quasi propagation invariant beams. We demonstrate that our liquid crystal design concept preserves coherence and generates the Bessel beam structure.

  18. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  19. Beam Injection in Recirculator SALO

    CERN Document Server

    Guk, Ivan S; Dovbnya, Anatoly N; Kononenko, Stanislav; Peev, Fedor; Tarasenko, Alexander; Van der Wiel, Marnix

    2005-01-01

    Possible antetypes of injectors for electron recirculator SALO,* intended for nuclear-physical research, are analyzed. The plan injection of beams in recirculator is offered. Expected parameters of beams are designed.

  20. Damping modeling in Timoshenko beams

    Science.gov (United States)

    Banks, H. T.; Wang, Y.

    1992-01-01

    Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.

  1. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  2. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  3. Effect of heating samples during pulsed electron beam annealing on the open-circuit voltage of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, A.; Barbier, D.; Doghmane, M.S.; Chemisky, G. (Institut National des Sciences Appliquees de Lyon, 69 - Villeurbanne (France))

    1983-01-01

    Defects associated with pulsed electron beam annealing of P implanted Si solar cells lead to poor Vsub(oc) (< 500mV). Their nature is discussed on the basic of S.E.M. observations, deep level transient spectroscopy study and degradation of electrical characteristics of Schottky barriers. An improved pulsed electron beam annealing process is determined, characterized by a low mean energy electron beam (10 keV) associated to a starting temperature of 450/sup 0/C and low fluences (<= 1J/cm/sup 2/). Values of Vsub(oc) similar to conventional thermal annealing are obtained.

  4. Cherenkov light-based beam profiling for ultrarelativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Gessner, S.J.; Corde, S.; Hogan, M.J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bjerke, H.H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2015-05-21

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. The profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. We report on the measured performance of this profile monitor.

  5. Focusing Electron Beams at SLAC.

    Science.gov (United States)

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  6. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  7. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  8. Metallic beam development for the Facility for Rare Isotope Beam

    Energy Technology Data Exchange (ETDEWEB)

    Machicoane, Guillaume, E-mail: machicoa@nscl.msu.edu; Cole, Dallas; Leitner, Daniela; Neben, Derek; Tobos, Larry [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will accelerate a primary ion beam to energies beyond 200 MeV/u using a superconducting RF linac and will reach a maximum beam power of 400 kW on the fragmentation target. The beam intensity needed from the ECR ion source is expected to be between 0.4 and 0.5 emA for most medium mass to heavy mass elements. Adding to the challenge of reaching the required intensity, an expanded list of primary beams of interest has been established based on the production rate and the number of isotope beams that could be produced with FRIB. We report here on the development done for some of the beam in the list including mercury (natural), molybdenum ({sup 98}Mo), and selenium ({sup 82}Ser)

  9. Square shaped flat-top beam in refractive beam shapers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2015-08-01

    Lossless transformation of round Gaussian to square shaped flat-top collimated beam is important in building highpower solid state laser systems to improve optical pumping or amplification. There are industrial micromachining applications like scribing, display repair, which performance is improved when a square shaped spot with uniform intensity is created. Proved beam shaping solutions to these techniques are refractive field mapping beam shapers having some important features: flatness of output phase front, small output divergence, high transmittance, extended depth of field, operation with TEM00 and multimode lasers. Usual approach to design refractive beam shapers implies that input and output beams have round cross-section, therefore the only way to create a square shaped output beam is using a square mask, which leads to essential losses. When an input laser beam is linearly polarized it is suggested to generate square shaped flat-top output by applying beam shaper lenses from birefringent materials or by using additional birefringent components. Due to birefringence there is introduced phase retardation in beam parts and is realized a square shaped interference pattern at the beam shaper output. Realization of this approach requires small phase retardation, therefore weak birefringence effect is enough and birefringent optical components, operating in convergent or divergent beams, can be made from refractive materials, which crystal optical axis is parallel to optical axis of entire beam shaper optical system. There will be considered design features of beam shapers creating square shaped flat-top beams. Examples of real implementations and experimental results will be presented as well.

  10. Slow light beam splitter.

    Science.gov (United States)

    Xiao, Yanhong; Klein, Mason; Hohensee, Michael; Jiang, Liang; Phillips, David F; Lukin, Mikhail D; Walsworth, Ronald L

    2008-07-25

    We demonstrate a slow light beam splitter using rapid coherence transport in a wall-coated atomic vapor cell. We show that particles undergoing random and undirected classical motion can mediate coherent interactions between two or more optical modes. Coherence, written into atoms via electromagnetically induced transparency using an input optical signal at one transverse position, spreads out via ballistic atomic motion, is preserved by an antirelaxation wall coating, and is then retrieved in outgoing slow light signals in both the input channel and a spatially-separated second channel. The splitting ratio between the two output channels can be tuned by adjusting the laser power. The slow light beam splitter may improve quantum repeater performance and be useful as an all-optical dynamically reconfigurable router.

  11. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  12. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  13. Oberst beam test technique

    Science.gov (United States)

    Fasana, Alessandro; Garibaldi, Luigi; Giorcelli, Ermanno; Ruzzene, Massimo

    1998-06-01

    The definition of the mechanical properties of viscoelastic materials, i.e. the elastic modulus and the loss factor, is carried out, according to many national and international standards, with many different techniques, both of the resonant and non-resonant type. In this paper we focus our attention on the pros and cons of the resonant technique based on the classical Oberst beam method. When the damping material to be tested is not self-supporting, its properties are determined taking start from the measured modal frequencies and loss factors of a laminated beam, constituted by one or two metallic strips, ideally undamped, and one or two viscoelastic layers. The formulae specified on the standards hold valid under the assumptions of the theory developed by Kerwin, Ungar and Ross and we try in this paper to quantify witch deviation of the results should be expected when moving away from their ideal hypotheses.

  14. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  15. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  16. Bidirectional beam propagation method

    Science.gov (United States)

    Kaczmarski, P.; Lagasse, P. E.

    1988-05-01

    A bidirectional extension of the beam propagation method (BPM) to optical waveguides with a longitudinal discontinuity is presented. The algorithm is verified by computing a reflection of the TE(0) mode from a semiconductor laser facet. The bidirectional BPM is applicable to other configurations such as totally reflecting waveguide mirrors, an abruption transition in a waveguide, or a waveguide with many discontinuities generating multiple reflections. The method can also be adapted to TM polarization.

  17. Magic Baseline Beta Beam

    CERN Document Server

    Agarwalla, Sanjib Kumar; Raychaudhuri, Amitava

    2007-01-01

    We study the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The CERN-INO distance is close to the so-called "magic" baseline which helps evade some of the parameter degeneracies and allows for a better measurement of the neutrino mass hierarchy and $\\theta_{13}$.

  18. Axion beams at HERA?

    OpenAIRE

    Piotrzkowski, Krzysztof

    2007-01-01

    If the recently observed anomaly in the PVLAS experiment is due to the axion, then the powerful beams of synchrotron photons, propagating through high magnetic field of the HERA beamline, become strong axion sources. This gives a unique opportunity of detection of the axion-photon interactions by installing a small detector in the HERA tunnel, and to corroborate the axion hypothesis within a few days of running. Comment: 5 pages, 1 figure

  19. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  20. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  1. Beam-Material Interaction

    CERN Document Server

    Mokhov, N.V.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  2. Neutrino beam line optics study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming-Jen

    1996-09-01

    A study was done to understand the beam line optics from the beginning of Switchyard all the way to the end of Neutrino beam line. All available SWIC data were taken to get the beam centroid and width to be used in the analysis. The beam emittance and lattice function at the beginning of beam line can also be inferred from the study. The result indicated that the normalized 95% emittance to be around 15 {pi}-mm-mr for the vertical plane and about 28 {pi}-mm-mr for the horizontal plane.

  3. RIA Fragmentation Line Beam Dumps

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W

    2003-08-08

    The Rare Isotope Accelerator project involves generating heavy-element ion beams for use in a fragmentation target line to produce beams for physics research. The main beam, after passing through the fragmentation target, may be dumped into a beam dump located in the vacuum cavity of the first dipole magnet. For a dump beam power of 100 kW, cooling is required to avoid excessive high temperatures. The proposed dump design involves rotating cylinders to spread out the energy deposition and turbulent subcooled water flow through internal water cooling passages to obtain high, nonboiling, cooling rates.

  4. Determination of Kinetic Parameters and Metal Ions in Urea-Urease System Based on the Biochemical Reaction Heat Induced Laser Beam Deflection

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (Km) of urease and apparent inhibition constant (Ki) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.

  5. Hyperon Beam Experiment

    CERN Multimedia

    2002-01-01

    The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...

  6. Infrared Risley beam pointer

    Science.gov (United States)

    Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael

    2014-03-01

    Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.

  7. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  8. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  9. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  10. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-05-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  11. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y; Rumolo, G; Manglunki, D

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  12. Special Technologies Related to Electron Beam Welding

    Institute of Scientific and Technical Information of China (English)

    Zhao; Haiyan; Cai; Zhipeng; Wang; Xichang

    2007-01-01

    In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.

  13. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, T., E-mail: Thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Bolle, B. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), ENIM, Ile du Saulcy, 57045 Metz (France); Hao, S.Z.; Dong, C. [Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    High current pulsed electron beam is a recently developed technique for surface modification. The pulsed electron irradiation introduces concentrated energy depositions in the thin surface layer of the treated materials, giving rise to an extremely fast heating and subsequent rapid cooling of the surface together with the formation of dynamic stress waves. Improved surface properties (hardness, corrosion resistance) can be obtained under the 'melting' mode when the top surface is melted and rapidly solidified (10{sup 7} K/s). In steels, this is essentially the result of nanostructures formed from the highly undercooled melt, melt surface purification, strain hardening induced by the thermal stress waves as well as metastable phase selections in the rapidly solidified melted layers. The use of the 'heating' mode is less conventional, combining effects of the heavy deformation and recrystallization/recovery mechanisms. A detailed analysis of a FeAl alloy demonstrates grain size refinement, hardening, solid-state enhanced diffusion and texture modification without modification of the surface geometry.

  14. Analysis of beam loss induced abort kicker instability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

  15. Beyond ITER: Neutral beams for DEMO

    CERN Document Server

    McAdams, R

    2013-01-01

    In the development of magnetically confined fusion as an economically sustainable power source, ITER is currently under construction. Beyond ITER is the DEMO programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  16. Progress in the MITICA beam source design

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, P.; Agostinetti, P.; Marcuzzi, D.; Pavei, M.; Pilan, N.; Rizzolo, A.; Sonato, P.; Spada, F.; Trevisan, L. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2012-02-15

    In the framework of the development of the ITER neutral beam (NB) system, a test facility is planned to be built in Padova. A full size prototype of the ITER heating NB injector (MITICA) shall be built and tested at full beam power (17 MW) as per ITER requirements. The design of the MITICA beam source has further progressed following updated optimization and overall integration criteria. In the paper, the major design choices and revisions are presented, together with some results of numerical analyses carried out in order to assess the electrostatic and thermo-mechanical behaviour of the source.

  17. Progress in the MITICA beam source design.

    Science.gov (United States)

    Zaccaria, P; Agostinetti, P; Marcuzzi, D; Pavei, M; Pilan, N; Rizzolo, A; Sonato, P; Spada, F; Trevisan, L

    2012-02-01

    In the framework of the development of the ITER neutral beam (NB) system, a test facility is planned to be built in Padova. A full size prototype of the ITER heating NB injector (MITICA) shall be built and tested at full beam power (17 MW) as per ITER requirements. The design of the MITICA beam source has further progressed following updated optimization and overall integration criteria. In the paper, the major design choices and revisions are presented, together with some results of numerical analyses carried out in order to assess the electrostatic and thermo-mechanical behaviour of the source.

  18. Progress in the MITICA beam source designa)

    Science.gov (United States)

    Zaccaria, P.; Agostinetti, P.; Marcuzzi, D.; Pavei, M.; Pilan, N.; Rizzolo, A.; Sonato, P.; Spada, F.; Trevisan, L.

    2012-02-01

    In the framework of the development of the ITER neutral beam (NB) system, a test facility is planned to be built in Padova. A full size prototype of the ITER heating NB injector (MITICA) shall be built and tested at full beam power (17 MW) as per ITER requirements. The design of the MITICA beam source has further progressed following updated optimization and overall integration criteria. In the paper, the major design choices and revisions are presented, together with some results of numerical analyses carried out in order to assess the electrostatic and thermo-mechanical behaviour of the source.

  19. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    Science.gov (United States)

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  20. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  1. Beam-Beam Effect with an External Noise in LHC

    CERN Document Server

    Ohmi, K; Höfle, Wolfgang; Tomás, R; Zimmermann, F

    2007-01-01

    In absence of synchrotron radiation, proton beams do not have any damping mechanism for incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. If the system is linear, the coherent motion is maintained in amplitude. Nonlinear force, beam-beam and beam-electron cloud interactions, cause a decoherence of the betatron motion keeping the amplitude of each beam particle, with the result that an emittance growth arises. We focus only on fast noise with a correlation time of 1-100 turns. Slower noise is less serious, because it is regarded as an adiabatic change like a closed orbit change. As sources of the noise, we consider the bunch by bunch feedback system and phase jitter of cavities which turns to transverse noise via a crab cavity.

  2. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  3. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  4. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  5. Micro-beam XRF localization by a laser beam

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new method for micro-beam XRF localization is presented. A laserbeam along with an incident X-ray hits on the surface of a sample. The micro region onthe sample that reached by X-ray beam can be localized by means of thevisible spot of the laser beam. This method is suitable for X-ray microprobesusing anX-ray tube or synchrotron radiation as excitation sources.

  6. High Heat Flux Testing of B4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam

    Institute of Scientific and Technical Information of China (English)

    刘翔; 谌继明; 张斧; 许增裕; 葛昌纯; 李江涛

    2002-01-01

    B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.

  7. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  8. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  9. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  10. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...... at the limit state of serviceability is in some simple cases determined by setting up the statical and the compatibility conditions.With these moment distributions, the maximum deflection and the reinforcement stresses at the span middle and at a support are calculated.The results are compared with results...

  11. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  12. Edge effect in beam monitors

    CERN Document Server

    Cuperus, J H

    1977-01-01

    Quite often, particle-beam monitors have not the same cross-section as the beam pipe or vacuum chamber in which they are mounted. In that case, the electromagnetic field of the beam is distorted in the vicinity of the edges of the monitor. This field, at the junction of two rectangular beam pipes of different dimensions, is computed for a beam with constant charge along its length. Solutions which are less accurate but easier to apply are obtained with a first order approximation. The results are extended to intensity-modulated beams and circular or elliptical cross-sections. The errors, due to the edge effect, for the electrostatic pickup and the wall-current monitor are computed. The final formulas are simple and easy to apply to practical cases. (6 refs).

  13. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  14. Controlling Beam Halo-Chaos

    Institute of Scientific and Technical Information of China (English)

    方锦清; 罗晓曙; 陈关荣; 翁甲强

    2001-01-01

    Beam halo-chaos is essentially a complex spatiotemporal chaotic motion in a periodic-focusing channel of a highpower linear proton accelerator. The controllability condition for beam halo-chaos is analysed qualitatively. A special nonlinear control method, i.e. the wavelet-based function feedback, is proposed for controlling beam halochaos. Particle-in-cell simulations are used to explore the nature of halo-chaos formation, which has shown that the beam hMo-chaos is suppressed effectively after using nonlinear control for the proton beam with an initial full Gaussian distribution. The halo intensity factor Hav is reduced from 14%o to zero, and the other statistical physical quantities of beam halo-chaos are more than doubly reduced. The potential applications of such nonlinear control in experiments are briefly pointed out.

  15. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  16. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  17. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  18. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-05

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  19. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  20. First Beam Splash Events 2008

    CERN Multimedia

    Collaboration, CMS

    2008-01-01

    10th September 2008 at 10.00 a.m. CMS saw the beam pass through the experiment for the first time ever, in the clockwise direction. The beam was initially intentionally stopped by blocks around 154 metres before CMS at Point 5, producing these images of the debris or "splash" from the particles hitting the blocks. After removal of the blocks, the beam then passed through CMS successfully. At 14.30 beam then passed successfully in the anticlockwise direction through the experiment.

  1. Compact electron beam focusing column

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  2. Terahertz beam shaping with metasurface

    Science.gov (United States)

    He, Jingwen; Wang, Sen; Zhang, Yan

    2016-11-01

    Based on metasurface, two beam shapers are designed to modulate the wavefront of the terahertz beam. One of the beam shapers is THz ring-Airy beam generator and the other is THz four-focus lens. Each beam shaper is composed of a serious of C-shaped slot antennas, which can be used to modulate the phase and amplitude of the cross-polarized scattered wave. A THz holographic imaging system is utilized to measure the field of the generated beams. The ring- Airy beam shaper is designed by replacing both the phase and amplitude of its initial electric field with the corresponding antennas. In the experiment, an abrupt focus following a parabolic trajectory is subsequently observed. This method can be expanded to other wavebands, such as the visible band, in which the ring-Airy beam shaper can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders. The phase distribution of the four-focus lens is obtained by using the Yang-Gu amplitude-phase retrieval algorithm and then encoded to the antennas. Both the focusing and imaging properties are demonstrated. A clear image can be obtained with a bandwidth of 110 GHz. This type of transmissive metasurface beam shaper serves as an attractive alternative to conventional diffractive optical elements based on its small size, ease of fabrication, and low cost.

  3. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  4. Beam shifts and distribution functions

    CERN Document Server

    Aiello, Andrea

    2011-01-01

    When a beam of light is reflected by a smooth surface its behavior deviates from geometrical optics predictions. Such deviations are quantified by the so-called spatial and angular Goos-Haenchen (GH) and Imbert-Fedorov (IF) shifts of the reflected beam. These shifts depend upon the shape of the incident beam, its polarization and on the material composition of the reflecting surface. In this article we suggest a novel approach that allows one to unambiguously isolate the beam-shape dependent aspects of GH and IF shifts. We show that this separation is possible as a result of some universal features of shifted distribution functions which are presented and discussed.

  5. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  6. LHC beam-beam compensation using wires and electron lenses

    CERN Document Server

    Dorda, U; Shiltsev, V; Zimmermann, F

    2007-01-01

    We present weak-strong simulation results for a possible application of current-carrying wires and electron lenses to compensate the LHC long-range and head-on beambeam interaction, respectively, for nominal and PACMAN bunches. We show that these measures have the potential to considerably increase the beam-beam limit, allowing for a corresponding increase in peak luminosity.

  7. Output beam analysis of high power COIL

    Institute of Scientific and Technical Information of China (English)

    Deli Yu(于德利); Fengting Sang(桑凤亭); Yuqi Jin(金玉奇); Yizhu Sun(孙以珠)

    2003-01-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instabilityappears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator.In order to interpret this phenomenon, an output beam mode simulation code was developed with the fastFourier transform method. The calculation results show that the presence of the nonuniform gain in COILproduces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermalexpansion. With the output power of COIL increases, the mirror surfaces, especially the back surface ofthe scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beamspot seriously. The initial misalignment direction is an important factor for the far field beam spot driftingand deformation.

  8. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    NARCIS (Netherlands)

    Bsat, S.; Yavari, S.; Munsch, M.; Valstar, E.R.; Zadpoor, A.A.

    2015-01-01

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bi

  9. New concepts in deployable beam structures

    Science.gov (United States)

    Rhodes, M. D.

    1985-01-01

    The design of deployable structures involves a complicated tradeoff of packaging efficiency, the overall mechanism associated with deploying and latching beam joints, and the requirements and complexity of the beam deployer/repacker. Three longeron deployable beams, controllable geometry beams, and hybrid deployable/erectable beam concepts are evaluated.

  10. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  11. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  12. Molecular-beam scattering

    Science.gov (United States)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  13. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  14. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  15. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  16. Hybrid beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The first proton-ion beams were successfully circulated in the LHC a couple of weeks ago. Everything went so smoothly that the LHC teams had planned the first p-Pb collisions for Wednesday, 16 November. Unfortunately, a last-minute problem with a component of the PS required for proton acceleration prevented the LHC teams from making these new collisions. However, the way is open for a possible physics run with proton-lead collisions in 2012.   Members of the LHC team photographed when the first hybrid beams got to full energy. The proton and lead beams are visible on the leftmost screen up on the wall (click to enlarge the photo). The technical challenge of making different beams circulate in the LHC is by no means trivial. Even if the machine is the same, there are a number of differences when it is operated with beams of protons, beams of lead or beams of proton and lead. Provided that the beams are equal, irrespective of whether they consist of protons or lead nuclei, they revolve at the...

  17. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  18. CLIC Drive Beam Accelerating Structures

    CERN Document Server

    Wegner, Rolf

    2012-01-01

    Travelling structures for accelerating the high-current (4.2 A) CLIC Drive Beam to an energy of 2.37 GeV are presented. The structures are optimised for efficiency (full beam loading operation) and a desired filling time. Higher order modes are studied and are reduced by detuning along the structure and by damping with silicon carbide loads.

  19. BOUNDARY STABILIZATION OF TIMOSHENKO BEAM

    Institute of Scientific and Technical Information of China (English)

    YAN Qingxu

    2000-01-01

    In this paper, the stabilization problem of Timoshenko beam by some nonlinear boundary feedback controls is considered. By virtue of nonlinear semigroup theory and energy-perturbed method, it is shown that the vibration of the beam under the proposed control action decays exponentially or in negative power of time t as t → ∞.

  20. An introduction to beam physics

    CERN Document Server

    Berz, Martin; Wan, Weishi

    2015-01-01

    The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, high...

  1. Cold and Slow Molecular Beam

    CERN Document Server

    Lu, Hsin-I; Wright, Matthew J; Patterson, Dave; Doyle, John M

    2011-01-01

    Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. One modestly boosted beam has a forward velocity of vf = 65 m/s, a narrow velocity spread, and a flux of 10^9 molecules per pulse. The other has the slowest forward velocity of vf = 40 m/s, a longitudinal temperature of 3.6 K, and a flux of 5x10^8 molecules per pulse.

  2. Report of the group on beam-beam effects in circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1991-05-01

    We present a summary of the discussions and conclusions of the working group on beam-beam effects for circular colliders. This group was part of the larger beam-beam dynamics group at the 7th ICFA Workshop on Beam Dynamics, on the subject Beam-Beam and Beam-Radiation Interactions,'' held at UCLA, May 13--16, 1991. 15 refs.

  3. Beam shaping for cosmetic hair removal

    Science.gov (United States)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  4. Impact properties of electron beam welds of V–4Ti–4Cr alloys NIFS-HEAT-2 and CEA-J57

    Energy Technology Data Exchange (ETDEWEB)

    Tsisar, Valentyn, E-mail: valentyn_tsisar@ipm.lviv.ua [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Physical–Mechanical Institute of National Academy of Sciences of Ukraine (PhMI NASU), 5 Naukova Street, 79601 Lviv (Ukraine); Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Material Process Technology (IAM-WPT), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Nagasaka, Takuya [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Le Flem, Marion [CEA, DEN, DMN, SRMA, F-91191 Gif Sur Yvette (France); Yeliseyeva, Olga [Physical–Mechanical Institute of National Academy of Sciences of Ukraine (PhMI NASU), 5 Naukova Street, 79601 Lviv (Ukraine); Konys, Jürgen [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Material Process Technology (IAM-WPT), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Muroga, Takeo [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2014-10-15

    Highlights: • Electron beam welding was applied for V–4Ti–4Cr alloys NIFS-HEAT-2 and CEA-J57. • Weld metal showed superior impact properties in comparison with base metal. • Expected shift in DBTT to higher temperatures does not take place. - Abstract: The Charpy impact properties and microstructure of bead-on-plate electron beam welds of V–4Ti–4Cr alloys NIFS-HEAT-2 (NH-2) and CEA-J57 (J57) were investigated. Weld metal of both grades demonstrated increase in hardness (HV{sub 100} ∼ 180) in comparison with base metal (HV{sub 100} ∼ 135) due to decomposition of Ti–C,O,N precipitates followed by the solid-solution hardening of V-matrix with oxygen. Hardness decreases gradually from the weld metal through the heat affected zone toward the base metal indicating partial decomposition of precipitation bands from the side of heat affected zone directly adjoining weld metal. The latter consists of columnar crystallites (grains) possessing with inner dendritic structure and elongated from the center of weld belt in the direction of heat removal. Thickness of weld metal does not exceed 1 mm while heat affected zone is about 3 mm thick. Absorbed energies of weld metal are superior in comparison with base metal for both grades (NH-2 and J57) while the fracture mode is mainly ductile in the temperature range of impact test from 17 to −196 °C.

  5. Control And Transport Of Intense Electron Beams

    CERN Document Server

    Li, H

    2004-01-01

    The transport of intense beams for advanced accelerator applications with high-intensity beams such as heavy-ion inertial fusion, spallation neutron sources, and intense light sources requires tight control of beam characteristics over long distances. The University of Maryland Electron Ring (UMER), which uses low energy, high current electron beams to model the transport physics of intense space-charge-dominated beams, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe in this dissertation the main beam control techniques used in UMER, which include optimal beam steering by quadrupole scans, beam rotation correction using a skew corrector, rms envelope matching and optimization, empirical envelope matching, beam injection, and phase space reconstruction using a tomographic method. Using these control techniques, we achieved the design goals for UMER. The procedure is not only indispensable for optimum beam transport over l...

  6. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat

    2015-04-01

    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  7. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Burrell, K. H.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  8. Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Babu, N. Kishore [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai (India); Raman, S. Ganesh Sundara [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai (India)], E-mail: ganesh@iitm.ac.in; Murthy, C. V. Srinivasa [Defence Research and Development Laboratory, Hyderabad (India); Reddy, G. Madhusudhan [Defence Metallurgical Research Laboratory, Hyderabad (India)

    2007-12-15

    The present study deals with the effect of beam oscillation technique using elliptical waveform on fatigue life of Ti-6Al-4V electron beam weldments. Autogenous full penetration bead-on-plate electron beam welds were made with and without beam oscillation. Some welds were subjected to post-weld heat treatment (PWHT) at two different temperatures (700 and 900 deg. C). Room temperature hardness, tensile properties and fatigue life of the weldments in the as-welded and PWHT conditions were studied and correlated with the microstructure. The beam oscillated weldments exhibited lower strength (hardness) compared to those made without beam oscillation. This was attributed to wider diffusional {alpha} plates in the beam oscillated welds due to lower cooling rates. The beam oscillated weldments exhibited inferior fatigue lives compared with unoscillated weldments owing to the presence of wider {alpha} platelets in the former. As the width of {alpha} platelets in the weldments subjected to PWHT at 700 deg. C was smaller than that in the weldments subjected to PWHT at 900 deg. C, they exhibited longer fatigue lives.

  9. Electrostatic wire stabilizing a charged particle beam

    Science.gov (United States)

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  10. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  11. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  12. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  13. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  14. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-08-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  15. Asymmetric Laguerre-Gaussian beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  16. Optical tractor Bessel polarized beams

    Science.gov (United States)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  17. Beam line to S155

    CERN Multimedia

    1977-01-01

    The experiment S155 was designed by the Orsay (CSNM-CNRS) Collaboration to observe the properties of exotic light nuclei. It was installed in the PS neutrino tunnel. The photo shows a mass spectrometer (in the background) on line with the PS proton beam which arrives (bottom, right) from the fast extraction FE74. Roger Fergeau stands on the left. The alkaline isotopes produced in the carbon-uranium target heated at 2000°C were swiftly extracted, mass separated, and brought to a detector behind the shielding. Sodium 34 (11 protons and 23 neutrons) was observed and its half-life of only 5 ms was measured. The excited levels 2+ of Magnesium 30 and Magnesium 32 (Sodium descendants) were localised, and the magic number 20 was found to vanish. Thus, the discovery made earlier for Sodium 30 and Sodium 32, with the same apparatus, was confirmed. (See also photo 7706511.)

  18. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  19. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  20. Beam Instrumentation for the Single Electron DAFNE Beam Test Facility

    CERN Document Server

    Mazzitelli, G; Valente, P; Vescovi, M

    2003-01-01

    The DAΦNE Beam Test Facility (BTF) has been successfully commissioned in February 2002, and started operation in November of the same year. Although the BTF is a beam transfer line optimized for single particle production, mainly for high energy detectors calibration, it can provide electrons and positrons in a wide range of multiplicity: between 1-1010, with energies from a few tens of MeV up to 800 MeV. The large multiplicity range requires many different diagnostic devices, from high-energy calorimeters and ionization/fluorescence chambers in the few particles range, to standard beam diagnostics systems. The schemes of operation, the commissioning results, as well as the beam diagnostics are presented.

  1. Beam stability at CTF3

    CERN Document Server

    Persson, T

    2012-01-01

    The two-beam acceleration tested at CTF3 imposes very tight tolerances on the drive beam stability. A description of the specialized monitoring tool developed to identify the drifts and jitter in the machine is presented. It compares all the relevant signals in an on-line manner to help the operator to identify drifts and to log data for off-line analysis. The main sources for the drifts of the drive beam have been identified and their causes are described. A feedback applied to the RF was implemented to reduce the effects. It works by changing the waveform for the pulse compression to compensate for the drifts.

  2. Beam Transfer and Machine Protection

    CERN Document Server

    Kain, V

    2016-01-01

    Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.

  3. Photoelectron photoion molecular beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  4. Target development for a radioactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J. (Universite Libre de Bruxelles (Belgium). Inst. d' Astronomie et d' Astrophysique); Baeten, F.; Dom, C. (Institut National des Radioelements, Fleurus (Belgium)); Darquennes, D.; Delbar, T.; Jongen, Y.; Lacroix, M.; Lipnik, P.; Loiselet, M.; Ryckewaert, G.; Wa Kitwanga, S.; Vervier, J.; Zaremba, S. (Louvain Univ., Louvain-la-Neuve (Belgium). Centre de Physique Nucleaire; Louvain Univ., Louvain-la-Neuve (Belgium). Lab. de Cyclotron); Huyse, M.; Reusen, G.; Duppen, P. van (Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika)

    1989-10-01

    A proton bombarded target coupled to an ion source is a key-equipment to produce a cyclotron accelerated Radioactive Ion Beam (RIB). This note concerns the target development for a {sup 13}N ion beam which will be the first one out of a more general project at Louvain-la-Neuve (Report RIB-1988-01). A 30-MeV proton beam of up to 300-{mu}A intensity from the CYCLONE 30 bombards a graphite target to produce the {sup 13}N isotope via the {sup 13}C(p, n){sup 13}N reaction. Two major problems have to be solved: The extraction and transport of {sup 13}N and the beam-heat dissipation. These aspects are somewhat correlated to the temperature dependence of the {sup 13}N release and to the heat conductivity of graphite. A disk shaped target can be cooled through its side-face or through its back-face, and in fact both designs are explored. The extraction yield of the first one varies with the beam intensity up to a maximum value of 46% at 170 {mu}A. For the second one, which is presently under development, the target temperature can be adjusted by a cooled finger of variable length. (orig.).

  5. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  6. Surface modification produced by a nitrogen operated plasma focus device: the role of the ion beam in the heating of a substrate

    Science.gov (United States)

    Lepone, A.; Kelly, H.; Lamas, D.; Márquez, A.

    1999-04-01

    The role of the nitrogen ion beam generated with a small energy plasma focus (PF) device in the thermal processing of an austenitic stainless steel substrate is discussed. A numerical solution of the heat equation which takes into account the temperature variations of the thermal coefficients of the material is presented. By using several characteristics of the beam determined in previous works, it is found that the energy content of the beam is not enough to promote a strong heating of the outer layers of the substrate, which is required to explain the introduction of foreign particles to depths well beyond the ion range in the material, and also the martensitic transformation of steel up to a depth of ≈0.6 μm found in this work. The surface treatment is thus attributed to a plasma bubble generated by the disruption of the plasma column, and some evidence of its presence is obtained by employing a Faraday cup (FC). When the numerical model is used with an input energy density corresponding to the experimental value, and with a delivery time equal to the temporal width of the bubble, the evolution of the temperature profiles along the substrate depth shows a melting front reaching the proper depth to explain the penetration of Ti and N atoms found in a previous work, and the martensitic transformation depth presented in this work.

  7. Initial Tests of a Plasma Beam Combiner at NIF

    Science.gov (United States)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T. D.; Wilks, S. C.; London, R. A.; Berger, R. L.; Michel, P. A.; Divol, L.; Dunlop, W. H.; MacGowan, B. J.; Fournier, K. B.; Blue, B. E.; NIF Team

    2016-10-01

    The seeded forward SBS process that is known to effectively amplify beams in ignition targets has recently been used to design and test a target to combine the power and energy of many beams of the NIF facility into a single beam by intersecting them in an ionized gas. The demand for high-power beams for a variety of applications at NIF makes a demonstration of this process attractive. We will describe experiments using a gas-filled balloon heated by 10 quads of beams, and pumped by additional frequency-tuned quads to amplify a single beam. The beam energy is indicated by gated x-ray images of both the spots produced by the transmitted pump and probe beams and the spot produced by a non-interacting quad of beams when they terminate on a foil. The first experiment produced a high brightness seed beam with significant reductions in brightness of the pumping beams, consistent with their depletion by energy transfer to the seed. Additional experiments studying spot brightness with varying pump power to determine total delivered seed beam energy and power will be discussed as available. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Observations and open questions in beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  9. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  10. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  11. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  12. Investigation of in situ and conventional post-weld heat treatments on dual-laser-beam-welded {gamma}-TiAl-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Ventzke, Volker; Kashaev, Nikolai; Huber, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Staron, Peter; Schell, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Physics Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2012-10-15

    This paper describes a way to improve the microstructure and mechanical properties of welding seams by in situ and conventional post-weld heat treatments for laser beam welding of the Ti-45Al-5Nb-0.2C-0.2B alloy. The seams are crack-free with reduced longitudinal residual stress and higher elongation to fraction after post-weld heat treatment. The welding zone consists of {alpha}{sub 2} after welding, transforms to a massive {gamma} during in situ post-weld heat treatment, and finally forms a convoluted microstructure after conventional heating. The phase composition across the welding zone is discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  14. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  15. Center for Beam Physics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities.

  16. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  17. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  18. LHC beam loss pattern recognition

    CERN Document Server

    Marsili, A; Puzo, P

    2011-01-01

    One of the systems protecting CERN’s Large Hadron Collider (LHC) is the Beam Loss Monitoring system (BLM). More than 3600 monitors are installed around the ring. The beam losses are permanently integrated over 12 different time intervals (from 40 microseconds to 84 seconds). When any loss exceeds the thresholds defined for the integration window, the beam is removed from the machine. Understanding the origin of a beam loss is crucial for machine operation, as it can help to avoid a repetition of the same scenario. The signals read from given monitors can be considered as entries of a vector. This article presents how a loss map of unknown cause can be decomposed using vector based analysis derived from well-known loss scenarios. The algorithms achieving this decomposition are described, as well as the accuracy of the results.

  19. Libera Electron Beam Position Processor

    CERN Document Server

    Ursic, Rok

    2005-01-01

    Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...

  20. Squid based beam current meter

    Energy Technology Data Exchange (ETDEWEB)

    Kuchnir, M.

    1983-11-25

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 ..mu..A, something that could be done using a second one in a less sensitive configuration.

  1. Monitor of SC beam profiles

    CERN Multimedia

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  2. Beam screen cryogenic control improvements for the LHC run 2

    CERN Document Server

    Bradu, Benjamin; Blanco Vinuela, Enrique; Ferlin, Gerard; Tovar-Gonzalez, Antonio

    2016-01-01

    This paper presents the improvements made on the cryogenic control system for the LHC beam screens. The regulation objective is to maintain an acceptable temperature range around 20 K which simultaneously ensures a good LHC beam vacuum and limits cryogenic heat loads. In total, through the 27 km of the LHC machine, there are 485 regulation loops affected by beam disturbances. Due to the increase of the LHC performance during Run 2, standard PID controllers cannot keeps the temperature transients of the beam screens within desired limits. Several alternative control techniques have been studied and validated using dynamic simulation and then deployed on the LHC cryogenic control system in 2015. The main contribution is the addition of a feed-forward control in order to compensate the beam effects on the beam screen temperature based on the main beam parameters of the machine in real time.

  3. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  4. Electrostatic ion beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Harper, G.C.; Curtis, W.D.

    1978-04-01

    An electrostatic scanning system has been designed and built to uniformly implant a 1 cm/sup 2/ sample with a charged particle beam. The full angular scan capability for a 2 MeV beam is 0.5 degrees at 6 kV p-p. The design of the system is extremely simple so it is very compact, easy to operate, and has shown very good reliability.

  5. Ultraviolet Photodissociation of Molecular Beams.

    Science.gov (United States)

    1980-12-15

    Continue on reerse side if neceesry and identify by block number) Photodissociation , excimer laser, nitrocompounds, carbon disulfide, sulfur dioxide ...4 ULTRAVIOLET PHOTODISSOCIATION OF MOLECULAR BEAMS. * TYPE OF REPORT (TECHNICAL, FINAL, ETC.) FINAL REPOT OR PERIOD 0/01/77 - 9/30/80 AUTHOR (S... Photodissociation of Final report for period 10/01/77 - 9/30/80 Molecular Beams 6. PERFORMIN, CRG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e) R

  6. Parameter estimation in truss beams using Timoshenko beam model with damping

    Science.gov (United States)

    Sun, C. T.; Juang, J. N.

    1983-01-01

    Truss beams with members having viscous damping are modeled with a Timoshenko beam. Procedures for deriving the equivalent bending rigidity, transverse shear rigidity, and damping are presented. Explicit expressions for these equivalent beam properties are obtained for a specific truss beam. The beam model thus established is then used to investigate the effect of damping in free vibration. Finally, the beam is employed in the estimation of structural parameters in a simply-supported truss beam using a random search algorithm.

  7. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  8. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  9. The logarithmic beam position monitor

    Science.gov (United States)

    Medvedko, Evgeny A.; Smith, Stephen R.

    2000-11-01

    Modern logarithmic amplifiers offer wide dynamic range, high bandwidth, good logarithmic conformance, and low cost making them attractive for beam position measurements. A log-ratio beam position monitor has been designed and built at SLAC for use at the PEP-II B-Factory. An integrated circuit logarithmic amplifier from Analog Devices, the AD8307, recovers the envelope of the 476 MHz harmonic of the beam signal. A log BPM board with two logarithmic and one differential amplifier performs the basic function of forming an output voltage proportional to the difference of the logarithms of the signal amplitudes on opposite electrodes. This voltage is approximately linear with beam position. For this application, we have limited the video bandwidth of the log amps to 50 kHz in order to remove fill pattern dependence. The log BPM board has an interface for testing and simulating beam offsets. The log BPMs were developed for a PEP-II ring protection chassis. Here the log BPMs function to identify dangerous orbit excursions. These excursions are signaled to a system, which can dump the beam. Two such chassis serve to protect the PEP-II rings.

  10. Behavior of reinforcement SCC beams under elevated temperatures

    Science.gov (United States)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  11. High energy electron beams for ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  12. Beam-Beam Effects in the Ring-Ring Version of eRHIC

    CERN Document Server

    Shi, Jack; Wang, Dong; Wang, Fuhua

    2005-01-01

    The eRHIC is a proposed electron ring at the RHIC that will provide collisions between a polarized 5-10 GeV electron beam and an ion beam from one of the RHIC rings. In order to achieve proposed high luminosity, large bunch current and small beta-functions at the IP has to be employed. Such measures result in large beam-beam parameters, 0.029 and 0.08 for the electron beam and 0.0065 and 0.0033 for the proton beam in the horizontal and vertical plane, respectively, in the current ZDR design. The beam-beam effect especially the coherent beam-beam effect is therefore one of important issues to the eRHIC. Moreover, the proposed configuration of unequal circumferences of the electron and proton rings could further enhance the coherent beam-beam effect. The beam-beam effect of eRHIC has therefore been studied with a self-consistent beam-beam simulation by using the particle-in-cell method. Beam-beam limits of the electron and proton beam were examined as thresholds of the onset of coherent beam-beam instability. F...

  13. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Pierluigi, E-mail: pierluigi.veltri@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy); INFN—Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy)

    2016-06-15

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment.

  14. Damage Detection In Laboratory Concrete Beams

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle; Kirkegaard, Poul Henning;

    1995-01-01

    : a beam with a typical reinforcement ratio, and a beam with a small reinforcement ratio. The modal properties of the beams were found exciting the beams by a series of pulses and identifying the properties using ARMA and ARMAX models. It was found, that extremely small damages could be detected...

  15. Damage Detection in Laboratory Concrete Beams

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Kirkegaard, Poul Henning;

    : a beam with a typical reinforcement ratio, and a beam with a small reinforcement ratio. The modal properties of the beams were found exciting the beams by a series of pulses and identifying the properties using ARMA and ARMAX models. It was found, that extremely small damages could be detected...

  16. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  17. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  18. Electron optics of microlenses with inclined beams

    NARCIS (Netherlands)

    Zhang, Y.; Barth, J.E.; Kruit, P.

    2008-01-01

    For multielectron beam systems with a single electron source, the outside beams need to be collimated before entering the individual microcolumns. As an alternative of the traditional multibeam source design where the broad beam from the source is collimated by a single lens, the broad beam can be f

  19. Numerical Value Results OF Guassian Beam Focussing

    Institute of Scientific and Technical Information of China (English)

    K.X. He; Alan Chow; Jiada Mo; Wang Zhuo

    2003-01-01

    @@ 1Lens is placed in beam waist We consider the case of a Gaussian beam that is incident at its waist on a thin lens of focal length f.To find the location of the waist of the output beam and the beam radius at that point,we start with the ABCD law.

  20. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  1. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  2. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  3. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  4. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    Science.gov (United States)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  5. Fractal zone plate beam based optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  6. Non-paraxial Elliptical Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoying; LIN Qiang; NI Jie

    2001-01-01

    By using the methods of Hertz vector and angular spectrum transormation, the exact solution of non-paraxial elliptical Gaussion beam with general astigmatism based on Maxwell′s equations is obtained. We discussed its propagation characteristics. The results show that the orientation of the elliptical beam spot changes continuously as the beam propagates through isotropic media. Splitting or coupling of beam spots may occur for different initial spot size. This is very different from that of paraxial elliptical Gaussian beam.

  7. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  8. Revised data taking schedule with ion beams

    CERN Document Server

    Gazdzicki, Marek; Aduszkiewicz, A; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bubak, A; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Ferrero, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hasegawa, T; Haungs, A; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kowalski, S; Kurepin, A; Lacey, R; Laszlo, A; Lyubushkin, V V; Majka, Z; I Malakhov, A; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shibata, M; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Tada, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Zipper, W; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the revised data taking schedule of NA61 with ion beams. The revision takes into account limitations due to the new LHC schedule as well as final results concerning the physics performance with secondary ion beams. It is proposed to take data with primary Ar and Xe beams in 2012 and 2014, respectively, and to test and use for physics a secondary B beam from primary Pb beam fragmentation in 2010, 2011 and 2013.

  9. Optimization Design and Application of Cantilever Roller in Walking-Beam Heating Furnace%炉内悬臂辊道的优化设计和应用

    Institute of Scientific and Technical Information of China (English)

    李君美; 杨威

    2013-01-01

    The structure of cantilever roller in walking-beam heating furnace is designed, and the application practice show that it improves the effect of the water cool, extends the service life, and reduces the costs.%对步进梁式加热炉内悬臂辊道的结构进行优化设计,应用实践表明,它提高了水冷效果,延长了使用寿命,降低了成本.

  10. Beam Impedance Studies of the PS Beam Gas Ionization Monitor

    CERN Document Server

    Avgidis, Fotios

    2016-01-01

    The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...

  11. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  12. Electron beam pumped semiconductor laser

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  13. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  14. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  15. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  16. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  17. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  18. Estimation of the Processing Parameters in Electron Beam Thermal Treatments

    Directory of Open Access Journals (Sweden)

    DULAU Mircea

    2014-05-01

    Full Text Available Electron beam have many special properties which make them particularly well suited for use in materials handling through melting, welding, surface treatment, etc., taking into account that this manufacturing is performed in vacuum. The use of electron beam for surface limited heat treatment of workpiece has brought about a noticeable extension of the beam technologies. Some theoretical aspects and simulation results are presented in this paper, considering a high power electron beam processing system and Matlab facilities. This paper can be used in power engineering and electro-technologies fields as a guideline, in order to simulate and analyse the process parameters.

  19. Rotating Dual-Wire Beam Profile Monitor Optimized for Use in Merged-Beams Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Seely, D. G. [Albion College; Bruhns, H. [Columbia University; Savin, D. W. [Columbia University; Kvale, Thomas Jay [University of Toledo, Toledo, OH; Galutschek, Ernst [ORNL; Aliabadi, Habib [ORNL; Havener, Charles C [ORNL

    2008-01-01

    A rotating dual-wire beam proile monitor based upon a modified National Electrostatics Corporation Model BPM80 beam profile monitor is described. The device can measure beam profiles in two perpendicular directions (horizontal and vertical) in each of two pseudoplanes that are situated along the beam axis and are separated by a distance of 6.0 cm. The output signal from the device is analyzed in real time to yield horizontal and vertical beam profiles and to calculate the divergence of a particle beam that traverses the device. This set-up is well-suited for merged-beams experiments where one beam is tuned to saved profiles from a second beam in order to minimize the merge angle and beam divergences while maximizing the beam-beam overlaps.

  20. Rotating dual-wire beam profile monitor optimized for use in merged-beams experiments

    Energy Technology Data Exchange (ETDEWEB)

    Seely, D.G. [Department of Physics, Albion College, Albion, MI 49224-1831 (United States)], E-mail: dseely@albion.edu; Bruhns, H.; Savin, D.W. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027-6606 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Galutschek, E.; Aliabadi, H.; Havener, C.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States)

    2008-01-21

    A rotating dual-wire beam profile monitor based upon a National Electrostatics Corporation Model BPM80 beam profile monitor is described. The device can measure beam profiles in two perpendicular directions (horizontal and vertical) in each of two pseudoplanes that are situated along the beam axis and are separated by a distance of 5.4 cm. The output signal from the device is analyzed in real time to yield horizontal and vertical beam profiles and to calculate the divergence of a particle beam that traverses the device. This set-up is well-suited for merged-beams experiments where one beam is tuned to saved profiles from a second beam in order to minimize the merge angle and beam divergences while maximizing the beam-beam overlaps.

  1. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  2. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  3. Physics Opportunities with Meson Beams

    CERN Document Server

    Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

    2015-01-01

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  4. Mycosis fungoides. Electron beam therapy.

    Science.gov (United States)

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  5. Physics opportunities with meson beams

    Energy Technology Data Exchange (ETDEWEB)

    Briscoe, William J.; Doering, Michael; Haberzettl, Helmut; Strakovsky, Igor I. [The George Washington University, Washington, DC (United States); Manley, D.M. [Kent State University, Kent, OH (United States); Naruki, Megumi [Kyoto University, Kyoto (Japan); Swanson, Eric S. [University of Pittsburgh, Pittsburgh, PA (United States)

    2015-10-15

    Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility. (orig.)

  6. Divergence of optical vortex beams

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  7. Evaluation of the Beam Coupling Impedance of New Beam Screen Designs for the LHC Injection Kicker Magnets

    CERN Document Server

    Day, Hugo; Caspers, Fritz; Jones, Roger; Metral, Elias; Salvant, Benoit

    2012-01-01

    During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedance. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.

  8. Optical Faraday Cup for Heavy Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  9. Electron beam joining of structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.

    1995-04-01

    Feasibility of ceramic joining using a high energy (10 MeV) electron beam. The experiments used refractory metals as bonding materials in buried interfaces between Si{sub 3}N{sub 4} pieces. Because the heat capacity of the metal bonding layer is much lower than the ceramic, the metal reaches much higher temperatures than the adjoining ceramic. Using the right combination of beam parameters allows the metal to be melted without causing the adjoining ceramics to melt or decompose. Beam energy deposition and thermal simulations were performed to guide the experiments. Joints were shear tested and interfaces between the metal and the ceramic were examined to identify the bonding mechanism. Specimens joined by electron beams were compared to specimens produced by hot-pressing. Similar reactions occurred using both processes. Reactions between the metal and ceramic produced silicides that bond the metal to the ceramic. The molybdenum silicide reaction products appeared to be more brittle than the platinum silicides. Si{sub 3}N{sub 4} was also joined to Si{sub 3} N{sub 4} directly. The bonding appears to have been produced by the flow of intergranular glass into the interface. Shear strength was similar to the metal bonded specimens. Bend specimens Of Si{sub 3}N{sub 4} were exposed to electron beams with similar parameters to those used in joining experiments to determine how beam exposure degrades the strength. Damage was macroscopic in nature with craters being tonned by material ablation, and cracking occurring due to excessive thermal stresses. Si was also observed on the surface indicating the Si{sub 3}N{sub 4} was decomposing. Bend strength after exposure was 62% of the asreceived strength. No obvious microstructural differences were observed in the material close to the damaged region compared to material in regions far away from the damage.

  10. Active and passive beam application design guide for global application

    CERN Document Server

    Rimmer, Julian

    2015-01-01

    The Active and Passive Beam Application Design Guide is the result of collaboration by worldwide experts to give system designers a current, authoritative guide on successfully applying active and passive beam technology. Active and Passive Beam Application Design Guide provide energy-efficient methods of cooling, heating, and ventilating indoor areas, especially spaces that require individual zone control and where internal moisture loads are moderate. The systems are simple to operate, with low maintenance requirements. This book is an essential resource for consulting engineers, architects, owners, and contractors who are involved in the design, operation, and installation of these systems. Building on REHVA’s Chilled Beam Application Guidebook, this new guide provides up-to-date tools and advice for designing, commissioning, and operating chilled-beam systems to achieve a determined indoor climate, and includes examples of active and passive beam calculations and selections. Dual units (SI and I-P) are...

  11. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  12. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  13. Status of ITER neutral beam cell remote handling system

    CERN Document Server

    Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

    2013-01-01

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  14. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  15. Status of ITER neutral beam cell remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  16. FEL options for power beaming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S. [Lawrence Berkeley National Lab., CA (United States); Vinokurov, N.A. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ``slot`` in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P{sub L} = 200kW. The wavelength is chosen to be {lambda} = 0.84 {micro}m, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes.

  17. An antideuteron beam at JHF

    CERN Document Server

    Iazzi, F

    1999-01-01

    The future japanese hadronic machine (JHF) could offer the possibility not only to continue experiments with the antiproton in both the low and high energy ranges but also to start to study the antinuclei physics. In the present paper the production of antinuclei is reviewed and first results of a design for an antideuteron beam line at JHF are reported. Moreover, some particular aspects of the antideuteron physics are discussed together with the basic features of the experimental apparatuses involving an antideuteron beam and the antideuteron annihilation detection.

  18. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...

  19. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  20. Getting ready for SPS beam

    CERN Multimedia

    1977-01-01

    View from downstream of the WA7 experiment along beam H1B. In the foreground are scintillator hodoscopes and immediately behind them, is a threshold Cerenkov counter, standing on its edge. The WA7 control hut is located on the right, over the concrete shielding blocks. Still more right, the other branch of the H1 beam, E1A/H1A, runs towards the Omega Facility. WA7 by the CERN-Genoa-LAPP, Annecy-Niels Bohr Institute, Copenhagen-Oslo, University College, London Collaboration was meant to study two-body reactions at large transverse momentum.

  1. Beam Coupling Impedances of Obstacles Protruding into Beam Pipe

    CERN Document Server

    Kurennoy, S S

    1997-01-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases are presented which allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  2. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  3. Effect of Li on mechanical and corrosion properties of electron beam welds of V–4Ti–4Cr alloy (NIFS-HEAT-2)

    Energy Technology Data Exchange (ETDEWEB)

    Tsisar, Valentyn, E-mail: valentyn_tsisar@ukr.net [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Physical-Mechanical Institute of NASU, 5 Naukova St., 79601 Lviv (Ukraine); Nagasaka, Takuya; Muroga, Takeo; Miyazawa, Takeshi [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Yeliseyeva, Olga [Physical-Mechanical Institute of NASU, 5 Naukova St., 79601 Lviv (Ukraine)

    2013-11-15

    The 4 mm thick plate of V–4Ti–4Cr alloy (NIFS-HEAT-2) was bead-on-plate welded by electron beam (1.5 kW) under high vacuum atmosphere. The samples were placed in V–5Ti capsule subsequently filled by liquid Li (8 g) in glove box under high-purity He atmosphere in order to avoid contamination of Li by O and/or N. Static corrosion tests were carried out at 700 °C for 500 h utilizing vertical water cooling furnace placed in the same glove box. During the test, liquid Li contacted with recirculating helium which was continuously purified with respect to O (4–30 wppm). After the test, the samples were cleaned against adhered Li in 30%H{sub 2}O{sub 2} at 5 °C in order to avoid hydrogenation of V-alloy. After the welding, the impact properties of the weld metal measured at 77 K remained high enough (9.5 J) while fracture mode was ductile in spite of the solid-solution hardening by O released from Ti–C,O,N precipitates during high temperature electron beam welding. In contrast, impact properties of weld metal degraded after exposure to liquid Li (2.2 J) and post welding heat treatment (1.8 J) both carried out at 973 K. Character of fracture mode also changed to brittle due to the re-precipitation assisted hardening caused by aging effect.

  4. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.

    Science.gov (United States)

    Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  5. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    Science.gov (United States)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  6. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  7. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  8. Measurement of HL-2A NBI Beam Profile and Beam Power

    Institute of Scientific and Technical Information of China (English)

    LIU He; CAO Jianyong; JIANG Shaofeng; LUO Cuiwen; TANG Lixin; LEI Guangjiu; RAO Jun; LI Bo

    2009-01-01

    To optimize the operation parameters of the beam line of NBI on HL-2A,features of the beam line,including the beam profile and the power deposited on components and injected into the tokamak plasma,were measured.The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power,and the transmission efficiency of the NBI injected power was therefore increased.A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.

  9. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  10. X-ray photoelectron spectroscopic study of the oxide removal mechanism of GaAs /100/ molecular beam epitaxial substrates in in situ heating

    Science.gov (United States)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    A standard cleaning procedure for GaAs (100) molecular beam epitaxial (MBE) substrates is a chemical treatment with a solution of H2SO4/H2O2/H2O, followed by in situ heating prior to MBE growth. X-ray photoelectron spectroscopic (XPS) studies of the surface following the chemical treatment show that the oxidized As is primarily As(+ 5). Upon heating to low temperatures (less than (350 C) the As(+ 5) oxidizes the substrate to form Ga2O3 and elemental As, and the As(+ 5) is reduced to As(+ 3) in the process. At higher temperatures (500 C), the As(+ 3) and elemental As desorb, while the Ga(+ 3) begins desorbing at about 600 C.

  11. Vectorial rotating vortex Hankel laser beams

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  12. Coaxial combination of coherent laser beams

    Institute of Scientific and Technical Information of China (English)

    Hongcheng Dong; Xiao Li; Chaoyang Wei; Hongbo He; Yuanan Zhao; Jianda Shao; Zhengxiu Fan

    2009-01-01

    @@ Based on polarization state conversion, a technique for coaxially coherent combination of laser beams is introduced.Laser beams can be coaxially coupled into one beam with high combination efficiency and perfect beam quality.A polarized laser beam combination system based on master oscillator power amplifier (MOPA) configuration is developed and the efficiencies of both unit combination and the whole system are investigated.In the experiment of combining four beams with single longitudinal mode, a combination efficiency of 85.3% is achieved.It can be further enhanced by improving the stability of experimental environment and the quality of optical and mechanical components.

  13. ORNL positive ion neutral beam program

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design.

  14. Apertures in the LHC Beam Dump System and Beam Losses During Beam Abort

    CERN Document Server

    Kramer, T; Gyr, M; Koschik, A; Uythoven, J; Weiler, T

    2008-01-01

    The LHC beam dumping system (LBDS) is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of $3 \\mu$s is foreseen to avoid sweeping particles through the LHC ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines. MAD-X tracking studies have been made to investigate the impact of particles swept through the aperture due to extraction kicker failures or the presence of particles within the abort gap. The issue of failures during beam abort is a major concern for machine protection as well as a critical factor for safe operation of the experiments and their detectors.

  15. Digitally compensated beam current transformer

    CERN Document Server

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645ns "mini" bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have less than 1 ns rise time and droops of 0.1 %/ms. This places a significant design burden on the cur...

  16. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  17. CERN fires up neutrino beams

    CERN Multimedia

    2006-01-01

    "CERN has switched on a new neutrino beam, aimed through the earth to the INFN Gran Sasso Laboratories some 730km away near Rome. This is the latest additin to a global endeavour to understand this most elusive of particles and unlock the secrest it carries about the origins and evolution of our Universe." (2 pages)

  18. Beam particle tracking for MUSE

    Science.gov (United States)

    Liyanage, Anusha; MUSE Collaboration

    2017-01-01

    The proton radius puzzle is the 7 σ disagreement between the proton radius extracted from the measured muonic hydrogen Lamb shift and the proton radius extracted from the regular hydrogen Lamb shift and elastic ep scattering form factor data. So far there is no generally accepted resolution to the puzzle. The explanations for the discrepancy include new degrees of freedom beyond the Standard Model. The MUon Scattering Experiment (MUSE) will simultaneously measure ep and μp scattering at the Paul Scherrer Institute, using the πM1 beam line at 100-250 MeV/c to cover a four-momentum transfer range of Q2=0.002-0.07 (GeV/c)2. Due to the large divergence of the secondary muon beam, beam particle trajectories are needed for every event. They are measured by a Gas Electron Multiplier (GEM) tracking telescope consisting of three 10x10 cm2 triple-GEM chambers. Fast segmented scintillator paddles provide precise timing information. The GEM detectors, their performance in test beam times, and plans and milestones will be discussed. This work has been supported by DOE DE-SC0012589 and NSF HRD-1649909. DOE DE-SC0012589 and NSF HRD-1649909.

  19. A Monochromatic electron neutrino beam

    CERN Document Server

    Lindroos, Mats; Burguet-Castell, J; Espinoza, C

    In the last few years spectacular results have been achieved with the demonstration of non vanishingneutrino masses and flavour mixing. Here, a novel method to create a monochromaticneutrino beam, an old dream for neutrino physics, is described based on the recent discoveryof nuclei with fast decay through electron-capture to Gamow-Teller resonances in super allowedtransitions.

  20. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  1. Beam handling and transport solutions

    Science.gov (United States)

    Maggiore, M.; Cirrone, G. A. P.; Carpinelli, M.; Cuttone, G.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.

    2013-07-01

    The main purpose of the present study is to investigate the possibility to characterize the particle beams produced by the laser-target interaction in terms of collection, focusing and energy selection in order to evaluate the feasibility of a laser-driven facility in the field of medical application and, in particular, for hadrontherapy.

  2. Beam handling and transport solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maggiore, M. [Laboratori Nazionali di Legnaro, INFN, Via Universita' 2, Legnaro (PD) (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Universita' degli Studi di Catania, Dipartimento di Fisica, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    The main purpose of the present study is to investigate the possibility to characterize the particle beams produced by the laser-target interaction in terms of collection, focusing and energy selection in order to evaluate the feasibility of a laser-driven facility in the field of medical application and, in particular, for hadrontherapy.

  3. Four-block beam collimator

    CERN Multimedia

    1977-01-01

    The photo shows a four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with the secondary beams, the collimators operated in vacuum conditions. The blocks were made of steel and had a standard length of 1 m. The maximum aperture had a square coss-section of 144 cm2. (See Annual Report 1976.)

  4. Multiple Interactions and Beam Remnants

    CERN Document Server

    Sjöstrand, Torbjörn

    2004-01-01

    Open issues on the structure of multiple interactions are outlined. An improved model is summarized, with a new approach to correlated parton densities in flavour, colour, longitudinal and transverse momenta, for both hard-scattering partons and beam-remnant ones.

  5. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  6. Three Beam Interfering Pressure Gauge①

    Institute of Scientific and Technical Information of China (English)

    WUZhaoxia; TANGXuhui; 等

    1997-01-01

    In order to solve the problem of high precision,complete electric insulating detection of the pressure measuring system,we have developed the three-beam interferometer.In this paper,the operation principle,structure of the system and measuring results are given.

  7. Infrared imaging diagnostics for INTF ion beam

    Science.gov (United States)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  8. Beam halo studies in LEHIPA DTL

    Science.gov (United States)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  9. Hyperthermal molecular beam source using a non-diaphragm-type small shock tube

    Science.gov (United States)

    Yoshimoto, Yuta; Osuka, Kenichi; Miyoshi, Nobuya; Kinefuchi, Ikuya; Takagi, Shu; Matsumoto, Yoichiro

    2016-10-01

    We have developed a hyperthermal molecular beam source employing a non-diaphragm-type small shock tube for gas-surface interaction studies. Unlike conventional shock-heated beam sources, the capability of repetitive beam generation without the need for replacing a diaphragm makes our beam source suitable for scattering experiments, which require signal accumulation for a large number of beam pulses. The short duration of shock heating alleviates the usual temperature limit due to the nozzle material, enabling the generation of a molecular beam with higher translational energy or that containing dissociated species. The shock-heated beam is substantially free from surface-contaminating impurities that are pronounced in arc-heated beams. We characterize the properties of nitrogen and oxygen molecular beams using the time-of-flight method. When both the timing of beam extraction and the supply quantity of nitrogen gas are appropriately regulated, our beam source can generate a nitrogen molecular beam with translational energy of approximately 1 eV, which corresponds to the typical activation energy of surface reactions. Furthermore, our beam source can generate an oxygen molecular beam containing dissociated oxygen atoms, which can be a useful probe for surface oxidation. The dissociation fraction along with the translational energy can be adjusted through the supply quantity of oxygen gas.

  10. Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere

    Science.gov (United States)

    2014-11-24

    causes radial and axial air density variations inside beams and result in scattering; thermal blooming: beam expansion from air heating; extinction...certain time for energy to be captured or parametrically up or down converted or passed to a “heat or thermal sink”. A statically polarized...a rotation and a dilation of one vector to another, and the rotation is defined as: = ⁄ = ∙ . Thus, given a

  11. Flexural and Thermal Properties of Novel Energy Conservation Slotted Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Gao Ma

    2016-01-01

    Full Text Available Conventional solid reinforced concrete (RC beams were modified to slotted beams for consideration as thermal insulation structural components. The slotted beam consisted of an outer and an inner beam, respectively, with a slot located near the middle of the beam along its width direction for filling thermal insulation material. Flexural and thermal behavior of the slotted beams were investigated. Three RC reference solid beams and six slotted beams were fabricated and tested under four-point bending tests. The test results indicated that the failure mode of both slotted beams and the solid beams was flexural failure. However, the damage process of the slotted beams was different from that of the solid beams at the final loading stage. The moment curvature analysis indicated that the tensile reinforcement ratio of the outer and inner beams had an important effect on the flexural behavior, especially the ductility of the slotted beams. Thermal study indicated that the heat transfer coefficient of the slotted beam was greatly reduced and the thermal inertia factor increased a lot, compared with the solid beam. In addition, FE simulation results showed that a new frame structure using slotted beams exhibited obvious and attractive thermal insulation property.

  12. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  13. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  14. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  15. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  16. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  17. Fractional Fourier transform of Lorentz beams

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2009-01-01

    This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.

  18. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  19. Summary of impedance issues and beam instabilities

    CERN Document Server

    Zimmermann, Frank

    2016-01-01

    This paper summarizes the session on impedance issues and beam instabilities at the ICFA workshop on future circular electron-positron factories “eeFACT2016” [1] held at the Cockcroft Institute, Daresbury, from 24 to 27 October 2016. This session also covered active beam stabilization by feedback systems. Beam-beam effects and coherent beambeam instabilities were addressed separately and, therefore, are not included here.

  20. The NuMI Neutrino Beam

    CERN Document Server

    Adamson, P; Andrews, M; Andrews, R; Anghel, I; Augustine, D; Aurisano, A; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barr, G; Barrett, W L; Bernstein, R H; Biggs, J; Bishai, M; Blake, A; Bocean, V; Bock, G J; Boehnlein, D J; Bogert, D; Bourkland, K; Cao, S V; Castromonte, C M; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Corwin, L; Crane, D; Cravens, J P; Cronin-Hennessy, D; Ducar, R J; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Garkusha, V; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grossman, N; Grzelak, K; Habig, A; Hahn, S R; Harding, D; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Hays, S; Heller, K; Holin, A; Huang, J; Hylen, J; Ibrahim, A; Indurthy, D; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Johnstone, J; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Laughton, C; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Murtagh, M; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Oliver, W P; Olsen, M; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlovic, Z; Pawloski, G; Perch, A; Peterson, E A; Petyt, D A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Prieto, P; Pushka, D; Qiu, X; Radovic, A; Rameika, R A; Ratchford, J; Rebel, B; Reilly, R; Rosenfeld, C; Rubin, H A; Ruddick, K; Sanchez, M C; Saoulidou, N; Sauer, L; Schneps, J; Schoo, D; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Smart, W; Smith, C; Sousa, A; Stefanik, A; Tagg, N; Talaga, R L; Tassotto, G; Thomas, J; Thompson, J; Thomson, M A; Tian, X; Timmons, A; Tinsley, D; Tognini, S C; Toner, R; Torretta, D; Trostin, I; Tzanakos, G; Urheim, J; Vahle, P; Vaziri, K; Villegas, E; Viren, B; Vogel, G; Webber, R C; Weber, A; Webb, R C; Wehmann, A; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Wong-Squires, M L; Yang, T; Yumiceva, F X; Zarucheisky, V; Zwaska, R

    2015-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  1. The NuMI neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Anghel, I. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); Augustine, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Aurisano, A. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Avvakumov, S. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Ayres, D.S. [Argonne National Laboratory, Argonne, IL 60439 (United States); Baller, B. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Barish, B. [Lauritsen Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Barr, G. [Subdepartment of Particle Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Barrett, W.L. [Physics Department, Western Washington University, Bellingham, WA 98225 (United States); Bernstein, R.H.; Biggs, J. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bishai, M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Blake, A. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Bocean, V.; Bock, G.J.; Boehnlein, D.J. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); and others

    2016-01-11

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  2. Spacecraft Dynamic Characteristics While Deploying Flexible Beams

    Institute of Scientific and Technical Information of China (English)

    程绪铎; 李俊峰; 樊勇; 王照林

    2002-01-01

    The attitude dynamic equations of a spacecraft while deploying two flexible beams and the beam equations were developed from momentum theory. The dynamic equations were solved numerically using the Runge-Kutta method to calculate the vibration amplitudes of the flexible beams and the attitude angular velocity. The results show that the vibration amplitudes increase as the beam length increases or as the initial attitude angular velocity increases. The results also show that the vibration amplitudes decrease as the deployment velocity increases.

  3. Dynamic Beam Based Calibration of Beam Position Monitors

    CERN Document Server

    Dehning, Bernd; Galbraith, Peter; Mugnai, G; Placidi, Massimo; Sonnemann, F; Tecker, F A; Wenninger, J

    1998-01-01

    The degree of spin polarization at LEP is strongly dependent on the knowledge of the vertical orbit. Quadrupole magnet alignment and beam position monitor (BPM) offsets are the main source of the orbi t uncertainty. The error of the orbit monitor readings can be largely reduced by calibrating the monitor relative to the adjacent quadrupole. At LEP, 16 BPM offsets can be determined in parallel durin g 40 minutes. The error of the measure offset is about 30mm. During the LEP run 1997, more than 500 measurements were made and used for the optimisation of polarization. The method of dynamic beam bas ed calibration will be explained and the results will be shown.

  4. Transition and Interaction of Low-Frequency Magnetohydrodynamic Modes during Neutral Beam Injection Heating on HL-2A

    Science.gov (United States)

    Yu, Liming; Chen, Wei; Ding, Xuantong; Ji, Xiaoquan; Shi, Zhongbing; Yu, Deliang; Jiang, Min; Li, Dong; Li, Jiaxian; Li, Yonggao; Zhou, Yan; Ma, Rui; Li, Wei; Feng, Beibin; Huang, Yuan; Song, Xianming; Cao, Jianyong; Rao, Jun; Dong, Jiaqi; Xu, Min; Liu, Yi; Yan, Longwen; Yang, Qingwei; Xu, Yuhong; Duan, Xuru

    2017-02-01

    The strong fishbone mode (FB) and long-lived mode (LLM) have been observed during neutral beam injection (NBI) on the HL-2A tokamak. The FB and LLM can transit between each other. The LLM is identified as an internal kink mode (IKM) with the mode structure obtained using a newly developed electron cyclotron emission radiometer imaging (ECEI) system. The frequency of the LLM (fLLM) is higher than the toroidal rotation frequency (ft) near the q = 1 surface (r ˜ 10 cm). Experimental results show that the LLM is likely to be excited at a higher line-averaged electron density (bar{n}e) than that of the FB when the NBI power is fixed. It is found that the FB and its harmonic as seed magnetic islands can trigger tearing modes (TMs). The mode numbers for the low-frequency and high-frequency TMs are m/n = 2/1 and 3/2, respectively. By further investigation, it is found that there is an m/n = 1/1 IKM coexisting at the same time and with the same frequency as the m/n = 2/1 TM, and the m = 1 mode structure of the IKM in the radial cross section is obtained by the Bayesian tomography method utilizing soft X-ray arrays. The nonlinear coupling conditions are satisfied among the two TMs and IKM.

  5. Effect of post-weld heat treatment on microstructure, hardness and low-temperature impact toughness of electron beam welds of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy

    Directory of Open Access Journals (Sweden)

    V. Tsisar

    2016-12-01

    Full Text Available Bead-on-plate electron beam welding in high vacuum atmosphere was applied to the plates of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy. Effect of post-weld heat treatment (PWHT in the temperature range 673–1273K on the hardness, impact toughness at 77K and microstructure of weld metal was investigated. After PWHT at 773K, hardness of weld metal slightly decreases from 180HV100 (as-welded state to ∼170HV100 while absorbed energy increases up to ∼10J showing ductile fracture mode. PWHT at 973K results in re-hardening of weld metal up to ∼180HV100 caused by re-precipitation of Ti–C,O,N precipitates and corresponding decreasing absorbed energy to ∼2J with brittle fracture mode. PWHT in-between 1073–1273K results in gradual recovery of hardness towards values comparable with those of base metal. Impact toughness (77 K of weld metal after PWHT at 1073K is not recovered nether to the value in as-welded state nor to that one of base metal.

  6. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  7. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  8. THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS

    Institute of Scientific and Technical Information of China (English)

    LI Shi-rong; ZHANG Jing-hua; ZHAO Yong-gang

    2006-01-01

    Analysis of thermal post-buckling of FGM (Functionally Graded Material)Timoshenko beams subjected to transversely non-uniform temperature rise is presented.By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.

  9. Design and cooling of BESIII beryllium beam pipe

    Science.gov (United States)

    Li, Xunfeng; Ji, Quan; Wang, Li; Zheng, Lifang

    2008-01-01

    The beryllium beam pipe was restructured according to the requirements of the upgraded BESIII (Beijing Spectrometer) experiment. SMO-1 (sparking machining oil no. 1) was selected as the coolant for the central beryllium beam pipe. The cooling gap width of the beryllium beam pipe was calculated, the influence of concentrated heat load on the wall temperature of the beryllium beam pipe was studied, and the optimal velocity of the SMO-1 in the gap was determined at the maximum heat load. A cooling system for the beam pipe was developed to control the outer wall temperature of the beam pipe. The cooling system is reported in this paper with regard to the following two aspects: the layouts and the automation. The performance of the cooling system was tested on the beam pipe model with trim size. The test results show that the design of the beryllium beam pipe is reasonable and that the cooling system achieves the BESIII experimental aim. The cooling system has already passed the acceptance test and has been installed in position. It will be put into practice for the BESIII experiment in 2008.

  10. Beam coupling impedances of obstacles protruding into a beam pipe

    Science.gov (United States)

    Kurennoy, Sergey S.

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities.

  11. Beam coupling impedances of obstacles protruding into a beam pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S. [AOT-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities. {copyright} {ital 1997} {ital The American Physical Society}

  12. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    Science.gov (United States)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  13. 196 Beams in a Scanning Electron Microscope

    NARCIS (Netherlands)

    Mohammadi-Gheidari, A.

    2013-01-01

    In this thesis, for the first time ever, it is demonstrated that 196 beams out of a single electron source can be finely focused onto the sample using the electron optics of a standard single beam SEM. During this PhD thesis, a multi beam scanning electron (MBSEM) was designed and built. The thesis

  14. Beam dynamics issues for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  15. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  16. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  17. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  18. The Gouy phase of Airy beams

    NARCIS (Netherlands)

    Pang, X.; Gbur, G.; Visser, T.D.

    2011-01-01

    The phase behavior of Airy beams is studied, and their Gouy phase is defined. Analytic expressions for the idealized, infinite-energy type beam are derived. They are shown to be excellent approximations for finite-energy beams generated under typical experimental conditions.

  19. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  20. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... beams with a moisture sealing at the notch...

  1. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  2. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    Science.gov (United States)

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  3. A BEAM PROFILE MONITOR USING THE IONIZATION OF RESIDUAL-GAS IN THE BEAM PIPE

    NARCIS (Netherlands)

    SCHIPPERS, JM; KIEWIET, HH; ZIJLSTA, J

    1991-01-01

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microc

  4. Beam Propagation Factor and Generation of Cosh-squared-Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Kaicheng; TANG Huiqin; ZHU Zhenhe

    2001-01-01

    A new light beam termed as a cosh-squared-Gaussian beam (ChSGB) which may be one of solutions of the paraxial wave equation for propagation in complex optical systems has been introduced. Their beam propagation factor (M2-factor) is derived and schemes to generate this light beams are proposed.

  5. Results of long range beam-beam studies and observations during operation in the LHC

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01

    We studied possible limitations due to the long range beam-beam effects in the LHC. With a larger number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long range beam-beam effects to evaluate their influence on dynamic aperture and losses. Experience from operation with reduced separation was analysed and provides additional evidence.

  6. Examination of material performance of W exposed to high heat load: Postmortem analysis of W exposed to TEXTOR plasma and E-beam test stand

    Science.gov (United States)

    Tanabe, T.; Philipps, V.; Nakamura, K.; Fujine, M.; Ueda, Y.; Wada, M.; Schweer, B.; Pospieszczyk, A.; Unterberg, B.

    1997-02-01

    We have examined the behavior of high Z limiters exposed to TEXTOR edge plasma and found that under certain conditions high Z materials are compatible with plasmas. In high density Ohmic plasmas the accumulation of a high Z impurity in the plasma center with significant radiation is observed, whereas an auxiliary heating like NBI and ICRH enhances the impurity exhaust with saw tooth activity. For a practical use of high Z plasma facing materials, extremely high heat load from the plasma becomes a serious concern. In the present work we have conducted the high heat load tests of tungsten (W) using two different heat sources, one is the W limiter exposed to TEXTOR plasma and the other is various W samples heat loaded with an intense E-beam using the JEBIS facility in Japan Atomic Energy Research Institute (JAERI). From the test results we have to conclude that W, if applied in the form of the bulk material, should be used above the ductile brittle transition temperature (DBTT) but below about 1500°C to avoid the recrystallization. Maximum heat load tolerable without surface melting is about 20 MW/m 2 for several seconds. The monocrystalline used at high temperatures shows very good performance, though the production of the monocrystalline with a desired shape is not easy. Considering its brittle nature, hard machining and heavy mass, bulk W cannot be a structure material but be used as a thin tile or deposited film on some structure materials. Unfortunately, however, the thermal expansion coefficient of W is so small that brazing of W to a heat sink material like Cu which has a much larger thermal expansion coefficient would easily result in cracking due to the large thermal stress. Thus the development of tungsten plasma facing component (PFC) needs much effort in future.

  7. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  8. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  9. Luminosity Increase at the Incoherent Beam-Beam Limit with Six Superbunches in RHIC

    Science.gov (United States)

    Fischer, W.; Blaskiewicz, M.

    2003-12-01

    By colliding bunches of greater length under a larger angle, the tune spread caused by the beam-beam interaction can be reduced. Assuming a constant limit for the beam-beam tune shift, the bunch intensity can then be raised. In this way, a luminosity increase is possible. We review this strategy for proton beams in RHIC, with two collisions and consider six long bunches. Barrier cavities are used to fill every accelerating bucket of the machine, except for an abort gap, and to create the superbunches bunches at store. Resonances driven by the beam-beam interaction and coherent effects are neglected in this article.

  10. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  11. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  12. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams

    Science.gov (United States)

    Yuan, Yangsheng; Lei, Ting; Li, Zhaohui; Li, Yangjin; Gao, Shecheng; Xie, Zhenwei; Yuan, Xiaocong

    2017-02-01

    Optical beam wander is one of the most important issues for free-space optical (FSO) communication. We theoretically derive a beam wander model for Bessel beams propagating in turbulent atmosphere. The calculated beam wander of high order Bessel beams with different turbulence strengths are consistent with experimental measurements. Both theoretical and experimental results reveal that high order Bessel beams are less influenced by the turbulent atmosphere. We also demonstrate the Bessel beams based orbital angular momentum (OAM) multiplexing/demultiplexing in FSO communication with atmospheric turbulence. Under the same atmospheric turbulence condition, the bit error rates of transmitted signals carried by high order Bessel beams show smaller values and fluctuations, which indicates that the high order Bessel beams have an advantage of mitigating the beam wander in OAM multiplexing FSO communication.

  13. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  14. Center for Beam Physics, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

  15. Beam-time for biology

    CERN Multimedia

    Jordan Juras

    2010-01-01

    There's no question that playing with mercury or handling radioactive cadmium with your bare hands is a risky business. But understanding how these and other toxic metals interact with biomolecules within the body is a challenging feat; one for which the ISOLDE IS488 collaboration hopes to provide valuable insight.   General view of the ISOLDE experimental area. Unlike most of the facilities at CERN's accelerator complex, ISOLDE is not targeted mainly at particle physics. Rather, it produces radioactive nuclei during proton bombardment to study, among other things, physical and biological chemistry. At ISOLDE, the 1.4 GeV proton beam of the PS Booster (an early stage in CERN's accelerator complex) produces nuclear reactions in a thick target, creating a large variety of radioactive nuclei, which are mass-separated for use in experiments. In the case of the IS488 collaboration, the ion beam is directed into ice. "We implant radioactive metal ions into ice", explains Monika Stac...

  16. Vertical Beam Polarization at MAMI

    Science.gov (United States)

    Schlimme, B. S.; Achenbach, P.; Aulenbacher, K.; Baunack, S.; Bender, D.; Beričič, J.; Bosnar, D.; Correa, L.; Dehn, M.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Gutheil, B.; Herrmann, P.; Hoek, M.; Kegel, S.; Kohl, Y.; Kolar, T.; Kreidel, H.-J.; Maas, F.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nillius, F.; Nuck, A.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Spruck, B.; Štajner, S.; Thiel, M.; Tioukine, V.; Tyukin, A.; Weber, A.

    2017-04-01

    For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry An, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction 12C (e → , e ‧)12C . Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has been developed to overcome the lack of a polarimeter setup sensitive to the vertical polarization component.

  17. The Beam Diagnostics for SESAME

    CERN Document Server

    Varnasseri, S

    2005-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an Independent Intergovernmental Organization developed and officially established under the auspices of UNESCO. SESAME will become a major international research center in the Middle East, located in Allan, Jordan. The machine design is based on a 2.5 GeV 3rd generation Light Source with an emittance of 26 nm*rad and 12 straights for insertion devices. The conceptual design of the accelerator complex has been frozen and the engineering design is started. The completion of the accelerators complex construction is scheduled for the end of 2009. In the following an overview of the electron beam diagnostic system is presented, with special emphasis on the beam position monitoring system and the synchrotron light monitor.

  18. Plane waves as tractor beams

    CERN Document Server

    Forgács, Péter; Romańczukiewicz, Tomasz

    2013-01-01

    It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).

  19. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  20. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  1. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  2. Test-beam with Python

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The talk will show the current implementation of the software tool developed by Silab (Bonn) and Oxford University to analyze test beam data with Mimosa telescope. Data collected from the telescope are merged with hits recorded on pixel detectors with a FE-I4 chips, the official read-out chip of the Atlas Pixel Detector. The software tool used to collect data, pyBAR, is developed with Python as well. The test-beam analysis tool parses the data-sets, recreates the tracks, aligns the telescope planes and allows to investigate the detectors spatial properties with high resolution. This has just allowed to study the properties of brand new devices that stand as possible candidate to replace the current pixel detector in Atlas.

  3. Beam diagnostics in the CIRFEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R. [Northrop Grumman Advanced Technology and Development Center, Princeton, NJ (United States)] [and others

    1995-12-31

    The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy and energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.

  4. Repositioning and steering laser beam power via coherent combination of multiple Airy beams.

    Science.gov (United States)

    Zhang, Ze; Ye, Zhuoyi; Song, Daohong; Zhang, Peng; Chen, Zhigang

    2013-12-10

    We study numerically and experimentally laser coherent combination (LCC) with multiple one- or two-dimensional Airy beams. It is shown that the method of LCC using Airy beams leads to a higher combining efficiency and a better feature of propagation than that using conventional Gaussian beams. Based on such coherent Airy beams combination, we propose a laser steering approach that could achieve large-angle beam steering (over 0.6°) without the need of using any mechanical steering component.

  5. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  6. Development of 3D beam-beam simulation for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  7. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    on the ability to determine an optimal solution ...........17 Fig. 11 Graph of solution evolution using genetic algorithm on SHG maximization...test algorithm to determine the best settings and using those settings when doing pulse compression. Overall, the genetic algorithm is a good tool for...23 The MIIPS algorithm is better for determining a transform-limited beam than the genetic algorithm. First, there is a definitive way to know how

  8. Beam Studies with Electron Columns

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; /Fermilab; Kamerdzhiev, V.; /Julich, Forschungszentrum; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  9. Diamond Detectors as Beam Monitors

    CERN Document Server

    Dehning, B; Dobos, D; Pernegger, H; Griesmayer, E

    2010-01-01

    CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and ALICE and at various particle accelerator laboratories in USA and Japan. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for measuring single-particles as well as for high-intensity particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. The radiation tolerance is specified with 10 MGy.

  10. Maritime Adaptive Optics Beam Control

    Science.gov (United States)

    2010-09-01

    adaptive optics work at the NPS has been applied primarily to vibration control and segment alignment for flexible space telescopes and segmented mirror...a Fourier filter in the form of an iris or aperture stop is placed in the beam to select either the +1 or -1 diffractive order to propagate through...optical components on the table include lenses, mirrors, aperture stops, beamsplitters, and filters which reimage the system pupil plane and

  11. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  12. Sensitive beam current measurement for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schwickert, Marcus; Kurian, Febin; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Seidel, Paul; Neubert, Ralf [Friedrich-Schiller-Universitaet Jena (Germany); Geithner, Rene; Vodel, Wolfgang [Helmholtz-Institut Jena (Germany)

    2012-07-01

    Presently FAIR, the Facility for Antiproton and Ion Research, entered the final planning phase at GSI. The new accelerator facility requires precise devices for beam current measurements due to the large dynamics in beam intensities for the various synchrotrons, transport lines and storage rings. We report on the actual developments of beam diagnostic devices for the measurement of beam intensities ranging from 5 x 10{sup 11} uranium ions down to the detection of less than 10{sup 4} antiprotons. This contribution gives an overview of the planned instruments with a focus on non-intercepting beam current transformers, and summarizes the on-going development of a cryogenic current comparator.

  13. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  14. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  15. Electron Beam Curing of Advanced Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fundamental concept of electron beam method and the application in cure of composites are elaborated in this paper. The components of electron beam curing system are introduced. The mechanisms of interaction between electron beam and polymer matrix composites are presented. Recent studies reported including work of authors themselves on electron beam curing of composites are also discussed. Moreover, the authors believe that it is necessary to do the basic research about understanding how electron beam affects cured network and the mechanical/physical properties of the composites, for establishing a quantitative or semi-quantitative formulation.

  16. Self-steering partially coherent beams

    Science.gov (United States)

    Chen, Yahong; Ponomarenko, Sergey A.; Cai, Yangjian

    2017-01-01

    We introduce a class of shape-invariant partially coherent beams with a moving guiding center which we term self-steering partially coherent beams. The guiding center of each such beam evolves along a straight line trajectory which can be engineered to make any angle with the x-axis. We show that the straight line trajectory of the guiding center is the only option in free space due to the linear momentum conservation. We experimentally generate a particular subclass of new beams, self-steering Gaussian Schell beams and argue that they can find applications for mobile target tracing and trapped micro- and/or nanoparticle transport. PMID:28051164

  17. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  18. OAM beams from incomplete computer generated holograms

    CERN Document Server

    Zambale, Niña Angelica F; Hermosa, Nathaniel

    2016-01-01

    In this letter we show that optical beams with orbital angular momentum (OAM) can be generated even with incomplete computer generated holograms (CGH). These holograms are made such that random portions of it do not contain any information. We observe that although the beams produced with these holograms are less intense, these beams maintain their shape and that their topological charges are not affected. Furthermore, we show that superposition of two or more beams can be created using separate incomplete CGHs interspersed together. Our result is significant especially since most method to generate beams with OAM for various applications rely on pixelated devices or optical elements with imperfections.

  19. Multi turn beam extraction from synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, Nicholaos

    2017-01-24

    This disclosure relates to apparatuses and methods for the extraction of particle beams while maintaining the energy levels and precision of the particles and the particle beam. Apparatuses and methods for extracting a charged particle beam from a central orbit in a synchrotron are provided, in which a particle beam is deflected from the central orbit. Parts of the deflected particle beam passes through a stripping foil placed in at least parts of the deflected path such that the particles that pass through the foil are stripped of at least one electron. The electron stripped particles and the non-stripped particles may be separated magnetically.

  20. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.